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Abstract—Fuzzing is a technique widely used in vulnerability
detection. The process usually involves writing effective fuzz
driver programs, which, when done manually, can be extremely
labor intensive. Previous attempts at automation leave much to
be desired, in either degree of automation or quality of output.

In this paper, we propose IntelliGen, a framework that
constructs valid fuzz drivers automatically. First, IntelliGen
determines a set of entry functions and evaluates their respective
chance of exhibiting a vulnerability. Then, IntelliGen generates
fuzz drivers for the entry functions through hierarchical param-
eter replacement and type inference. We implemented IntelliGen
and evaluated its effectiveness on real-world programs selected
from the Android Open-Source Project, Google’s fuzzer-test-
suite and industrial collaborators. IntelliGen covered on average
1.08×-2.03× more basic blocks and 1.36×-2.06× more paths over
state-of-the-art fuzz driver synthesizers FUDGE and FuzzGen.
IntelliGen performed on par with manually written drivers and
found 10 more bugs.

Index Terms—Fuzz Testing, Fuzz Driver Synthesis, Software
Analysis, Vulnerability Detection

I. INTRODUCTION

Fuzzing is a popular software testing technique for vulnera-
bility detection. It attempts to trigger bugs within the program
by generating massive amounts of input and monitoring the
program’s runtime state. Fuzzers have been able to find
numerous vulnerabilities within real-world applications and
are of great interest in both academia and industry. AFL [1]
and LibFuzzer [5] are two widely used fuzzers. Both use the
classic genetic mutation algorithm to search for inputs that can
improve coverage. Due to AFL’s popularity, there have been
much research to improve its efficiency. Notable examples
include AFLFast [8], FairFuzz [17], MOpt [24], Angora [9]
and Matryoshka [10].

Though fuzzing has achieved significant progress, there are
still areas that require intensive manual labor, one of which
is constructing effective fuzz driver programs for standalone
libraries. This process usually requires the programmer to have
a deep understanding of the program’s source code, which is
time-consuming and error-prone. Thus automating this process
is imperative to improving the effectiveness of fuzzing.

There have been some work into automated fuzz driver gen-
eration. Google recently proposed a framework FUDGE [6] to
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generate fuzz drivers semi-automatically. FUDGE constructs
fuzz drivers by scanning the program’s source code to find
vulnerable function calls and generates fuzz drivers using
parameter replacement. It works well in specific scenarios
but tends to generate excessive fuzz drivers for large projects
which require manual removal of invalid results. Furthermore,
it is infeasible to try all candidate drivers. Another example
would be FuzzGen [14], which leverages a whole system anal-
ysis to infer the library’s interface and synthesize fuzz drivers
based on existing test cases accordingly. Its performance relies
heavily upon the quality of existing test cases.

In production environments, we face two significant chal-
lenges when constructing fuzz drivers automatically: (1) One
is to locate high-value entry functions. A high-value entry
function should have the ability to reach lower levels of the
program, yielding more code coverage after running for an
extensive period. In addition, an entry function that contains
vulnerable operations such as memcpy() is considered to be
more vulnerable and should require more attention. (2) The
other is to synthesize a valid and effective fuzz driver based
on the identified entry function. A correct fuzz driver should
be able to call the target function with suitable parameters.

In this paper, we present IntelliGen to address these chal-
lenges and construct fuzz drivers automatically. IntelliGen
works as follows. First, it scans the target program, looking
for functions with high vulnerability priority as potential entry
functions. Then, it synthesizes parameters using algorithmic
methods. Finally, IntelliGen constructs the fuzz driver which
calls the entry function with Address-Sanitizer [28] enabled
to initialize the fuzzing process. To evaluate its effectiveness,
we test IntelliGen on some real-world projects selected from
Android Open-Soure Project, Google’s fuzzer-test-suite and in-
dustrial collaborators. The results show that IntelliGen covers
1.08×-2.03× more basic blocks, 1.36×-2.06× more paths,
and detects 10 more bugs than the fuzz driver synthesizer
FUDGE and FuzzGen in total. Compared with the drivers
written manually by domain experts, IntelliGen covers almost
the same number of branches, paths, and bugs.

In summary, we make the following contributions:

• We propose a new fuzz driver synthesis framework, Intel-
liGen, which locates vulnerable functions and constructs
fuzz drivers automatically, reducing the total amount of
manual intervention required.



• We implement IntelliGen using the LLVM framework
with generalized entry function location and accurate
parameter inference, allowing for increased performance
and compatibility than the state-of-the-art.

• We test IntelliGen on real-world projects selected from
the Android Open-Soure Project, Google’s fuzzer-test-
suite and projects from industrial collaborators. The result
shows that IntelliGen covers 1.08×-2.03× more blocks,
1.36×-2.06× more paths and detects 10 more bugs than
FUDGE and FuzzGen and performs at least as well as
manually written drivers.

The rest of this paper is organized as follows. Section II in-
troduces related work. Section III explains IntelliGen’s design,
including the Entry Function Locator and the Fuzz Driver
Synthesizer. Section IV covers the implementation details.
Section V evaluates IntelliGen on real-world programs and
compares its results against FUDGE and FuzzGen. Section VI
demonstrates the application in real industrial practices. Sec-
tion VII discusses the problems we encountered and potential
future work. We conclude in Section VIII.

