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Abstract—Fuzzing is a promising method for discovering
vulnerabilities. Recently, various techniques are developed to
improve the efficiency of fuzzing, and impressive gains are
observed in evaluation results. However, evaluation is complex, as
many factors affect the results, for example, test suites, baseline
and metrics. Even more, most experiment setups are lab-oriented,
lacking industrial settings such as large code-base and parallel
runs. The correlation between the academic evaluation results
and the bug-finding ability in real industrial settings has not
been sufficiently studied.

In this paper, we test representative fuzzing techniques to
reveal their efficiency in industrial settings. First, we apply typical
fuzzers on academic widely used small projects from LAVA-
M suite. We also apply the same fuzzers on large practical
projects from Google’s fuzzer-test-suite, which is rarely used
in academic settings. Both experiments are performed in both
single and parallel run. By analyzing the results, we found that
most optimizations working well on LAVA-M suite fail to achieve
satisfying results on Google’s fuzzer-test-suite (e.g. compared to
AFL, QSYM detects 82x more synthesized bugs in LAVA-M, but
only detects 26% real bugs in Google’s fuzzer-test-suite), and
the original AFL even outperforms most academic optimization
variants in industry widely used parallel runs (e.g. AFL covers
13% more paths than AFLFast). Then, we summarize common
pitfalls of those optimizations, analyze the corresponding root
causes, and propose potential directions such as orchestrations
and synchronization to overcome the problems. For example,
when running in parallel on those large practical projects, the
proposed horizontal orchestration could cover 36%-82% more
paths, and discover 46%-150% more unique crashes or bugs,
compared to fuzzers such as AFL, FairFuzz and QSYM.

I. INTRODUCTION

Since 1990s, researchers has proposed numerous techniques
to improve the effectiveness of fuzzers [24]. It begins with
blackbox fuzzers, where the fuzzer has no knowledge about the
internals of the program. The basic idea is simple: generate a
large number of random inputs for the program, and then catch
abnormal behavior which indicates bugs. Following works
accelerate blackbox fuzzing by specifying the input structure.

A prominent improvement of blackbox fuzzing is greybox
fuzzing, which guides fuzzing by coverage information. A
representative work of greybox fuzzers is American Fuzzy
Lop (AFL) [33]. Its genetic algorithm is extensively studied,
and many works [3, 20, 23, 27, 34, 21] are derived from
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it. By analyzing programs in source code or binary form,
whitebox fuzzers have more-detailed knowledge compared to
greybox fuzzers. Symbolic execution-based whitebox fuzzers
[4, 2] systematically explore the state space of a program by
automatically construct inputs exercising a predefined path.
Taint analysis-based whitebox fuzzers [26] infer bytes that
impact more and limit mutation to those bytes accordingly.
The approach of hybrid fuzzing is combing fuzzers together
to play to their strengths. For example, some works [30, 31,
32] combine greybox fuzzer and whitebox fuzzer, while some
works [8, 22] combine different types of greybox fuzzers.

Creative fuzzing techniques are flourishing, so are evalu-
ation methods inside the papers. Take runtime environment
for example, SYMFUZZ [5] runs fuzzers for an hour, while
Orthrus [29] extends the timeout to a week. As for test suite,
some works focus on real-world programs [14], while some
works are evaluated on synthesized bugs [10]. Metrics used
to compare against each other are even more problematic, as
the same metric has different implementations. For instance,
AFL treats crashes with different coverage pattern as “unique
crashes”; VUzzer [26] deduplicates crashes considering crash
location, memory operation and signals triggered [17]; Angora
[6] even does not supply the standard for crash triage.

Most optimizations work well and outperforms their com-
parative targets in their evaluation and experiment settings. But
the diversity mentioned above poses a threat to evaluation,
because different evaluation setup harms comparability, and
improper evaluation harms authenticity. Recently, Klees et al.
[19] took the first tentative steps towards better evaluation
and provides some guidelines. However, the academia has not
reached a consensus on a concrete procedure for evaluation.
Besides, there is no result to demonstrate the correlation
between the academic results and the bug finding ability in
real industrial settings.

In this paper, in order to reveal the efficiency of existing
academic fuzzing optimizations in industrial settings, we sys-
tematically evaluate typical fuzzers on practical large projects
with parallel runs. Results on academic widely used small
projects from LAVA-M with single run are collected for further
comparison, and the metrics selected are bug count, branch



count and path count.

We find that most optimizations working well in academic
settings fail to achieve satisfying results in industrial settings.
We analyze the common pitfalls affecting the effectiveness of
a fuzzing technique in industrial settings, investigate the root
causes behind the pitfalls, and propose initial solutions to the
problems. We observe that academic fuzzers have unstable
performance in different projects (e.g. when considering path
coverage, FairFuzz performs better than AFL in 14 programs,
but fails to keep up the advantage in the other 14 programs),
and propose horizontal and vertical orchestration of different
fuzzers as a solution. We observe that fuzzers fail to keep up
the performance improvements when running in parallel (e.g.
when comparing AFL and AFLFast on total path coverage
in Google’s fuzzer-test-suite, the gain of AFLFast is 12%
in single mode, but -11% in parrallel mode), and propose
synchronization of statistics as a solution. We observe that
symbolic execution has a bottleneck on large-scale programs
(e.g. compared to AFL, QSYM detects 82x more synthesized
bugs in LAVA-M, but only detects 26% real bugs in Google’s
fuzzer-test-suite), and propose lightweight symbolic execution
as a solution. Our preliminary experiments indicate that the
potential solutions are effective, and may provide directions
for future research. For example, compared to fuzzers such as
AFL, FairFuzz and QSYM, the proposed horizontal orches-
tration could cover 36%-82% more paths, and discover 46%-
150% more unique crashes or bugs, when running in parallel
on large practical projects.

