
1

Tardis: Coverage-Guided Embedded Operating
System Fuzzing

Yuheng Shen, Yiru Xu, Hao Sun, Jianzhong Liu, Zichen Xu, Aiguo Cui, Heyuan Shi� and Yu Jiang�

Abstract—Embedded Operating Systems are extensively de-
ployed in many mission-critical industrial scenarios. Any de-
fects within these systems may result in unacceptable losses.
Therefore, it is imperative to develop tools to detect bugs
within Embedded Operating Systems, thus minimizing potential
impacts on industrial infrastructures. Coverage guided fuzzing is
a vulnerability detection technique that has found numerous real-
world vulnerabilities within both application programs as well as
kernels. However, state-of-the-art kernel fuzzers, e.g., Syzkaller,
mainly target general purpose operating systems, such as Linux,
macOS, and Windows, whereas Embedded Operating System
support is mostly lacking. In this paper, we propose Tardis, the
first Embedded Operating System fuzzer capable of testing a
wide selection of Embedded Operating Systems while leveraging
coverage feedback. Tardis conducts OS-agnostic code coverage
collection and analysis, allowing developers and testers to test
a wide range of Embedded Operating Systems without signif-
icant manual efforts. We implemented and evaluated Tardis
on several well-known Embedded Operating Systems, such as
UC/OS and FreeRTOS. Tardis can successfully perform fuzz
testing on these kernels without significant manual effort for
adaptation. By leveraging coverage feedback, Tardis can cover
51.32% more branches than black-box fuzzing on average on the
respective Embedded Operating Systems over 24 hours. Tardis
also found 17 previously unknown bugs among the target
Embedded Operating Systems.

Index Terms—Vulnerability Detection, Embedded Operating
System, Fuzz Testing

I. INTRODUCTION

EMBEDDED Operating Systems (Embedded OSs) are
operating systems that perform certain tasks in specific

environments. Compared to general purpose operating sys-
tems, they specialize in carrying out specific tasks and provide
more stability. Currently, these operating systems have been
extensively deployed in various industrial settings, including
many mission-critical scenarios, such as the aerospace, mining

Manuscript received April 07, 2022; revised June 11, 2022; accepted July
05, 2022. This article was presented at the International Conference on
Embedded Software (EMSOFT) 2022 and appeared as part of the ESWEEK-
TCAD special issue.

This research is sponsored in part by the NSFC Program (No. 62022046,
92167101, U1911401, 62021002, 62192730), National Key Research and
Development Project (No. 2019YFB1706203, No2021QY0604) and MIIT
Project(Design of intelligent networked vehicle based on SOA central control).

Y. Shen, Y. Xu, H. Sun, and Y. Jiang are with the KLISS, BNRist,
School of Software, Tsinghua University, Beijing 100084, China (e-mail:
shenyh20@mails.tsinghua.edu.cn).

H. Shi is with the Big Data Institution, Central South University, Changsha
410083, China (e-mail: hey.shi@foxmail.com).

Aiguo. Cui is with the Godel Lab, Huawei Technologies Co., Ltd, Shanghai
200001, China (e-mail: ag.cui@huawei.com).

Z. Xu is with the School of Mathematics and Computer Science, Nanchang
University, Nanchang 330031, China (e-mail: xuz@ncu.edu.cn).

Yu Jiang and Heyuan Shi are the corresponding authors.

and automotive manufacturing industries. The security of these
systems is of paramount importance, since many of its bugs
may result in catastrophic consequences. Fuzz testing (fuzzing)
is an automated software bug detection technique that has
recently been applied to test operating system kernels. For
example, Syzkaller [28], one of the most prominent kernel
fuzzing tools (fuzzers), has identified thousands of vulnerabil-
ities up until this date.

Essentially, fuzzers test programs by feeding different inputs
to the program-under-test and monitoring the execution of the
program for any abnormal and unexpected behavior. However,
non-trivial programs, especially operating systems, have an
input space that is too large to be explored thoroughly. In order
to efficiently explore a program’s input space and possible
points for bugs, fuzzers generally leverage coverage feedback
as an indicator of the program’s state after accepting the
generated input. Collecting coverage feedback is generally a
two-part procedure. First, testers instrument the target program
with routines to collect coverage statistics at runtime. Second,
the fuzzer analyzes the trace statistics after executing the
program and identifies whether the input can trigger any new
and “interesting” behavior within the target program. If so, the
fuzzer saves the relevant input as a starting point for further
exploration into the program’s state. This technique greatly
increases fuzzing efficiency, as it drastically reduces the input
space required to explore.

State-of-the-art kernel fuzzers also employ coverage feed-
back, commonly by following the design paradigms of user-
land coverage guided fuzzers. For instance, Syzkaller leverages
coverage feedback in Linux to guide further input generation
and mutation through the following procedures. First, it builds
the Linux kernel with KCOV [25] enabled. Then, KCOV
reports coverage statistics from the target kernel at runtime,
which can be retrieved by Syzkaller. Syzkaller identifies and
preserves test cases that trigger new kernel execution paths
via analyzing the gathered coverage statistics. Compared to
fuzzing without coverage feedback, coverage-guided fuzzing
can explore the target program’s state space more efficiently
and be more effective in finding vulnerabilities.

However, the current coverage collection and analysis pro-
cedures are usually tightly coupled to specific operat-
ing systems or architectures due to their design and im-
plementation requirements. This imposes significant obsta-
cles when attempting to adapt feedback mechanisms for
Embedded Operating Systems. Specifically, the main difficul-
ties are as follows. First, Embedded Operating Systems run
on a variety of architectures and platforms, thus preventing
fuzzers from utilizing hardware support for coverage collec-



2

tion, such as Intel PT, as used in kAFL [21]. Several works
propose to utilize binary instrumentation into Embedded OS
fuzzing for coverage guidance, e.g., Gustave [6]. However, this
kind of approach is highly coupled with the target architecture,
thus requiring immense engineering efforts to enable coverage
guided fuzzing for different architectures. Thus, coverage feed-
back mechanisms for Embedded Operating Systems should
be implemented using source code based instrumentation.
Second, commonly used Embedded Operating Systems are
numerous and their interfaces are diverse, resulting in the
difficulty of utilizing a unified coverage collection interface
based on existing designs. In contrast, most general purpose
kernel fuzzers leverage KCOV to instrument the target kernel
and collect coverage information. However, adapting KCOV to
Embedded Operating System kernels and utilizing them dur-
ing fuzzing relies heavily on kernel-specific operations, such
as I/O and memory mapping. To the best of our knowledge,
however, many popular Embedded Operating Systems do not
support the complete suite of interfaces required. Meanwhile,
different Embedded OSs normally provide different interfaces
for user land, thus a unified, OS-agnostic design is needed
for coverage collection. Finally, the coverage collection and
analysis mechanisms should be efficient so that they would not
significantly impact the execution throughput of the fuzzer.

Therefore, to facilitate coverage-guided fuzzing across a
wide selection of popular embedded operating systems, we
shall address the following challenges. First, the coverage
feedback mechanisms should be software-based and avoid
relying on hardware-specific mechanisms to guarantee porta-
bility. Second, these mechanisms should be OS-agnostic, i.e. it
is able to operate without relying on any OS-specific features
and can adapt to different OSes without additional costs. Third,
the mechanisms’ implementations should be highly efficient
and avoid introducing any significant overheads.

To address the above challenges, we propose Tardis, a
coverage-guided Embedded Operating System kernel fuzzer.
Tardis conducts coverage guided fuzzing using the following
approaches. First, Tardis utilizes a bitmap-based storage for
coverage collection, which is OS-agnostic so that the pro-
cedure can be utilized for a wide range of Embedded OSs.
In order to guarantee portability among different architec-
tures, Tardis chooses to instrument the coverage collection
procedure into Embedded OSs during compilation. For each
executed code branch, Tardis records it into a shared coverage
buffer with several simple bitwise and shift instructions, which
guaranteeing the efficiency of collection. The coverage buffer
is shared between the host fuzzer and the guest though
exposing partial memory space of QEMU instance, so that
the potential overhead of coverage data transferring to the host
is eliminated. Finally, Tardis analyzes the collected coverage
statistic on the host also with simple instructions in a CPU
cache friendly manner, which promises the efficiency analysis
on coverage data.

We evaluated Tardis on several widely used Embedded OSs.
The results show that Tardis achieves a 51.32% improvement
in branch coverage on average compared with black-box
fuzzing. Tardis also found 17 previously unknown bugs in
target Embedded OSs.

In summary, we make the following contributions:
• We propose Tardis, a coverage guided Embedded OS

fuzzer. It can instrument on an Embedded OS and run
at the bare-metal level while conducting highly efficient
fuzzing by generating high-quality test cases based on
runtime coverage information.