II. RELATED WORK

In this section, we introduce related work on fuzzing.
We mainly discuss fuzzing in industry, automatic fuzz driver
generation, API usage analysis and unit test generation.

(1) Fuzzing in industry. Fuzzing is a powerful technique
for detecting vulnerabilities. There have been much research
effort in improving fuzzing performance. InteFuzz [18], Deep-
Fuzz [20] and SAFL [31] improves the overall efficiency of
fuzzing algorithms. Zeror [33] increases the fuzzing through-
put by optimizing the fuzz target’s execution speed. En-
Fuzz [11] and PAFL [19] allows fuzz engines to scale better.
The effectiveness of the aforementioned projects have been
demonstrated in numerous industrial applications [12], [13],
[21]–[23], [29].

Some other work have been conducted to streamline the
fuzzing process. For instance, Google’s OSS-Fuzz [3], which
uses libFuzzer [5] and AFL [1] as its backend, has found
thousands of bugs over a period of 5 months. ClusterFuzz [2]
is the distributed infrastructure behind OSS-Fuzz, which au-
tomatically builds and executes binaries with different ver-
sions and finds the version that introduces a specific bug.
AFL targets the entire executable, generates random inputs
for the program and monitors its runtime state. LibFuzzer
fuzzes library functions by interfacing through the function
LLVMFuzzerTestOneInput(). It generates random data for this
function and checks whether the program crashes during
execution. Research based on LibFuzzer has led to a number
of improved implementations, such as HonggFuzz [4].

(2) Automatic fuzz driver generation. Fuzz drivers are
required when one wishes to fuzz a library function. Orig-
inally, testers wrote fuzz drivers for the target library by
hand, which is inefficient and error-prone. To synthesize fuzz
drivers automatically, Google proposes a framework named
FUDGE [6]. It scans the source code of the project for

the vulnerable API, synthesizes the interface function LLVM-
FuzzerTestOneInput() which calls the vulnerable API, and
fuzzes it using LibFuzzer [5]. FUDGE operates by finding a
function A, which calls another function B with the signature
(uint8 t*, size t). Then it considers function A as the entry
function and binds the buffer generated by the fuzz engine
with function B’s signature. This process will generate a large
number of candidate drivers. FUDGE shows them to testers
directly, allowing them to modify those drivers manually to
guarantee correctness. FuzzGen [14] scans the source code of
the target project, finds the dependency of each API function,
and generates interfaces to call the API functions based on
existing test cases. Without qualified test cases, it will fail to
generate correct drivers.

(3) API Usage Mining. Similar to API usage mining, fuzz
driver synthesis needs to identify meaningful entry functions.
MAPO [32] searches and mines for the most frequent called
APIs in the target project. GrouMiner [26] mines usage
patterns based on the graph of the project. APIExample [30]
extracts usage examples with similar functions.

(4) Unit-test generation. Unit-test generation is another
close research area to fuzz driver synthesis. Kampmann et al.
[16] presents a method to automatically extract parameterized
unit tests from system test executions. Testful [7] generates
test cases for Java classes and methods. Pacheco et al. [27]
presents a technique that improves random test generation by
incorporating feedback obtained from executing test inputs as
they are created. GRT [25] uses static and dynamic analysis to
include information on program types, data, and dependencies
in various stages of automated test generation. GenRed [15]
generates and reduces object-oriented test cases.

III. IntelliGen DESIGN

Figure 1 shows the high-level architecture of IntelliGen’s
design. IntelliGen consists of two main modules: Entry Func-
tion Locator and Fuzz Driver Synthesizer. Entry Function
Locator locates and sorts the vulnerable functions that contain
many vulnerable operations such as memcpy() in the target
project. Fuzz Driver Synthesizer synthesizes arguments for
the entry functions located by Entry Function Locator and
ensures there will be no memory safety issues regarding the
entry function arguments.

Fig. 1: Overview of IntelliGen. It uses the Entry Function
Locator to identify potential functions to fuzz and leverages
the Fuzz Driver Synthesizer to construct fuzz drivers.

A. Entry Function Locator

The effectiveness of fuzz testing relies upon the quality of
the entry function of the driver program. An effective entry
function may in turn call numerous other functions, potentially



leading to higher edge coverage. In contrast, an ineffective
driver may perform many checks on the supplied arguments,
reducing the overall efficiency of fuzz testing A powerful fuzz
driver should allow us to bypass those checks and reach the
actual program logic directly.

To Fuzz a project, testers need to communicate with its
developers or read the relevant documents to manually find
potential entry functions and construct valid function calls.
This cannot guarantee quality drivers and is highly time
consuming. To reduce manual labor, FUDGE and FuzzGen
have been developed to synthesize fuzz drivers automatically.
FUDGE looks for functions with parameters (uint8 t*, size t)
and assigns them with the buffer produced by fuzz engine.
FuzzGen extracts API function dependency from the test cases
and constructs a function to call API functions in a special or-
der. However, FUDGE may produce many ineffective drivers
thus requiring manual intervention to pick and update effective
fuzz drivers. FuzzGen on the other hand depends on the quality
of the project’s test cases. Without them, FuzzGen is incapable
of generating any fuzz drivers.

