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Abstract: This paper looks at the approach of using generating functions to solve linear inhomogeneous recurrence
equations with constant coefficients. It will be shown that the generating functions for these recurrence equations
are rational functions. By decomposing a generating function into partial fractions, one can derive explicit formula
as well as asymptotic estimates for its coefficients.
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1 Introduction

Solving recurrence equations (REs) is an important
technique in the analysis of algorithms, for example
in [?, 6]. A lot of REs occurring in the analysis of al-
gorithms are linear inhomogeneous recurrence equa-
tions with constant coefficients which we shall abbre-
viate as LIREs. It’s the aim of our paper to study how
to solve these REs using the approach of generating
functions (GFs). Our main result, Theorem 4, shows
that the GFs for those REs are rational functions. By
applying the method of partial fractions decomposi-
tion (PFD) in Theorem 5 to derive exact formulas and
asymptotic estimates for the coefficients of a GF, we
can solve these REs exactly or approximately to a high
degree of accuracy. The organization of our paper is
then as follow. We start off with a discussion of some
preliminary materials, namely recurrence equations,
generating functions, and locations of zeros, in Sec-
tion 2. Section 3 contains the main result, Theorem 4.
We then illustrate our approach with the exact and ap-
proximate solutions of several REs in Section 4. We
end our paper with a discussion of possible works in
the future in Section 5.

2 Background

This section will cover some materials regarding REs
and GFs. Our discussion of GFs will cover the formal
power series aspect, which enable us to manipulate
the GFs just like power series, and the analytic aspect,
which enable us to find asymptotic estimate for the
coefficients of the GFs.

2.1 Recurrence Equation (RE)

Let {an} be a sequence of (real) numbers. A RE for
{an} of the form

c0(n)an + c1(n)an−1 + · · · + ck(n)an−k = r(n)
(2.1)

or, equivalently

k∑
i=0

ci(n)an−i = r(n)

is called a linear RE. Eq. (2.1) is homogeneous if
r(n) ≡ 0 and inhomogeneous otherwise. If cj(n) in
Eq. (2.1) are constants then Eq. (2.1) is a linear re-
currence equation with constant coefficients. In this
paper, we deal exclusively with LIREs such that the
r(n) for these RES are of the form

r(n) =
m∑

j=1

(bi)nPi(n) (2.2)

2.2 Generating Function (GF)

Let {an}n≥0 = a0, a1, a2, . . . be a sequence of real
numbers. The ordinary generating function (OGF) for
{an} is the power series a(z) defined as

a(z) =
∑
n≥0

anzn (2.3)

In this paper, we will only consider OGFs. Therefore,
in the scope of this paper, a generating function (GF)
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is to be understood as meaning an OGF. We will write
a(z) � {an} to denote that a(z) is the generating
function for the sequence {an}. If a(z) � {an}, then
[zn]a(z) = an where [zn] is the coefficient extractor
operator. If we regard GFs as formal power series over
the ring K[[z]] where K is usually the complex field C,
then we can formally manipulate the GFs. For exam-
ple, let {an}n≥0, {bn}n≥0 be sequences of numbers
and a(z), b(z) be their generating functions, respec-
tively. A short list of valid operations on a(z) and
b(z) [12] is

{can} � ca(z) (2.4)

{an + bn} � a(z) + b(z) (2.5)

{
n∑

k=0

akbn−k} � a(z)b(z) (2.6)

{an−1} � za(z) (2.7)

{an+k} � 1
zk

(
a(z) −

k−1∑
i=0

aiz
i
)

(2.8)

{P (n)an} � P (zD)a(z) (2.9)

{an/n} �
∫

a(z)
z

dz (2.10)

where D is the differentiation operation, Df = df
dz ,

and P (n) is an arbitrary polynomial.

The formal power series aspect of GFs allow us
to manipulate them while disregarding their conver-
gences. However, if the power series do converges
and that they represent valid functions, then we are
in a position to find additional analytic information,
such as the asymptotic behaviour, regarding the
coefficients of the series. Assume for the following
discussion that f(z) =

∑
fnzn is a power series over

the ring C[[z]].

Theorem 1 ([12]): There exists a r ∈ R, 0 ≤ r ≤
∞, called the radius of convergence of f such that
the series

∑
fnzn converges, i.e. f(z) is analytic, if

|z| < r and diverges if |z| > r. r is expressed in terms
of {fn}∞0 by

1
r

= lim sup
n→∞

|fn|1/n (2.11)

If r is the radius of convergence of f(z) then f(z)
must have a singularity point, a point where f(z) fails
to converge, on the circle {|z| = r}. ♦
From Eq. (2.11), we can deduce that if α is the nearest
singularity point from the origin, then r = |α| and for
any ε > 0 with n sufficiently large

(1 − ε) |α|−n ≤ fn ≤ (1 + ε) |α|−n

which is the basis of most methods for find asymptotic
estimates for the coefficients of a generating function
[10, 12, 4, 8, 5].