The rest of the paper is organized as follows: Section II
investigates existing fuzzing works and briefly describes the
techniques used in the works. Section III summarizes evalua-
tion methods commonly used in the fuzzing works. Section IV
describes the experiment setup following industrial settings.
Section VI explores the possible solutions to the problems
reflected by the results. Section VII draws the conclusion.

II. FUZZING TECHNIQUES
In this section, we systematically investigate typical fuzzing

works, and summarize their techniques in Table 1.

TABLE I
LIST OF REPRESENTATIVE FUZZING WORKS

Fuzzer  Origin Type Characteristics

fuzz CACM’90 Blackbox First fuzzer

zzuf Industry’07 Blackbox Perturbing API calls

BFF Industry’10 Blackbox Tuning via machine learning
Radamsa Industry’07 Blackbox Heuristics-based mutation
AFL Industry’13 Greybox Coverage-guided fuzzing
AFLFast CCS’16 Greybox Frequency-aware scheduling
FairFuzz ASE’18 Greybox  Structure-aware mutation
libFuzzer Industry’13 Greybox In-process fuzzing

SAGE NDSS’08  Whitebox Whitebox fuzzing

KLEE OSDI'08  Whitebox Coverage-guided path selection
Angora S&P’18 Whitebox Search with gradient descent
Driller ~ NDSS’16 Hybrid  Selective symbolic execution
QSYM  Security’18 Hybrid  Fuzzing-oriented symbolic execution

A. Blackbox Fuzzing

The term “fuzz” was first proposed in 1990 [24]. Designed
for testing UNIX utilities, this work consists of three compo-
nents: a script to repeat the test, program fuzz to generate
random characters, and program ptygig to help execute the test.
The shell script first invokes fuzz to generate the random out-
put, and redirects it to the UNIX utility being tested, and then
waits for crash, hang or success. Interactive programs can not
be tested in such way, as they read commands from terminal.
As a workaround, this work provides utility ptygig, which
passes the random characters to the target program via pseudo-
terminal. The procedure above is considered as blackbox
fuzzing, because the fuzzer has no detailed knowledge of the
program being tested.

Following works mainly focus on the input generation stage
and execution stage. zzuf [16] intercepts file reading related
functions such as open and fread to injects randomness into
the results. This mechanism is more effective than generating a
completely new file, which differs too much to be accepted by
the program. zzuf also intercepts malloc to check for heap-
related memory corruptions. CERT Basic Fuzzing Framework
(BFF) [11] enhances blackbox fuzzing with online machine
learning. BFF organizes blackbox fuzzing into iterations. Each
iteration has a limited program execution count, and zzuf
is invoked for actual testing. Between each iteration, the
parameters of zzuf are optimized with the Multi-Armed Bandit
model. The parameters include which seed files are used for
mutation, and the proportion of a seed for mutation. BFF is
more than a blackbox fuzzer. It complements the post-fuzzing
analysis with a set of utilities, such as test-case minimization.
These analyses are not only a complement to blackbox fuzzers,
but also important components in greybox fuzzers. Radamsa
[15] leverages heuristics to generate inputs more efficiently.
Not limited to byte-level mutations where most fuzzers does,
Radamsa mutates with a set of high-level mutate operands, e.g.
line swaps, malformed Unicode codepoints and mishandled
ASCII strings.

B. Greybox Fuzzing

Greybox fuzzers guide fuzzing with coverage information
to accelerate fuzzing, because the prerequisite of triggering a
bug is covering the buggy code. Zalewski developed the first
greybox fuzzer, i.e. AFL [33], in 2013. AFL first instruments
the target program. At the beginning of each basic block, the
injected code increases a counter representing current basic
block transition (branch). After the execution of an input,
AFL analyzes all the counters to detect the change in branch
coverage. With the feedback counters available, AFL is able
to determine the usefulness of a newly generated input, and
prioritize the most promising seeds accordingly. Generally
speaking, greybox fuzzers first select seeds with evolutionary
algorithms, and then mutate a seed with various operands, and
finally run the test with the new input.

Possibilities of optimization exist in each stage. AFLFast
[3] optimizes the selection stage. By combining multiple per-
input feedback, AFLFast constructs a novel global view of



each branch. More specifically, AFLFast favors the seed ex-
ercising the least-chosen branch. The strategy is implemented
in power schedule, where the time mutating a chosen seed
is adjusted basing on the rarity. FairFuzz [20] optimizes
the mutation stage. The core idea is to preserve a seed
exercising rare branch when mutating. To do so, FairFuzz
experimentally mutate each byte of the seed, just to detect
whether mutating the byte results in divergence from the rare
branch. Additionally, FairFuzz also proposes an alternative
selection algorithm, which keeps mutating the seed exercising
most rare branch. libFuzzer [25] optimizes the execution part.
As an in-process fuzzer, libFuzzer removes the overhead of
process-based fuzzer, for instance spawning a new process and
writing the input to file. libFuzzer requires the user to define
a function accepting the pointer to input buffer and the length
of input. The function is repeatedly called to execute inputs.

C. Whitebox Fuzzing

Whitebox fuzzers is able to systematically explore the state
space of the target program, because whitebox fuzzers have
access to more detailed information compared to greybox
fuzzers. The first whitebox fuzzer, SAGE [13], runs the target
program with a concrete input and collects the trace. The trace
is then used to collect constraints affecting branches on the
path. Aiming to generate a new path, SAGE systematically
negates the constraints, and generates a new concrete input
via constraint solver. The trace with concrete value helps
symbolic execution by simplifying constraints and modeling
library calls.