• We design a coverage collection mechanism that is
OS-agnostic and cross-architecture, allowing for ef-
ficient coverage feedback on a wide variety of
Embedded Operating Systems.

• We implemented Tardis and evaluated its effectiveness on
several widely used Embedded Operating Systems. The
results shows that Tardis found 17 new bugs. Compared
with black box fuzzing, Tardis achieves 51.32% coverage
improvement on average.

II. BACKGROUND AND MOTIVATION

A. Embedded Operating Systems

Embedded Operating Systems are operating systems de-
signed to run specialized tasks in embedded environments.
They are widely used in many mission-critical situations,
such as the aerospace industry and autonomous vehicles.
Some widely-used Embedded OSs include FreeRTOS [2],
UC/OS [13], VxWorks [16], etc. Generally speaking, Embed-
ded OSs are designed for specific architectures, where the
hardware is typically resource-constrained. In other words,
an Embedded OS is optimized to improve the efficiency of
managing the hardware resources and reduce response times
specifically for tasks running upon it. Therefore, it is typically
designed to be compact and resource-efficient. Meanwhile, it
reduces many unneeded features and interfaces to improve the
predictability of its runtime behavior.

Embedded OS

Hardware

Block

Devices

CPU

Scheduler

Networks

Memory

Mgmt.

Character

Devices

Task 2

Application
Task 3

Task 4Task 1

Application

Glibc Standard 

C Library

General Purpose OS
Memory

Mgmt.

Process

Comm.

CPU

Scheduler

Device

Driver

File 

System Networks File 


System

Fig. 1. Diagram of the differences between Embedded OSs and General
Purpose OSs. On the hardware layer, an Embedded OS usually supports a wide
range of architectures in embedded scenarios, where the hardware resources
are limited, while a General Purpose OS mainly supports architectures
with relatively rich hardware resources. Generally, an Embedded OS only
provides core functionalities, while a General Purpose OS aims to be more
comprehensive than the former.

The major differences between Embedded OSs and General
Purpose OSs are shown in Figure 1. Specifically, the runtime
structure of a modern operating system typically consists of
three layers. The bottom layer represents the hardware on top



3

of which the kernel runs. It consists of components like the
processor, ROM, RAM, buses, etc. Generally speaking, the
architecture of a General Purpose OS that runs in desktop
or server scenarios is hardware with relatively rich resources.
However, an Embedded OS usually has a rather complex
application scenario, e.g., industrial control and IoT devices.
Therefore, the CPU that Embedded OSs run on top of can
vary considerably. Additionally, the memory space provided
for an Embedded OS can be significantly less, compared
with a General Purpose OS. Second, an Embedded OS usu-
ally provides core functionalities only, e.g., task scheduling,
memory management, with unnecessary parts cut down, while
General Purpose OSs aims to be comprehensive in terms
of system services. In detail, Embedded OS provides basic
abstractions as an operating system environment for the user’s
convenience, e.g., task as a basic calculation unit and priority-
based schedule. However, since Embedded OSs are mainly
designed to support certain kinds of tasks with specialized
purposes, many complex functionalities, e.g., network stacks
and file systems, that are normally provided by General
Purpose OSs, are usually removed for better predictability
of the OSs’ runtime behavior and reduction in its code size.
These functionalities are only available in certain scenarios
depending on the task requirements. Furthermore, the runtime
models are different between Embedded OSs and General
Purpose OSs. Specifically, the Embedded OS is designed to
integrate its code with user land task-specific code into an
application as a single executable image, while a General
Purpose OS strictly separates the kernel space and user space
as well as isolates resources between user processes. Since
fuzzing requires a great deal of resources and high-level
functionalities provided by the operation system, the above
difference poses great difficulties in conducting the fuzz testing
on Embedded OSs.

B. Coverage Guided Kernel Fuzzing.
Fuzz testing (fuzzing) is an automated vulnerability detec-

tion technique. Its basic idea is to detect a program’s abnor-
mal behavior by feeding it repeatedly with different inputs.
However, randomly generated test cases are not sufficient for
effective fuzzing because they can hardly accommodate the
program’s strict formatting requirements for inputs. To this
end, coverage guided fuzzing proposes using the coverage
information to identify those test cases capable of discovering
previously unseen paths, then utilize them to generate higher-
quality test cases, enabling efficient fuzzing. Concretely, a
standard coverage guided fuzzing complies with the following
procedures. First, the fuzzer instruments the target program
using LLVM SanitizerCoverage or AFL-GCC. Then, within
the fuzzing loop, it generates test cases that conform to the
target program’s input format, e.g., network packets or system
calls. Furthermore, it feeds this input to the target program,
detecting any abnormal behaviors with the assistance of a
variety of sanitizers and assertions. Last, the fuzzer monitors
its execution trace during the execution, identifies any test case
that triggers new coverage, and saves it for further mutation.

The modern operating system kernel usually contains a
considerable codebase; Linux, for example, has around 27.9

Test Case

Execution

Guest

Kernel

Source Code

Instrumented

Kernel

KCOV

Intrumentation

Coverage 

Analysis


Syscall

Description

Host

Test Case

Generation


Coverage

Collection

Network

Fig. 2. Diagram of Syzkaller overview. It first instrument the target kernel
with KCOV. Then, it utilizes the system call descriptions as fuzzing inputs. By
parsing these system call descriptions, Syzkaller will generate actual system
calls as test cases and send them to the target kernel. After each execution,
Syzkaller collects the corresponding coverage information on the guest side
and transfers it back on the host side for further analysis. If a test case triggers
new code coverage, Syzkaller will mark it as interesting and save it for further
test case generation.

million lines of code on its latest release. It is inevitable for
the kernel to have a large portion of vulnerabilities buried
in its codebase. Therefore, many works have attempted to
port fuzzing into kernel vulnerability detection [10], [21],
[28], [34]. Current kernel fuzzers generally follow the design
paradigms of user land coverage guided fuzzers.

Taking Syzkaller for instance, Figure 2 shows the overview
of Syzkaller. As a coverage guided kernel fuzzer, it performs
the coverage guidance by instrumenting the target kernel at
compile time. Specifically, Syzkaller uses the system call
descriptions as fuzzing inputs, which consist of the detailed
information of system calls. In concrete, each system call
sequence contains multiple system calls with the precise
type information of their corresponding arguments and some
complex resources like data structures and unions. By parsing
these descriptions, Syzkaller can generate high-quality test
cases to test the kernel. Moreover, Syzkaller uses the network
stack like TCP/IP protocol to transfer fuzzing-related data
such as test cases and the coverage information between the
host and guest. After execution, Syzkaller will collect a test
case’s corresponding edge coverage, where the edge is an
abstraction of the program’s control flow, and send it to the
host for further analysis. However, the aforementioned works
are mainly designed for GPOS scenarios, and, to the best of
our knowledge, none of them can conduct coverage guided
Embedded OS fuzz testing.

C. Challenges in Embedded OS Fuzzing

State-of-the-art kernel fuzzers can perform adequately well
on general purpose operating systems. However, they ex-
perience difficulties when adapting to Embedded OSs due
to the design and implementation requirements of relevant
mechanisms. Specifically, there are three major challenges that
need to be addressed in order to perform coverage-feedback
fuzzing on Embedded OSs.

First, Embedded OSs target a wide variety of architectures
and system boards, whereas general purpose operating systems



4

generally target only a handful of instruction set architectures.
For instance, UC/OS supports over 50 architectures, each with
different hardware capabilities and resources, while Linux, one
of the most widely used multi-architecture general purpose
operating systems, only runs on around 10 ISAs, with varying
degrees of support. This largely prevents embedded operating
system kernel fuzzers from leveraging hardware features to
assist in fuzzing-relevant operations such as coverage col-
lection. Furthermore, a diverse set of supported architectures
significantly increases the difficulty involved in conducting
binary instrumentation, as each architecture would require
individual care and effort to work correctly.

Second, Embedded OSs generally do not conform to a uni-
fied standard that provides consistent interfaces to interact with
the kernel. general purpose operating systems such as Linux,
BSD, and macOS are POSIX-compliant, allowing fuzzers to
easily leverage well-established libraries and facilities. Fuzzers
for general purpose operating systems also generally lever-
age KCOV [25] to collect coverage statistics. However, as
demonstrated in Figure 3, porting KCOV to these embedded
operating systems requires leveraging relevant kernel-specific
facilities and operations, such as file systems, memory map-
ping, network stacks, etc. This requires significantly more
human effort, as well as potential changes to the kernel itself,
which can also introduce false positives, i.e., previously non-
existent bugs and vulnerabilities.