Extract AST

Sort by Priority
Source
Files

Entry 
Functions

Dangerous 
Operations

FunctionsScan

Global 
Structure

Fig. 2: IntelliGen’s process for locating entry functions.

To solve these problems and automate the driver generation
process, IntelliGen considers all functions as potential entry
functions, evaluates their vulnerability priority and selects
those with the highest priority as entry functions. Figure 2
gives an overview of IntelliGen’s Entry Function Locator.

First, IntelliGen scans the project and extracts all functions
found. To acquire the most suitable entry functions, IntelliGen
calculates the priority of each function based on the number
of memory dereferencing operations.

Algorithm 1 presents our method of accessing the priority
for each function. It takes the list of all source files fileList as
its argument and returns funcMap, a map between the func-
tions and their priorities. The algorithm operates by scanning
all the input files. When it encounters a new function, it first
initializes its priority to 0 and inserts it into funcMap, as
shown in line 2-7. The algorithm then scans all statements
in the function to get its priority, as shown in line 8-17. We
regard the following types of statements as potential vulnerable
statements:

• Dereferencing a pointer. Buffer overflows are the most
common security issues in industrial situations. These can
only be triggered by dereferencing an invalid pointer.

• Calling a memory related function. Some libc library
functions such as memset() and memcpy() may derefer-
ence pointers internally. These functions are a potential
source of buffer overflows.

ALGORITHM 1: Algorithm for evaluating potential entry
functions’ priorities.

Input: source code files fileList
Output: functions with their priority funcMap

1 funcMap = Map<Function, Priority>
2 foreach file in fileList do
3 foreach func in file do
4 if func in funcMap then
5 continue
6 end
7 funcMap.push(func, 0)
8 priority = 0
9 foreach stat in func do

10 if stat dereferences a pointer then
11 priority += 1
12 else if stat processes memory then
13 priority += 1
14 else if stat calls func2 then
15 priority += func2.getPriority()
16 end
17 end
18 funcMap.update(func, priority)
19 end
20 end
21 return funcMap

• Calling other functions in the same project. If the child
function can potentially cause buffer overflows, then the
parent function should also be considered as vulnerable.

A function that contains a greater amount of vulnerable
statements should receive a higher priority. After processing
all statements in the function, its priority value in funcMap
is updated accordingly, as shown in line 18. Finally, the
algorithm returns funcMap, the priorities of all functions, as
shown in line 21.

Then, IntelliGen selects the functions with the highest
priority as the entry functions. The algorithm of the Entry
Function Locator is presented in Algorithm 2. It takes two
parameters, namely maxNumber, specifying the max number
of entry functions, fileList, containing the target program’s
source files, and returns funcList as entry functions. First,
Entry Function Locator evaluates all functions in the fileList
by their respective vulnerable priorities, as shown in lines 1-6.
Then, it sorts the functions by their priorities, as shown in line
7. Next, it retrieves the maxNumber-highest-priority functions
as the final entry functions, as shown in lines 8-14.

Compared with FUDGE’s pattern matching and FuzzGen’s
API function searching in existing test cases, IntelliGen’s
design is guarenteed to be general and versatile. IntelliGen
can accurately identify vulnerable functions without resorting
to additional information.

B. Fuzz Driver Synthesizer

The effectiveness of fuzz testing is highly dependent upon
whether the driver is capable of invoking the entry function
correctly. An optimal driver can transform the input generated
by the fuzz engine to the target function’s arguments correctly.
Conversely, a faulty driver may even introduce errors, seriously



ALGORITHM 2: Algorithm of Entry Function Locator
Input: maximum number of entry functions maxNumber

source code files fileList
Output: entry functions funcList

1 funcMap = Map<Function, Priority>
2 foreach file in fileList do
3 foreach func in file do
4 funcMap.push(func.getPriority(func))
5 end
6 end
7 funcMap = funcMap.sortBy(Priority)
8 funcList = []
9 while maxNumber > 0 and not funcMap.empty() do

10 firstFunc = funcMap.pop()
11 funcList.push(firstFunc)
12 maxNumber -= 1
13 end
14 return FuncList

affecting the performance of fuzzing. Therefore, synthesizing
high-quality fuzz drivers based on the located entry functions
is vital towards good fuzzing performance.

Fuzz drivers are tightly coupled with the fuzzing engines.
LibFuzzer is a widely-used fuzzing engine and has been ap-
plied to find many serious bugs in previous evaluations. There-
fore, we choose LibFuzzer as IntelliGen’s fuzzing engine. Lib-
Fuzzer uses the interface function LLVMFuzzerTestOneInput()
to initiate its fuzzing process, so IntelliGen synthesizes this
interface function for the located entry function.

Entry
Functions

Synthesize
Arguments

Source
Files

Hook
Dereference

LLVMFuzzer-
TestOneInput()

Instrumented
Library

Compile

Driver

Fig. 3: Fuzz Driver Synthesizer’s process of fuzz driver syn-
thesis.