Instead of analyzing a concrete trace offline like what SAGE
does, KLEE [4] explores the state space online. KLEE collects
the constraints of the target program from the entry point.
When a branch is reached, KLEE consults the constraint solver
to determine if it is possible to follow each destination. If both
are possible, KLEE forks to trace each path separately. When
an instruction may lead to error (such as memory access),
KLEE checks if the error can be triggered, and generates
concrete value if so. The online approach forks on branches,
which may exhaust the memory; however, it is free of repeated
collection of the constraints close to the entry point. Akin to
SAGE, Angora [6] aims to flip a specific branch to improve
coverage. Nevertheless, Angora does not work at path level
with symbolic execution. It models a branch as function f(x),
where x denotes the bytes affecting the branch. To build the
correlation between the branch and bytes in input affecting
the branch, Angora first performs dynamic taint analysis. The
result is further processed to infer the type behind the bytes.
Finally the function is optimized with gradient descent by only
mutating the “hot bytes”.

D. Hybrid Fuzzing

Hybrid fuzzing is a technique to magnify the strengths of
fuzzing and symbolic execution. In theory, whitebox fuzzing
is able to explore all states including branches. However,
constraint collection and solver calls slow down symbolic ex-
ecution by several orders of magnitude. Symbolic execution is

precise but slow, and fuzzing is fast but imprecise. Driller [30]
first launches its fuzzing engine to explore the program. When
fuzzing gets “stuck”, Driller switches to concolic execution.
As the statistics of the fuzzing stage, the concolic execution
engine generates a constraint leading the path to an unexplored
area. Then the constraint is solved and the concrete value is
passed to the fuzzing engine to repeat the process. QSYM [32]
observes that performance of symbolic execution is the main
factor limiting hybrid fuzzing. First, QSYM directly emulates
at instruction level to remove the overhead of intermediate
representations in constraint collection phase. Second, QSYM
removes ineffective snapshot, which is not applicable for
assisting fuzzing. Finally, QSYM optimistically solves parts
of the constraints, as fuzzing is able to bypass some checks.

IITI. TYPICAL ACADEMIC EVALUATION

In this section, we review programs and metrics typically
used by the academia for evaluating and comparing fuzzers.

A. Test Suites

TABLE 11
LIST OF ACADEMIC TEST SUITES

Test Suite | Stable Known Bug Real Bug Real Program
Utilities No No Yes Yes
LAVA-M Yes Yes No Yes
CGC Yes Yes Yes No

Test suite used in evaluation begins with UNIX utilities
[24]. The utilities are simple in I/O, but complex in logic.
While some works [4] still evaluate on it, an alternative
option is to fuzz file-related utilities, because files in complex
formats are difficult to parse correctly. Take portable document
format (PDF) for example, ISO 32000-2:2017 [9], the docu-
ment specifying the format of PDF, has a total number of 971
pages. Programs accepting document, image, video, executable
or network capture as inputs are popular targets for fuzzing
tasks.

To quantitatively measure whether a bug can be detected
by a fuzzer, the prerequisite is knowing the ground truth.
Utilities are not suitable for composing a test suite — when
the maintainers release a new version, vulnerabilities are
fixed and new logic is added. There also misses a well-
recognized standard for choosing utilities, granting that the
versioning problem is resolved. Besides, test suites with up-
to-date utilities are unknown in the existence of a bug, much
less the number of total bugs.

To construct a stable ground truth, one approach is synthe-
sizing the test suite by automatically injecting bugs into the
program, i.e. artificial bugs from real programs. LAVA-M [10]
is a test suite constructed by injecting out-of-bound reads and
writes into GNU coreutils. Another approach is intentionally
write programs with bugs and construct a test suite with
such programs, i.e. real bugs from artificial programs. If
correctly constructed, bugs injected in this approach are more
authentic. Cyber Grand Challenge [12] follows this path,



and 131 programs with vulnerabilities are written by security
researchers. However, to simplify the interaction between the
program and the OS, only 7 specially crafted syscalls are
allowed to use within the program.

In conclusion, a good test suite should contain real-world
programs with fixed source code, and the bugs inside those
programs should be authentic and already known. However,
as far as we know, no test suites that academia prefers to
evaluate fuzzers on fulfill all the properties.

B. Evaluation Metrics

Even on the very same experiment with identical test
suite, different conclusions may be drawn if metrics used are
different. Since the potential points of optimization broadly
exist in fuzzing, different works focus on different points, and
the metrics used for evaluation differ consequently. However,
the ultimate standard for fuzzers remains the same: the number
of bugs discovered, and it is convincing if a bug is registered
in the database of Common Vulnerabilities and Exposures
(CVE), and many fuzzing works list discovered CVEs.

Exploitable bugs are vulnerabilities, yet non-exploitable
bugs still reflect a fuzzer’s performance. Furthermore, report-
ing vulnerabilities to CVE requires expensive coordination
between the vendor and the MITRE Cooperation. One adjust-
ment is listing the bugs discovered, but it is still challenging to
deduplicate crashes into bugs: many inputs may exercise the
same path, and many paths may be affected by the same bug.
The ground truth can only be obtained manually: fix the bug,
and rerun the test; then inputs that can not crash the program
any more are duplicates of the same bug.

However, human intervention for bug confirmation is costly
and sometimes infeasible. Therefore, most fuzzing works re-
place the metric of “bugs discovered” with “unique crashes”.
Instead of manually deduplicate crashes, these works auto-
mate the deduplication with heuristics. For instance, AFL’s
online algorithm afl-fuzz deduplicates inputs with signif-
icantly similar branch coverage, while its offline algorithm,
afl-cmin, only keeps inputs covering new branch. In most
cases, one unique bug would result in many even hundreds of
unique crashes.