2.3 Locations of Zeros

We will show in Theorem 4 that the GF for a LIRE is
a rational function. Since the singularity points of a
rational function are always poles located at the zeros
of its denominator, by locating the zeros of the de-
nominator we can derive asymptotic estimates for the
coefficients of the GF. The following two results from
complex analysis will aid us in the location of singu-
larities for the rational GFs discussed in this paper.
For proofs, please consult [9].

Theorem 2 (Pringsheim’s Theorem [9]): If f(z) is
representable at the origin by a series expansion that
has non-negative coefficients and radius of conver-
gence r, then the point z = r is a singularity of f(z).♦

Pringsheim’s Theorem is important since practically
all GFs that arise in combinatorics and analysis of al-
gorithms have non-negative coefficients.

Theorem 3 (Rouché’s Theorem [9]): Let f(z) and
g(z) be analytic functions in a region containing in
its interior the closed simple curve γ. Assume that
|f(z)| < |g(z)| on the curve γ. Then f(z) + g(z) and
f(z) have the same number of zeros inside the interior
domain delimited by γ. ♦

3 Statement of the Main Results

Theorem 4: Let {an}n≥0 be a sequence of numbers
satisfying a RE of the form

k∑
i=0

cian−i =
m∑

j=1

(bj)nPj(n) n ≥ k (3.1)

with {ci}k
i=0 being real numbers and {bj}m

j=1 being
positive real numbers as well as {Pj(n)}m

j=1 being
polynomials. Then the GF A(z) for {an}n≥0 is a ra-
tional function. ♦

PROOF: Upon multiplying the left hand side (LHS)
of Eq. (3.1) by zn and summing from n = k up to ∞,
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we have

SL =
∞∑

n=k

[ k∑
i=0

cian−i

]
zn

= c0

∞∑
n=k

anzn + c1z

∞∑
n=k−1

anzn + . . . + ckz
k

∞∑
n=0

anzn

= c0[A(z) − Ak−1(z)] + c1z[A(z) − Ak−2(z)]

+ . . . + ckz
kA(z)

(3.2)

where A(z) is the GF for {an}n≥0 and Ak(z) is A(z)
truncated after the kth term, i.e.

Ak(z) =
k−1∑
i=0

aiz
i (3.3)

The function (1 − bz)−1 with b > 0 is the generating
function for the sequence {bn}n≥0. If we define the
operator Θ as Θ(f) = zdf

dz , then by Eq. (2.9) we have

{nkbn} � Θk((1 − bz)−1) (3.4)

The GF Θk((1−bz)−1) in Eq. (3.4) is a rational func-
tion. Therefore, by Eq. (2.5), the GF for the sequence
{P (n)bn}n≥0 where P (n) is a polynomial will be a
sum of rational functions, i.e. {P (n)bn} admits a ra-
tional GF. It’s then therefore obvious that the sequence
given by the RHS of Eq. (3.1) also admits a rational
GF, i.e.

∞∑
n=k

m∑
j=1

(bj)nPj(n)zn =
α(z)
β(z)

(3.5)

where α(z) and β(z) are polynomials. From Eqs.
(3.1), (3.2) and (3.5) we can conclude that A(z) is ra-
tional.

Theorem 5 ([5]): Let f(z) be a rational function
that’s also analytic at 0 and has poles at α1, α2, . . . αm

of order s1, s2, . . . sm, respectively. Then there exists
m polynomials {Sj(n)}m

j=1 such that the coefficients
fn of f(z) are given by

fn ≡ [zn]f(z) =
m∑

j=1

Sj(n)α−n
j (3.6)

Furthermore, the degree of each Sj(n) is sj − 1. ♦
PROOF: Since f(z) is rational, there exists a partial
fraction decomposition (PFD) for f(z) as

f(z) = Q(z) +
m∑

j=1

sj∑
k=1

cαj ,k

(z − αj)k
(3.7)

where Q(z) is a polynomial and cαj ,k is given by

cαj ,k =
1

(sj − k)!
lim

z→αj

dsj−k

dzsj−k

[
(z − αj)sjf(z)

]
(3.8)

Coefficients extraction of the right hand side of Eq.
(3.7) is facilitated by Newton’s binomial expansion

[zn]
1

(z − α)r
=

(−1)r

αr

(
n + r − 1

r − 1

)
α−n

The binomial coefficient is a polynomial of degree
r − 1 in n, and so by collecting the terms associated
with a given α we arrive at Theorem 5.
If the {αj}m

1 are such that there exists a αj with
|αj | < |αk| for all other k, then for n sufficiently large
we have,

fn = α−n
j Sj(n) + o(α−n

j ) (3.9)

which gives us a quick asymptotic estimate for the co-
efficients fn of f(z).