Figure 3 shows how IntelliGen synthesizes a fuzz driver
in detail. It takes the entry function as its input, and returns
a fuzz driver in the form of the libFuzzer interface function
LLVMFuzzerTestOneInput(). First, IntelliGen builds an empty
function LLVMFuzzerTestOneInput(). Then, IntelliGen instru-
ments the entry function’s arguments to assign valid values
at runtime. Specifically, it analyzes the argument’s value type
using the following rules:

ALGORITHM 3: Runtime Value Assignment Routines.
Functions getScalarValue() and getPointerValue() are inserted
to assign values for scalar and pointer objects. Functions
LoadInstHook() and StoreInstHook() are inserted before each
load and store instruction.

1 Function getScalarValue(size):
2 return readFromBuffer(size);
3 endFunction
4 Function getPointerValue():
5 ptr = malloc(SIZE);
6 markAsUnassigned(ptr, SIZE);
7 return ptr;
8 endFunction
9 Function LoadInstHook(ptr):

10 if NotAssigned(ptr) then
/* Compile-time determined */

11 if isScalarType then
12 *ptr = getScalarValue(OBJECT SIZE);
13 else if isPointerType then
14 *ptr = getPointerValue();
15 else if isStructOrArrayType then
16 recursively assign all members ;
17 end
18 markAsAssigned(ptr);
19 end
20 endFunction
21 Function StoreInstHook(ptr):
22 markAsAssigned(ptr);
23 endFunction

• Scalar Types: For scalar types, such as integers and
floating point numbers, IntelliGen instruments runtime
instructions that read subsequent bytes from the input
buffer generated by LibFuzzer and assign them to the
argument value.

• Pointer Types: For pointer types, IntelliGen instruments
a runtime function that allocates memory without ini-
tialization and assigns the pointer value with its starting
address. The size of the allocated memory should be large
enough to accommodate either the object that the pointer
points to or a small integer array.

• Array or Structure Types: For array or structure types,
IntelliGen assigns values for its member values recur-
sively by repeating this process on each member.

Next, IntelliGen scans the entry function and inserts state-
ments to lazy-stores values into arguments with pointer type.
Generally, we can not know the actual type of a pointer until
it is dereferenced, because C allows casting any pointer to
void* and vice versa. Hence, we can not assign a fitting value
to the pointer based on its current type. To solve this, we
must know the type in which it is used, and one method
to acquire this information is to trace dereference operations
of the pointer. Therefore, we delay the assignment of the
values referenced by pointers until its first usage, hence the
name lazy-store. IntelliGen keeps track of whether a memory
range has been previously assigned a value. All pointer values
in the entry function’s arguments are initially marked as
unassigned. For store operations, IntelliGen inserts instructions



that mark the memory range as assigned. For load instructions,
IntelliGen instruments a runtime function that checks if the
memory range is marked as assigned. If not, it assigns a value
corresponding to the dereferenced type using the method for
entry function arguments. When we find a load operation and
the memory that it points to has not been previously assigned,
IntelliGen constructs a parameter with the same type using
the method for constructing argument values and stores it
into the relevant memory area just before loading from it. We
also expand memory related functions such as memcpy() and
memset() into load and store operations for a more complete
analysis. Algorithm 3 shows the instrumented functions that
assign values in the situations described above during runtime.

IV. IMPLEMENTATION

In this section, we introduce the implementation details
of IntelliGen. We implement IntelliGen using the LLVM
compiler framework. The interface function LLVMFuzzerTe-
stOneInput() generated by IntelliGen is constructed at the
Intermediate Representation (IR) level. IntelliGen links this
function with the library code together into one bitcode
file. We can then compile the bitcode file to an executable
fuzz driver. We mainly solve the following challenges during
implementation:

Evaluating the priority of functions. When locating entry
functions, we need to calculate their respective priorities. In
essence, we should count the number of statements which
dereferences a pointer or calls other functions to processes
memory. LLVM-IR uses load and store instructions to read
from and write to memory through a pointer respectively and
call instructions to call a function, so we can trace these three
kinds of instructions to get the priority for any function.

Choosing effective entry functions. IntelliGen’s Entry
Function Locator can locate a few potentially effective entry
functions, but the user should have to choice to select which
function to fuzz. IntelliGen shows the recommended entry
functions and testers can manually intervene to determine
which entry functions to use or generate drivers for all
potential entry functions automatically.

Avoiding redundant memory assignments. IntelliGen will
only lazy-store into any memory area if the area has not been
previously marked as occupied. To keep track of all occupied
memory segments, IntelliGen maintains a global map and
inserts an instruction to mark the corresponding memory as
filled before a corresponding store instruction.

Synthesizing complex arguments for the entry function.
An entry function may contain pointer-typed parameters, each
pointing to a structure containing another complex structure.
By using the lazy-store technique, IntelliGen can generate
these arguments correctly. For any pointer arguments, as
mentioned in Algorithm 3, IntelliGen assigns a plain chunk
of memory. IntelliGen will only store an object if it is ever
dereferenced. For all member variables, they are generated
recursively. This allows IntelliGen to handle parameter con-
struction with ease.

Assigning appropriate values for arguments. Generating
random values for an argument may decrease the effectiveness
of fuzz testing. To find an appropriate value for an argument,
IntelliGen scans the IR of the function in search for compari-
son instructions. If one of the operands used by a comparison
instruction is an argument pending assignment, then the other
operand will be considered as an appropriate value for the
argument. IntelliGen will generate additional code to decide
if the appropriate value should be assigned to the argument.

