
SATURN: Host-Gadget Synergistic USB Driver Fuzzing

Yiru Xu, Hao Sun, Jianzhong Liu, Yuheng Shen, and Yu JiangB
BNRist, School of Software, Tsinghua University, Beijing, China

Abstract—The Universal Serial Bus (USB) is an essential
component in modern operating systems, allowing for a wide
assortment of peripherals to connect conveniently to a com-
puter. The USB stack in an operating system usually consists
of the following two components: the host-side driver and
the device-side gadget driver, both of which are security-
critical. If any vulnerabilities in these privileged-mode drivers
are exploited, a malicious or malformed device could crash
the whole system. Fuzzing, a popular automated vulnerabil-
ity detection technology, has been applied to testing kernel
components such as drivers with varying degrees of success.
However, existing works mainly focus on one side and test
drivers through emulating malicious input from userspace or
peripherals while neglecting intricate internal states triggered
only through interaction between the two boundaries, leaving
a multitude of bugs exposed.

In this paper, we propose SATURN, a host-gadget synergis-
tic USB driver fuzzing approach, aiming to cover the entire
handling chain throughout the USB communication. To achieve
this, SATURN first leverages extracted driver information to
attach gadgets systematically and trigger more driver types,
facilitating the transition to interactive logic. Then, SATURN
performs a persistent synergistic fuzzing process through
canonical operation injection on both sides to play their own
important roles, significantly expanding the states explored
and exposing bugs in such logic. Compared to the state-of-the-
art USB fuzzers, such as Syzkaller, USBFuzz and FUZZUSB,
SATURN improves the branch coverage statistics on the cor-
responding stack by 1.53×, 3.69× and 2.3×, respectively. In
addition, SATURN found 26 previously unknown bugs, among
which are 4 CVEs, including drivers on each side.

1. Introduction

The Universal Serial Bus (USB) is one of the universal
standards in the modern computer system. A wide variety of
peripheral devices can connect to a computer through simply
plugging into the USB socket. USB devices are pervasive
and play an essential role in a variety of applications such as
file transfer, charging, audio, and keyboard. Their functional-
ities are powered by two software components: the host-side
driver and the device-side driver. Apart from working with
the hardware, the host-side driver performs interactions with
the user program as well as makes various requests to the
peripherals. The device-side driver, commonly named the

B. Yu Jiang is the corresponding author.

gadget, runs on billions of embedded systems and Android
devices, which receives requests from the host and responds
accordingly. While unifying peripheral connections for con-
venience, the USB system, like any other piece of hardware
and software, contains bugs and is potentially dangerous.
For instance, attackers can exploit vulnerabilities within the
drivers to intercept sensitive traffic, steal private data, or
even take control of a computer [10], [37]. As a master-
slave model, the security of USB system depends on either
side. The numerous functionalities expose device drivers to
a broad attack surface, and in conjunction with the drivers
running under the privileged mode, lead to the possibility
that simply plugging in a malicious or malformed device
might cause a system-level crash.

Fuzzing is an effective vulnerability discovery approach
and has been applied to assist kernel testing. There has been
prior research concerning USB driver fuzzing. Syzkaller’s
USB fuzzing module [13] injects randomly generated data
from the device in response to the host’s requests, exploring
any possible vulnerabilities in the host drivers. USBFuzz
[22] uses an emulated USB device virtually attached and
detached to the target system, feeding random inputs when
drivers perform IO operations. FUZZUSB [12] extracts in-
ternal state machines from USB gadget drivers to achieve
state-guided gadget fuzzing through multi-channel inputs.
In practice, these methods have achieved respectable results
and have detected vulnerabilities within the USB stack.

However, these approaches mainly test one side of the
USB stack, which limits its effectiveness significantly. As
aforementioned, the USB system consists of host drivers
and gadget drivers, both of which maintain their own in-
ternal state that can be altered by inputs from outside and
interactions with the opposite side. These drivers expose
two external boundaries: userspace application to the host
kernel and external events to the device-side logic, (e.g.,
keyboard press). Existing works, which test from one side,
experience difficulty in exploring states that can only be
reached through both sides’ interaction. For instance, a
printer’s “mid-print, no paper” status requires a joint effort.
Specifically, to reach this state, the userspace program first
submits a print job, which is dispatched to the host driver.
Then the host driver informs the printer gadget and their
respective states change to the printing in progress state.
During printing, the printer detects a lack of paper in the
intray, the information is then sent to the gadget, which
subsequently interacts with the host to enter the correspond-
ing state. In the above process, inputs from both the user
application and the peripheral device influenced the states of

both drivers, leading to a state that cannot be easily reached
by sending inputs only to one side, thus will be incapable
of detecting bugs that can only be triggered here.

This prompts a need for more sophisticated testing
techniques that can effectively find bugs in the drivers’
interaction phase, as currently, the Linux kernel primarily
conducts initialization checks that detect invalid USB con-
figurations, while the data transfer, i.e. device interactions, is
left unchecked [14]. Therefore, we propose to fuzz the host
drivers and the gadget drivers synergistically, targeting vul-
nerabilities within the drivers’ interaction after attachment.
To achieve such goals, the challenges are two-fold:

First, we need to significantly increase the success rate
of driver initialization, thus the state of such drivers can
transition to those involved in their respective devices’
interactions, allowing fuzzers to uncover bugs within this
process. Existing methods mainly rely on a limited set of
initialization information or randomness to overcome kernel
sanity checks, which are not robust enough to initialize a
wide variety of drivers. SATURN employs Linux’s built-
in gadget subsystem as the device side, which can trigger
various host drivers through synthesizing different attribute
configurations. However, the gadget module has a vast con-
figuration space, and randomly generated configurations can
be easily rejected by the kernel’s sanity checker. Therefore,
it is imperative to devise a method for systematically and
efficiently attaching a wide variety of gadget devices.

Second, we need to engage in the interaction process
with canonical operations, significantly expanding the states
explored and exposing bugs in such interactive logic. Pre-
vious approaches such as Syzkaller [5] perform less than
optimal since they solely rely on predefined system call
descriptions and test one side of the USB stack, thus a large
proportion of the inputs it produces are incompatible with
the dynamically attached driver. Therefore, it is essential to
reliably detect dynamically attached device files including
both the host drivers and the corresponding gadget drivers,
and inject compatible and high-quality inputs to both sides,
thus invoking their interactions and exploring the states that
can only be reached through such interactions.

To address the aforementioned limitations and improve
fuzzing effectiveness, we propose SATURN, a novel host-
gadget synergistic USB driver fuzzing approach. Unlike
typical fuzzers focusing on one side, SATURN enables both
security-critical sides, the host and gadget, to play their
own essential roles in the overall fuzzing process. First,
SATURN directly extracts the possible configuration space
from the kernel and utilizes the gadget subsystem to respond
to initialization requests, thus greatly increasing the success
rate of driver initialization. Next, SATURN efficiently detects
the device files on both sides and dynamically probes the
underlying file operations, allowing SATURN to be aware
of the inputs that host and gadget drivers require. Finally,
SATURN performs persistent fuzzing synergistically by in-
jecting sequences on both sides, grouping syscalls according
to gadget types, and fixing parameters if necessary, thus
significantly increasing the quality of the generated inputs.

We implemented SATURN and evaluated its performance

on recent versions of the Linux kernel. Overall, SATURN
achieves higher coverage on the corresponding stack than
the host-side fuzzer Syzkaller USB fuzzing module and
USBFuzz, as well as the gadget-side fuzzer FUZZUSB
by 1.53×, 3.69× and 2.3× on average. Subsequently, we
evaluated the specific improvements gained by either com-
ponent. Regarding SATURN’s driver attachment component,
it successfully triggered 304 unique drivers, compared to
Syzkaller’s 14 drivers and USBFuzz’s 44 drivers. Regarding
synergistic fuzzing, we extracted and compared the cover-
age of common drivers among Syzkaller, USBFuzz, and
SATURN, and observed that synergistic fuzzing delivers a
58% and 77% improvement, respectively. This demonstrates
that SATURN is capable of initializing more drivers and
effectively exploring the interaction states simultaneously
through the host-gadget synergistic fuzzing approach. In
terms of vulnerability discovery capabilities, SATURN found
26 previously unknown vulnerabilities, among which are
4 CVEs, including the implementations on both the host
and gadget drivers. The bugs have been reported to kernel
maintainers and relevant patches have been merged.

Overall, this paper makes the following contributions:

• We identify the difficulties in USB driver fuzzing,
and propose a host-gadget synergistic fuzzing ap-
proach targeting to cover the full handling chain
during USB communication.

• We design SATURN, consisting of a systematic gad-
get attachment phase and an efficient host-gadget
synergistic fuzzing phase, which is capable of de-
creasing the difficulty involved for fuzzers to test
USB drivers and increasing the attack surface.

• We implemented SATURN and evaluated its effec-
tiveness from the perspectives of the overall and
component-wise improvements and found 26 un-
known vulnerabilities, among which are 4 CVEs.

2. Background and Motivation

2.1. USB Host-Gadget Model

Since its introduction in the 1990s, USB has received
widespread popularity due to the hot-plugging and plug-
and-play features. It has become a ubiquitous standard used
to connect a diverse range of peripheral devices such as
keyboards, mice, printers, digital cameras, flash memory,
and hard drives to the host computer. With the advent of
high-speed USB standards (1.x, 2.x, 3.x, 4.x), numerous new
peripherals have been developed, and a considerable number
of drivers have been integrated into the kernel codebase.

USB follows an asymmetrical master-slave model in
which the host computer functions as the master, while the
peripheral devices serve as the slaves. In the communication
process, only the host initiates communication requests by
polling and sending data to the peripheral devices, which can
only wait for the host’s requests. This master-slave model
implies that drivers on the host and device sides differ signif-
icantly. Linux, one of the most successful operating systems,

contains both side components. The host-side driver runs on
the Linux computer, and the device-side driver running on
the embedded Linux peripherals is the gadget driver.