For a lot of LIREs theirs GFs are not easily deter-
mined. For example, the REs appearing in Exam-
ple 3 and 4 have quite complicated GFs. Therefore,
the exact values for the terms of some REs are dif-
ficult to obtain. However, if those REs satisfy some
easily checked constraints, then we can obtain simple
asymptotic estimates for their terms. The asymptotic
estimates obtained will then be of the form

an = ckn
kαn + o(nkαn)

for sufficiently large n.

Theorem 6: Let {an} be a sequence satisfying a RE
of the form

k∑
i=0

cian−i =
m∑

j=1

(bj)nPj(n)

and R be the set of all roots of the characteristic equa-
tion

C(z) = 0 where C(z) =
k∑

i=0

ciz
i

Define the constant α as the smallest modulus of all
z ∈ R, i.e.

α = min
z∈R

|z|

If α−1 < β−1 = max{bi}, then the following esti-
mate holds

an ∼ β−nnd

C(β)
(3.10)

where d is the degree of the polynomial P (n) corre-
sponding to β. ♦
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PROOF: Let A(z) be the GF for {an}. From the proof
of Theorem 4 we know that R ∪ {b−1

j }m
j=1 is the set

of poles of A(z). Since β−1 = max{bi} > α−1, β
is the unique dominant singularity of A(z). Therefore
by Eq. (3.9), an asymptotic estimate for the an is

an ∼ [zn]
c

(z − β)s
(3.11)

where s is the order of the pole z = β and c is given
by Eq. (3.8) as

c = lim
z→β

(z − β)sA(z)

Again, from the construction of A(z) as described in
the proof of Theorem 4, we have

lim
z→β

(z − β)sA(z) = lim
z→β

(z − β)sΘs−1((1 − β−1z)−1)
C(z)

since in all the other terms in the PFD of A(z), either
z = β isn’t a pole or is a pole of a lower order than s.
We have

Θs−1((1 − β−1z)−1) =
β−s+1(s − 1)!zs−1

(1 − β−1z)s
+ . . .

(3.12)
where the . . . in Eq. (3.12) refers to terms of the form
c(1 − β−1z)−s′ with s′ < s. Therefore,

c = lim
z→β

(z − β)sA(z)

= lim
z→β

(z − β)sΘs−1((1 − β−1z)−1)
C(z)

= lim
z→β

(z − β)s

C(z)

[
β−s+1(s − 1)!zs−1

(1 − β−1z)sC(z)
+ . . .

]
= lim

z→β

(z − β)sβ−s+1(s − 1)!zs−1

(1 − β−1z)sC(z)

=
(−1)sβs(s − 1)!

C(β)
(3.13)

From Eq. (3.11), we then have

an ∼ [zn]
c

(z − β)s

∼ (−1)sβs(s − 1)!
C(β)

(−1)sβ−s

(
n + s − 1

s − 1

)
β−n

∼ ns−1β−n

C(β)

which is Eq. (3.10) upon replacing d = s − 1.

The above proof shows why we must constraint that
α−1 < β−1. If α−1 ≥ β−1, then there is no simple
equation to compute the required constant c like that
of Eq. (3.13) since the value of c will then depends on
all terms in the PFD of the GF.

4 Some Examples

Example 1: Consider the following Fibonacci-like
recurrence equation

an =

{
n n = 0, 1
an−1 + an−2 + n23n n ≥ 2

(4.1)

We first find the generating function for the sequence
{n23n}n≥2

S(z) =
∞∑

n=2

n23nzn

=
∞∑

n=0

n23nzn

︸ ︷︷ ︸
S1(z)

− 3z

By Eq. (3.4), we have

S1(z) = Θ2((1 − 3z)−1) (4.2)

Therefore,

S(z) = Θ2((1 − 3z)−1) − 3z

=
18z2

(1 − 3z)3
+

3z
(1 − 3z)2

− 3z

If A(z) is the generating function for the sequence
{an}n≥0, then Eq. (4.1) gives us

(1 − z − z2)A(z) − z = S(z) (4.3)

From Eq. (4.3) and by a PFD, we have

A(z) = − 146z + 153
25(1 − z − z2)

+
288

25(1 − 3z)
− 9

(1 − 3z)2
+

18
5(1 − 3z)3

and so

an = [zn]A(z)

= [zn]
{
− 146z + 153

25(1 − z − z2)

}
+ [zn]

{
288

25(1 − 3z)
− 9

(1 − 3z)2
+

18
5(1 − 3z)3

}
= −146Fn + 153Fn+1

25
+

(45n2 − 90n + 153)3n

25
(4.4)

where Fn is the nth Fibonacci number. 	
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Example 2: Let’s now find an asymptotic estimate
for the sequence {an}n≥0 in Example 1. Out of all
the poles of A(z), the one with smallest modulus is
the pole at z = 1/3 of order three. Therefore with-
out carrying out a partial fractions decomposition, we
know that the partial fractions decomposition of A(z)
contains a term of the form c0(z − 1/3)−3 where

c0 = A(z)(z − 1/3)3
∣∣∣∣
z=1/3

= − 2
15

An asymptotic estimate for {an}n≥0 is then

an ∼ [zn]
−2

15(z − 1/3)3
∼ 9n23n

5

which is the highest order term of Eq. (4.4). A more
accurate estimate can be found by finding the polyno-
mial S(n) associated with 3n. Since S(n) is known to
be of degree two, we have

S(n) =
−27c0

2
(n + 1)(n + 2) + 9c1(n + 1) − 3c2

where

c1 =
1
1!

lim
z→1/3

d
dz

[
A(z)(z − 1/3)3

]
= −1

c2 =
1
2!

lim
z→1/3

d2

dz2

[
A(z)(z − 1/3)3

]
= −96

25

from which we gather that

fn ∼ (45n2 − 90n + 153)3n

25 	

Example 3: Let {fn}n≥0 be a sequence satisfying
the following complicated looking RE

fn =

{
n n ≤ 4
fn−2 + fn−3 + fn−5 + n22n + n33n n ≥ 5

We now attempt to find an asymptotic estimate for the
sequence {fn}n≥0. If f(z) is the generating function
for the sequence {fn}n≥0, then it’s easy to see that
the poles of f(z) lie in the set {1/3, 1/2} or the set
{z : 1 − z2 − z3 − z5 = 0}. From Rouche’s theorem
we know that all the roots of 1− z2− z3− z5 = 0 lies
outside the circle {|z| = 1/3}. Therefore, f(z) has a
unique dominant singularity at z = 1/3. Therefore,
the partial fractions decomposition of f(z) contains a
term of the form c(z − 1/3)−4 for some constant c
and that [zn]c(z − 1/3)−4 is the desired asymptotic
estimate. By Eq. (3.8), the value of c is given as

c = lim
z→1/7

f(z)(z − 1/3)4

f(z), however, is not easily determined. But from the
construction of f(z) as was described in the proof of
Theorem 4, we can easily deduce that

lim
z→1/3

f(z)(z − 1/3)4 = lim
z→1/3

f̂(z)(z − 1/3)4

where

f̂(z) =
Θ3((1 − 3z)−1)
1 − z2 − z3 − z5

and so

c = lim
z→1/3

Θ3((1 − 3z)−1)(z − 1/3)4

1 − z2 − z3 − z5
=

9
103

The asymptotic estimate for fn is then

fn ∼ 9
103

[zn](z − 1/3)−4

∼ 9
103

(−3)4
(

n + 3
3

)
3n

∼ 243n33n

206
= f̂n

(4.5)

The relative error of f̂n in comparison to fn is less
than 4.13 × 10−3 for n ≥ 300. 	
Example 4: Our last example will be that of a RE
whose PFD will be very complicated. Let {an} be
a sequence satisfying the following RE

an =

{
n n ≤ 2
an−1 + an−2 + an−3 + n74n − n4 n ≥ 3

It’s quite unlikely that we will be able to obtain exact
values for the sequence {an}. However, Eq. (3.10)
with β = 1/4 gives

an ∼ 4nn7

1 − (1/4)1 − (1/4)2 − (1/4)3

∼ 64
43

n74n

The above estimate is accurate for n ≥ 500. 	

5 Conclusions

We have seen in this paper how GFs can help us in
solving linear inhomogeneous REs with constant co-
efficients. It will be interesting to study how GFs can
be applied to linear inhomogeneous REs where the co-
efficients are polynomials since the GFs for these type
of REs will satisfy inhomogeneous differential equa-
tions whose closed form solutions don’t always ex-
ist. The set of rational functions is a subset of the set
of algebraic functions. The problem of determining
the type of REs whose GFs are algebraic functions is
therefore a possibly highly interesting problem.
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