Filtering out useless drivers. Though IntelliGen uses many
techniques to generate arguments for the entry function, We
cannot guarantee that all synthesized drivers will be valid,
especially for entry functions containing function pointer ar-
guments. To evaluate a synthesized driver’s effectiveness, we
execute the driver for a short amount of time automatically and
monitor its runtime state. If it crashes, we consider the driver
to be invalid and it will be removed. An invalid driver is often
caused by dereferencing a function pointer or an assertion
statement failing. Memory leaks may also invalidate a fuzz
driver. If an entry function allocates memory on the heap
but does not free it, then a memory leak error will occur. To
avoid memory leaks, IntelliGen hooks memory allocation/deal-
location functions such as malloc() and free() with Intelli-
Gen alloc() and IntelliGen free(). IntelliGen alloc() records
the memory it allocates, and IntelliGen free() remove the
record of the memory it frees. At the end of function
LLVMFuzzerTestOneInput(), all memory recorded by Intelli-
Gen alloc() but not freed by IntelliGen free() will be freed
altogether.

V. EVALUATION

To examine the effectiveness of IntelliGen, we evaluate it
on the 6 real-world libraries of Android Open-Soure Project
(AOSP) used in the evaluation of FuzzGen, 9 real-world
projects of Google’s fuzzer-test-suite with manually written
drivers for the comparison of Google’s FUDGE, and 3 real-
world projects from industrial collaborators. These projects
consist of image processing libraries (libjpeg), file processing
libraries (libxml2, JSON), regular expression engines (pcre2),
asynchronous resolver libraries (c ares), font compression and
decompression libraries (woff2, libhevc, libhavc), and font
shaping libraries (harfbuzz).

We use two commonly used metrics to evaluate the effec-
tiveness of automatic generated fuzz drivers on these real-
world libraries, namely basic block coverage and path cov-
erage. An effective driver should be capable of allowing the
fuzz engine to cover a significant amount of the code. We
collect the code coverage information using LLVM-cov, which
provides us information on block coverage, and path coverage.

We conduct our experiments on a machine with Intel Xeon
Gold 6148 processors and 128GiB of memory running on 64-
bit Ubuntu Linux 18.04. We run each fuzz driver 10 times,
each using four threads over a period of 6 hours and report
the average coverage statistics.



A. Comparison with FuzzGen

We compare IntelliGen and FuzzGen on the effectiveness
of synthesized drivers based on the six projects used in the
evaluation of FuzzGen. For FuzzGen, we use the same fuzz
driver provided with their project1. For IntelliGen, we use
IntelliGen’s Entry Function Locator to identify an initial set
of entry functions, and utilize Fuzz Driver Synthesizer to
synthesize a fuzz driver that calls the identified entry functions.
The results are presented in Table I, which shows the number
of blocks, and paths.

TABLE I: Number of blocks and paths covered by fuzz drivers
synthesized by IntelliGen and FuzzGen. We do not list the bugs
found in these libraries since these do not have a standard bug
list.

Project Blocks Paths

libavc IntelliGen 999 765
FuzzGen 579 81

libgsm IntelliGen 1258 659
FuzzGen 1339 1173

libhevc IntelliGen 928 476
FuzzGen 558 188

libmpeg2 IntelliGen 1105 630
FuzzGen 44 70

libopus IntelliGen 124 112
FuzzGen - -

libvpx IntelliGen 3221 924
FuzzGen - -

total
IntelliGen 7635 3566
FuzzGen 2520 1512
increase 2.03X↑ 1.36X↑

As shown in Table I, IntelliGen is able to achieve better code
coverage than FuzzGen on most projects, exceeding 50% more
block and path coverage on libavc and libhevc over FuzzGen.
The only exception is libgsm, where IntelliGen covers slightly
less blocks than FuzzGen though covering more paths. The
fuzz drivers provided by FuzzGen for libopus and libvpx are
invalid, whereas IntelliGen can synthesize correct drivers for
these two libraries. Figure 4 demonstrates the effectiveness of
the fuzz drivers synthesized by IntelliGen and FuzzGen over
time.

We examined the source code of the libraries we tested
and analyzed the reason for IntelliGen’s better performance.
In the libavc and libhevc libraries, IntelliGen and Fuz-
zGen both synthesized fuzz drivers for the high level APIs
(ih264d api function() and ihevcd cxa api function(). How-
ever, as IntelliGen is capable of constructing argument values
using principled methods while FuzzGen is only capable of
inferring possible values from test cases, the driver IntelliGen
is more versatile and potentially capable of reaching more
code. A more prominent example is libmpeg2. IntelliGen and
FuzzGen are both capable of synthesizing fuzz drivers for the
API function impeg2d api function(). However, as the project

1libopus and libvpx’s sample drivers provided by FuzzGen are invalid and
we could not execute them successfully.

does not provide test cases with much insight, FuzzGen cannot
construct arguments that allow the API function to reach
large proportions of the code, thus limiting the fuzz driver’s
performance. IntelliGen’s approach on the other hand allows
for vastly better performance.