The number of bugs are relatively small for most real-
world programs, and the number of bugs between different
fuzzers is low in contrast. For a given program, there are
more blocks, branches and paths than bugs, thus comparing
different fuzzers’ block-, branch- or path-coverage is also
approachable. Covering a block or branch is the prerequisite
of detecting the bug residing on it, hence it is also reasonable
to use coverage as a metric to evaluate fuzzers.

IV. INDUSTRIAL SETTING ORIENTED EXPERIMENT SETUP

In this section, we describe the experiment setup for in-
dustrial settings, that running in parallel on large practical
projects. During the collaboration with engineers from Al-
ibaba, Huawei and Google, they will not run each fuzzer with
single core, which is widely adopted in academic evaluation.
They usually dedicate many CPU cores and run the fuzzer in

parallel, which allows many fuzzer instances to test the same
target at the same time.

A. Prepare Test Suites

The most authentic approach is real bugs from practical
large projects from the industry. Originated from Google,
fuzzer-test-suite [18] is composed of real world libraries, the
lines of code for each project ranges from 2948 to 405122, and
the average size is 104137 for the 24 practical projects. The
suite is carefully crafted for interesting bugs, hard to find paths,
or other challenges for bug finding tools. On the contrary, the
programs in Google’s fuzzer-test-suite is carefully selected and
the commit of the source code is precisely defined. Moreover,
fuzzer-test-suite ships a test harness for each program, which
is guaranteed to trigger a known CVE with proper inputs.
The property of known bugs provides the ground truth for
evaluation.

To demonstrate the difference between industry-oriented test
suites and test suites from the academia, we also include
LAVA-M [10] in our experiment. It contains four real-world
programs from GNU coreutils, and 2265 bugs are injected into
the programs. The lines of code for each program ranges from
2064 to 6913. We hope the vast number of known bugs could
amplify the minuscule difference in bugs between fuzzers.

B. Execute Tests

Our experiment follows real-world fuzzing practices: run
each fuzzer in parallel with existing initial seeds, which is
adopted by our industry collaborators from Alibaba, Huawei
and Google.

To accelerate fuzzing, the industry dedicates thousands of
CPU cores to test programs continuously. Therefore, we run
each fuzzer in parallel to reveal their performance under indus-
trial settings. More than just following the industry practice,
we also add single-instance experiments for comparison, as
the academia commonly evaluate fuzzers in single instance.
For fair comparison, both the single run and the parallel run
use the corresponding initial seeds.

Due to the characteristics of fuzzers, they are invoked
slightly differently but fairly, as listed below:

o Fuzzers of AFL family support syncing, and we run 4
instances of them in parallel: one in master mode, others
in secondary mode.

e libFuzzer stops fuzzing on crash. A script ensures 4
instances of libFuzzer by relaunching on crash.

« Radamsa can only generate inputs. A script launches AFL
for fuzzing, and invokes Radamsa every 120 seconds for
generating new seeds.

e QSYM is tailored for hybrid fuzzing. A script combines a
QSYM instance and 3 AFL instances. Note that QSYM
is designed for running together with a fuzzer, and we
exclude it from the single-instance experiment.

The server is equipped with 32 logic cores (Xeon E5-2630
v3 @ 2.40GHz) and 128 GiB of RAM. The host OS is Ubuntu
16.04 with Linux 4.4.0. Each experiment is given 24 hours
to run. Each program in the test suite is instrumented with



Address Sanitizer [28] to immediately signal the fuzzer on
latent bugs.

Our experiment covers fuzzers of all types: blackbox,
greybox, whitebox and hybrid fuzzers are included. Some of
them originate from the industry, while some are written by
researchers. Basing on Table I, we select representative fuzzers
of each type:

« For blackbox fuzzers, we select Radamsa for its unique
heuristics to detect the structure of the seed, and mutate
with the knowledge accordingly.

o For greybox fuzzers, we select AFL and libFuzzer,
the fuzzers widely used in the industry. We also select
AFLFast and FairFuzz, the representative work from the
academia.

o For whitebox fuzzers, we select KLEE, which is popular
in both the industry and the academia.

« For hybrid fuzzers, we select QSYM, which outperforms
many state-of-the-art hybrid fuzzing works and even
some whitebox fuzzing techniques such as Angora.

C. Collecting Data

Our experiment selects branch count, path count and bugs
count as the metrics. After collecting the inputs generated by
each fuzzer, we calculate each metric with the methods below:

Bug count is the ultimate evaluation metric for a fuzzer.
However, as Section III-B describes, it requires expensive hu-
man intervention to gather. We substitute manual verification
with stack signature: two crash-leading inputs are considered
equivalent if the source locations of all frames match each
other. The method above is prone to overestimation, since
a bug may be triggered by many paths. To address such
problem, we deduplicate the inputs with an Address Sanitizer
instrumented binary — program immediately crashes, exactly
on the site of memory-unsafe operation. This method signifi-
cantly reduces the number of duplicates compared to “unique
crashes” in AFL and the result of afl-cmin.

Branch count directly reflects a fuzzer’s ability to cover
different states of a binary. However, many fuzzers (e.g. the
blackbox fuzzer Radamsa) do not implement this kind of
metric in their statistics. For fair comparison, after collecting
the inputs generated by each fuzzer, a modified version AFL
is invoked on the inputs to count the covered branches.

Path count is a metric similar to branch count. It is more
precise, because the calculation is based on the logarithm of
the hit count for each branch. The paths of two inputs are
considered equivalent if the logarithms of all branches match.
To collect this metric, we run AFL on the seeds generated by
each fuzzer. In this section, we present the firsthand results and
the analysis of the pitfalls. Table III and IV present the path
count and bug count of each fuzzer on each project. The first
24 rows are programs in Google’s fuzzer-test-suite, and the
last 4 rows are programs in LAVA-M. The leftmost 6 columns
are fuzzers in single instance, and the rightmost 6 columns are
fuzzers in 4 instances in parallel.