Some Linux-based intelligent devices can serve as both
host and peripheral device at the same time, due to On-The-
Go (OTG) [36] and Dual-Role-Device (DRD) [8] features.
For example, an Android phone acts as a host when it
charges through a USB port and as a device when it connects
to a computer for file transfer, and the internal driver of
the latter is implemented by the gadget stack. The gadget
subsystem itself achieves various device-specific features
including, but not limited to network (CDC, ACM), human-
computer interaction, mass storage, and audio interfaces. Be-
sides, the gadget subsystem provides flexible configuration
options, including various USB device properties, like many
function types and interface attributes, thereby supporting
attaching and triggering various host and gadget drivers
through synthesizing different attribute configurations.

Gadget Applica�ons

Printer
Gadget
Driver

MSC
Gadget
Driver

...
HID

Gadget
Driver

Gadget Core

USB Device Controller driver

Host Applica�ons

Printer
Driver

MSC
Driver

...HID
Driver

USB Core

USB Host Controller driver

Hardware

Gadget Side Host Side
User

Space

USB Device Controller USB Host Controller

USB Device

Kernel
Space

USB Host Device

Figure 1: Host Gadget Architecture. Once the gadget device
is configured and enumerated, host-side and gadget-side
drivers communicate via requests originating from userspace
applications, encapsulated by device drivers, and passed
through the core driver, controller driver, and hardware to
the recipient counterpart.

In Linux’s implementation, the design of the host and
gadget drivers share the same structure, as depicted in Fig-
ure 1, along with similar data structures. Directly interfacing
with the hardware devices and controllers, the device/host
controller drivers represent the layers communicating with
the hardware through means such as registers and DMA.
They offer foundational support for the subsequent device
drivers. At the core layer, the gadget core driver handles
driver lifecycle events by returning configuration and string
descriptions, including managing bindings to hardware, dis-
connecting chains, etc. On the host side, the USB core driver
is responsible for selecting the corresponding driver for the
device, and processing information between the device and
the host. The device drivers layer provides specific function-
alities such as printers, Mass Storage Class (MSC), Human
Interface Devices (HID), and generates/consumes protocol-
specific data transfers. Finally, the top layer is comprised of
applications, which allow users to interact with the kernel
space for specific tasks.

When a USB gadget is connecting to a host, the system’s
behavior can be divided into several phases: (0) Gadget
configuration stage. Users choose and configure a specific
gadget through particular functions and attributes, which
is the preparatory phase for connecting the gadget, unlike
general USB devices that are already pre-programmed and
configured. (1) Device enumeration stage. The gadget is
bound to a particular USB Device Controller (i.e., a device is
plugged into a port), and the host sends request messages to
identify the device, following specific USB standards. This
phase is handled entirely by the gadget and is transparent
to the userspace. Once a gadget is fully identified, the host
proceeds with driver matching and probing to initialize a
specific driver. (2) Host-Gadget communication stage. Once
a connection is established, both sides can send commands
to each other, utilizing queues of request objects for pack-
aging I/O buffers. Requests in any direction can impact the
respective states of the host-side and gadget-side drivers.

2.2. Threat Model

USB drivers, as a medium, naturally face two types of
threats: first, the threat from the OS-peripheral, for example,
attackers can exploit vulnerabilities in the drivers of cloud
service to take control of the devices and inject malicious
inputs to attack host machines. Additionally, some malicious
or malformed peripherals may send malicious data to the
driver of the host, causing memory bugs like Use After
Free [32], and other logical bugs, ultimately leading to
system crashes. Second, the threat from the userspace-OS
arises from system calls where malicious applications can
manipulate files (e.g., ioctl()), or exploit vulnerabilities
in the device drivers, leading to system crashes.

In this paper, we define the security boundary to be at
two locations to assist us to identify and protect against the
above threats: the userspace application to the host kernel
and the device-side logic/event (i.e., keyboard press, mouse
click) to the gadget subsystem. This is depicted by the
upper dashed line in Figure 1. Therefore the external threat
is events from the host userspace or device-side logic, as
depicted in “User Space” with grey color in the diagram.
Moreover, we assume that all hardware on both sides,
including the device controller, is trustworthy, as depicted
in “Hardware” with dark blue color. We also trust the
code logic of the drivers in the kernel space, including the
controller driver, core driver, and device driver, as depicted
in “Kernel Space” with light blue color. All threats occur
during the communication phase, where both the host-side
and device-side drivers have to deal with vulnerabilities
from external attack surfaces, including but not limited to
applications, physical operations on hardware devices, etc.

There are many fuzzing efforts dedicated to discovering
these potential threats. Some researchers explore the attack
surface from OS-peripheral, who emulate the possible op-
eration of peripherals by providing inputs to hardware I/O
channels. For instance, FUZZUSB extracts internal state ma-
chines from USB gadget drivers and achieves state-guided
fuzzing through multi-channel inputs from the host to the

gadget stack. On the other hand, some techniques address
uncertainty from the userspace. Syzkaller injects random
syscall sequences into the device files on the host side, rely-
ing on handwritten file paths and operation specifications by
kernel experts. These efforts have yielded excellent results
and found many vulnerabilities in the kernel drivers.

2.3. Motivating Example

In the communication of USB drivers, the host and
gadget sides maintain their own state machines, which are
affected by inputs from both userspace applications and
device-side logic. When a command is launched from the
userspace, it is processed to the host-side drivers first and
prompts the transition of the host’s status, then delivered
to the gadget via the hardware. The gadget drivers transfer
to the transaction-specific handler and respond to the host.
Conversely, events from the device side affect the state of the
gadget first, then the gadget drivers encapsulate messages
to notify the host, leading to state changes and subsequent
actions on the host side. Regardless of the input direction,
they access certain pieces of the kernel logic and are routed
through drivers on both sides. Additionally, the execution
of requests involves two-way interaction, and the state on
one side impacts the other side. However, existing works
are limited to one-side data injection, thus possibly missing
some parts of the communication chain, resulting in repeated
exploration of already covered code and failing to expose
vulnerabilities in more complex states.

init

wait for
commands

create and
submit URB

wait for
comple�on

no paper
hung

...

Gadget Driver

Host Driver

init

wait for
commands execute

print ac�on
...

print
interrupt① Print Job

From Userpace
③ No Paper Warn

from Hardware

②

④

Figure 2: State machines for drivers on both sides in a
printer’s workflow. After successful attachment and initial-
ization, the printer receives a job from userspace (①). The
host-side driver creates and submits URBs to inform the
device (②), while the gadget driver executes the print job.
In this process, the state of the host impacts the gadget. In
case the paper runs out, the printing on the gadget side is
forced to interrupt (③), leading to the host driver entering
the no paper hung status (④) and activating the subsequent
processing mechanism. In this process, the state of the
gadget affects the host. Moreover, the states of both sides are
affected by the userspace and device side simultaneously.

As an example, consider the internal state transitions
of the USB printer drivers (usblp/gprinter) depicted
in Figure 2. Once a printer peripheral is plugged into the
computer and initialized, both side drivers enter into a wait-
ing state. Next, a print job is launched from the userspace

through system call usblp_write(), the host-side driver
starts to read the data with copy_from_user(), then
creates and submits the URB to the device side and waits
for its completion. When receiving the print request, the
gadget-side driver constantly executes print action through
interaction with the hardware. During the waiting process,
the host driver continuously polls the status of the corre-
sponding IN port. If the gadget driver detects that there
is no more paper, it interrupts the print action and returns
a -ENOSPC message to the host, which then triggers the
collect_error statement to handle subsequent actions,
such as displaying a warning message on the user’s screen.

In the end, the entire system reaches a “no paper, stop
working” state, which necessitates collaboration between the
host and gadget. If the existing fuzzing methods test this
case, the works with userspace injection repeatedly send
the usblp_write() system call to the printer, leading
to a valid working status. Other works that supply device-
side inputs can only respond to requests, without the host’s
polling for paper status, the entire system may not reach a
paper-required state at all. Like this situation, existing works
experience difficulties in reaching these complex kernel
statuses designed for the host and device’s interactions, as
they only generate inputs from one side, without adequate
capture of the synergistic relationship between the two sides.

1 static __poll_t usblp_poll(struct file *file, struct
poll_table_struct *wait)↪→

2 {
3 struct usblp *usblp = file->private_data;
4 __poll_t ret = 0;
5 unsigned long flags;
6

7 poll_wait(file, &usblp->rwait, wait);
8 poll_wait(file, &usblp->wwait, wait);
9

10 mutex_lock(&usblp->mut);

11 if (!usblp->present)

12 ret|= EPOLLHUP;

13 mutex_unlock(&usblp->mut);

14

15 spin_lock_irqsave(&usblp->lock, flags);
16 if (usblp->bidir && usblp->rcomplete)
17 ret |= EPOLLIN | EPOLLRDNORM;
18 if (usblp->no_paper || usblp->wcomplete)
19 ret |= EPOLLOUT | EPOLLWRNORM;
20 spin_unlock_irqrestore(&usblp->lock, flags);
21 return ret;
22 }

Listing 1: This patch fixes a long-existing bug in the USB
subsystem that hangs in poll() if the device is discon-
nected [40]. This vulnerability existed in Linux for 15 years
and was not discovered until 2021.

The patch depicted by Listing 1 demonstrates a vulner-
ability that requires interaction from both sides. The code
fixes the issue by adding Lines 10-13 highlighted in grey.
Specifically, the vulnerability occurs when the peripheral
device is suddenly disconnected after a successful connec-
tion with the device file opened. If a userspace program
subsequently invokes the poll() system call, the usblp
driver hangs and cannot be awakened. The root cause of the

stall is the lack of checking of the status of the peripheral
before acquiring the usblp->lock, and after getting the
lock (Line 15), it has not been able to wait for a response
from the peripheral (Lines 16-19) to unlock (Line 20), thus
blocking the thread here. This straightforward but complex
logic requires the combined action of both sides to trigger
correctly. Furthermore, such a large kernel may have various
vulnerabilities under more complex conditions, which are
difficult to detect with existing methods.