Both IntelliGen and FuzzGen synthesized fuzz drivers on
a single exposed API function for the previous libraries. In
libgsm however, there are multiple potential entry functions.
IntelliGen’s Entry Function Locator identifies four entry func-
tions and its Fuzz Driver Synthesizer constructs one driver
each and one driver which calls all four functions consecu-
tively, thus five drivers in total. FuzzGen also provides five
drivers. Surprisingly, the best performing drivers for both
IntelliGen and FuzzGen call the same function only.

Overall, IntelliGen performs better on the majority of li-
braries than FuzzGen, even though FuzzGen leverages addi-
tional information extracted from test cases while IntelliGen
relies only on algorithmic parameter synthesis.

B. Comparison with FUDGE

We also compare the performance of IntelliGen and FUDGE
regarding the effectiveness of synthesized drivers. We select
the driver from FUDGE with the highest performance out of
the 100 sampled valid drivers. The results are presented in
Table II , which show the number of blocks, the number of
paths, and unique crashes of each driver respectively.

TABLE II: Number of blocks, paths covered and bugs found
by IntelliGen and FUDGE on Google’s fuzzer-test-suite.

Project Blocks Paths Bugs

re2 IntelliGen 2050 11228 0
FUDGE 1203 100 0

harfbuzz IntelliGen 6259 12708 1
FUDGE 82 3952 0

guetzli IntelliGen 692 7728 3
FUDGE 80 1460 0

libjpeg IntelliGen 1236 780 0
FUDGE 1059 738 0

woff2 IntelliGen 100 3936 2
FUDGE 69 59 0

json IntelliGen 903 3278 1
FUDGE 546 632 1

libxml IntelliGen 2355 128 1
FUDGE 1529 12 0

pcre2 IntelliGen 14852 21273 22
FUDGE 9144 13020 21

c ares IntelliGen 31 67 2
FUDGE – – –

total
IntelliGen 28478 61126 32
FUDGE 13712 19973 22
increase 1.08X↑ 2.06X↑ 0.45X↑

The third and fourth column of Table II presents the block
coverage and path coverage statistics for each project. To
obtain the total block coverage, we re-run each seed and merge
all the blocks together. To obtain the total path coverage, we
add the number of paths of each driver, since different drivers
with different entry functions do not share the same path.
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Fig. 4: Comparisons of the number of blocks and paths covered in libavc, libgsm, libhevc and libmpeg2 by IntelliGen and
FuzzGen. The drivers synthesized by FuzzGen for libopus and libvpx are invalid and not demonstrated in this figure.

We can observe that for each project, IntelliGen covers
significantly more blocks than FUDGE. IntelliGen also covers
much more paths than FUDGE on most projects except
libjpeg, since we skip some similar high-level entry func-
tions. Overall, IntelliGen’s block coverage outperforms that of
FUDGE by 79.54%, while IntelliGen covers 105.52% more
paths than FUDGE. On projects such as harfbuzz, guetzli,
woff2 and json, IntelliGen is able to cover at least 100% more
blocks and paths than FUDGE. This is because IntelliGen
tends to find high-level functions as potential entry functions,
which usually call a series of low-level functions. However,
FUDGE only finds functions which call another function with
the signature (const uint8 t*, size t). These functions may be
low-level functions and thus they are unable to cover much of
the code. The last two rows of Table II show that on project
c-ares, FUDGE fails to synthesize any valid fuzz drivers.
Therefore no function in c-ares calls another function with the
target signature. However, IntelliGen can directly synthesize
parameters for the entry function, which makes IntelliGen
more versatile than FUDGE.

The fifth column shows the unique bugs each driver detects.
The fuzz drivers synthesized by IntelliGen trigger bugs in
seven projects, while those synthesized by FUDGE trigger
bugs in only two projects. In total, IntelliGen finds 32 potential
bugs, but FUDGE only finds 22 potential bugs on json and
pcre2, since IntelliGen tends to use high-level and more
vulnerable functions as its entry functions, thus it is more
likely to trigger potential bugs.

Based on the results shown in Table II, we can conclude

that IntelliGen locates more effective entry functions, achiev-
ing higher block and path coverage and more unique bugs
detected than FUDGE, without the need for manual selection
or modification.

VI. CASE STUDY ON REAL PROJECTS

In this section, we use many real-world projects from
Google’s fuzzer-test-suite and our industrial collaborators to
demonstrate the effectiveness of IntelliGen.

1) Real-world Project in Google’s fuzzer-test-suite: We
first dissect the manually written driver and the fuzz drivers
generated by IntelliGen and FUDGE for the pcre2 library.

(1) The original manually written driver. As presented in
Listing 1, the driver written by domain experts invokes three
entry functions: regcomp(), regexec() and regfree(). First, it
calls regcomp() on the buffer generated by the fuzz engine.
Then, it calls regexec() with the previous variable preg. Finally,
it calls regfree() to free the variable preg.

(2) The driver synthesized by IntelliGen. IntelliGen lo-
cates pcre2 match() as one of the functions with the highest
priority and regards it as the entry function for driver synthesis,
whose function prototype is shown in Listing 2.

To synthesize fuzz drivers for the entry function
pcre2 match(), IntelliGen needs to synthesize its parameters.
First, IntelliGen regards the second and third parameters as
the buffer and its size, then binds them with the buffer
generated by the fuzz engine. For the three complex pa-
rameters code, match data and mcontext in pcre2 match(),
IntelliGen calls function pcre2 compile() to get the variable



Listing 1 Driver written by domain experts
1 extern "C" int LLVMFuzzerTestOneInput(const unsigned char *data,

size t size )
2 {
3 if ( size < 1) return 0;
4 regex t preg;
5 string str ( reinterpret cast <const unsigned char*>(data),

size ) ;
6 string pat ( str ) ;
7 int flags = data [ size /2] − 'a';
8 if (0 == regcomp(&preg, pat. c str () , flags ) )
9 {
10 regmatch t pm[5];
11 regexec(&preg, str . c str () , 5, pm, 0);
12 regfree (&preg);
13 }
14 return 0;
15 }

Listing 2 Function pcre2 match
1 PCRE2 EXP DEFN int PCRE2 CALL CONVENTION pcre2 match

(const pcre2 code *code, PCRE2 SPTR subject, PCRE2 SIZE
length, PCRE2 SIZE start offset, uint32 t options,
pcre2 match data *match data, pcre2 match context *
mcontext);

code, calls pcre2 match data create from pattern() to get the
variable match data. As for mcontext, IntelliGen does not
find a proper function to initialize it, so it synthesizes a
variable with the same type and assigns all bits with 0. In
reality, the variable is a NULL pointer. As a result, IntelliGen
synthesizes a candidate fuzz driver for function pcre2 match().
We run the driver automatically and find that it results in a
memory leak. To fix the memory leak, IntelliGen calls function
pcre2 match data free() to free the variable match data, and
calls pcre2 code free() to free the variable code.

Finally, IntelliGen synthesizes a valid fuzz driver with the
two free functions, as presented in Listing 3. The driver first
calls pcre2 compile() to obtain a pointer of type pcre2 code().
Then it checks whether the pointer is NULL. If not,
pcre2 match data create from pattern() is called to get a
pointer of type pcre2 match data(). The driver also checks
whether the acquired pointer is NULL. If not, the driver calls
the entry function pcre2 match() with the generated arguments
to initiate fuzzing. Finally, it calls pcre2 match data free()
and pcre2 code free() to free the two pointers previously
generated.

(3) The driver synthesized by FUDGE. We also uti-
lize FUDGE to synthesize fuzz drivers. FuzzGen can not
generate valid driver without providing additional test cases.
First, FUDGE finds a function compile pattern() which
calls another function pcre2 compile() with the function
signature (const uint8 t*, size t). Then, FUDGE extracts
pcre2 compile()’s relevant code snippets in compile pattern()
and generates a driver. Since FUDGE does not propose a
method to assign value for pointer parameters, we need to

Listing 3 Driver synthesized by IntelliGen
1 uint32 t p1, p2, p5;
2 uint64 t p3, p4;
3 pcre2 code* v1 = pcre2 compile(data , size , p1, &p2, &p3, NULL)

;
4 if (v1)
5 {
6 pcre2 match data *v2 =
7 pcre2 match data create from pattern (v1, NULL);
8 if (v2)
9 {
10 pcre2 match(v1, data , size , p4, p5, v2, NULL);
11 }
12 pcre2 match data free(v2);
13 }
14 pcre2 code free(v1);

manually assign all pointer parameters to NULL. In addition,
this driver will cause a memory leak similar to the one found
in IntelliGen. Since FUDGE does not propose a way to free
allocated memory correctly, we have to call pcre2 code free()
manually. The final modified driver is shown in Listing 4.

Listing 4 Driver synthesized by FUDGE with modification
1 extern "C" int LLVMFuzzerTestOneInput(const uint8 t* data,

size t size ) {
2 unsigned char buffer [8292] = {};
3 memcpy(buffer, data , size ) ;
4 PCRE2 SIZE erroffset;
5 int errcode ;
6 pcre2 compile context
7 *compile context = NULL;
8 int options = data [0];
9 pcre2 code * v1 = NULL;
10 if (v1 != NULL)
11 return 0;
12 v1 = pcre2 compile( buffer , −1, options , &errcode, & erroffset

, compile context ) ;
13 pcre2 code free(v1);
14 return 0;
15 }

(4) Code coverage of different drivers. We run each driver
for 24 hours, repeat 10 times and collect their average code
coverage information as presented in Figure 5.
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Fig. 5: Block and path coverage for drivers written manually,
and drivers synthesized by FUDGE and IntelliGen.



We can observe that the block coverage grows fast initially
for all drivers, then the growth changes to an approximate
logarithmic rate. This is because the fuzzer tends to discover
‘easy’ blocks rapidly, but once they have been mostly discov-
ered, the fuzzer will require relatively more effort to cover
the ’hard’ blocks. Also, there is a theoretical upper limit for
the coverage of each driver: an inefficient driver that calls a
low-level API function can not cover many blocks, while an
efficient driver that calls a high-level API function can cover
a lot of blocks after running a significant amount of time. The
path coverage trend is similar to that of the block coverage
but continues to grow even after fuzzing for 24 hours. This
is because while the seeds may cover the same set of blocks,
the order in which they are visited constitute different paths.

We can also see that IntelliGen and FUDGE both cover
fewer blocks than the original driver written by domain experts
in the first few seconds. But after fuzzing for an substantial
period, the driver synthesized by IntelliGen covers an increas-
ing amount of blocks and can even cover a few more blocks
than the manually written driver at the end of 24 hours. The
driver synthesized by FUDGE, however, does not exhibit an
obvious coverage growth after fuzzing for 24 hours. This is
because the driver synthesized by FUDGE does not contain
the core function pcre2 match(). If we manually modify the
driver to call pcre2 match() or regexec(), then it can cover
more blocks after a substantial fuzzing period.

2) Real-world projects from industrial collaborator: We
use IntelliGen on three real-world projects used by Huawei
Technologies: mxml v2.9, mxml v2.12 and libevent. These three
projects are also widely used in other industrial communities.
The overall results are presented in Table III, where FuzzGen
did not generate valid drivers because of the absence of
test cases. The first, second and third column represents the
number of blocks covered in each project, the number of paths
covered and the number of unique bugs detected, respectively.

TABLE III: Number of blocks, paths, and unique bugs

Project Blocks Paths Unique bugs

mxml v2.9 IntelliGen 715 503 5
FUDGE 31 43 0

mxml v2.12 IntelliGen 735 502 5
FUDGE 31 42 0

libevent IntelliGen 414 11 0
FUDGE 113 3 0

The statistics show that IntelliGen covers more blocks and
paths and can detect more bugs than FUDGE in all cases
tested. This is because IntelliGen tends to synthesize the fuzz
drivers on high-level entry functions while FUDGE’s synthesis
criteria is limited to a specific function signature. In addition,
IntelliGen and FUDGE cover more blocks and paths on mxml
v2.9 and mxml v2.12 than on libevent. This is because libevent
is stateful, thus requiring the driver to call a series of functions
in a particular order before starting the whole project. One way
to improve this is to let IntelliGen learn the order in which to
call multiple entry functions from unit test cases.

VII. LESSON LEARNED

Writing a fuzz driver manually seriously hinders the
efficiency of fuzz testing. Fuzzing tools have been well
developed and widely deployed in industrial environments
and have detected many vulnerabilities. However, the overall
performance and effectiveness of fuzz testing is still below
expectations, since testers need to undertake the extremely
laborious task of constructing fuzz drivers manually for each
project. This renders fuzz testing inaccessible to many who
wish to use fuzz testing. Generating fuzz drivers automatically
can greatly reduce the amount of manual labor required,
especially for large projects, which usually demands a diverse
portfolio of fuzz drivers to cover most areas of the program’s
code.

The quality of fuzz drivers will drastically impact the
performance of fuzz testing. A fuzz driver should select
a high-value entry function to maximize its effectiveness.
Different entry functions can reach different parts of the code
and will determine the direction of the fuzzing. A high-level
function usually calls many low-level functions, thus calling
a high-level function usually covers more branches and paths
than that of calling a low-level function. However, sometimes
a high-level function may contain numerous error checking
code, making it difficult for the fuzzer to reach low-level code.
An efficient fuzz driver should attempt to bypass these error
checking code and reach the core of a project directly. The
experiment results show that the choice of entry functions has
a great influence on fuzzing efficiency, and we need more
intelligent methods to decide the entry function.

The performance of driver synthesis can be improved
with more domain knowledge.

As we have explained previously, some projects are stateful
and will require the fuzz driver to call a series of functions
in a specific order to reach most of the code. In addition,
our argument construction algorithm may produce semanti-
cally incorrect entry function parameters. Through leveraging
domain knowledge automatically extracted from test cases and
other programs that use this library, IntelliGen can solve the
aforementioned problems through learning an entire sequence
of function calls and understanding which function parameters
would be accepted by the library, respectively.

The criteria for identifying effective entry functions is
largely undetermined. Though IntelliGen utilizes the Entry
Function Locator to locate potential entry functions using
metrics that represent potential memory vulnerabilities, to
avoid generating sub-optimal fuzz drivers, we still manually
select the entry functions that potentially allow the fuzz engine
to cover a large amount of the code. A concrete selection
criteria is needed to further filter out less potential entry
functions and maximize the effectiveness of generated fuzz
drivers. Nevertheless, our evaluation is valid regardless of
this procedure, as a fully automated procedure would simply
generate more fuzz drivers.



VIII. CONCLUSION

In this paper, we propose IntelliGen, an automated fuzz
driver synthesis framework. It constructs valid fuzz drivers
using the following steps. IntelliGen first calculates the vulner-
ability priority for each function and takes the functions with
the highest priority as entry functions. Then, IntelliGen mu-
tates the arguments of functions called in an entry function and
synthesizes parameters for the entry function using algorithmic
parameter construction to synthesize a fuzz driver. We evaluate
IntelliGen’s effectiveness against state-of-the-art fuzz driver
synthesizers FuzzGen and FUDGE on real-world projects
selected from the Android Open Source Project, Google’s
fuzzer-test-suite and our industrial collaborators. Compared
with FuzzGen, IntelliGen covers 2.03× more blocks and
1.36× more paths. Compared with FUDGE, IntelliGen covers
1.08× more blocks, 2.06× more paths, and detects ten more
bugs. IntelliGen constitutes a significant improvement over
the current state-of-the-art, providing vastly improved driver
synthesis quality with a vast reduction in manual intervention,
making fuzz testing more accessible and versatile.
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