V. RESULTS AND LESSONS LEARNED

A. Unstable Performance of Academic Fuzzers

AFLFast FairFuzz

boringss!

boringss!
cares

Radamsa

libFuzzer

boringss!
boringss|
cares

Fig. 1. Variance in Path Count Gains

Table III and Table IV is experiment results also published
in [7]. Figure 1 demonstrates the gains of path count over
different programs for each fuzzer. The data is generated from
Table III as follows: for each program and each fuzzer, we
calculate then normalize the gain of path count over AFL.

Inside Figure 1, we can clearly see that the gains of each
fuzzer vary over different programs. For each program, if a
fuzzer performs as good as AFL, then the gain would be
0%. Better performance is drawn in upward blue bar, while
worse performance is drawn in downward red bar. For each
fuzzer including descendants of AFL, red bars and blue bars
appear alternatively, which indicates that each fuzzer fails to
consistently perform better than AFL.

Take AFLFast as an example. As Section II-B describes,
AFLFast is a variant of AFL which improves the selection
stage with power schedule. The effectiveness of power sched-
ule is proved by individual cases of AFLFast — it achieves
up to 38% gain in path count. However, when analyzing the
gains collectively, the advantage vanishes. Out of all the 28
programs, AFLFast performs worse than AFL on 32% of the
programs when considering path count. To sum up, the solid
individual gains indicate strong performance, but a significant
number of worsened cases indicates unstable performance.

The problem of unstable performance can also be observed
in FairFuzz, yet another descent of AFL. Table V summarizes
the number of programs each fuzzer performs better or worse
than the baseline fuzzer AFL. From the table we can observe
that FairFuzz fails to outperform AFL on 50% of the programs
when considering path count. This also applies to QSYM and
Radamsa, two fuzzers which run collaboratively with AFL.



TABLE III

PATH COUNT

\ AFL AFLFast FairFuzz libFuzzer =~ Radamsa KLEE \ 4 QSYM 4 AFL 4 AFLFast 4 FairFuzz 4 libFuzzer 4 Radamsa
boringssl 1334 1674 1760 3528 1682 42 1207 3286 2816 3393 5525 3430
c-ares 80 84 88 123 78 25 72 146 116 146 191 146
guetzli 1382 1090 1030 1773 1562 103 1268 3248 2550 1818 3844 3342
lems 656 864 434 338 550 2 605 1682 1393 1491 1121 1416
libarchive 3756 2834 1630 10124 4570 82 3505 12842 10111 12594 22597 12953
libssh 64 68 62 201 63 4 87 110 102 110 362 110
libxmlI2 5762 7956 8028 19663 9392 18 5098 14888 13804 14498 28797 17360
openssl-1.0.1 2397 2103 2285 1709 2303 N/A 2330 3992 3501 3914 2298 3719
openssl-1.0.2 2456 2482 2040 1881 2108 N/A 1947 4090 3425 3956 2304 3328
openssl-1.1.0 2439 2380 2501 1897 2311 N/A 2416 4051 3992 4052 2638 3593
pere2 32310 35288 36176 20981 37850 261 24501 79581 66894 71671 59616 78347
proj4 220 218 218 334 182 24 208 342 302 322 509 341
re2 5860 6014 5016 6327 5418 267 5084 12093 10863 12085 15682 12182
woff2 14 10 12 224 10 N/A 15 23 16 20 447 22
freetype2 7748 10939 10714 16360 9825 N/A 7188 19086 18401 20655 25621 18609
harfbuzz 6793 8068 8668 10800 5688 N/A 6881 12398 11141 14381 16771 11021
json 466 412 408 499 564 326 504 1096 963 721 1081 1206
libjpeg 704 979 722 448 634 85 638 1805 1579 2482 1486 1632
libpng 170 159 76 263 493 2 577 582 568 587 586 547
llvm 4830 5760 5360 5646 4593 N/A 4096 8302 8640 9509 10169 8019
openthread 104 123 127 976 144 N/A 141 268 213 230 1429 266
sqlite 179 193 172 431 256 88 180 298 322 294 580 413
vorbis 891 1122 821 848 875 11 898 1484 1548 1593 1039 1381
wpantund 2959 3048 3513 3510 3146 N/A 2975 4914 5112 5691 4881 4891
base64 1060 1072 1061 N/A 1061 342 1643 1078 1065 1080 N/A 1077
mdSsum 584 582 508 N/A 583 134 1062 589 589 601 N/A 589
who 4397 4403 4497 N/A 4367 14 5621 4599 4585 4593 N/A 4415
uniq 420 447 450 N/A 437 427 693 476 453 471 N/A 480

Different from AFL’s branch metric, libFuzzer guides fuzzing
by basic block, which could explain the derivation in coverage-
related metrics. This does not imply that libFuzzer is inferior
to AFL — out of 46% programs, it discovers more bugs.

Lesson 1: Traditionally, researchers aim at improving the
performance of fuzzing techniques, i.e. better result on
a specific set of programs. Our results reveal that, it is
equally important to improve the stability, i.e. consistent
performance improvements over general programs.

B. Impaired Performance on Parallel Runs

Figure 2 illustrate the path count of 4 instances of fuzzer
running in parallel. Similar to Section V-A, the data is gen-
erated by normalizing the metric recorded in 4 instances with
the metric of 4 AFLs. Similar to Figure 1, if a fuzzer performs
as good as 4 AFLs for a program, then the gain would be 0%.
Better performance is drawn in upward blue bar, while worse
performance is drawn in downward red bar.

Compare the gains in path count of a single instance (as
in 1) and 4 instances of fuzzers running in parallel (as in
Figure 2), we can see that different fuzzers have drastically
different performance characteristics when running in single
or parallel. Most fuzzers which perform well in one instance
fail to maintain the improvement in four instance runs.