Moreover, existing USB fuzzing methods face a chal-
lenge in generating high-quality inputs that can trigger effec-
tive state transitions within host drivers, which in turn limits
their fuzzing performance. Specifically, they mostly emulate
approaches where the host obtains data from the device and
randomly feeds it back in those ways, with little consider-
ation of their functionality. For instance, PERISCOPE [29]
treats each fuzzer-generated input as a serialized sequence
of memory accesses and substitutes the device drivers’ read
values from MMIO and DMA mappings. However, the
operating system kernel strictly adheres to various general-
purpose protocols with stringent input validation mecha-
nisms, and values that do not satisfy the specifications
are immediately rejected and entered into an error-handling
mechanism. As a result, PERISCOPE could not discover any
more bugs after testing with ten thousand inputs, and some
shallow bugs were repeatedly triggered. Other works [16],
[42] that emulate the device aim to pass or satisfy complex
verifications during the initialization phase and present some
emulation of the basic functions. They are unable to generate
data that can effectively alter the overall state of the system.

1 static long
2 printer_ioctl(struct file *fd, unsigned int code,
3 unsigned long arg)
4 {
5 ...
6 switch (code) {
7 case GADGET_GET_PRINTER_STATUS:
8 status = (int)dev->printer_status;
9 break;

10 case GADGET_SET_PRINTER_STATUS:
11 dev->printer_status = (u8)arg;
12 break;
13 ...
14 }
15 ...
16 }

Listing 2: Part of printer_ioctl() code, where gadget
module provides easy-to-use interfaces to change status.

Compared to these approaches, the gadget subsystem in
the Linux kernel, which serves as the device side, can bring
more complex state changes to the whole system, since
it emulates various functionalities on the device side. Its
comprehensive and sophisticated state transition mechanism
and easy-to-use filesystem interfaces benefit us in exploring
more status. For instance, in the previous example (Fig-
ure 2), setting the third parameter arg of the ioctl()
system call to PRINTER_PAPER_EMPTY when injecting
it into the gadget device file transforms the printer from
a normal working state to a no paper state, as shown in

Listing 2. This illustrates the gadget module’s capability to
uncover more complex states in the kernel.

3. Design

To address the concerns mentioned above, we propose
SATURN, a USB driver fuzzing mechanism that facilitates
the synergistic effects between the host and the gadget
side, dedicated to covering the full handling chain during
USB communication and exploring deep code logic. Fig-
ure 3 illustrates the design of SATURN, which consists of
two stages: gadget attachment (Section 3.1) and synergis-
tic fuzzing (Section 3.2). In the gadget attachment stage,
SATURN directly extracts the possible configuration space
from the kernel and utilizes dynamically attached gadget
devices to respond to initialization requests, so as to increase
the success rate of driver initialization. In the synergistic
fuzzing stage, SATURN enhances its approach by probing the
underlying file operations of both host and gadget drivers,
grouping syscalls according to gadget types, and fixing
parameters if necessary, thus significantly increasing the
generated syscall sequences’ quality.

Gadget
Configura�on

Host USB
Module

①Generate

File Opera�ons
Iden�fica�on

⑤Enable
SyscallsGeneratorMutator

Grouped
Corpus

Gadget A�achment

Synergis�c Fuzzing

⑦New Coverage

⑥H-G Syscall Sequences

Fuzz Loop

⑧ Select

③Validate

④Probe

Executor

Host-Gadget
Device Files

Extracted
USB Info

②A�ach

Crashes Repros

Figure 3: SATURN Overview. With the extracted USB in-
formation, SATURN configures the gadget devices (①) and
attaches it to the host (②). After validating the attachment
and monitoring the device files on both sides (③), SATURN
utilizes a probe to identify the file operations (④), then
enables proper system calls in the fuzzing loop (⑤), and
effectively generates system call sequences acting on both
side devices (⑥). Corpus is grouped by gadget functionality
to improve fuzzing efficiency (⑦, ⑧).

3.1. Gadget Attachment

To improve the success rate of driver initialization and
facilitate the transition of drivers to their respective interac-
tions, we propose dynamically attaching gadget devices and
constructing the complete attachment procedure until it can
be correctly identified to pass the USB enumeration process.
However, the gadget module has a vast configuration space
and randomly generated data often fails to pass legitimacy
checks. Therefore, SATURN utilizes the USB information in
the kernel, trying to generate the valid gadget configuration.
Specifically, ConfigFS [2] is adopted to configure gadget

devices, which provides a programmable interface to con-
figure and create the gadget devices. Then, access to the host
and gadget drivers is achieved through device files, which
indicate how userspace programs access specific hardware
devices in Unix-like kernels. While device file locations
are dynamically generated upon successful attachments, it
is essential to have a reliable method for detecting file
nodes. During attachment, SATURN validates the gadget’s
availability and detects corresponding device files.

USB IDs Extraction. To support hot-plugging and
automatic driver-matching functionalities, Linux hard-
codes some device-related values and constraints into the
usb_device_id structures. When a device tries to con-
nect, the host-side driver core compares its attributes, such
as vendor and product ID, with those listed in the drivers’
USB IDs fields to determine the appropriate driver for the
device. SATURN leverages this feature to dynamically set up
the gadget as a specific device, allowing it to pass the USB
enumeration phase and trigger the corresponding drivers.
In the extraction module, SATURN leverages the iterator to
traverse the USB driver bus and access these values, which
are static constants listed in each specific driver’s implemen-
tation and linked to the bus through the usb_register()
function. Then SATURN constructs a callback function that
obtains the usb_device_id structure from the USB bus
at each callback and continuously dumps them in a certain
format. Since most built-in drivers are registered during
kernel boot, SATURN can extract and collect this information
upon loading as a kernel module during runtime.

Gadget Configuration Generation. Based on the ex-
tracted USB device ID structures, SATURN generates gad-
get configurations, including device attributes and interface
properties, capturing the available functionalities and their
corresponding features. These USB device ID structures
consist of candidate attribute values for matching and a
bitmap field named match_flags, which plays a critical
role in determining the fields necessary for device match-
ing. When constructing device attributes, in addition to the
strictly limited fields that are identified through bit-level ex-
clusive operations, SATURN randomly generates extraneous
fields following their protocol specifications, augmenting the
diversity of the device attributes. To determine the suitable
interface properties, SATURN selects the appropriate func-
tion based on the interface-related fields and the semantic
information they convey. For instance, SATURN maps macro
definitions to generate corresponding interfaceClass
values for devices. The utilization of dynamic generation
strategies enables SATURN to create comprehensive and
precise device configurations, thereby allowing the efficient
trigger of appropriate driver types.

Gadget Availability Validation. To account for po-
tential attachment failures because of special hardware re-
quirements, SATURN validates the availability of the gadget
device. Upon configuration, the gadget is enabled and bound
to a specific USB Device Controller (UDC), with the prop-
erties written to the kernel space for handling by the gadget
driver during the enumeration stage. Then beginning with
the host driver’s probe mechanism, which involves hardware

initialization, resource allocation, and other actions as per
the USB protocol specifications. To confirm that the device
is successfully attached, SATURN checks its availability by
validating its attributes using syfs [17], which exports kernel
data structures to the userspace. Specifically, to accomplish
this, SATURN monitors all registered device classes, includ-
ing host-side and gadget-side, to determine if an object
matches the attached gadget. If the verification process times
out, the device connection is considered to have failed.

Upon successful device attachment, SATURN locates the
device files on both sides in the virtual filesystem. Since
these files are actively created by the userspace program
udev [15] rather than in the kernel space, SATURN obtains
the major and minor numbers to trace their locations at
runtime, which represents a particular driver and a device
index, respectively. By combining device numbers, SATURN
is capable of directly referencing a unique device file by
monitoring the corresponding HCD/UDC, as each device
is associated with a unique one. With the device numbers,
SATURN backtracks their paths in the virtual filesystem to
obtain the actual locations on both sides.

3.2. Synergistic Fuzzing

To expand the scope of potential vulnerabilities and
explore a wider range of states during USB communication,
SATURN introduces the idea of leveraging the synergistic
capabilities of the host and gadget sides through system
call sequences injection to produce canonical operations.
SATURN proposes such a synergistic fuzzing scheme that
identifies cooperative functions and control structures, thus
allowing the states to evolve using canonical operations
and command sequences. The process for generating these
system call sequences is depicted in Figure 4. Upon success-
ful validation of the gadget attachment, SATURN identifies
the device files for both sides and attempts to construct
appropriate inputs. However, each driver has its unique
operations for interacting with the device file, which is
crucial for fuzzing as it determines the input structures that
the driver requires. To address this, SATURN utilizes a probe
to dynamically identify these operations from the file oper-
ations structure, which consists of function pointers. These
operations are then mapped to corresponding system calls to
generate sequences, which are injected into the kernel space
to trigger the fuzzing process. When the fuzzing campaign
is underway, SATURN adopts a persistent fuzz loop for these
dynamically attached drivers, until no new covered code
appears or the timeout is reached.

File Operations Identification. Each device driver has
its own concrete system call implementations with varying
data types and potential values of the parameters. For in-
stance, the v4l2 driver and mass storage driver have dif-
fering formats for the data encoded in the same write()
method. Therefore, it is crucial to generate inputs that are
valid for each driver based on their respective implemen-
tations. Traditional kernel fuzzers, such as Syzkaller and
Moonshine [19], hardcode the file path and system call
parameters in the pre-prepared description for pre-attached

printer
device

H: /dev/usb/lp0
G: /dev/g_printer0

usblp_fops
printer_io_opera�ons

ioctl$usblp(...)
[usblp_ioctl(...)]
write$printer(...)

[printer_write(...)]