Third, coverage collection and feedback mechanisms should
be highly efficient, thus reducing the impact on the fuzzer’s
throughput. For the target Embedded OS, kernel fuzzers need
to instrument code for coverage collection at a specific location
into the target binary, e.g., at the beginning of each basic
block. The injected code calculates each executed branch and
records it into the coverage storage, thus is executed frequently
and can present an immense amount of extra instructions.
Since Embedded OSs normally run in a hardware environment
with limited resources, we need to guarantee the efficiency
of instrumented coverage collection code. For the kernel
fuzzer itself, the coverage analysis is a hot path during the
whole fuzzing campaign that is conducted after each test
case execution. Consequently, the efficiency of the feedback
mechanism can highly impact the fuzzing throughput.

Therefore, we propose the following design principles to
adapt coverage feedback mechanisms for embedded operating
systems: 1) the mechanisms should be purely software-based,
thus avoiding any reliance on hardware features; 2) the mecha-
nisms should be OS-agnostic, i.e., perform coverage collection
and analysis regardless of the target operating system; 3)
the mechanisms should exhibit a low runtime overhead, thus
guaranteeing the fuzzer’s overall efficiency.

III. TARDIS DESIGN

Figure 4 shows the overall workflow of Tardis. First, the
Embedded OS source code is cross-compiled by Clang, and
the OS-agnostic coverage collection code is instrumented into
the target OS for better portability, which utilizes the instru-
mentation capability provided by Clang compiler. Tardis then
utilizes a modified version of QEMU to boot the target OS,

struct file_operations kcov_fops = {
   .open       	 	 = kcov_open,
   .unlocked_ioctl	 = kcov_ioctl,
   .mmap       	 	 = kcov_mmap,
   .release        	 = kcov_close,
};

  Coverage Initialization

  Coverage Buffer Open
func kcov_open(struct inode *inode, struct file *filep) {
   struct kcov *kcov;
   kcov = kzalloc(sizeof(*kcov), GFP_KERNEL);
	 ...
   spin_lock_init(&kcov->lock);
    	 ...
}

Fig. 3. Code snippet of KCOV . The KCOV mainly contains four operations,
namely coverage open, I/O, sharing, and free, respectively. We further take
a code snippet of kcov open(), which is used to initialize the coverage
collection. It first allocate a data buffer for coverage storage and uses threading
operations to operate the coverage data.

during which partial memory space of QEMU is exposed to
the fuzzer so that the coverage buffer can be directly accessed.
The coverage collection assigns each basic block of the target
OS with a unique ID for code branch identification during
the OS booting phase. For each test case, the executed code
branch is collected on the fly based on the assigned ID and
is stored in the shared coverage buffer. Tardis then compares
the collected coverage with the global coverage bitmap in the
host, the size of which is compact enough to fit into the CPU
cache, to detect and preserve interesting test cases with simple
instructions like bitwise for efficiency. In this way, Tardis can
facilitate coverage-guided fuzzing across a wide selection of
popular embedded operating systems.

Embedded OS

Source Code

Cross

Compilation

OS Agnostic

Collection

Fuzzing

Engine
Corpus

Host Fuzzer Guest VM

refine

input

Dynamic

Initialization

Host-Vm

Coverage Buffer

read

Coverage Analysis Coverage Collection

Instrumented

Image

reset

Coverage

Conversion

New Path

Identification

Fig. 4. Overall workflow of Tardis. The Embedded OS source code is cross-
compiled by Clang, it outputs the target OS image, with the OS-agnostic
coverage collection functions instrumented. During the OS booting phase,
Tardis uses a modified QEMU to set up a Host-VM coverage buffer for
coverage sharing, and it dynamically initializes coverage collection by giving
each basic block an ID. During fuzzing, the coverage collection function
collects the edge coverage and stores it in the coverage buffer. Tardis can
then compare this coverage statistic at the host side with the global coverage
bitmap to identify those test cases that trigger new coverage and to guide
further test case generation.



5

A. Coverage Collection

We utilize existing compiler infrastructure to conduct OS-
agnostic code coverage collection as well as guarantee the
portability of the proposed mechanism. Specifically, the Clang
compiler supports a general instrumentation mechanism that
can inject user-defined callbacks at the beginning of each code
block. The callback pc trace guard init() is used to initialize
the whole collection procedure and is called before entering
program logic, while the callback pc trace guard() is invoked
at the entry site of each basic block for code branch collection.
Based on the aforementioned mechanism, we can implement
Embedded OS coverage collection. Since such a mechanism of
Clang depends only on the source code information, we can
guarantee the portability and independence of the proposed
coverage collection. However, the callback used for initializa-
tion is designed for user land programs, and the resource for
running the Embedded OS is limited, thus we need to design
a dynamic initialization mechanism and efficient coverage
collection callback.

Dynamic Initialization. As mentioned in Section II, the
variety of compilation environments and the diverse imple-
mentation strategies lead to a diverse runtime model and in-
adequate compilation supports. As a consequence, the existing
mechanism for coverage collection initialization provided by
Clang compiler may not get invoked during the target kernel
booting phase. Specifically, to enable the coverage collection,
two types of callbacks functions need to instrument into the
OS code. In detail, we utilize the pc trace guard() to collect
edge coverage, while it requires the pc trace guard init() to
initialize the coverage, i.e., the pc trace guard init() assigns
ID numbers to each basic block for identification. These
functions need to be inserted into certain positions, e.g., the
entry of each basic block or before the program’s major logic.
For a user land program, leveraging its unified runtime model
and comprehensive compile support, the pc trace guard init()
function will get invoked automatically at the program startup.
The callback pc trace guard init() is invoked by a special
instrumented function sanitizer cov module init(), which
is called before entering each module of the program so
that the collection can be initialized correctly. However, most
Embedded OSs adopt highly customized building and linking
procedures to produce target binary, where the runtime model
is totally different from user land programs, making the call-
back mentioned for initialization work improperly. Therefore,
we propose a dynamic initialization mechanism, independent
of both target architecture and target kernel, to address the
aforementioned issue.

To load the pc trace guard init() properly, we design the
dynamic initialization mechanism that can automatically in-
voke it at the Embedded OS’s startup phase. The overall
procedures it is shown in Figure 5. In detail, the target OS’s
source code will be compiled into an ELF image. Then during
the load time, for a function that needs to be invoked, we need
to pinpoint the exact position of the function. We can then
implement an indirect call to it during OS startup through a
function pointer. In order to achieve that, we operate based
on the binary image of the target OS. This is because such a

function is often linked through a library and is not visible to
the OS before the linking stage, so we can not implement
direct calls to the function at the OS source code level.
Concretely, since the initialization function is loaded into the
OS code at the linking time, it must already reside at a certain
address of the OS address space. Therefore, to acquire the
accurate position, we disassemble the entire OS image after
the compilation and then find the corresponding address of
the target function pc trace guard init(). In this way, we can
properly call it at OS boot time by means of function pointers.

 

Compile

Load

Embedded OS

Source Code

Locate

Address

Run
Embedded OS


Symbols
Instrumentation


Func Symbols
Embedded OS ELF

Fig. 5. Diagram of the initialization procedures. The Embedded OS source
code will be compiled into an elf image, which contains the target OS’s
symbols as well as the instrumented function’s symbol. During execution, OS
will try to locate the address of the instrumented function and call it through
the function pointer.

Also, since pc trace guard init() is in charge of the
coverage initialization, it will iterate every basic block
within the target OS. In other words, when invoking the
pc trace guard init(), we need to provide it with arguments
like start and stop, which in detail, are the addresses of the
first basic block and the last basic block of the whole elf. It
is worth noting that, different from the pc trace guard init()
that are loaded at the linking stage, values like start and end
are assigned by Clang directly on the OS space. Therefore,
we can directly access them via pointer dereferencing.

OS Agnostic Coverage Collection. Different Embedded
OSs normally provide different interfaces to user land pro-
grams. For instance, the prototype of most system calls in
UC/OS and FreeRTOS are totally different. In order to apply
the coverage collection to a wide range of Embedded OSs, we
need to propose an OS-agnostic coverage collection mecha-
nism. Existing coverage collection tools, e.g., KCOV , utilizing
sophistical services from target OS, e.g., mmap, fopen, etc.,
making them unavailable in embedded scenarios. Therefore,
we propose to collect coverage statistics with several simple
binary instruments like bitwise in an OS-agnostic manner.

As we mentioned above, once we finish the initialization,
we can know which blocks have been hit by a test case
during the execution, through invoking the pc trace guard()
at each basic block. To calculate this hit count, we first
need to identify which edges a test case covers. However,
we can not give each edge an ID number directly since the
edge is only an abstraction of the program’s control flow.
Intuitively, we can give each edge a hash number based on
its previous and current basic blocks. Nevertheless, such an
approach may face several issues. For instance, a control
flow usually contains direction information, while the hash
operation does not consider the order of the two parameters
before the calculation, and this may cause us to neglect the



6

edge’s direction during the collection. Such a problem may
cause us to fail to portray the program’s coverage accurately.
Moreover, hash operations involve many arithmetic operations.
Such an extensive arithmetic operation can significantly affect
the fuzzing efficiency.