For instance, AFLFast in one instance has an average gain
of 7% in path count, but the average gain of four instance
is -9%. Analyzing performance of individual cases yields the
same conclusion: it outperforms AFL in 68% of programs
when considering path coverage, and in a total of 4 programs

4 AFLFast 4 FairFuzz

4 Radamsa

4 libFuzzer

Fig. 2.

Path Count Gains of 4 Instances

does it discover more bugs. However, when running in four
instances, the situation is quite the opposite — the number
of programs it outperforms AFL collapses to 14% in path
coverage. Coverage drops, and an obvious result is diminished
bug count: only in one program does it outperform AFL, and
it discovers less bugs in 36% of programs.

The problem of impaired performance on parallel runs is
not limited to AFLFast. For instance, the number of programs



TABLE IV

BUG COUNT
\ AFL AFLFast FairFuzz libFuzzer Radamsa KLEE \ 4 QSYM 4 AFL 4 AFLFast 4 FairFuzz 4 libFuzzer 4 Radamsa
boringssl 0 0 0 1 0 0 0 0 0 0 1 0
c-ares 1 2 2 1 2 1 1 3 2 3 1 2
guetzli 0 0 0 0 0 0 0 0 0 0 1 0
lems 0 0 0 0 0 0 0 1 1 1 2 1
libarchive 0 0 0 0 0 0 0 0 0 0 1 0
libssh 0 0 0 1 0 0 0 0 0 0 1 0
libxml2 0 1 0 1 1 0 0 1 1 1 3 2
openssl-1.0.1 0 0 0 0 0 N/A 0 3 2 3 2 2
openssl-1.0.2 2 1 0 1 1 N/A 2 5 4 4 1 5
openssl-1.1.0 0 0 0 0 0 N/A 0 5 5 5 3 4
pere2 2 1 1 1 2 0 1 6 4 5 2 5
proj4 0 0 0 1 0 0 0 2 0 1 1 1
re2 0 0 0 1 0 0 0 1 0 1 1 0
woff2 0 0 0 1 0 N/A 0 1 0 0 2 1
freetype2 0 0 0 0 0 N/A 0 0 0 0 0 0
harfbuzz 0 0 0 1 0 N/A 0 0 0 1 1 0
json 1 1 0 0 1 0 0 2 1 0 1 3
libjpeg 0 0 0 0 0 0 0 0 0 0 0 0
libpng 0 1 1 1 1 0 1 0 0 0 0 0
llvm 0 0 1 1 0 N/A 1 1 1 2 2 1
openthread 0 0 0 1 0 N/A 0 0 0 0 4 0
sqlite 0 0 0 1 1 0 1 0 0 0 3 1
vorbis 1 1 2 1 1 0 2 3 4 3 3 3
wpantund 0 0 0 0 0 N/A 0 0 0 0 0 0
base64 0 1 0 N/A 0 0 41 1 1 0 N/A 0
md5sum 0 0 0 N/A 0 0 57 0 0 1 N/A 0
who 0 0 0 N/A 0 0 1047 2 0 1 N/A 0
uniq 5 5 6 N/A 5 8 25 11 5 7 N/A 5
TABLE V Lesson 2: Traditionally, researchers are used to evaluate
PERFORMANCE GAINS OR LOSES, PROGRAM-WISE COUNTS their works in single instance. Our results reveal that
some strategies achieve good performances in single
Fuzzer | Path+ Path- | Branch+ Branch- | Bug+ Bug- . . . . .
instance settings while underperform when running in
AFLFast 19 9 16 10 4 2 : . : 13 e
) arallel. To evaluate the industrial applicability, it is
FairFuzz 14 14 14 10 5 3 paral’ . PPHCABIILY, 1t
libFuzzer 17 7 11 13 1 3 also important to extent experiments on running fuzzing
Radamsa 13 15 15 7 4 1 techniques in parallel.
KLEE 1 18 2 17 1 18
4 QSYM 13 15 12 15 7 3 C. B . .
. Bottleneck of Symbolic Execution
4 AFLFast 4 23 4 21 110 f Sy
4 FairFuzz 11 15 9 15 3 8 . . .
4 libFuzzer 15 9 9 15 1 7 Figure 3 demonstrates the bottleneck of symbolic execution
4 Radamsa 8 17 8 15 3 9 on large scale programs. The data is generated from III as

in which FairFuzz fails to keep the advantage over AFL in
parallel mode is 3, 5 and 2 when considering path count,
branch count and bug count. The same applies to Radamsa,
and the number of programs failed to keep the advantage is 5,
7 and 1 respectively. All fuzzers under test lose their advantage
to some extent when scaling to 4 instances. Even the industry-
originated libFuzzer still fails to keep up the advantage in 2, 2
and 1 programs respectively. The best performing fuzzer under
test is AFL, a fuzzer heavily optimized with feedback from the
industry. It is common to run fuzzers in parallel in industrial
environments. For example, Google dedicates over 25,000
cores just to fuzz 200 projects [1]. The industry heavily
optimizes the scalability of a fuzzer, and related techniques
such as core-binding and in-process fuzzing mostly originates
from the industry. Based on the results, we can learn the
following lesson.

follows: we first calculate the gain QSYM over AFL for each
program, and then normalize the gain by dividing it by the
corresponding metric of 4 AFL. For KLEE, the metric is
normalized with single AFL. The programs are sorted by lines
of code in ascending order.