H: lp_fd = open
("/dev/usb/lp0", ...)

ioctl(lp_fd,
SET_PROTOCOL, proto)

keyboard
device

H: /dev/hidraw2
G: /dev/hidg2

hidraw_ops
f_hidg_fops

ioctl$hidraw(...)
[hidraw_ioctl(...)]

read$hidg(...)
[f_hidg_read(...)]

H: hidraw_fd = open
("/dev/hidraw2", ...)

ioctl(hidraw_fd, GRTINFO,
hiddev_report_info)

Gadget
Device Type

Host & Gadget
Device Files

Host & Gadget
File Opera�ons

Host & Gadget
Enable Syscalls

Host & Gadget
Sequences Genera�on

Gadget-type
Grouped Corpus

printer
corpus

HID
corpus

probevalidate map generate load/store

G: ptr_fd = open
("/dev/g_printer0", ...)

write(ptr_fd, buf,
len, ptr) Host

 Gadget
G: hidg_fd = open
("/dev/hidg2", ...)
read(hidg_fd, buf,

len, ptr)
... ...

... ...

Figure 4: Example of the syscall sequence generation procedure. When a gadget is attached, SATURN detects the device files
of the host side (e.g. /dev/usb/lp0) and gadget side (e.g. /dev/g_printer0). Then, SATURN utilizes the probe to
identify the file operations on each side (e.g., usblp_fops, and printer_io_operations). Subsequently, SATURN
maps the file operations to their corresponding syscall descriptions to generate parameters correctly. Finally, SATURN employs
specific generation strategies or mutation techniques based on function-type grouped corpus to produce syscall sequences
that integrate the operations performed on both the host and gadget sides.

drivers, thus constraining the input generation and improv-
ing the accuracy of test cases. However, the information
encoded in existing descriptions, e.g., file paths and input
structures, may be inconsistent with dynamically attached
devices. Consequently, SATURN cannot rely on these static
templates, and we need to identify the corresponding device
file operations at runtime.

SATURN employs a probe tracing method with kallsyms
and kcov module for precisely identifying these implemen-
tations. The kallsyms provides the symbolic tables and stack
traces in the kernel, and kcov assists in tracing covered sys-
tem calls. In practice, the implementations of these system
calls are typically stored as function pointers in structures
named file_operations for the driver to index them.
To extract these structures, SATURN first opens the device
file and executes a general read() system call. Next, the
program handler is transferred to the virtual file system and
SATURN follows the execution of this system call with kcov
to obtain the program counter. Using the program counter
values, SATURN filters kallsyms to identify the entire call
chain and locate the actual implementation of the system
call, which is then traced back to the file operations structure
corresponding to the device driver.

A function mapping table is created to map the file
operations to the respective system call descriptions, which
allows fuzzers to generate corresponding sequences accord-
ingly. Under the fuzzing campaign, SATURN probes the
file operations of the attached devices on both sides and
references the table to extract their corresponding system
call descriptions. For instance, when attaching the host-
side usblp driver as shown in Figure 4, SATURN probes
the file operation usblp_fops through the device file
/dev/usb/lp0. When generating system call sequences,
SATURN matches the corresponding system call description,
such as ioctl$usblp whose underlying implementation
is usblp_ioctl(), and leverages the structural charac-
teristics of their input parameters to generate inputs.

Host-Gadget Sequences Generation. SATURN triggers
the interactive actions between the host and gadget drivers
by injecting system call sequences containing operations on
both sides into the executor, allowing the fuzzer to efficiently

explore the driver’s state spaces. System calls within a
sequence are executed by multiple threads simultaneously,
thus enabling a coordinated interaction on both sides. The
initial step of the sequence generation is to obtain the file
descriptor by opening the device files, which serves as
an index to an entry in the process’s table of open files
and is referenced in subsequent system calls. Therefore,
SATURN initiates the sequences with the open() system
call, as depicted in Figure 4. Based on the system calls
enabled for specific device files and existing file descriptors
from the previous step, SATURN generates the corresponding
operations on both sides, facilitating the exploration of driver
state spaces and detection of original bugs.

To enhance the mutation effectiveness, SATURN catego-
rizes its corpus according to the functional type of gadget.
Unlike other fuzzers, which deposit test cases into the
corpus for always-loaded drivers when they touch new code,
SATURN targets the dynamically attached/detached driver in
each cycle of the fuzzing loop. Consequently, picking a seed
from the corpus may lead to irrelevant file operations for the
current devices, resulting in ineffective seeds. To overcome
this problem, SATURN divides the corpus into different
groups by the functional type of gadget. When generating
a gadget configuration, SATURN notes the function types
and utilizes them as attributes for subsequent operation
sequences. When synchronizing seeds, SATURN pulls from
other corpus and maps them to local groups based on tags.

During the mutation phase, SATURN chooses a system
call sequence randomly from the corpus that shares the same
function type as the initial seed, and then alters its parame-
ters, order, or adds and removes system calls. Although these
mutated operations are related to current drivers in terms of
function types, the names of the opened devices are likely
to have changed. To address this issue, SATURN applies a
fixup for this system call sequence based on the attributes of
dynamically attached device files, replacing the old device
information before handing it over to the executor.

4. Implementation

We implemented SATURN based on the state-of-the-art
kernel fuzzer Syzkaller. We customized its components to

make it suitable for synergistic fuzzing while reusing the
underlying functionalities, such as code coverage collection
and corpus synchronization mechanisms.

Gadget Attachment. We dynamically load the built ker-
nel module into a runtime kernel through insmod to extract
the device driver matching information on the USB and
HID buses. The gadget attach process is encapsulated into
a pseudo system call in userspace with the libusbgx [18],
a C library wrapper for the kernel USB gadget-configfs
userspace API functionality. In the implementation of this
pseudo system call, the first step is to detach any previously
bound gadget to this USB Device Controller, as it can only
support one device’s functionality at a time. Then we feed
the device attributes and interface properties and finally
enable the gadget. Our implementation involves enabling
almost all function types of gadget devices and using the
DUMMY HCD/UDC module as a software connection be-
tween the host and gadget. When the fuzzing campaign
is underway, a separate thread is created to verify device
attachment and monitor device files, which reports the host-
gadget device list to the fuzzer main thread upon detection.

Synergistic Fuzzing. We implement the aforementioned
sequence generation process, including the gadget type
grouped corpus which can synchronize and transfer between
different instances. To precisely generate syscall sequences
that satisfy the type and range constraints of system call in-
puts, we reuse existing system call descriptions of Syzkaller.
As mentioned before, the file operations of a device file
determine the way to access it and correspond to specific
system calls. We probe the file operations of dynamically
attached device files by extracting the executed kernel func-
tions with kcov, which enables SATURN to capture an
accurate execution path of the invoked system call. We
construct a table to map file operations to the respective
system call descriptions, which is generated during the dry-
run Syzkaller by utilizing the file operations identification
approach mentioned above. Then we reference the table to
extract their corresponding system call descriptions, which
provide precise information about the system call parame-
ters, and utilize them to guide the generation.

5. Evaluation

In order to showcase the efficacy of SATURN, a series
of experiments are conducted on recent versions of the
Linux kernel. First, we demonstrate SATURN’s capability
to explore more execution paths and kernel space status on
both the host and gadget sides respectively, by comparing
its overall coverage to existing research. Second, we eval-
uate the contributions of each component to its ability to
cover the USB driver code. Finally, we exhibited SATURN’s
vulnerability detection capabilities by listing previously-
unknown bugs and presenting case studies on its findings.
We design experiments to address the following questions:

• RQ1: How effective is SATURN in improving cov-
erage on the host and gadget stacks, respectively?

• RQ2: What are the respective contributions of the
gadget attachment and synergistic fuzzing to the
overall coverage improvement?

• RQ3: How does SATURN perform in vulnerability
detection, including host and gadget drivers?

Hardware and Software Environment. We conduct
our experiments on a computer with an AMD EPYC 7742
64-Core processor, 256 GiB of memory, and running 64-
bit Ubuntu 20.04.2 LTS. The compilers used to build the
respective kernels are GCC 12.2 and LLVM 14.0. The ex-
periments are configured with identical parameters in terms
of QEMU configurations and other settings. Specifically, for
strict control of computing resources, we start all experi-
ments simultaneously and distributed the resources evenly,
including 2 cores and 2 GiB of memory for each virtual
machine. To reduce statistical errors, each experiment is
repeated 10 times, and the average results are reported.

Guest OS Preparation. We base our evaluation on the
latest Linux kernel version and various long-time support
kernel versions, ranging from v5.5 to v6.0. The host-side
relevant USB driver configurations are enabled and compiled
into the kernel binary. For the gadget side, we support
13 gadget function types and their corresponding interface
attributes that allow synchronous transmission, including
USBG_F_MIDI, USBG_F_HID and USBG_F_PRINTER,
and don’t activate any legacy gadget device. This sup-
ports attaching and triggering different host and gadget
drivers by synthesizing different attribute configurations.
We also enable kcov (CONFIG_KCOV) to collect code
coverage, Kernel Address Sanitizer (CONFIG_KASAN) to
detect kernel memory bugs, and USB Dummy HCD/UDC
(CONFIG_USB_DUMMY_HCD) to serve as virtual hardware.
In addition, we have configured different kernel compila-
tion options to satisfy the requirements of projects, such
as CONFIG_USB_RAW_GADGET for Syzkaller, as well as
some gadget function-related options for SATURN.

5.1. Coverage Improvement

To answer RQ1, and to demonstrate the capability of
SATURN to initialize more drivers and effectively explore the
interaction states simultaneously, we present the overall code
coverage statistics in comparison with existing state-of-the-
art fuzzers. The coverage collection is conducted separately
on the host stack and the gadget stack, with only one-side
stack being instrumented. To evaluate the effectiveness of
SATURN compared to other host-side fuzzers, we select
Syzkaller USB fuzzing module [13] and USBFuzz [22] as
experimental subjects. We choose these two fuzzers because
of their proven effectiveness in real-world scenarios, as well
as the discovery of plenty of vulnerabilities through their
application. For the gadget side, we opt for FUZZUSB [12],
which is the first USB fuzzing method for the USB gadget
system and has successfully identified 34 previously un-
known vulnerabilities. To ensure fairness, we perform 10
repeated experiments without any initial seeds.