In order to address the aforementioned issues, we utilize the
ID assigned to each basic block. By using the xor operation
on the previously covered basic block and the current basic
block, we can have a unique ID for each edge. Meanwhile, to
entitle the direction information to each edge, we will shift
the previous basic block ID by one bit to the right after
execution so that we can distinguish between onward and
backward control flow. In this way, we can index such an
edge directly on our coverage bitmap and statistics its hit
counts. Such an approach only uses highly efficient binary
operations, which lowers the calculation overhead. Also, the
xor operation and the shift can take the direction of control
flow into consideration, enabling an accurate coverage statistic.

B. Coverage Analysis

The coverage analysis phase of fuzzers needs to be efficient
enough since such analysis is hot path of the whole fuzzing
campaign and is conducted after every time a test case is
executed. Embedded OSs normally runs in a hardware envi-
ronment with limited memory space and computing resources,
thus we propose to conduct coverage analysis directly at the
host side. However, the coverage statistics are collected inside
the target kernel that is executed by a QEMU virtual machine,
prohibiting fuzzer from accessing the collected coverage. In
order to conduct coverage analysis, we propose to directly
access the coverage storage via exposing partial memory space
of QEMU so that the overhead of data transferring to the
host can be eliminated, and perform analysis with a cpu cache
friendly mechanism to improve the efficiency.

Host-VM Coverage Buffer. To conduct a high efficient
coverage guided fuzzing, the first and foremost is to have a
data buffer that can facilitate the coverage collection, trans-
mission, and analysis. However, coverage analysis tends to be
computationally intensive since it needs to inspect the entire
program’s execution trace after each system call is executed.
Suppose we apply coverage analysis directly to the executor
with only limited resources. In that case, it may take up
much time leading to a poor fuzzing effect. Moreover, since
Embedded OS usually have different implementations and are
deployed at different architecture. It is hard for them to have
a unified and efficient interface to perform the data transfer.

To this end, Tardis proposes using a shared coverage buffer
to store the coverage information so that it can be accessed on
both the guest side and host side directly. Intuitively, QEMU
contains the entire memory space of the target Embedded
OS. Suppose we can access certain positions of QEMU’s
memory space, we can then access the corresponding position
of the target Embedded OS directly on the host side. However,
the modern operating system usually has a certain protection
mechanism that each process is isolated from each other, i.e.,
different processes can not access each other’s memory space.
That is to say, QEMU’s memory space is only visible to

itself, and other processes like the fuzzer process do not have
permission to access it.

To overcome this boundary, we propose to expose certain
data fields within QEMU, like the coverage buffer, using the
shared memory mechanism. So that during the fuzzing, we
can directly read and write the data buffer that stores the
coverage information from the host. In detail, we can locate the
address where the instrumented function stores the coverage
information. Then, we can modify the QEMU, allowing it
to expose such memory segments during the QEMU booting
phase. To be specific, during the QEMU booting phase, it will
dynamically allocate memory space for the guest OS. When
the QEMU attempts to allocate memory for the coverage
buffer, we will intercept such operation and try to expose this
buffer using the shared memory. By doing so, we can have
permission to access this coverage buffer at the host and read
the coverage information in a target Ignorant way.

Algorithm 1: Coverage Collection at Host.
Input: QemuShareMemoryPath

1 EmptyBuffer := ∅
2 SharedBuffer := ∅
3 mmap(QemuShareMemoryPath, SharedBuffer)
4 for Call ∈ Prog do
5 // Executor in the guest sets execution state into S
6 S := ReadExecuteStatus(SharedBuffer)
7 if State == WAIT then
8 R := ReadCover(SharedBuffer)
9 SharedBuffer = ResetCover(EmptyBuffer)

10 S := READY
11 SharedBuffer = SentStatueToVm(S)
12 end
13 end

Concretely, Algorithm 1 shows how the shared data buffer
is accessed during fuzzing on the host side. To begin with,
it utilizes the share memory path as input. Then, Tardis will
map the shared memory, where resides the guest coverage
information in the fuzzer, as shown in line 3. Furthermore,
Tardis collects the coverage statistic on each system call.
Before each system call is executed on the target OS, Tardis
will check whether the OS has finished its last execution, as
shown in lines 6-7. Once we know it is waiting for the next
system call, we will read the last system call’s coverage, then
reset the corresponding data buffer, as shown in lines 8-9.
Last, we can reset the execution status and tell the fuzzer we
are ready for further execution, as shown in lines 10-11. It is
noteworthy that, since such a method is based on QEMU only,
it is completely OS independent and OS transparent.

Efficient Analysis in Host. After collecting the coverage
information and storing them in a shared buffer, we can now
analyze them at the host to identify whether the last execution
covers any new path. To achieve that, we need to compare the
current coverage statistic with an overall coverage statistic.
However, coverage comparison is a frequent operation that
must be performed after each input’s execution. Such a high-
frequency and complex operation can take up much time and



7

significantly affect the fuzzing efficiency. Furthermore, there
are certain repetitive operations during program execution,
e.g., recursion or iteration. Such operations can lead to huge hit
counts for a particular edge, which will affect our accuracy of
a new path and thus reduce efficiency. Therefore, to reduce the
overhead and boost fuzzing efficiency, we propose to utilize a
compact bitmap to record the global coverage and check for
new coverage with several simple binary operations.

First, we utilize a compact global coverage bitmap with
the size of 64KB, thus allowing the map to be analyzed
in a matter of microseconds on the receiving end, and to
effortlessly fit within the L2 cache of the host CPU. To perform
binary operations, we propose to use a classification filter to
convert the edge coverage into binary form. We make a simple
hash map of our hit count to facilitate subsequent binary
operations. Specifically, since we are using a char size to store
the hit count of each edge, the hit count of all edges will
not exceed 256 times. Furthermore, each char has 8 bits, and
we will categorize the hit count into bit level. Finally, when
we obtain the coverage bitmap after execution, we compare
it with the global coverage bitmap through binary operations.
Assuming that the result is not equal to zero, we consider that
a test case triggers new coverage. Eventually, the coverage
bitmap will be merged with the global coverage bitmap. Since
the aforementioned coverage storage is designed to be cache
friendly and the whole comparison only involves simple binary
operations, the efficiency of the analysis can be guaranteed.

IV. IMPLEMENTATION

Overall, we implemented Tardis using Rust for the host
fuzzer and C for the guest executor programs. Tardis can con-
duct fuzz testing on UC/OS, FreeRTOS, RT-Thread and Zephyr
with slight modifications each. Specifically, to adapt to differ-
ent Embedded OSs, the integration overhead can be divided
into compiling the system call descriptions, adapting the host
fuzzer and the guest executor programs. To compile the sys-
tem call descriptions of a given Embedded Operating System,
we manually construct these descriptions through reading
its API references and convert them to the corresponding
description language. The host fuzzer needs to specify the
target OS’s architecture and the location at the fuzzer’s ini-
tialization. The guest executor is implemented as a running
application in Embedded OS, which is in charge of OS
initialization, test case deserialization and execution. The
deserialization and execution procedures only consist of arith-
metic and memory operations and are devoid of any OS-
dependent APIs, thus they can be directly used across different
Embedded Operating Systems. While the OS initialization in-
volves many OS-dependent operations as the internal API for
these operations is different due to the difference between the
OS’ implementations.

In order to conduct the coverage guided fuzzing effectively,
Tardis leverages the architecture shown in Figure 6. Overall,
Tardis works on both the host side and guest side. On the
host side, the primary responsibility is to manage the whole
fuzzing process as well as the test case generation. Concretely,
for the test case generation, it parses the predefined system call

Shared Memory

Corpus

System Call

Execution

Serialization

Feedback
Control

Tardis

Qemu

System Call

Generation

System Call

Mutation

VM

Control

OS
Initialization

Log

Instrumented

Function

Deserialization

Fig. 6. Diagram of Tardis architecture. First, the host side is in charge of
the test case generation, mutation, serialization, feedback analysis, record
operations, and VM control. Then, the host and guest communicate through
the shared memory pass data like coverage and test cases. Last, the guest
side is in charge of OS initialization, test case deserialization and execution,
normally, there are multiple QEMU instances for each fuzzing process, each
of which has a corresponding shared memory region exposed by QEMU.

descriptions and generates the initial corpus. Then, during the
execution, based on the feedback information such as coverage
and crashes, it saves interesting test cases into the corpus
and mutates them in later execution. Last, it serializes a test
case into a plaint structure to facilitate the data transfer. For
fuzzing process management, Tardis boots QEMU on each
fuzzer startup and reboot the QEMU after each crash. Also,
Tardis will log all information asynchronously. It monitors and
collects valuable information, e.g., the crash information, the
coverage information, from multiple QEMU instances. Then
it logs them on the host machine during the entire fuzzing
campaign. To communicate the host and the guest, we slightly
modified QEMU, using the shared memory mechanism to
mmap certain QEMU’s memory space, so that QEMU can
directly expose its internal space, where the target OS’s mem-
ory locates. Hence, we can directly access the OS’s memory
space from the host side. Any data I/O like writing test
cases or reading coverage information, would be transparent
to the target OS. On the guest side, once Tardis finishes the
OS initialization, it mainly deals with received test cases.
Specifically, it deserializes the test cases, extracts the system
call and its parameters, and executes them on the target OS
via function pointers. The instrumented function will record
the coverage information and send them back to the host.

The instrumentation mechanism is implemented upon
Clang’s SanitizerCoverage. In detail, we reserve a buffer to
store the coverage information. Then we design an operating
system independent coverage collection mechanism. It con-
tains a coverage initialization function that can iterate every
basic block of the target OS and assign them with an ID
number. Also, it has a coverage collection function that can
collect the coverage information during runtime.



8

V. EVALUATION

We list the following research questions to help us under-
stand Tardis’s performance and effectiveness.

• RQ1 Is Tardis able to uncover new bug in different
Embedded OSs?

• RQ2 Is Tardis’s coverage guided mechanism effective in
term of achieve higher code coverage, comparing with
the black box fuzzing?

• RQ3 What is the overhead that the instrumentation brings
to Tardis during fuzz testing?

To determine whether Tardis is capable of uncovering
new bugs and answer RQ1, we used Tardis to test four
open sourced Embedded OS implementations. Overall, Tardis
found 17 previously unknown bugs. To answer the RQ2, we
implemented a Tardis- with the coverage guidance disabled,
to evaluate the effectiveness of the coverage guided generation
mechanism. To measure the performance impact of our design
and answer RQ3, we analyzed how much memory growth
instrumentation brings to Embedded OS and how much exe-
cution overhead it introduces during the fuzzing campaign.

A. Experiment Setup

We evaluated Tardis against the following four Embedded
OSs: UC/OS [13], FreeRTOS [2], Rt-Thread [33], and Zephyr
[15]. Specifically, we further test UC/OS and FreeRTOS with
two different versions: UC/OS-2, UC/OS-3, FreeRTOS-LTS
(Long Term Support Version), and FreeRTOS-10.4 (Latest
Version). Also, to adapt fuzzing to the above targets, we
predefined some system call descriptions based on their user
manuals and code specifications. These descriptions are mainly
for their core modules, e.g., kernel module, timer module, and
some essential peripheral modules like networks. For coverage
evaluation, to verify the effectiveness of coverage guidance as
well as eliminate the potential impact from implementation
details, we implemented Tardis-, which in turn is the Tardis
without the coverage guidance. For the overhead evaluation,
we prepared OS images before and after instrumentation to
evaluate the memory overhead by comparing the size of the
images. We also count the time to execute those inputs that
trigger the new coverage before and after instrumentation to
evaluate the execution overhead.

The experiments were conducted on a Linux server with 64
GB of memory and a 16-core CPU. Each kernel is compiled
by Clang with instrumentation related configuration enabled.
We configure each virtual machine instance for every single
experiment with the same parameters. Specifically, each fuzzer
instance has 2 VM instances with 4 GB of memory and two
processor cores. Each experiment is repeated three times, with
a duration of 24 hours.

B. Bug Detection Capability

To evaluate Tardis’s bug detection capabilities in differ-
ent Embedded OSs and answer the RQ1, we collected and
analyzed the crashes reported by Tardis during the fuzzing
campaigns. Specifically, Tardis found a total of 17 previously
unknown bugs, as listed in Table I. A more specific breakdown
is as follows.

TABLE I
REPORTED BUGS FOUND BY Tardis

kernel operations bug type

UC/OS-3 NetUtil 16BitSumDataCalc logic error
UC/OS-3 NetSock BindHandler logic error
UC/OS-3 NetSock TxDataHandlerDatagram logic error
UC/OS-3 NetTCP RxPktConnHandlerFinWait2 logic error
UC/OS-3 NetNDP NextHop logic error
UC/OS-3 NetMLDP HostGrpLeaveHandler logic error
UC/OS-3 NetMLDP HostGrpLeave logic error
UC/OS-3 Mem Copy logic error
UC/OS-2 NetIF TxIxDataGet logic error
UC/OS-2 NetIGMP TxMsgReport logic error
FreeRTOS-10.4 xAreTimerDemoTasksStillRunning logic error
FreeRTOS-10.4 xTaskCheckForTimeOut null-ptr deref
FreeRTOS-10.4 xSecondTimerHandler logic error
FreeRTOS-LTS xTaskResumeAll null-ptr deref
RT-Thread lwip getaddrname null-ptr deref
RT-Thread rt spi sendrecv8 logic error
RT-Thread rt vsnprintf null-ptr deref

In total, we found 4 vulnerabilities on FreeRTOS, 10 vul-
nerabilities on UC/OS, and 3 vulnerabilities on RT-Thread. By
far, 1 vulnerability has been fixed by the maintainer. We find
that most of these vulnerabilities are located in the target OS’s
kernel module and network-relevant modules since our system
call descriptions specifically target these sections. We further
analyze the potential effect of these vulnerabilities through
the help of the GDB debugger. Results indicate that one of
them can trigger a memory fault, while the rest can cause
the system to become unresponsive or crash. Tardis’s finding
these vulnerabilities is a direct result of the coverage guidance
mechanism since it enables Tardis to identify those interesting
test cases and give them a higher chance of mutation. In this
way, we can keep generating high quality test cases, thereby
testing deeper into the Embedded OS’s code logic, uncovering
those previously unknown vulnerabilities.

Figure 7 shows a previously unknown vulnerability in the
internal function NetMLDP HostGrpLeave() of the UC/OS.
The vulnerability was found by Tardis during the fuzzing
campaign and was confirmed and fixed by maintainers from
UC/OS community. As shown in the figure, the variable
host grp leave is declared at the beginning of the function
NetMLDP HostGrpLeave() (line 4) without a proper initial-
ization. After successfully acquiring the global lock used in
the network subsystem (line 5 to line 8), the execution path
would jump to the label exit release if the value of the input
pointer p addr equals to zero (line 13 to line 16), which means
the caller does not provide the needed buffer for a network
address. The whole process would return at the jumped site
exit release with the variable host grp leave that contains
the garbage value returned to the caller (line 23 to line 26),
resulting in the undefined behavior. The returned garbage value
can result in unexpected behavior at the caller site, further
leading to various critical security issues.

Although the UC/OS has been widely deployed for a
prolonged time and UC/OS itself contains a rich set of unit
tests as well as system level tests, none of them can discover
and report the aforementioned vulnerability. With the proposed
coverage collection mechanism and the corresponding guided
fuzzing procedure, Tardis is capable of retaining valuable test



9

1 int NetMLDP_HostGrpLeave (NET_IF_NBR if_nbr,
NET_IPv6_ADDR *p_addr, NET_ERR *p_err)

2 {
3 // host_grp_leave is declared without

initialization.
4 CPU_BOOLEAN host_grp_leave;
5 Net_GlobalLockAcquire((void

*)&NetMLDP_HostGrpLeave, p_err);
6 if (*p_err != NET_ERR_NONE) {
7 goto exit_lock_fault;
8 }
9 #if (NET_ERR_CFG_ARG_CHK_EXT_EN ==

DEF_ENABLED)
10

11 #if (NET_ERR_CFG_ARG_CHK_EXT_EN ==
DEF_ENABLED)

12 // if p_addr is equal to NULL
13 if (p_addr == (NET_IPv6_ADDR *)0) {
14 NET_CTR_ERR_INC(Net_ErrCtrs.NullPtrCtr);
15 *p_err = NET_ERR_FAULT_NULL_PTR;
16 goto exit_release;
17 }
18 #endif
19 host_grp_leave =

NetMLDP_HostGrpLeaveHandler(if_nbr,
p_addr, p_err);

20 goto exit_release;
21 exit_lock_fault:
22 return (DEF_FAIL);
23 exit_release:
24 Net_GlobalLockRelease();
25 // Undefined or garbage value returned to caller
26 return (host_grp_leave);
27 }

Fig. 7. A previously unknown vulnerability in the UC/OS kernel was found by
Tardis during the fuzzing campaign. The variable host grp leave is declared at
line 4 without initialization, which leaves a garbage value in the corresponding
memory location. After acquired the global lock successfully (line 5 to line
8), the execution would jump to the label exit release if the input pointer
p addr is a null pointer (line 13 to line 17), where the uninitialized variable
host grp leave is returned without any further handling procedure (line 23 to
line 26), thus transferring the garbage value to caller.

cases that cover the new execution path for further mutations,
thereby improving the quality of the generated test cases.
Tardis can find such security issues in a limited time, which
demonstrates its bug finding capability.

C. Coverage Statistics

We here to address RQ3 and evaluate whether the coverage
guidance can assist Tardis in achieving a better code coverage.
Note that Syzkaller currently does not nativity support fuzzing
Embedded OSs, since it requires many features from posix
platform, e.g., spawning threads dynamically, and needs kernel
features like KCOV, which Embedded OS does not provide.
Hence, instead of comparing the effectiveness with tools
like Syzkaller, we evaluate the effectiveness of the coverage
guidance mechanism.

In detail, to evaluate the effectiveness of the coverage
guidance mechanism, we designed Tardis-, which in turn is
the Tardis with the coverage guidance functions disabled. The
Tardis- can only collect the coverage statistic, but do not use
the feedback as guidance, for example, it can not identify and
preserve interesting test cases.

0 4 8 12 16 20 24

900

1,800

2,700

3,600

4,500

5,400

6,300

Time [h]

N
um

be
r

of
B

ra
nc

he
s

C
ov

er
ed

Tardis compared with Tardis- on UC/OS-3

Tardis
Tardis-

0 4 8 12 16 20 24

900

1,800

2,700

3,600

4,500

5,400

6,300

Time [h]

N
um

be
r

of
B

ra
nc

he
s

C
ov

er
ed

Tardis compared with Tardis- on UC/OS-2

Tardis
Tardis-

(a) Branch Coverage Statistics on UC/OS

0 4 8 12 16 20 24

900

1,800

2,700

3,600

4,500

5,400

6,300

Time [h]

N
um

be
r

of
B

ra
nc

he
s

C
ov

er
ed

Tardis compared with Tardis- on FreeRTOS-10.4

Tardis
Tardis-

0 4 8 12 16 20 24

900

1,800

2,700

3,600

4,500

5,400

6,300

Time [h]

N
um

be
r

of
B

ra
nc

he
s

C
ov

er
ed

Tardis compared with Tardis- on FreeRTOS-LTS

Tardis
Tardis-

(b) Branch Coverage Statistics on FreeRTOS

0 4 8 12 16 20 24

200

400

600

800

1,000

1,200

1,400

Time [h]

N
um

be
r

of
B

ra
nc

he
s

C
ov

er
ed

Tardis compared with Tardis- on RT-Thread

Tardis
Tardis-

0 4 8 12 16 20 24

300

500

700

900

1,100

1,300

1,500

Time [h]

N
um

be
r

of
B

ra
nc

he
s

C
ov

er
ed

Tardis compared with Tardis- on Zephyr

Tardis
Tardis-

(c) Branch Coverage Statistics on RT-Thread and Zephyr

Fig. 8. Coverage statistics of Tardis with and without (Tardis-) coverage feed-
back on UC/OS-3, UC/OS-2, FreeRTOS-10.4, FreeRTOS-LTS, RT-Thread,
and Zephyr over 24 hours.

TABLE II
BRANCH COVERAGE STATISTICS OF Tardis WITH AND WITHOUT (Tardis-)
COVERAGE GUIDANCE ON THE RESPECTIVE EMBEDDED KERNELS. FOR
DIFFERENT EMBEDDED OSES, FRS MEANS FREERTOS, RTTRD MEANS

RT-THREAD, AND ZPHR MEANS ZEPHYR.

UCOS-3 UCOS-2 FRS-10.4 FRS-LTS RTTRD ZPHR

Tardis 6146 5387 2849 3888 1444 1620
Tardis- 3216 3295 2442 2696 910 1211
Avg-impr 91.11% 63.49% 16.67% 44.21% 58.68% 33.77%

The coverage results are demonstrated in Table II. Com-
paring with Tardis-, Tardis has a coverage increment about
91.11%, 63.49%, 16.67%, 44.21%, 58.68%, and 33.77% in
UC/OS-3, UC/OS-2, FreeRTOS-10.4, FreeRTOS-LTS, RT-
Thread, and Zephyr respectively. On average, Tardis gains
a 51.32% of coverage improvement. As we can infer, the
coverage guidance mechanism greatly facilitates the fuzzing
performance. The reason behind this is that, compared to
black-box fuzzing, Tardis adapts to the coverage guidance
mechanism, which helps it locate and discover test cases that
trigger new coverage. These high-quality test cases are given a
higher probability of mutation, and such extensive mutations
on them improve the quality of newly generated test cases,
allowing Tardis to reach deeper code logic than Tardis- does.

Based on the sampling data, we further plot the coverage
growth curve as shown in Figure 8. We notice that Tardis can
reach a higher code coverage at a faster speed with the help



10

of coverage guidance compared to black box fuzzing. Specif-
ically, taking FreeRTOS-10.4 as an example, Tardis can grow
at a faster rate than Tardis-, and it can grow at a longer time
and finally reach a higher coverage. The fast growth mainly
contributes to the coverage guidance mechanism, which helps
the fuzzer identify valuable test cases, thereby gaining a rapid
growth rate. It is worth noting that at some point, the coverage
data may suddenly increase, as is the case in UC/OS-2 when
Tardis is running around 8 hours. In this case, the fuzzer may
generate test cases for some untested modules. Since these
modules have never been covered, these test cases may be
able to go very deep into this module, and then there is a
possibility of a sudden increase in coverage.

Also, we notice that both Tardis and Tardis- are prone to
reach the saturation status, where the coverage barely grows,
e.g., in FreeRTOS-LTS, both Tardis and Tardis- have no more
growth after 12 hours. This is because writing these test
cases descriptions requires considerable manual effort, which
is another topic that the primary purpose of this paper does not
attempt to address. Therefore, we only provide descriptions for
some core modules with limited test cases. This could lead to
their being tested rapidly, making the fuzzing campaign easy
to saturation. A more comprehensive description generation
technique can alleviate this issue and let Tardis cover signifi-
cantly more branches.

D. Instrumentation Overhead

Memory Usage. Given that fuzzing campaigns are typically
performed in parallel, the memory consumption of the target
is essential. Since Embedded OSs are designed for scenarios
with limited memory resources. Therefore, to minimize the
high memory overhead that affects our fuzzing efficiency, we
need to reduce the memory space occupied by instrumentation
as much as possible. Here we compare the memory growth of
the target Embedded OS before and after the instrumentation.

TABLE III
MEMORY CONSUMPTION OF INSTRUMENTATION DURING FUZZING. FOR
DIFFERENT EMBEDDED OSES, FRS MEANS FREERTOS, RTTRD MEANS

RT-THREAD, AND ZPHR MEANS ZEPHYR.

UCOS-3 UCOS-2 FRS-10.4 FRS-LTS RTTRD ZPHR

Uninstrumented 1853Kb 1929Kb 419Kb 424Kb 2330K 531Kb
Instrumented 2332Kb 2219Kb 650Kb 684Kb 2971K 799Kb
Overhead 20.54% 13.07% 35.54% 38.01% 21.58% 33.53%

Table III shows the detailed memory growth brought by the
instrumentation. As we can infer from the table. The UC/OS
increased 20.54% and 13.07% for UC/OS-3 and UC/OS-2. For
FreeRTOS, the memory consumption grows about 35.54% and
38.01% in 10.4 and LTS versions. While the RT-Thread and
Zephyr increases about 21.58% and 33.53% speratly.

The memory increment of all four Embedded OS is 27.05%
of increment on average. Such memory growth is inevitable
because instrumentation requires inserting coverage collection
functions and coverage buffers into the target Embedded OS.
Also, we note that UC/OS has a lower memory growth rate
compared to FreeRTOS. This is because we are currently only
instrument C code, despite that UC/OS has a larger code

base than FreeRTOS, it contains more non-instrument code,
such as assembling. Overall, the memory overhead caused
by instrumentation is acceptable. This overhead does not
contribute significantly to the overall memory usage, and the
impact of this consumption on the overall fuzzing performance
can be negligible.

Execution Time Overhead. We further evaluate the execu-
tion overhead imposed by instrumentation. Specifically, exe-
cution overhead analysis usually requires the support of some
system libraries, while in the bare-metal scenario the lack of
such necessary support makes it difficult to perform direct
overhead analysis. Here we choose to count the overall time
that the target Embedded OS executes all interesting corpus as
a comparison metric. Specifically, we collect those test cases
that trigger new coverage during fuzzing as a dataset and re-
execute them on instrumented and uninstrumented Embedded
OS, statistics and compare their respective execution times.

TABLE IV
TIME OVERHEAD OF INSTRUMENTATION DURING FUZZING. FOR

DIFFERENT EMBEDDED OSES, FRS MEANS FREERTOS, RTTRD MEANS
RT-THREAD, AND ZPHR MEANS ZEPHYR.

UCOS-3 UCOS-2 FRS-10.4 FRS-LTS RTTRD ZPHR

Uninstrumented 4395.20s 4175.44s 25517.03s 26511.20s 688.56s 219.78s
Instrumented 5933.52s 5713.76s 29825.10s 33139.00s 918.08s 299.70s
Overhead 35.0% 36.7% 16.9% 25.0% 33.3% 36.4%

Specifically, we have selected a corpus of 21976, 66278,
5738, and 1998 test cases of interest for UC/OS, FreeRTOS,
RT-Thread, and Zephyr. Here we will count the execution
time of the corresponding corpus for each Embedded OS
respectively. Table IV shows the detailed time increase caused
by the instrumentation. We can see from the table that
instrumentation leads to an average execution overhead of
30.55%. For the six Embedded OSs, it increases the execution
overhead by 35.0%, 36.7%, 16.9%, 25.0%, 33.3%, and 36.4%,
respectively. Such overhead is caused by the fact that we insert
coverage processing functions that require frequent read and
write operations on the coverage buffer before each basic
block of the target Embedded OS. Although the coverage
guided mechanism of Tardis now introduces some overhead,
the impact of this overhead on the performance of the coverage
fuzzing processing activities is negligible compared to the
benefits it brings.

VI. DISCUSSION

Extensibility. Currently, Tardis is mainly written in Rust,
while its executor is written using C, and we use QEMU to
support Embedded OS emulation. This framework avoids the
problems caused by the different Embedded OS targets as
much as possible. However, Tardis’s performance may have
some limitations due to the following two aspects. On the one
hand, the QEMU-based fuzzing may have a relatively slower
speed than real hardware testing. Also, although many kernel
fuzzers like Syzkaller apply QEMU-based fuzzing, deploying
OSes, especially embedded OSes that supporting dozens of
architectures on emulators, there may be certain hardware
emulation like peripheral devices that is not supported on
some architectures. In this case, QEMU can not simulate them,



11

which in turn leads to this part of code not being tested. On the
other hand, Tardis uses system call descriptions as input, just
like any other OS fuzzers, which contain detailed information
about the system calls, including return values, parameters, etc.
These system call descriptions are highly structured and have
high requirements for their accuracy. Since incorrect system
call descriptions make it impossible to test the deep logic of
Embedded OS. However, such descriptions can only be written
manually and place high demands on the developer. Because
writing such descriptions need to have a certain level of under-
standing of the Embedded OS to be tested, which undoubtedly
increases the difficulty of our adaptation. To adapt more
Embedded OS, we can perform dynamic analysis through OS
tracing tools, like ptrace, to collect the real execution traces
and derive the detailed semantic information of a system call
like parameter types and values. Alternatively, we can directly
analyze the parameter types and relationships of the system
call through static analysis. Thus automate generating such
system call descriptions and reduce our adaptation cost.

Bug Detection Capability. Although by means of coverage
guidance, we are now able to detect 17 bugs. We mainly detect
Embedded OS those unrecoverable errors by the generated
input. Specifically, an Embedded OS will perform frequent
checks on its internal execution state during runtime. If it finds
that the values of certain parameters are in an unrecoverable
state, Embedded OS will enter the error handling code and
trigger a system hang eventually. For now, we can only
determine whether there are problems with the system when
a hang is detected. Specifically, there are many silent data
errors within Embedded OS. For example, many use-after-
free errors do not affect the overall execution of the system.
However, such hidden errors can lead to severe consequences,
such as remote code execution, information leakage, etc. In
the subsequent tests, to enhance the bug detection capability
of Tardis. We can make use of some monitors of QEMU to
detect the registers of Embedded OS, or the execution, and
thus find these silent errors.

VII. RELATED WORK

Kernel Fuzzing. The operating system kernel is inevitable
to have tremendous vulnerabilities within its codebase. There-
fore, more and more researchers have attempted to port fuzzing
into kernel testing [4], [5], [10]–[12], [17], [24], [30]. For
the general purpose operating system fuzzing. Syzkaller [28]
is a state-of-the-art coverage guided kernel fuzzer developed
by Google. It has explored many severe kernel vulnerabilities
[27] and can test a wide range of kernels like Linux and
Windows. It proposes to use the system call description as
input [29], so it can encode rich semantic information into
test cases to maximize the fuzzing efficiency. There are works
that try to boost the fuzzing speed by various methods. For
example, Healer [26] tries to generate high-quality test cases
by uncovering the hidden relations between two adjacent
system calls. Also, some works try to combine symbolic
execution and kernel fuzzing. Specifically, symbolic execution
utilize path constraints to calculate the symbolic values to
test programs. For example, HFL [11] adopted symbolic

execution to generate high-quality input for those hard-to-pass
checkpoints in kernel. Also, by limiting the range of analysis
paths, HFL greatly avoids the huge computation overhead that
symbolic execution incurs during kernel analyzing.

The above works are mainly focused on the GPOS fuzzing;
they may find it challenging to port it in Embedded OS
fuzzing. Therefore, some works try to extend fuzzing into
other operating system types. For example, Gustave [6] is a
Embedded OS fuzzer, it realized a customized QEMU board
to emulate the target Embedded OS. Then it uses the QEMU-
TCG to achieve the binary instrumentation for coverage guid-
ance and memory-related vulnerabilities detection. KAFL [21]
uses Intel-PT to enable the coverage guided fuzzing, which is
an vendor-specific hardware feature. Such mechanism is lim-
ited to X86 architecture OS only, however, most Embedded OS
are deployed on ARM or RISC-V architecture. Also, Rtkaller
[24] proposes to use tasks as fuzzing inputs and uses the
parallel execution to trigger kernel’s scheduling behavior for
an efficient RTOS fuzzing. However, it is based on Syzkaller,
currently only support rt-Linux fuzzing, can not be adapted to
other Embedded OS scenarios.

Instrumentation in Fuzzing. Fuzzing [1], [3], [7], [14],
[18], [20], [31] is essentially a rather brute-force mechanism
that explores the program’s vulnerability via random input.
This kind of blind testing makes it difficult to understand the
internal execution state of the program, which in turn leads
to very inefficient testing. Instrumentation [32] is used to give
the fuzzer a better internal view of the target program during
the fuzzing campaign.

In detail, it usually enables fuzzer with coverage guidance
and vulnerability detection by providing edge counts, call
stack, and memory access pattern. For the coverage infor-
mation, different instrumentation tools have different cover-
age collection granularities. For instance, SanitizerCoverage
[19] and AFL-GCC [14] method are the two most widely-
used coverage instrumentation tools. SanitizerCoverage offers
function level, basic block level, and edge level coverage infor-
mation, while AFL provides edge level coverage only. Also,
the instrumentation helps fuzzer in facilitating vulnerability
detection. In detail, The sanitizer toolset can detect a wide
range of vulnerabilities in the C/C++ program. Some of the
representatives like Address SANitzier (ASAN) [8], [22], can
detect any illegal memory access like use after free, double
free, and stack overflow. Thread SANitizer (TSAN) [23] and
Kernel Concurrency SANitizer (KCSAN) [9] can detect data
racing problems, etc.

Main differences. In general, there is a huge difference
between general purpose OS fuzzing and Embedded OS
fuzzing. So far, most coverage guided kernel fuzzers focus
on those kernels with complete infrastructure support, such
as Linux, MacOS, and Windows. However, these fuzzers rely
heavily on existing infrastructures such as standard APIs and
uniform memory layouts. For targets like Embedded OSs,
many operations are not allowed due to resource constraints
and limited functions support. While there are tools such
as Gustave and KAFL that enable coverage guided fuzzing
of certain Embedded OS by heavily modified QEMU and
introducing the binary instrumentation. Such an approach often



12

suffered from a high adaptation cost, and inaccuracies brought
by the binary instrumentation itself.

VIII. CONCLUSION

In this paper, we present Tardis, the first coverage guided
fuzzer that is able to discover bugs in Embedded OS. Tardis
proposes a coverage collection mechanism that is able to in-
strument Embedded OSs and conduct an OS-agnostic coverage
collection. The coverage is gathered on-the-fly and stored into
a data buffer shared between the host fuzzer and the guest,
enabling direct accessing without extra copy. Those inputs
trigger new coverage can be detected with an efficient coverage
analysis mechanism, thus evolving the whole fuzz campaign.
The evaluation shows that the instrumentation brings averagely
27.05% and 30.55% memory consumption and execution
overhead. While it gains an improvement of coverage by
51.32% on average, comparing with the black box fuzzing,
which demonstrates the effectiveness of the proposed coverage
guidance. Furthermore, we found 17 previously unknown bugs
among four Embedded OSs, indicating the bug discovery
capability of Tardis.

REFERENCES

[1] Domagoj Babić, Stefan Bucur, Yaohui Chen, Franjo Ivančić, Tim King,
Markus Kusano, Caroline Lemieux, László Szekeres, and Wei Wang.
FUDGE: Fuzz Driver Generation at Scale. In Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE
2019, page 975–985, New York, NY, USA, 2019. Association for
Computing Machinery.

[2] Richard Barry et al. Freertos. Internet, Oct, 2008.
[3] Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang, Mingzhe Wang, Chijin

Zhou, Xun Jiao, and Zhuo Su. EnFuzz: Ensemble Fuzzing with Seed
Synchronization among Diverse Fuzzers. In 28th USENIX Security
Symposium (USENIX Security 19), pages 1967–1983, Santa Clara, CA,
August 2019. USENIX Association.

[4] Jaeseung Choi, Kangsu Kim, Daejin Lee, and Sang Kil Cha. NTFUZZ:
Enabling type-aware kernel fuzzing on windows with static binary
analysis. In Proceedings of the IEEE Symposium on Security and
Privacy, pages 1973–1989, 2021.

[5] Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili,
Shuang Hao, Christopher Kruegel, and Giovanni Vigna. Difuze: In-
terface aware fuzzing for kernel drivers. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’17, page 2123–2138, New York, NY, USA, 2017. Association for
Computing Machinery.

[6] Stéphane Duverger and Anaı̈s Gantet. Gustave: Fuzz it like it’s app.
DMU Cyber Week, 2021.

[7] Jian Gao, Yiwen Xu, Yu Jiang, Zhe Liu, Wanli Chang, Xun Jiao, and
Jiaguang Sun. Em-fuzz: Augmented firmware fuzzing via memory
checking. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 39(11):3420–3432, 2020.

[8] Google. Kernel address sanitizer. https://www.kernel.org/doc/html/latest/
dev-tools/kasan.html.

[9] Google. Kernel concurrency sanitizer. https://www.kernel.org/doc/html/
latest/dev-tools/kcsan.html.

[10] Dae R. Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung Lee,
and Insik Shin. Razzer: Finding Kernel Race Bugs through Fuzzing. In
IEEE Symposium on Security and Privacy, pages 754–768. IEEE, 2019.

[11] Kyungtae Kim, Dae R. Jeong, Chung Hwan Kim, Yeongjin Jang, Insik
Shin, and Byoungyoung Lee. HFL: Hybrid Fuzzing on the Linux Kernel.
In NDSS, 2020.

[12] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu,
and Taesoo Kim. Finding Semantic Bugs in File Systems with an
Extensible Fuzzing Framework. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP ’19, page 147–161,
New York, NY, USA, 2019. Association for Computing Machinery.

[13] Silicon Lab. Ucos. https://www.silabs.com/developers/micrium.

[14] lcamtuf. American fuzzy lop, 2013. https://lcamtuf.coredump.cx/afl/.
[15] Anas Nashif. Zephyr is a new generation, scalable, optimized, secure

RTOS, 2016. https://github.com/zephyrproject-rtos/zephyr.
[16] Henry Neugass, G Espin, Hidefume Nunoe, Ralph Thomas, and David

Wilner. Vxworks: an interactive development environment and real-time
kernel for gmicro. In Eighth TRON Project Symposium, pages 196–197.
IEEE Computer Society, 1991.

[17] Shankara Pailoor, Andrew Aday, and Suman Jana. MoonShine: Optimiz-
ing OS Fuzzer Seed Selection with Trace Distillation. In 27th USENIX
Security Symposium (USENIX Security 18), pages 729–743, Baltimore,
MD, August 2018. USENIX Association.

[18] Gaoning Pan, Xingwei Lin, Xuhong Zhang, Yongkang Jia, Shouling
Ji, Chunming Wu, Xinlei Ying, Jiashui Wang, and Yanjun Wu. V-
shuttle: Scalable and semantics-aware hypervisor virtual device fuzzing.
In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’21, page 2197–2213, New York, NY,
USA, 2021. Association for Computing Machinery.

[19] LLVM Project. Llvm sanitizercoverage. https://clang.llvm.org/docs/
SanitizerCoverage.htmll.

[20] Sunny Raj, Sumit Kumar Jha, Arvind Ramanathan, and Laura L. Pullum.
Testing autonomous cyber-physical systems using fuzzing features from
convolutional neural networks: Work-in-progress. In Proceedings of the
Thirteenth ACM International Conference on Embedded Software 2017
Companion, EMSOFT ’17, New York, NY, USA, 2017. Association for
Computing Machinery.

[21] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian
Schinzel, and Thorsten Holz. kAFL: Hardware-Assisted Feedback
Fuzzing for OS Kernels. In 26th USENIX Security Symposium (USENIX
Security 17), pages 167–182, Vancouver, BC, August 2017. USENIX
Association.

[22] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitry Vyukov. AddressSanitizer: A Fast Address Sanity Checker. In
Proceedings of the 2012 USENIX Conference on Annual Technical Con-
ference, USENIX ATC’12, page 28, USA, 2012. USENIX Association.

[23] Konstantin Serebryany and Timur Iskhodzhanov. Threadsanitizer: Data
race detection in practice. In Proceedings of the Workshop on Binary
Instrumentation and Applications, WBIA ’09, page 62–71, New York,
NY, USA, 2009. Association for Computing Machinery.

[24] Yuheng Shen, Hao Sun, Yu Jiang, Heyuan Shi, Yixiao Yang, and Wanli
Chang. Rtkaller: State-Aware Task Generation for RTOS Fuzzing. ACM
Trans. Embed. Comput. Syst., 20(5s), sep 2021.

[25] SimonKagstrom. Kcov. https://github.com/SimonKagstrom/kcov.
[26] Hao Sun, Yuheng Shen, Cong Wang, Jianzhong Liu, Yu Jiang, Ting

Chen, and Aiguo Cui. HEALER: Relation Learning Guided Kernel
Fuzzing, page 344–358. Association for Computing Machinery, New
York, NY, USA, 2021.

[27] Dmitry Vyukov and Andrey Konovalov. Syzbot, 2015. https://syzkaller.
appspot.com/upstream.

[28] Dmitry Vyukov and Andrey Konovalov. Syzkaller: an unsuper-
vised coverage-guided kernel fuzzer, 2015. https://github.com/google/
syzkaller.

[29] Dmitry Vyukov and Andrey Konovalov. Syzlang: System Call Descrip-
tion Language, 2015. https://github.com/google/syzkaller/blob/master/
docs/syscall descriptions syntax.md.

[30] Daimeng Wang, Zheng Zhang, Hang Zhang, Zhiyun Qian, Srikanth V.
Krishnamurthy, and Nael Abu-Ghazaleh. SyzVegas: Beating Kernel
Fuzzing Odds with Reinforcement Learning. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2741–2758. USENIX Associ-
ation, August 2021.

[31] Mingzhe Wang, Jie Liang, Yuanliang Chen, Yu Jiang, Xun Jiao, Han
Liu, Xibin Zhao, and Jiaguang Sun. SAFL: Increasing and Accelerating
Testing Coverage with Symbolic Execution and Guided Fuzzing. In Pro-
ceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings, ICSE ’18, page 61–64, New York, NY, USA,
2018. Association for Computing Machinery.

[32] Mingzhe Wang, Jie Liang, Chijin Zhou, Yu Jiang, Rui Wang, Cheng-
nian Sun, and Jiaguang Sun. RIFF: Reduced Instruction Footprint
for Coverage-Guided Fuzzing. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21), pages 147–159. USENIX Association,
July 2021.

[33] Bernard Xiong and Man Jianting. RT-Thread is an open source IoT
operating system., 2007. https://github.com/RT-Thread/rt-thread.

[34] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Taesoo Kim. Krace:
Data Race Fuzzing for Kernel File Systems. In 2020 IEEE Symposium
on Security and Privacy (SP), pages 1643–1660, 2020.

https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
https://www.silabs.com/developers/micrium
https://lcamtuf.coredump.cx/afl/
https://github.com/zephyrproject-rtos/zephyr
https://clang.llvm.org/docs/SanitizerCoverage.htmll
https://clang.llvm.org/docs/SanitizerCoverage.htmll
https://github.com/SimonKagstrom/kcov
https://syzkaller.appspot.com/upstream
https://syzkaller.appspot.com/upstream
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://github.com/google/syzkaller/blob/master/docs/syscall_descriptions_syntax.md
https://github.com/google/syzkaller/blob/master/docs/syscall_descriptions_syntax.md
https://github.com/RT-Thread/rt-thread

	Introduction
	Background and Motivation
	Embedded Operating Systems
	Coverage Guided Kernel Fuzzing.
	Challenges in Embedded OS Fuzzing

	TARDIS Design
	 Coverage Collection 
	Coverage Analysis

	Implementation
	Evaluation
	Experiment Setup
	Bug Detection Capability
	Coverage Statistics
	Instrumentation Overhead

	Discussion
	Related Work
	Conclusion
	References