Inside the first row of Figure 3, we can frequently see long
blue bars in the left side. That is to say, QSYM significantly
improves the performance on programs with less lines of code
(2k — 6k). Except for the rightmost outlier, many bars in the
middle are red ones or short blue ones, which indicates that
QSYM fails to maintain its advantage on other programs with
a large codebase. The same applies to KLEE, as the branch
counts is generally lower on larger programs. If we focus on
programs in LAVA-M, an interesting pattern emerges. All the 4
programs in LAVA-M — uniq, base64, md5sum and who
— are among the top 6 smallest programs. Among all the
programs in LAVA-M, QSYM dominates all the metric: aver-
age gains of 50%, 337% in path count and branch count are
achieved; a total of 1170 bugs are discovered, which is a vast
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Fig. 3. Gains of QSYM and KLEE (Sorted by LoC in Ascending Order)

8257% improvement over AFL. However, if such programs
are excluded, QSYM fails to maintain its dominance on real-
world projects: only on openthread does it significantly
outperform AFL in all metrics, and the average gains of path
count and branch count both drop to -3%. A -3% gain is
also observed in total number of bugs discovered. Analyzing
the results program-wise, we can draw the same conclusion:
out of the 24 programs excluding LAVA-M, QSYM fails to
outperform AFL on 63% of programs when considering path
coverage or branch coverage, and 13% of the programs when
considering bug count.

As a state-of-the-art implementation of symbolic execution,
QSYM aggressively optimizes its performance even at the cost
of considerable implementation complexity. The outlier does
demonstrate the strengths of symbolic execution. For example,
openthread is an implementation of various network proto-
cols, and checksum is ubiquitous in protocols. The checksum
is almost impossible to be guessed correctly, but it is trivial
for symbolic execution engines.

However, it still fails to outperform AFL in real-world
programs with large codebase. The reason behind may relate
to the size of the program. It is well known that symbolic ex-
ecution techniques suffer from path explosion. In other words,
the number of possible paths to explore grows exponentially
to the number of branches. Hybrid fuzzing works alleviate
the problem by offloading the “trivial” part of exploration to
fuzzers, and only solve the “difficult” part. Therefore, valueless
paths can be discarded by the symbolic execution engine,
and the problem of path explosion is alleviated. However,
the statistics from fuzzing are not a silver bullet, especially
when the program gets larger. Exponential path growth is the

intrinsic of symbolic execution, and no optimization lowers
the asymptotic computation complexity, not to mention the
stage of SMT solving, an NP-complete problem. Given a
program that is large enough, the performance gains brought
by symbolic execution tend to diminish.

Lesson 3: Recently, a popular approach of hybrid fuzzing
is combining symbolic execution with fuzzing, and its
effectiveness on small programs such as LAVA-M suite
and CGC suite is impressive. Our results reveal that,
symbolic execution may have bottleneck on large code-
base. For industrial usage, it is recommanded to evaluate
hybrid fuzzing on real-world programs such as almost all
practical projects from Google’s fuzzer-test-suite.

VI. IMPLICATIONS AND SOLUTIONS

In this section, we highlight implications and potential
solutions to benefit fuzzing in industrial settings. As Section
V analyses, existing fuzzing works may face some pitfalls
when running in industrial environment, such as unstable
performance, impaired parallel performance, and bottleneck
of symbolic execution. The general idea of our potential
solutions is to vertically or horizontally orchestrate multiple
dynamic testing techniques (e.g. various fuzzing strategies,
symbolic execution engines, taint analyzers) to avoid pitfalls
of single technique. Fig 4 and 5 show the high level designs of
horizontal orchestration and vertical orchestration. Horizontal
orchestration combines multiple dynamic testing techniques in
parallel by synchronizing statistics inside each technique. Cus-
tom implementation is allowed by considering what techniques
should be chosen, what statistics should be synchronized and
how statistics are synchronized. Vertical orchestration switches
among multiple dynamic testing techniques in series. The key
point of it is switch strategy, which determines what to switch
and when to switch. The solutions we propose to strengthen
existing fuzzing works in industrial settings is based on above
two orchestrations.

A. Improving Performance Stability

As Section V-A analyzes, researchers target improving the
performance of fuzzing techniques, but it is equally important
to improve the stability, i.e. consistent performance improve-
ments over general programs. Note that even for the fuzzer
with the best overall performance, other fuzzers still excel its
performance on some programs. One explanation is that each
fuzzer has unique strengths and performs the best on some
particular programs. It is conceivable that the orchestration
of different fuzzers results is more stable. To evaluate the
performance of the preliminary study, we select 10 programs
in pure C from Google’s fuzzer-test-suite, on which existing
fuzzers perform most variously.

To improve stability, we propose HoFuzz, an implementa-
tion of horizontal orchestration. HoFuzz runs different fuzzers
in parallel while sharing seeds between each other real time.
Figure 4 depicts the performance of HoFuzz. In this scheme,



HoFuzz, allocates 4 cores: 2 cores for AFL, one core for Fair-
Fuzz and one core for AFLFast. Each fuzzer shares its seeds by
the built-in periodical synchronization of AFL. Equally given
4 cores, the performance of pure FairFuzz or pure AFLFast
varies; but only HoFuzz consistently performs better than
pure AFL, AFLFast and FairFuzz. The proposed method
could cover 36%-82% more paths, trigger 13%-41% more
branches and discover 46%-150% more unique crashes
or bugs, compared to fuzzers such as AFL, FairFuzz and
QSYM.
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We also propose VoFuzz, an implementation of vertical
orchestration. In this scheme, the heuristics of FairFuzz is
enhanced with AFLFast. The rationale is that FairFuzz’s
strategy only optimizes for situations where rarely hit branches
exist, but when such branches disappear it will be “stuck”.
VoFuzz prioritizes the strategy of FairFuzz, but switches
to AFLFast’s more general strategy when needed. Figure 5
depicts the performance of VoFuzz, an implementation of
vertical orchestration. VoFuzz also shows better stability than
the existing fuzzing techniques alone.

Further research may focus on fine-tuning the orchestration
to improve the stability of performance. For example, in the
scenario of horizontal orchestration, the optimal combination
of fuzzers on different number cores may be inferred before-
hand; in the scenario of vertical orchestration, the strategy to
switch between different strategies remains to be explored.

B. Optimizing Parallel Performance

As Section V-B analyzes, some optimization strategies from
the academia achieve good performances in single instance
settings while underperform when running in parallel. One of
the reasons could be the statistical data behind the evolution of
“dumb fuzzers”. Usually, “dumb” fuzzers such as AFL mutate
the seeds blindly. With little connection between each fuzzer,
the performance characteristics of “dumb” fuzzers running in
parallel is similar to which in standalone mode. However,
as fuzzers become smarter and smarter, statistical data have
became a critical part of a “smart” fuzzer. If not specifically
designed for parallel runs, only a local view of the data is
available to each fuzzer. Without an unbiased view statistical
data, the scheduler may guide fuzzing to local optimum instead
of global optimum. For example, FairFuzz proposes heuristics
that only keeps seeds exercising low-frequency branches. If a
fuzzer can not share the count of branch hits with each other,
a branch hit by other fuzzers many times may be considered
low-frequency branch in current fuzzer.
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Fig. 6. Gains of Synchronization

For industrial fuzzers running in parallel, it is a de facto
practice to “steal” seeds from other instance of fuzzers. This
idea also applies when scaling fuzzers which leverages statis-
tical information. The implementation is slightly different, as
fuzzers not only passively accept the statistics, but also actively
update them. To scale FairFuzz, we propose SyncFuzz, an
implementation of Horizontal orchestration. It creates a global
storage of such information and update it in each fuzzer
collaboratively. Figure 6 depicts the performance gains when
statistics are shared between different instance of fuzzers.
Augmented with the proposed information synchronization
during parallel runs, AFLFast and FairFuzz could cover
8% and 17% more branches, and trigger 79% and 52%
more unique crashes.

Further research may focus on optimizing parallel per-
formance with effective synchronization. For example, the
contention of locks in process creation could be mitigated,
and the seeds could be more effectively synchronized and
distributed for large-scale fuzzing.

C. Balancing Symbolic Execution

As Section V-C analyzes, state-of-the-art symbolic execu-
tion techniques usually decelerate fuzzing on large-scale real-



world programs. Sophisticated as QSYM is, only on programs
sensitive to magic numbers does it perform significantly better
than AFL in both path count and branch count.

Hybrid fuzzing is a special case of vertical orchestration, so
the switch strategy significantly impacts performance. The key
of hybrid fuzzing is balancing fuzzing and symbolic execution.
Occasionally switching to symbolic execution greatly avoids
the overhead of symbolic execution, but our results indicate
that the strategy still stresses symbolic execution. It is well
known that symbolic execution is a heavyweight approach.
The cost of tracing greybox fuzzing, collecting constraints
and solving constraints still exist, even though the number
of invocation is reduced by hybrid fuzzing.

We speculate that hybrid fuzzing could balance two tech-
niques better, by adopting a more lightweight approach when
invoking symbolic execution. To further save the cost of sym-
bolic execution, we propose moving the symbolic execution
forward. Specifically, we run KLEE as the symbolic execution
engine for one hour, and then collect the results as the initial
seeds for fuzzing; next, we run AFL for 23 hours with the
aforementioned seeds. In this scenario, symbolic execution
only generates meaningful seeds, instead of running in parallel
with fuzzing. In this way, we can control the time and
resource usage and eliminate the cost of switching between
two techniques.

For example, pcre?2 is the program where QSYM has the
worst performance gain compared to AFL. QSYM achieves
a -24% gain in path count, a -28% gain in branch count,
and a -32% gain in bug count. Figure 7 compares the
heavyweight approach of QSYM and our lightweight approach
on pcre2 using path count and branch count. The proposed
lightweight approach constantly stays atop in each metric,
and finally outperforms by 3% in both branch count and
path count with less computation resource consumption.
Sometimes, running pure fuzzing on practical large projects
would be better than augmented with symbolic execution, as
demonstrated in Table V.
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Fig. 7. Performance of Lightweight and Heavyweight Symbolic Execution

Further research could balance symbolic execution and
fuzzing with better heuristics, such as ignoring seeds stuck
at unimportant branches with static analysis. However, this
approach only partially alleviates the deficiency of symbolic
execution. Looking forward, breakthroughs in symbolic exe-
cution and SMT solver could greatly benefit hybrid fuzzing.

VII. CONCLUSION

This paper test the existing fuzzing techniques to reveal
their performances in industrial settings, that run fuzzers
in parallel on large piratical projects. We first give a brief
introduction to existing fuzzing works, and then review test
suites and metrics commonly used by the academia. Basing
on the analysis of strengths and weaknesses, we systematically
select Google’s fuzzer-test-suite from industry and LAVA-M
suite from academia. The experiment environment is strictly
controlled to mimic industrial environment.

The experiment results reveal some pitfalls of existing
fuzzing works in industry settings, such as unstable perfor-
mance, impaired parallel performance, and bottleneck of sym-
bolic execution. We propose two general frameworks, namely
horizontal orchestration and vertical orchestration, to tackle
these pitfalls. For each pitfall, we analyze the root causes,
envision potential solutions based on the general frameworks
and prove their effectiveness with preliminary experiments.
To improve stability of performance, different fuzzers may
be orchestrated vertically or horizontally. To optimize parallel
performance, statistics may be synchronized among instances.
To overcome the bottleneck of symbolic execution, symbolic
execution may be invoked in a more lightweight approach.
Those industrial oriented optimizations can be leveraged for
more scalable performance.
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