Host-side Comparison. We conduct a comparison of
code coverage statistics on the USB host stack by solely in-

strumenting USB host-related code (including the USB core
framework, host controller drivers and USB device drivers)
with SATURN, Syzkaller, and USBFuzz. Syzkaller is capable
of externally fuzzing the USB subsystem by defining a set of
pseudo-syscalls that can connect USB devices and transmit
or receive control and non-control messages from the device
to the host. In comparison to Syzkaller, we perform exper-
iments on four different kernel versions, including v5.10,
v5.15, v5.19, and v6.0, which were either the latest or
stable versions at the time of submission. USBFuzz utilizes
a software-emulated USB device to provide random device
data to drivers when they perform IO operations and patches
the kernel’s assembly code to facilitate coverage collection,
which has changed considerably with the newer kernels. To
ensure consistency with USBFuzz, we utilize Linux v5.5 in
our experiments [21]. We sample coverage statistics every
10 seconds during each campaign and compute the average
value of each fuzzer’s sampled data over its 10 executions.

0 3 6 9 12 15 18 21 24

1

2

3

4

5

·104

Time [h]

N
um

be
r

of
B

ra
nc

he
s

C
ov

er
ed

Linux v5.10

SATURN Syzkaller

0 3 6 9 12 15 18 21 24

1

2

3

4

5

6

·104

Time [h]

N
um

be
r

of
B

ra
nc

he
s

C
ov

er
ed

Linux v5.15

SATURN Syzkaller

0 3 6 9 12 15 18 21 24

1

2

3

4

5

6

7

·104

Time [h]

N
um

be
r

of
B

ra
nc

he
s

C
ov

er
ed

Linux v5.19

SATURN Syzkaller

0 3 6 9 12 15 18 21 24

1

2

3

4

5

6

7

·104

Time [h]

N
um

be
r

of
B

ra
nc

he
s

C
ov

er
ed

Linux v6.0

SATURN Syzkaller

Figure 5: Coverage comparison between SATURN and
Syzkaller over 24 hours. In all four versions, SATURN can
achieve higher coverage statistics with less time.

Figure 5 presents a comparison between Syzkaller and
SATURN in terms of their coverage statistics, demonstrating
that SATURN can achieve higher coverage in the same
amount of time. At the beginning of each experiment, SAT-
URN has significantly higher coverage improvement than
Syzkaller since it handles the enumeration process entirely
in userspace, resulting in a lower success rate of device
attachments. This leads to Syzkaller repeatedly encountering
matching and probing logic before proper initialization.
While both tools register significant coverage escalation
within the first six hours, there is a noticeable decelera-
tion thereafter. Nevertheless, SATURN’s coverage grows at
a faster rate than Syzkaller, indicating that the interaction
process reaches the kernel state more quickly.

Table 1 presents the coverage improvement statistics
achieved by SATURN in comparison with Syzkaller and
USBFuzz. In terms of the comparison with USBFuzz, SAT-
URN achieves 3.69× coverage improvement on Linux v5.5,

TABLE 1: Branch coverage statistics of SATURN, USBFuzz
and Syzkaller on the respective kernels.

Version Syzkaller USBFuzz SATURN Improvement

5.5 20602 10382 48728 1.37× / 3.69×
5.10 17018 - 46950 1.76×
5.15 22186 - 57842 1.61×
5.19 23789 - 62172 1.61×
6.0 24939 - 59107 1.37×

Average 21707 10382 54959 1.53× / 3.69×

following the experiment settings of USBFuzz. As the lim-
itations of the USBFuzz implementation mentioned above,
the coverage statistics are not available for the other kernel
versions tested with Syzkaller and SATURN. We perform a
modular analysis of the code they cover and observe that
USBFuzz can cover more on the host controller drivers, as
it leverages an emulated device to feed generated inputs
to drivers while SATURN directly utilizes the dummy HCD
driver. However, SATURN can cover more code on the device
drivers, and the USB core that contains common routines for
handling data from the device side.

The increase in coverage statistics indicates that SAT-
URN is capable of exploring more kernel states, which
can be attributed to two factors. First, the gadget attach-
ment mechanism enables the kernel to trigger more host-
side drivers, resulting in potentially hitting a larger part
of the kernel code. Furthermore, the synergistic fuzzing
strategy significantly boosts overall efficiency. Through the
file operation probing method, SATURN precisely generates
the system call sequences that satisfy the type checks and
constraints for dynamically attached device files. Under such
circumstances, SATURN achieves efficient fuzzing by over-
coming many complex sanity checks within the kernel and
emulating the interactive communication process, thereby
testing the more profound kernel logic.

v5.10 v5.15 v5.19 v6.0
Linux Kernel Version

0

200

400

600

800

1000

1200

Br
an

ch
 C

ov
er

ag
e 810.90

854.80

1087.90 1052.80

249.90
304.30

371.90

246.20

FUZZUSB
SATURN

Figure 6: Coverage comparison of USB gadget stack be-
tween SATURN and FUZZUSB over 24 hours. In all four
versions, SATURN can achieve higher coverage statistics.

Gadget-side Comparison with FUZZUSB. Here we
break down the detailed coverage statistic to further evaluate
the effectiveness of the USB gadget stack. Specifically,
FUZZUSB is the first USB fuzzing technique for a USB
gadget system, which achieves state-guided fuzzing upon
gadget-specific state machines. We compile the Linux kernel
with only the gadget code instrumented partially and com-
pare their branch coverage. Figure 6 shows the overall cov-

erage statistic after ten runs of 24-hours experiments. As we
can infer from the figure, SATURN outperforms FUZZUSB
after 24 hours, which has about 2.3× coverage improvement
on average and about 2.2×, 1.8×, 1.9×, and 3.3× coverage
improvement on four different kernel versions compared
with FUZZUSB separately, on the gadget side alone. The
significant improvement in coverage statistics achieved by
SATURN can primarily be attributed to its synergistic fuzzing
mechanism. Both host-side driver and device logic opera-
tions affect the state transition of the gadget driver, therefore
sending input in one direction as what FUZZUSB adopts
cannot completely cover the state machine inside the entire
gadget. In contrast, SATURN’s interactive testing approach
yields a more complex state transition mechanism, leading
to the detection of more state space in the gadget driver.

We further explore the logic of the uncovered code in a
systematic way. Generally speaking, a USB driver’s lifecycle
can be generalized into eight states: register, probe, bind, ac-
tive, suspend, resume, unbind, and unregister. SATURN tar-
gets the device interaction relevant states (active/suspend/re-
sume) and precisely generates syscalls to facilitate state
transition, whereas the driver initialization relevant states
(probe/bind/unbind) are covered during gadget attachment.
Therefore, SATURN covers all aforementioned stages, but
since we do not target non-interaction stages, their coverage
statistics will be relatively less improved.

5.2. Contribution of Each Component

Both the greater number of drivers successfully triggered
and improved coverage per driver contribute to coverage
improvements. We present the aggregated statistics above
as SATURN aims to initialize more drivers and effectively
explore the interaction simultaneously. To address RQ2, we
try to break down the overall improvement into two parts:
one from attaching more drivers (gadget attachment) and
the other from fuzzing existing drivers supported by other
fuzzers (synergistic fuzzing) and evaluate the effectiveness
of each component to present their respective contributions.

Effectiveness of Gadget Attachment. The goal of the
experiment is to evaluate how many types of corresponding
host-side drivers can be triggered by our proposed approach,
as well as the success rate of the attachment. The former is
crucial because driver initialization is a prerequisite for the
communication phase and enables the state of such drivers
can transition to those involved in their respective devices’
interactions. The attachment success rate is a key perfor-
mance indicator, as it is closely related to testing efficiency.
SATURN utilizes the same types of gadget-side drivers with
FUZZUSB, so we compare the host side in this aspect. We
conduct the experiments by continuously trying to attach
devices at a given time interval without any communication
process. Specifically, we dry ran Syzkaller, USBFuzz and
SATURN by only enabling the device attachment process in
24 hours, and the parallelism of experiments is restricted,
ensuring that only one device was trying to attach at the
same time. sysfs is adopted to validate the host driver’s
availability, as mentioned in the Section 3.1.

0 2 4 6 8 10 12 14 16 18 20 22
Time (hours)

0

50

100

150

200

250

300

Tr
ig

ge
re

d
Un

iq
ue

 D
riv

er
s

SATURN Syzkaller USBFuzz

Figure 7: Number of successfully triggered host-side driver
types after dry run device attachment process over 24 hours.

As shown in Figure 7, SATURN attempted to attach
devices 16756 times and successfully initialized 13670 times
with a success rate of 81.58%, triggering 304 unique drivers.
In comparison, Syzkaller attempted 15548 device attach-
ments with a 38.91% success rate and triggered 14 drivers,
while USBFuzz initialized 44 drivers with an unavailable
success rate as it utilized binary files as seeds. The range of
host-side drivers triggered by SATURN allows it to explore
diverse modules in the subsequent communication process.
Subsequently, we manually analyzed some failed situations
and found that they were primarily due to protocol-specific
data format or port requirements not being specifically im-
plemented in the Linux gadget module.

To further illustrate the coverage improvement gained
due to the gadget attachment, we measured the coverage
achieved during the dry-run attachment process. SATURN
covers 19060 branches with 304 triggered drivers compared
to Syzkaller’s 17565 with 14 drivers during driver attach-
ment (we experienced difficulties in separating coverage
collection for USBFuzz’s different USB stages as it utilizes
binary files as seeds). The 9% improvement is due to running
similar code regardless of successful attachment. Then we
deduce that the interaction stage for Syzkaller and SATURN
covers 3037, and 29668 branches, respectively. Here, SAT-
URN’s coverage of the uniquely attached drivers is more
than 23000. This demonstrates the attachment component’s
contribution since the last figure is purely made possible by
attaching significantly more drivers than the comparison.

0 2 4 6 8 10

25

50

75

100

125

150

175

Time [min]

N
um

be
r

of
B

ra
nc

he
s

C
ov

er
ed

Host-side driver usblp

S S-gadget S-host

0 2 4 6 8 10

25
50
75
100
125
150
175
200

Time [min]

N
um

be
r

of
B

ra
nc

he
s

C
ov

er
ed

Gadget-Side driver f_printer

S S-gadget S-host

Figure 8: Coverage comparison of S (SATURN), S-host (in-
jection from the host), S-gadget (injection from the gadget).
SATURN achieves a high coverage improvement for both
host-side and gadget-side drivers.

Effectiveness of Synergistic Fuzzing. First, we con-
ducted an evaluation comparing the one-side injection with
synergistic testing. To accurately collect the code covered

by the host-side and device-side drivers, we take the printer
as an instance, with the class driver usblp on the host
side and driver f_printer on the gadget side. SATURN
is denoted as S, S-gadget and S-host indicate input only
from the device and host side, respectively.

The experiment results are shown in Figure 8. The syn-
ergistic fuzzing strategy improves coverage by 27.57% and
68.57% for the host-side driver usblp, 76.82% and 18.37%
for the device-side driver f_printer, respectively, com-
pared to one-side injections. We analyzed the results and
found that some generic functions can be triggered regard-
less of the inputs’ direction, such as usblp_probe() and
usblp_resume() in the usblp driver. Some functions
can only be triggered by inputs in a specific direction, e.g.
usblp_ioctl() can only be activated from the host side.

To further validate the coverage improvement from the
synergistic fuzzing approach, we extracted and compared
the branch coverage of 11 common drivers among Syzkaller,
USBFuzz, and SATURN with the assistance of kcov, as de-
picted in Table 2. We observe that synergistic fuzzing deliv-
ers a 58% and 77% average improvement, respectively. We
also experimented with running Syzkaller on these drivers
for 48 hours, yielding a coverage improvement of 4%.
Thus synergistic fuzzing approach proposed by SATURN can
easily cover logic that Syzkaller has very little luck in and
we hope the coverage improvement can be further extended
to other drivers that SATURN can attach. We investigated
additionally the reasons behind this and noted that the input
generated by Syzkaller is partially initializing the states of
USB interaction through one-side injection, whereas SAT-
URN synthesizes inputs of both sides conforming to relevant
constraints during synergistic fuzzing.

TABLE 2: Coverage of the common drivers among
Syzkaller, USBFuzz, and SATURN over a 24-hour period.

Driver
Name

Total
Blocks Syzkaller USBFuzz SATURN

Impr vs
Syzkaller

Impr vs
USBFuzz

usblp 262 58 47 155 +168% +228%
usbhid 447 130 107 206 +59% +92%

bcm5974 128 41 35 49 +19% +41%
appletouch 184 37 39 42 +15% +10%

fdti sio 465 79 60 153 +94% +154%
option 44 14 14 16 +16% +19%
cp210x 369 89 92 114 +29% +24%

ath9k htc 308 99 74 117 +19% +58%
sierra 195 39 51 94 +140% +85%

cdc ether 151 76 66 94 +24% +41%
ipw 37 6 7 9 +60% +33%

Total 2590 665 592 1048 +58% +77%

5.3. Vulnerability Detection

To address RQ3, we conducted a two-week testing
of the Linux kernel using SATURN, which resulted in
the identification of 26 previously unknown vulnerabilities,
among which are 4 CVEs. The vulnerabilities included 19
in the host-side drivers and 7 in the gadget-side drivers,
with the majority found in the device drivers, as well as

some in the core of the USB host and gadget subsystem.
Table 3 provides detailed information, along with their
associated vulnerability type. Unlike memory issues, logic
bugs and deadlocks have no corresponding sanitization for
detection and reporting. We employ kernel assertions (e.g.,
BUG_ON()), which violate the intended program specifi-
cations to detect logic bugs, and other kernel features to
detect and prevent deadlocks during fuzzing campaigns,
such as CONFIG_LOCKDEP. Most of these vulnerabilities
are critical, including many that remained undiscovered and
unreported in the kernel code base for decades. Even with
the persistent testing of Linux USB driver modules by
tools like Syzkaller and various other kernel driver fuzzers,
employing substantial computing resources, these vulnera-
bilities remained unidentified.

TABLE 3: SATURN has discovered 26 previously unknown
vulnerabilities, among which are 4 CVEs, including 19 on
the host side and 7 on the gadget side.

Devices Side Kernel Operation Bug Type (CVE)

midi gadget f midi transmit deadlock
net host ethtool get drvinfo logic bug

core host usb stor pre reset deadlock
CVE-2022-3903

core gadget gadgets make logic bug
scsi host scsi device unbusy logic bug
gspca host gspca init transfer out-of-bound
hid host holtek kbd input event null-ptr-defer
u serial gadget gs start io logic bug
udc gadget dummy timer use-after-free
nfc host port100 send cmd sync logic bug
sound host snd rawmidi free deadlock
dvb host digitv ctrl msg out-of-bound
scsi host sg release use-after-free
keyspan host keyspan close use-after-free
dvb host su3000 i2c transfer logic bug
sound host snd rawmidi receive use-after-free
dvb host digitv i2c xfer logic bug
dvb host dvb frontend get event logic bug

core gadget usb composite setup continue logic bug
CVE-2022-4662

videobuf2 host vb2 start streaming logic bug
f hid gadget f hidg read use-after-free
udc gadget usb ep queue logic bug

sound host release urbs logic bug
CVE-2022-44042

filesystem host filp close use-after-free

sound host snd card new invalid free
CVE-2022-44041

hid host roccat disconnect use-after-free

The ability of SATURN to identify previously unknown
vulnerabilities can be attributed primarily to its proposed
gadget attachment and synergistic fuzzing strategy. The
gadget attachment mechanism allows the Linux kernel to
interact with more types of USB drivers, enabling the
fuzzer to expose bugs within these drivers. Additionally,
the synergistic fuzzing strategy allows for higher-quality test
case generation during the interaction process, allowing the
fuzzer to bypass certain restrictive security checks within
the kernel, leading to an expansion in the number of states
explored and exposure of bugs in such logic. The above
findings demonstrate that SATURN can significantly enhance
the vulnerability detection capabilities of USB drivers.

5.4. Case Study

In this section, we further analyze the potential causes
and effects of these uncovered vulnerabilities.

Case Study 1. Listing 3 depicts a double-free vul-
nerability discovered in the Advanced Linux Sound Ar-
chitecture (ALSA) subsystem of version 6.0. This vul-
nerability is triggered by SATURN’s gadget attachment
mechanism and has been fixed by maintainers. During
the initialization of a sound card instance, the kernel
first invokes the snd_card_new() function and sub-
sequently calls snd_card_init() function (Line 9).
If the snd_card_init() fails, the system jumps to
error processing logic (Line 20). In this scenario, the
put_device() function (Line 21) triggers the device
release logic and calls kfree() function to free the card
instance first, then the system calls kfree() function again
when returns to the caller snd_card_new() (Line 5).
As a result, a double-free vulnerability arises, which, if
exploited, could result in a denial-of-service (DoS) attack
or the execution of arbitrary code on the system.

The vulnerability occurs in the gadget attachment stage.
Other fuzzers that only perform randomized device attach-
ments are unlikely to satisfy the match/probe processes and
trigger any kfree() invocations during the initialization of
the snd_card device, while SATURN was able to match
on the snd_card driver and attempt to access internal
initialization logic based on the generated configuration.

1 int snd_card_new(struct device *parent, int idx,
const char *xid, ...)↪→

2 ...
3 err = snd_card_init(card, parent, idx, xid,

module, extra_size);↪→
4 if (err < 0)

5 kfree(card);

6 return err;
7 }
8

9 static int snd_card_init(struct snd_card *card,
struct device *parent, ...)↪→

10 ...
11 if (err < 0)
12 goto __error;
13 ...
14 err = snd_ctl_create(card);
15 if (err < 0) {
16 dev_err(parent, "unable...");
17 goto __error;
18 }
19 ...
20 __error:

21 put_device(&card->card_dev);

22 return err;
23 }

Listing 3: Code snippet of the double-free vulnerability in
ALSA. The first kfree() occurs in snd_card_init()
and the second occurs in snd_card_new(), triggering
the double-free vulnerability during the gadget attachment.

Case Study 2. Listing 4 demonstrates a vulnera-
bility in the Linux gadget subsystem of version 5.19.
This vulnerability is identified during SATURN’s syn-
ergistic fuzzing stage. After establishing a connection
between the host and the mass storage gadget de-

vice, the fsg_main_thread() function handles most
of the processing logic on the gadget side, includ-
ing responding to host requests. During its execution,
fsg_main_thread() calls get_next_command(),
which eventually calls usb_ep_queue() to instruct the
kernel to perform the specified request through an end-
point. However, if the gadget device disconnects suddenly,
another thread will call fsg_disable() to disable the
device. This function will throw an interrupt, but after the
investigation by kernel maintainers, they found that it runs
in an atomic context with no fine-grained synchronization
mechanisms, allowing fsg_main_thread() to use the
endpoints after disabling. Therefore, usb_ep_queue()
function may attempt to access the disabled endpoint, trig-
gering the WARN_ON_ONCE assertion (Line 16).

The vulnerability is located in the deeper layers of the
kernel code and can only be exposed when the host and
device are actively interacting. Upon successful initialization
of the mass storage gadget, SATURN leverages its synergistic
fuzzing mechanism to generate system call sequences that
emulate requests from the host’s userspace program, which
then triggers the gadget drivers’ main thread logic. At this
point, the gadget-side system call sequences generate a
disconnection request to the gadget device, thus triggering
the vulnerability. This is a bug that can only be identified in
the interaction logic between the host and gadget, and the
synergistic fuzzing phase is instrumental in exploring the
deeper states of both sides and uncovering such issues.

1 static int fsg_main_thread(void *common_)
2 {
3 /* The main loop */
4 while (common->state != FSG_STATE_TERMINATED) {
5 ...

6 if (get_next_command(common) ||

7 exception_in_progress(common))
8 continue;
9 ...

10 }
11 }
12

13 int usb_ep_queue(struct usb_ep *ep, ...)
14 {
15 ...

16 if (WARN_ON_ONCE(!ep->enabled && ep->address)) {
17 ret = -ESHUTDOWN;
18 goto out;
19 }
20 ...
21 }

Listing 4: Code snippet of a warn vulnerability in
usb_ep_queue() during the communication stage be-
tween the host and gadget. The vulnerability is triggered
by a lack of fine-grained synchronization mechanisms after
the endpoint is disabled, leading to potential illegal access.

6. Related work

Device Emulation-based Testing. Emulation-based
techniques are commonly used for vulnerability detection,
employing programs that imitate physical devices’ function-
ality to reduce costs and increase flexibility. QEMU [3] is a

well-known device emulator that supports a wide range of
peripherals and is commonly utilized by kernel fuzzers [4],
[39]. However, the increasing complexity and sheer amount
of peripherals can overwhelm QEMU’s emulation capabili-
ties. To complement QEMU’s inadequate ability to emulate
a vast array of peripheral devices in specific testing sce-
narios, alternative emulation methods have been proposed,
such as PrIntFuzz [16], which utilizes an automated device
simulation that supports device probing, hardware interrupts,
and I/O interception to emulate hundreds of devices for
subsequent fuzzing. Similarly, DR. FUZZ [42] is a semantic-
informed mechanism that can efficiently generate inputs to
construct relevant structures and pass the “validation chain”
in initialization for subsequent device-free fuzzing.

Although current approaches in which model peripherals
can complete the initialization phase, the emulation of ade-
quate device functionalities remains a challenge, hindering
the injection of legitimate data into the host side. Differently,
SATURN utilizes the kernel’s built-in gadget module as a
peripheral, whose extensive feature implementation allows
responding to a diverse range of host-side driver requests,
providing advantages over QEMU-based fuzzers. Addition-
ally, SATURN supports attaching and triggering various host
and gadget drivers through synthesizing different attribute
configurations, thereby expanding the scope of fuzzing.

USB Fuzzing. The kernel driver modules comprise an
extensive code base, the majority of which is supplied by
untrusted third-party vendors with suboptimal code quality,
making security issues in these drivers critical. As a result,
numerous testing approaches have been proposed, including
static analysis [1], [33], [38], symbolic execution [7], [11],
[20], [24], and fuzzing [9], [19], [25], [26], [30], [31], etc.

For USB driver testing, researchers can access two input
surfaces: the userspace and the device-side operations. To
inject from userspace, numerous kernel fuzzers fill system
call sequences randomly to pass test payloads and triggers
kernel crashes with assistance from diverse sanitizers [27],
[28], [41]. On the other hand, some works aim to inject data
from the device side directly, like FaceDancer [6], which
utilizes programmable hardware as a peripheral to attack
USB device drivers. However, they only inject from one
side, making it difficult to test the deep processing logic
between two sides’ interactions. To address this issue, SAT-
URN proposes a host-gadget synergistic fuzzing approach,
allowing the host and gadget to play their essential roles in
the testing process. Works in other areas are also intended
to discover communication vulnerabilities among multiple
components, such as KARONTE [23] utilizes static analysis
to identify and track shared data in firmware.

In addition, SATURN focuses on threats occurring during
the communication process after the USB device has con-
nected to the host, while other research works [22], [34],
[35] emphasize the connection establishment process, due to
the implicit trust characteristics of USB protocols. For exam-
ple, research [35] extracts offensive and defensive primitives
that operate across layers of communication within the USB
ecosystem and finds that USB attacks often abuse the trust-
by-default nature. USBFuzz [22] emulates a USB device that

is virtually attached and detached from the target system to
detect these threats. USBFILTER [34] can trace individual
USB packets back to their respective processes and block
unauthorized access to any device.

7. Discussion

We have demonstrated the effectiveness of SATURN.
In this section, we describe the limitations of our current
implementation and potential solutions.

Crash Reproducibility. Although SATURN has identi-
fied 26 previously unknown vulnerabilities, it is incapable
of reproducing kernel crashes in some cases. Crash repro-
duction is still an open research problem for which no
definitive solution has been found for two main reasons.
First, the Linux kernel is a concurrent, stateful system
that runs multiple threads in both the userspace and kernel
space, which causes indeterminism and state accumulation.
Second, the limited memory capacity restricts the number
of system call sequences that kernel fuzzers can record
for crash reproduction. As a result, crashes that necessitate
complex combinations of system calls may fail to reproduce
because of lost call sequences. SATURN’s implementation
is based on the state-of-the-art Syzkaller, which implements
some reproduction techniques that partially assisted us in re-
porting several bugs to kernel maintainers. In addition to the
reproduction mechanism, we save the call stack information
during crashes to aid in vulnerability analysis. In the future,
we can use a monitor to compress and record more system
call sequences executed by each attached device, allowing
the fuzzer to analyze the kernel log more accurately during
the reproduction process, resulting in a better-reproducing
program to verify the triggered vulnerabilities.

False-positive Analysis and Manual Effort. In terms of
the whole fuzzing campaign, kernel fuzzers, including SAT-
URN, detect bugs by triggering real kernel crashes, which
are monitored and recorded automatically, thus presenting
a low false positive rate. From the perspective of invalid
configurations in the gadget attachment stage, SATURN has
an 81.58% success rate, which is higher than Syzkaller’s
38.91% while maintaining a low false positive rate. Similar
to traditional kernel fuzzing tools such as Syzkaller and US-
BFuzz, SATURN requires some manual preparation before
the fuzzing campaign, which includes tasks like kernel com-
pilation. Additionally, post-fuzzing processes, such as crash
analysis and subsequent reporting to kernel developers, are
essential. Apart from these standard procedures, SATURN
conducts USB device driver fuzzing without human inter-
vention. For instance, during the gadget attachment phase,
after generating the gadget configuration and associating it
with a particular USB device controller, SATURN employs
sysfs to verify the condition of attachment. Upon suc-
cessful validation, the system transitions to the synergistic
fuzzing process. Conversely, SATURN utilizes extracted in-
formation from the kernel and updates the configuration,
thus improving the success rate.

8. Conclusion

In this paper, we propose SATURN, a novel host-gadget
synergistic USB driver fuzzing approach, aiming to cover
the entire USB communication handling chain. First, SAT-
URN systematically configures and attaches gadgets based
on extracted driver information, thus triggering more driver
types and facilitating the transition to interactive logic. Then,
SATURN utilizes a persistent synergistic fuzzing process
through canonical operation injection on the dynamically
created device files of the host and gadget, enabling the
exploration of the complex interaction logic on both sides.

We evaluate the effectiveness of SATURN on recent
Linux kernels. Compared to state-of-the-art USB driver
fuzzers such as Syzkaller and USBFuzz on the host side, as
well as FUZZUSB on the gadget side, SATURN improves
branch coverage by 1.53×, 3.69× and 2.3×, respectively.
We then assessed the enhancements from each compo-
nent. SATURN’s driver attachment successfully activated 304
unique drivers, surpassing Syzkaller’s 14 and USBFuzz’s 44.
Through a comparison of driver coverage across Syzkaller,
USBFuzz, and SATURN, we found that synergistic fuzzing
achieved improvements of 58% and 77%, respectively.
These highlight SATURN’s ability to initialize more drivers
and effectively explore the interaction states. Additionally,
SATURN successfully detected 26 previously unknown vul-
nerabilities, among which are 4 CVEs, including 19 on the
host side and 7 on the gadget side. The above results demon-
strate SATURN’s capability to trigger complicated interactive
logic between the host and the device sides and explore deep
kernel states on the USB communication process.

9. Acknowledgement

We appreciate the reviewers’ valuable and insight-
ful comments. This research is sponsored in part by
the National Key Research and Development Project
(No. 2022YFB3104000, No2021QY0604, TC210H02S) and
NSFC Program (No. 62022046, 92167101, U1911401,
62021002, U20A6003).

References

[1] Jia-Ju Bai, Tuo Li, Kangjie Lu, and Shi-Min Hu. Static detection
of unsafe dma accesses in device drivers. In 30th USENIX Security
Symposium (USENIX Security 21), pages 1629–1645, 2021.

[2] Joel Becker. configfs - Userspace-driven kernel object configura-
tion. https://www.kernel.org/doc/Documentation/filesystems/configfs/
configfs.txt. 2005.

[3] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In
USENIX annual technical conference, FREENIX Track, volume 41,
pages 10–5555. Califor-nia, USA, 2005.

[4] Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili,
Shuang Hao, Christopher Kruegel, and Giovanni Vigna. Difuze:
Interface aware fuzzing for kernel drivers. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 2123–2138, 2017.

[5] Andrey Konovalov Dmitry Vyukov. Syzkaller: an unsupervised
coverage-guided kernel fuzzer. https://github.com/google/syzkaller.
2015.

[6] GoodFET. Goodfet-facedancer21. http://goodfet.sourceforge.net/
hardware/facedancer21/. 2018.

[7] Grant Hernandez, Farhaan Fowze, Dave Tian, Tuba Yavuz, and
Kevin RB Butler. Firmusb: Vetting usb device firmware using domain
informed symbolic execution. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security,
pages 2245–2262, 2017.

[8] John Hyde. Usb multi-role device design by example. Comissioned
by Cypress Semiconductors, 2003.

[9] Dae R Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung
Lee, and Insik Shin. Razzer: Finding kernel race bugs through
fuzzing. In 2019 IEEE Symposium on Security and Privacy (SP),
pages 754–768. IEEE, 2019.

[10] Jakob Lell Karsten Nohl, Sascha Krißler. BadUSB — On accessories
that turn evil. Black Hat. 2014.

[11] Kyungtae Kim, Dae R Jeong, Chung Hwan Kim, Yeongjin Jang, Insik
Shin, and Byoungyoung Lee. Hfl: Hybrid fuzzing on the linux kernel.
In NDSS, 2020.

[12] Kyungtae Kim, Taegyu Kim, Ertza Warraich, Byoungyoung Lee,
Kevin RB Butler, Antonio Bianchi, and Dave Jing Tian. Fuzzusb:
Hybrid stateful fuzzing of usb gadget stacks. In 2022 IEEE Sympo-
sium on Security and Privacy (SP), pages 2212–2229. IEEE, 2022.

[13] Andrey Konovalov. External USB fuzzing for Linux kernel.
https://github.com/google/syzkaller/blob/master/docs/linux/external
fuzzing usb.md. 2019.

[14] Greg Kroah-Hartman. Re: KASAN: use-after-free Write in
keyspan close. https://lore.kernel.org/all/YynnT7%2FmnzJVn7iz@
kroah.com/.

[15] Greg Kroah-Hartman. udev–a userspace implementation of devfs. In
Proc. Linux Symposium, pages 263–271. Citeseer, 2003.

[16] Zheyu Ma, Bodong Zhao, Letu Ren, Zheming Li, Siqi Ma, Xiapu
Luo, and Chao Zhang. Printfuzz: fuzzing linux drivers via automated
virtual device simulation. In Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis, pages
404–416, 2022.

[17] Patrick Mochel. The sysfs filesystem. In Linux Symposium, page 313,
2005.

[18] Krzysztof Opasiak and Paweł Szewczyk. libusbg-neXt (libusbgx).
https://github.com/linux-usb-gadgets/libusbgx.

[19] Shankara Pailoor, Andrew Aday, and Suman Jana. Moonshine:
Optimizing os fuzzer seed selection with trace distillation. In 27th
USENIX Security Symposium (USENIX Security 18), pages 729–743,
2018.

[20] James Patrick-Evans, Lorenzo Cavallaro, and Johannes Kinder. Potus:
Probing off-the-shelfusb drivers with symbolic fault injection. In 11th
USENIX Workshop on Offensive Technologies (WOOT 17), 2017.

[21] Hui Peng and Mathias Payer. USBFuzz: A Framework for fuzzing
USB Drivers by Device Emulation. https://github.com/HexHive/
USBFuzz. 2021.

[22] Hui Peng and Mathias Payer. USBFuzz: A framework for fuzzing
USB drivers by device emulation. In 29th USENIX Security Sympo-
sium (USENIX Security 20), pages 2559–2575. USENIX Association,
August 2020.

[23] Nilo Redini, Aravind Machiry, Ruoyu Wang, Chad Spensky, Andrea
Continella, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni
Vigna. Karonte: Detecting insecure multi-binary interactions in em-
bedded firmware. In 2020 IEEE Symposium on Security and Privacy
(SP), pages 1544–1561. IEEE, 2020.

[24] Matthew J Renzelmann, Asim Kadav, and Michael M Swift. Sym-
drive: Testing drivers without devices. In 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 12), pages
279–292, 2012.

https://www.kernel.org/doc/Documentation/filesystems/configfs/configfs.txt
https://www.kernel.org/doc/Documentation/filesystems/configfs/configfs.txt
https://github.com/google/syzkaller
http://goodfet.sourceforge.net/hardware/facedancer21/
http://goodfet.sourceforge.net/hardware/facedancer21/
https://github.com/google/syzkaller/blob/master/docs/linux/external_fuzzing_usb.md
https://github.com/google/syzkaller/blob/master/docs/linux/external_fuzzing_usb.md
https://lore.kernel.org/all/YynnT7%2FmnzJVn7iz@kroah.com/
https://lore.kernel.org/all/YynnT7%2FmnzJVn7iz@kroah.com/
https://github.com/linux-usb-gadgets/libusbgx
https://github.com/HexHive/USBFuzz
https://github.com/HexHive/USBFuzz

[25] Jan Ruge, Jiska Classen, Francesco Gringoli, and Matthias Hollick.
Frankenstein: Advanced wireless fuzzing to exploit new bluetooth
escalation targets. In 29th USENIX Security Symposium (USENIX
Security 20), pages 19–36, 2020.

[26] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian
Schinzel, and Thorsten Holz. kafl:hardware-assisted feedback fuzzing
for os kernels. In 26th USENIX Security Symposium (USENIX
Security 17), pages 167–182, 2017.

[27] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. Addresssanitizer: A fast address sanity checker.
In 2012 USENIX Annual Technical Conference (USENIX ATC 12),
pages 309–318, 2012.

[28] Konstantin Serebryany and Timur Iskhodzhanov. Threadsanitizer:
data race detection in practice. In Proceedings of the workshop on
binary instrumentation and applications, pages 62–71, 2009.

[29] Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad Spensky, Yeoul
Na, Stijn Volckaert, Giovanni Vigna, Christopher Kruegel, Jean-Pierre
Seifert, and Michael Franz. Periscope: An effective probing and
fuzzing framework for the hardware-os boundary. In 2019 Network
and Distributed Systems Security Symposium (NDSS), pages 1–15.
Internet Society, 2019.

[30] Hao Sun, Yuheng Shen, Jianzhong Liu, Yiru Xu, and Yu Jiang.
{KSG}: Augmenting kernel fuzzing with system call specification
generation. In 2022 USENIX Annual Technical Conference (USENIX
ATC 22), pages 351–366, 2022.

[31] Hao Sun, Yuheng Shen, Cong Wang, Jianzhong Liu, Yu Jiang, Ting
Chen, and Aiguo Cui. Healer: Relation learning guided kernel
fuzzing. In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, pages 344–358, 2021.

[32] Syzkaller. CVE-2022-3239. https://nvd.nist.gov/vuln/detail/
CVE-2022-3239. 2022.

[33] Xin Tan, Yuan Zhang, Xiyu Yang, Kangjie Lu, and Min Yang.
Detecting kernel refcount bugs with two-dimensional consistency
checking. In 30th USENIX Security Symposium (USENIX Security
21), pages 2471–2488, 2021.

[34] Dave Jing Tian, Nolen Scaife, Adam Bates, Kevin Butler, and Patrick
Traynor. Making {USB} great again with {USBFILTER}. In 25th
USENIX Security Symposium (USENIX Security 16), pages 415–430,
2016.

[35] Jing Tian, Nolen Scaife, Deepak Kumar, Michael Bailey, Adam Bates,
and Kevin Butler. Sok:” plug & pray” today–understanding usb
insecurity in versions 1 through c. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 1032–1047. IEEE, 2018.

[36] USB-IF. USB on the Go and Embedded Host. https://www.usb.org/
usb-on-the-go. 2012.

[37] usbkill.org. Official usb killer site. https://usbkill.com/. 2022.

[38] Qiushi Wu, Aditya Pakki, Navid Emamdoost, Stephen McCamant,
and Kangjie Lu. Understanding and detecting disordered error
handling with precise function pairing. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2041–2058, 2021.

[39] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Taesoo Kim. Krace:
Data race fuzzing for kernel file systems. In 2020 IEEE Symposium
on Security and Privacy (SP), pages 1643–1660. IEEE, 2020.

[40] Pete Zaitcev. [PATCH] USB: usblp: fix a hang in poll() if discon-
nected. https://lore.kernel.org/all/20210303221053.1cf3313e@suzdal.
zaitcev.lan/. 2021.

[41] Bodong Zhao, Zheming Li, Shisong Qin, Zheyu Ma, Ming Yuan,
Wenyu Zhu, Zhihong Tian, and Chao Zhang. Statefuzz: System
call-basedstate-aware linux driver fuzzing. In 31st USENIX Security
Symposium (USENIX Security 22), pages 3273–3289, 2022.

[42] Wenjia Zhao, Kangjie Lu, Qiushi Wu, and Yong Qi. Semantic-
informed driver fuzzing without both the hardware devices and the
emulators. In Network and Distributed Systems Security (NDSS)
Symposium 2022, 2022.

Appendix A.
Meta-Review

A.1. Summary

This paper proposes Saturn, a USB fuzzer fuzzing both
the host and the gadget sides at the same time by providing
a sequence of syscalls from both sides, attaching differ-
ent USB gadget drivers dynamically during fuzzing, and
overcoming the blockers of initialization within USB host
drivers to maximize the possibility of triggering more drivers
loaded. Saturn outperforms state-of-the-art USB fuzzers,
including Syzkaller, USBFuzz, and FuzzUSB.

A.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Provides a Valuable Step Forward in an Established

Field
• Identifies an Impactful Vulnerability

A.3. Reasons for Acceptance

1) Saturn provides a new tool for USB fuzzing.
2) Saturn shows how fuzzing host/gadget at the same

time benefits fuzzing each side.
3) Saturn detects new vulnerabilities within USB

host/gadget stacks with better fuzzing throughputs.

https://nvd.nist.gov/vuln/detail/CVE-2022-3239
https://nvd.nist.gov/vuln/detail/CVE-2022-3239
https://www.usb.org/usb-on-the-go
https://www.usb.org/usb-on-the-go
https://usbkill.com/
https://lore.kernel.org/all/20210303221053.1cf3313e@suzdal.zaitcev.lan/
https://lore.kernel.org/all/20210303221053.1cf3313e@suzdal.zaitcev.lan/

	Introduction
	Background and Motivation
	USB Host-Gadget Model
	Threat Model
	Motivating Example

	Design
	Gadget Attachment
	Synergistic Fuzzing

	Implementation
	Evaluation
	Coverage Improvement
	Contribution of Each Component
	Vulnerability Detection
	Case Study

	Related work
	Discussion
	Conclusion
	Acknowledgement
	References
	Appendix A: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance

