Contents
Images
Upload your image
DSS Images Other Images
Related articles
The structure of galactic disks. Studying late-type spiral galaxies using SDSS Using imaging data from the SDSS survey, we present the g' and r' radialstellar light distribution of a complete sample of ~90 face-on tointermediate inclined, nearby, late-type (Sb-Sdm) spiral galaxies. Thesurface brightness profiles are reliable (1 σ uncertainty lessthan 0.2 mag) down to μ27 mag/''. Only ~10% of all galaxies havea normal/standard purely exponential disk down to our noise limit. Thesurface brightness distribution of the rest of the galaxies is betterdescribed as a broken exponential. About 60% of the galaxies have abreak in the exponential profile between 1.5-4.5 times thescalelength followed by a downbending, steeper outer region. Another~30% shows also a clear break between 4.0-6.0 times thescalelength but followed by an upbending, shallower outer region. A fewgalaxies have even a more complex surface brightness distribution. Theshape of the profiles correlates with Hubble type. Downbending breaksare more frequent in later Hubble types while the fraction of upbendingbreaks rises towards earlier types. No clear relation is found betweenthe environment, as characterised by the number of neighbours, and theshape of the profiles of the galaxies.
| Correlations among multiwavelength luminosities of star-forming galaxies It has been known for two decades that a tight correlation existsbetween global far-infrared (FIR) and radio continuum (1.4 and 4.8 GHz)fluxes/luminosities from star-forming galaxies, which may be explainedby formation activities of massive stars in these galaxies. For thisvery reason, a correlation might also exist between X-ray and FIR/radioglobal luminosities of galaxies. We analyse data from the ROSAT All-SkySurvey and from IRAS to show that such correlation does indeed existbetween FIR (42.5-122.5μm) and soft X-ray (0.1-2.4 keV) luminositiesLX and LFIR in 17 normal star-forming galaxies(NSFGs), including 16 late-type galaxies and one host-dominant Seyfertgalaxy, as well as in 14 active star-forming galaxies (ASFGs) consistingof starburst-dominant Seyfert galaxies. The quantitative difference insuch correlations in NSFGs and in ASFGs may be interpreted in terms ofevolutionary variations from classic starburst galaxies tostarburst-dominant Seyfert galaxies. Meanwhile, some low-luminosityactive galactic nuclei (LLAGNs) tend to exhibit such a correlation thatwe infer for star-forming galaxies, implying that star-formingactivities might be more dominant in LLAGNs. In contrast, AGN-dominantSeyfert galaxies do not show such a LX versus LFIRcorrelation; this is most likely related to accretions towardssupermassive black holes (SMBHs) in galactic nuclei. In order toestablish a physical connection between theLX-LFIR correlation and global star formation rate(SFR) in galaxies, we empirically derive bothLX-LB and LFIR-LB relationswith the blue-band luminosity LB roughly representing themass of a galaxy. It appears that the more massive galaxies are, themore star formation regions exist in these galaxies. The global SFR isnot only associated with the mass of a galaxy but also closely relatedto the level of star-forming activities therein. We propose a relationbetween soft X-ray luminosity and SFR in star-forming galaxies. In orderto probe the LX-LFIR relation, we construct anempirical model in which both FIR and X-ray emissions consist of twocomponents with one being closely associated with star formation and theother one not. Based on this model, we infer a linear relation betweenFIR/soft X-ray in star formation regions and radio luminosities, and geta linear relation between LX and LFIR forstar-forming regions.
| Nuclear Properties of Nearby Spiral Galaxies from Hubble Space Telescope NICMOS Imaging and STIS Spectroscopy We investigate the central regions of 23 spiral galaxies using SpaceTelescope Imaging Spectrograph (STIS) spectroscopy and archivalNear-Infrared Camera and Multi-Object Spectrometer (NICMOS) imaging. Thesample is taken from our program to determine the masses of centralmassive black holes (MBHs) in 54 nearby spiral galaxies. Stars arelikely to contribute significantly to any dynamical central massconcentration that we find in our MBH program, and this paper is part ofa series to investigate the nuclear properties of these galaxies. We usethe Nuker law to fit surface brightness profiles, derived from theNICMOS images, to look for nuclear star clusters and find possibleextended sources in three of the 23 galaxies studied (13%). The factthat this fraction is lower than that inferred from optical Hubble SpaceTelescope studies is probably due to the greater spatial resolution ofthose studies. Using R-H and J-H colors and equivalent widths ofHα emission (from the STIS spectra), we investigate the nature ofthe stellar population with evolutionary models. Under the assumption ofhot stars ionizing the gas, as opposed to a weak active galactic nucleus(AGN), we find that there are young stellar populations (~10-20 Myr);however, these data do not allow us to determine what percentage of thetotal nuclear stellar population they form. In addition, in an attemptto find any unknown AGN, we use [N II] and [S II] line flux ratios(relative to Hα) and find tentative evidence for weak AGNs in NGC1300 and NGC 4536.Based on observations with the NASA/ESA Hubble Space Telescope obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy (AURA), Inc.,under NASA contract NAS 5-26555.
| Circumnuclear Structure and Black Hole Fueling: Hubble Space Telescope NICMOS Imaging of 250 Active and Normal Galaxies Why are the nuclei of some galaxies more active than others? If mostgalaxies harbor a central massive black hole, the main difference isprobably in how well it is fueled by its surroundings. We investigatethe hypothesis that such a difference can be seen in the detailedcircumnuclear morphologies of galaxies using several quantitativelydefined features, including bars, isophotal twists, boxy and diskyisophotes, and strong nonaxisymmetric features in unsharp-masked images.These diagnostics are applied to 250 high-resolution images of galaxycenters obtained in the near-infrared with NICMOS on the Hubble SpaceTelescope. To guard against the influence of possible biases andselection effects, we have carefully matched samples of Seyfert 1,Seyfert 2, LINER, starburst, and normal galaxies in their basicproperties, taking particular care to ensure that each was observed witha similar average scale (10-15 pc pixel-1). Severalmorphological differences among our five different spectroscopicclassifications emerge from the analysis. The H II/starburst galaxiesshow the strongest deviations from smooth elliptical isophotes, whilethe normal galaxies and LINERs have the least disturbed morphology. TheSeyfert 2s have significantly more twisted isophotes than any othercategory, and the early-type Seyfert 2s are significantly more disturbedthan the early-type Seyfert 1s. The morphological differences betweenSeyfert 1s and Seyfert 2s suggest that more is at work than simply theviewing angle of the central engine. They may correspond to differentevolutionary stages.
| Nuclear Properties of a Sample of Nearby Spiral Galaxies from Hubble Space Telescope STIS Imaging We present surface photometry for the central regions of a sample of 48spiral galaxies (mostly unbarred and barred of type Sbc or Sc) observedwith the Space Telescope Imaging Spectrograph on board the Hubble SpaceTelescope. Surface brightness profiles (SBPs) were derived and modeledwith a Nuker law. We also analyzed archival Wide Field Planetary Camera2 images with a larger field of view, which are available for 18galaxies in our sample. We modeled the extracted bulge SBPs with anexponential, an r1/4, or an rn profile. Inagreement with previous studies, we find that bulges of Sbc galaxiesfall into two categories: bulges well described by an exponentialprofile and those well described by an r1/4 profile. Only onegalaxy requires the use of a more general Sérsic profile toproperly describe the bulge. Nuclear photometrically distinct componentsare found in ~55% of the galaxies. For those that we classify as starclusters on the basis of their resolved extent, we find absolutemagnitudes that are brighter on average than those previously identifiedin spiral galaxies. This might be due to a bias in our sample towardstar-forming galaxies, combined with a trend for star-forming galaxiesto host brighter central clusters.Based on observations with the NASA/ESA Hubble Space Telescope, obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS 5-26555.
| The Hα galaxy survey. I. The galaxy sample, Hα narrow-band observations and star formation parameters for 334 galaxies We discuss the selection and observations of a large sample of nearbygalaxies, which we are using to quantify the star formation activity inthe local Universe. The sample consists of 334 galaxies across allHubble types from S0/a to Im and with recession velocities of between 0and 3000 km s-1. The basic data for each galaxy are narrowband H\alpha +[NII] and R-band imaging, from which we derive starformation rates, H\alpha +[NII] equivalent widths and surfacebrightnesses, and R-band total magnitudes. A strong correlation is foundbetween total star formation rate and Hubble type, with the strongeststar formation in isolated galaxies occurring in Sc and Sbc types. Moresurprisingly, no significant trend is found between H\alpha +[NII]equivalent width and galaxy R-band luminosity. More detailed analyses ofthe data set presented here will be described in subsequent papers.Based on observations made with the Jacobus Kapteyn Telescope operatedon the island of La Palma by the Isaac Newton Group in the SpanishObservatorio del Roque de los Muchachos of the Instituto deAstrofísica de Canarias.The full version of Table \ref{tab3} is available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttps://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/414/23 Reduced image datafor this survey can be downloaded fromhttps://www.astro.livjm.ac.uk/HaGS/
| First results from the HI Jodrell All Sky Survey: inclination-dependent selection effects in a 21-cm blind survey Details are presented of the HI Jodrell All Sky Survey (HIJASS). HIJASSis a blind neutral hydrogen (HI) survey of the northern sky (δ> 22°), being conducted using the multibeam receiver on theLovell Telescope (full width at half-maximum beamwidth 12 arcmin) atJodrell Bank. HIJASS covers the velocity range -3500 to 10 000 kms-1, with a velocity resolution of 18.1 km s-1 andspatial positional accuracy of ~2.5 arcmin. Thus far about 1115deg2 of sky have been surveyed. The average rms noise duringthe early part of the survey was around 16 mJy beam-1.Following the first phase of the Lovell Telescope upgrade (in 2001), therms noise is now around 13 mJy beam-1. We describe themethods of detecting galaxies within the HIJASS data and of measuringtheir HI parameters. The properties of the resulting HI-selected sampleof galaxies are described. Of the 222 sources so far confirmed, 170 (77per cent) are clearly associated with a previously catalogued galaxy. Afurther 23 sources (10 per cent) lie close (within 6 arcmin) to apreviously catalogued galaxy for which no previous redshift exists. Afurther 29 sources (13 per cent) do not appear to be associated with anypreviously catalogued galaxy. The distributions of peak flux, integratedflux, HI mass and cz are discussed. We show, using the HIJASS data, thatHI self-absorption is a significant, but often overlooked, effect ingalaxies with large inclination angles to the line of sight. Properlyaccounting for it could increase the derived HI mass density of thelocal Universe by at least 25 per cent. The effect that this will haveon the shape of the HI mass function will depend on how self-absorptionaffects galaxies of different morphological types and HI masses. We alsoshow that galaxies with small inclinations to the line of sight may alsobe excluded from HI-selected samples, since many such galaxies will haveobserved velocity widths that are too narrow for them to bedistinguished from narrow-band radio-frequency interference. This effectwill become progressively more serious for galaxies with smallerintrinsic velocity widths. If, as we might expect, galaxies with smallerintrinsic velocity widths have smaller HI masses, then compensating forthis effect could significantly steepen the faint-end slope of thederived HI mass function.
| An Atlas of Hubble Space Telescope Spectra and Images of Nearby Spiral Galaxies We have observed 54 nearby spiral galaxies with the Space TelescopeImaging Spectrograph (STIS) on the Hubble Space Telescope to obtainoptical long-slit spectra of nuclear gas disks and STIS optical (~Rband) images of the central 5''×5'' of thegalaxies. These spectra are being used to determine the velocity fieldof nuclear disks and hence to detect the presence of central massiveblack holes. Here we present the spectra for the successfulobservations. Dust obscuration can be significant at opticalwavelengths, and so we also combine the STIS images with archivalNear-Infrared Camera and Multi-Object Spectrometer H-band images toproduce color maps to investigate the morphology of gas and dust in thecentral regions. We find a great variety in the different morphologies,from smooth distributions to well-defined nuclear spirals and dustlanes.Based on observations with the NASA/ESA Hubble Space Telescope obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS5-26555.
| Do bulges of early- and late-type spirals have different morphology? We study HST/NICMOS H-band images of bulges of two equal-sized samplesof early- (TRC3 <= 3) and late-type spiral (mainly Sbc-Sc)galaxies matched in outer disk axis ratio. We find that bulges oflate-type spirals are more elongated than their counterparts inearly-type spirals. Using a KS-test we find that the two distributionsare different at the 98.4% confidence level. We conclude that the twodata sets are different, i.e. late-type galaxies have a broaderellipticity distribution and contain more elongated features in theinner regions. We discuss the possibility that these would correspond tobars at a later evolutionary stage, i.e. secularly evolved bars.Consequent implications are raised, and we discuss relevant questionsregarding the formation and structure of bulges. Are bulges ofearly-type and late-type spirals different? Are their formationscenarios different? Can we talk about bulges in the same way fordifferent types of galaxies?
| Bar Galaxies and Their Environments The prints of the Palomar Sky Survey, luminosity classifications, andradial velocities were used to assign all northern Shapley-Ames galaxiesto either (1) field, (2) group, or (3) cluster environments. Thisinformation for 930 galaxies shows no evidence for a dependence of barfrequency on galaxy environment. This suggests that the formation of abar in a disk galaxy is mainly determined by the properties of theparent galaxy, rather than by the characteristics of its environment.
| Spiral Galaxies with HST/NICMOS. II. Isophotal Fits and Nuclear Cusp Slopes We present surface brightness profiles for 56 of the 78 spiral galaxiesobserved in the HST/NICMOS2 F160W snapshot survey introduced in Paper Iof this series, as well as surface brightness profiles for 23 objectsout of the 41 that were also observed in the F110W filter. We fit thesesurface brightness profiles with the Nuker law of Lauer et al. and usethe smooth analytical descriptions of the data to compute the averagenuclear stellar cusp slopes <γ> in the 0.1"-0.5" radialrange. Our main result is the startling similarity between the nuclearstellar cusp slopes <γ> in the near-infrared compared withthose derived in the visual passband. This similarity has severalimplications: (1) Despite the significant local color variations thatare found in the nuclear regions of spirals and that are documented inPaper I, there are typically little or no optical-NIR global colorgradients, and thus no global stellar population variations, inside~50-100 pc from the nucleus in nearby spirals. (2) The large observedrange of the strength of the nuclear stellar cusps seen in the HSToptical study of spiral galaxies reflects a physical difference betweengalaxies and is not an artifact caused by nuclear dust and/or recentstar formation. (3) The dichotomy between R1/4 bulges, withsteep nuclear stellar cusps <γ>~1, and exponential bulges,with shallow nuclear stellar cusps <γ><0.3, is also notan artifact of the effects of dust or recent star formation. (4) Thepresence of a surrounding massive disk appears to have no effect on therise of the stellar density distribution within the innermost hundredparsecs of the R1/4 spheroids. These results imply abreakdown within the family of exponential bulges of the nuclear versusglobal relationships that have been found for the R1/4spheroids. Such a breakdown is likely to have significant implicationsconcerning the formation of exponential bulges and their connection withthe R1/4 spheroids. Based on observations with the NASA/ESAHubble Space Telescope, obtained at the Space Telescope ScienceInstitute, which is operated by the Association of Universities forResearch in Astronomy, Inc., under NASA contract NAS 5-26555.
| Spiral Galaxies with HST/NICMOS. I. Nuclear Morphologies, Color Maps, and Distinct Nuclei This is the first of two papers where we present the analysis of anHST/NICMOS2 near-infrared (NIR) snapshot survey in the F160W (H) filterfor a sample of 78 spiral galaxies selected from the UGC and ESOLVcatalogs. For 69 of these objects we provide nuclear color informationderived by combining the H data either with additional NICMOS F110W (J)images or with V WFPC2/HST data. Here we present the NIR images and theoptical-NIR color maps. We focus our attention on the properties of thephotometrically distinct ``nuclei'' which are found embedded in most ofthe galaxies and provide measurements of their half-light radii andmagnitudes in the H (and when available in the J) band. We find that (1)in the NIR the nuclei embedded in the bright early- to intermediate-typegalaxies span a much larger range in brightness than the nuclei whichare typically found embedded in bulgeless late-type disks: the nucleiembedded in the early- to intermediate-type galaxies reach, on thebright end, values up to HAB~-17.7 mag; (2) nuclei are foundin both nonbarred and barred hosts, in large-scale (>~1 kpc) as wellas in nuclear (up to a few 100 pc) bars; (3) there is a significantincrease in half-light radius with increasing luminosity of the nucleusin the early/intermediate types (a decade in radius for ~8 magbrightening), a correlation which was found in the V band and which isalso seen in the NIR data; (4) the nuclei of early/intermediate-typespirals cover a large range of optical-NIR colors, from V-H~-0.5 to 3.Some nuclei are bluer and others redder than the surroundinggalaxy,indicating the presence of activity or reddening by dust in many ofthese systems; (5) someearly/intermediate nuclei are elongated and/orslightly offset from the isophotal center of the host galaxy. Onaverage, however, these nuclei appear as centered, star-cluster-likestructures similar to those whichare found in the late-type disks. Basedon observations with the NASA/ESA Hubble Space Telescope, obtained atthe Space Telescope Science Institute, which is operated by Associationof Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.
| Compact groups in the UZC galaxy sample Applying an automatic neighbour search algorithm to the 3D UZC galaxycatalogue (Falco et al. \cite{Falco}) we have identified 291 compactgroups (CGs) with radial velocity between 1000 and 10 000 kms-1. The sample is analysed to investigate whether Tripletsdisplay kinematical and morphological characteristics similar to higherorder CGs (Multiplets). It is found that Triplets constitute lowvelocity dispersion structures, have a gas-rich galaxy population andare typically retrieved in sparse environments. Conversely Multipletsshow higher velocity dispersion, include few gas-rich members and aregenerally embedded structures. Evidence hence emerges indicating thatTriplets and Multiplets, though sharing a common scale, correspond todifferent galaxy systems. Triplets are typically field structures whilstMultiplets are mainly subclumps (either temporarily projected orcollapsing) within larger structures. Simulations show that selectioneffects can only partially account for differences, but significantcontamination of Triplets by field galaxy interlopers could eventuallyinduce the observed dependences on multiplicity. Tables 1 and 2 are onlyavailable in electronic at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.125.5) or viahttps://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/391/35
| Hubble Space Telescope Optical-Near-Infrared Colors of Nearby R1/4 and Exponential Bulges We have analyzed V, H, and J Hubble Space Telescope (HST) images for asample of early- to late-type spiral galaxies and have reportedelsewhere the statistical frequency of R1/4-law andexponential bulges in our sample as a function of Hubble type and thefrequency of occurrence and structural properties of the resolvedcentral nuclei hosted by intermediate- to late-type bulges and disks(see references in the text). Here we use these data to show thefollowing:1.The V-H color distribution of the R1/4 bulge peaksaround ~1.3, with a sigma Δ(V-H)~0.1 mag. Assuming asolar metallicity, these values correspond to stellar ages of ~6+/-3Gyr. In contrast, the V-H color distribution of the exponential bulgespeaks at and has a sigma Δ(V-H)~0.4 mag. Thislikely implies significantly smaller ages and/or lower metallicities for(a significant fraction of the stars in) the exponential bulges comparedto the R1/4-law spheroids. 2.Most of the central nuclei hosted by the exponential bulges haveV-H and J-H colors that are compatible with relatively unobscuredstellar populations. Assuming no or little dust effects, ages >~1 Gyrare suggested for these nuclei, which in turn imply masses of about afew 106 to a few 107 Msolar, i.e.,sufficient to dissolve progenitor bars with masses consistent with thoseinferred for the exponential bulges by their luminosities.3. While different bulge-nucleus pairscover a large range of V-H colors, each bulge-nucleus pair has quitesimilar V-H colors and thus possibly similar stellar populations.The HST photometric analysis suggests thatexponential-type bulge formation is taking place in the local universeand that this process is consistent with being the outcome of secularevolution processes within the disks. The structures that are currentlyformed inside the disks are quite dissimilar from the oldelliptical-like spheroids that are hosted by the early-type disks. Basedon observations with the NASA/ESA Hubble Space Telescope, obtained atthe Space Telescope Science Institute, which is operated by Associationof Universities for Research in Astronomy, Inc. (AURA), under NASAcontract NAS 5-26555.
| Arcsecond Positions of UGC Galaxies We present accurate B1950 and J2000 positions for all confirmed galaxiesin the Uppsala General Catalog (UGC). The positions were measuredvisually from Digitized Sky Survey images with rms uncertaintiesσ<=[(1.2")2+(θ/100)2]1/2,where θ is the major-axis diameter. We compared each galaxymeasured with the original UGC description to ensure high reliability.The full position list is available in the electronic version only.
| The Centers of Early- to Intermediate-Type Spiral Galaxies: A Structural Analysis A recent Hubble Space Telescope (HST)/WFPC2 visual survey of early- andintermediate-type spiral galaxies has unveiled a great complexity in theinner regions of these systems, which include a high fraction ofphotometrically distinct compact sources sitting at the galactic centers(``nuclei''). The faint nuclei (M_V>~-12) are typically hosted byrather amorphous, quiescent, bulgelike structures with an exponential(rather than the classical R^1/4) light profile. These ``exponentialbulges'' are commonly found inside the intermediate-type disks,consistent with previous studies. Brighter nuclei (M_V<~-12) aretypically found instead in the centers of galaxies with circumnuclearrings/arms of star formation or dust and an active, i.e., H II- orAGN-type, central spectrum at ground-based resolution. On the structuralplane of half-light radius (R_e) versus mean surface brightness withinthe half-light radius (mu_e), faint and bright nuclei overlap with, andfill the region of parameter space between, the old Milky Way globularclusters and the young star clusters, respectively, with typical R_e ofabout a few up to ~20 pc. On the same plane, the exponential bulges havesignificantly fainter mu_e than R^1/4 bulges for any given radius andfollow a mu_e-R_e relation typical of disks, which strengthens thesuggestion that the exponential bulges grow inside the disks as a resultof the secular evolution of the latter. Under the likely assumption thatthe visual light from the faint nuclei embedded in the quiescentexponential bulges is of stellar origin and of a similar (>~1 Gyr)age for the central star clusters and their host bulges, the massesinferred for the former agree with those required to disrupt barscomparable in size to the latter. This offers support to scenarios inwhich the exponential bulges grow inside the disks owing to the orbitaldisruption of progenitor bars caused by the growth of a centralconcentration of mass and suggests that this specific mode of bulgeformation is (still) active in the present-day universe. On the otherhand, the presence of the massive clusters at the very center of thelow-density exponential bulges should prevent any other ``nuclear'' barfrom forming, thereby preventing further infall of dissipative fuel tothe nuclear regions. This may argue against the possibility of evolvingthe exponential bulges into denser, R^1/4 bulges by a simple looping forseveral cycles of the bar formation/disruption mechanism.
| Mass and Metallicity of Five X-Ray-bright Galaxy Groups We present ASCA X-ray observations of a sample of five groups selectedfrom a cross-correlation of the ROSAT All-Sky Survey with the White etal. optical catalog of groups. These X-ray-bright groups significantlyincrease the number of known systems with temperatures between 2 and 3keV. They have element abundances of roughly 0.3solar, which are typicalof clusters, but their favored ratio of Si-to-Fe abundance is lower thanthe cluster value. Combining the ASCA results with ROSAT imaging data,we calculate total masses of a few to several times 10^13 M_solar, gasmass fractions of ~10%, and baryonic mass fractions of at least 15%-20%within a radius of 0.5 Mpc. Upper limits for the ratios of gas to galaxymass and of the iron mass to galaxy luminosity overlap with the rangeobserved in rich clusters and extend to lower values, but not to suchlow values as seen in much poorer groups. These results support the ideathat groups, unlike clusters, are subject to the loss of theirprimordial and processed gas and show that this transition occurs at themass scale of the 2-3 keV groups. A discussion of ASCA calibrationissues and a comparison of ROSAT and ASCA temperatures are included inan Appendix.
| The I-Band Tully-Fisher Relation for SC Galaxies: 21 Centimeter H I Line Data A compilation of 21 cm line spectral parameters specifically designedfor application of the Tully-Fisher (TF) distance method is presentedfor 1201 spiral galaxies, primarily field Sc galaxies, for which opticalI-band photometric imaging is also available. New H I line spectra havebeen obtained for 881 galaxies. For an additional 320 galaxies, spectraavailable in a digital archive have been reexamined to allow applicationof a single algorithm for the derivation of the TF velocity widthparameter. A velocity width algorithm is used that provides a robustmeasurement of rotational velocity and permits an estimate of the erroron that width taking into account the effects of instrumental broadeningand signal-to-noise. The digital data are used to establish regressionrelations between measurements of velocity widths using other commonprescriptions so that comparable widths can be derived throughconversion of values published in the literature. The uniform H I linewidths presented here provide the rotational velocity measurement to beused in deriving peculiar velocities via the TF method.
| The I-Band Tully-Fisher Relation for SC Galaxies: Optical Imaging Data Properties derived from the analysis of photometric I-band imagingobservations are presented for 1727 inclined spiral galaxies, mostly oftypes Sbc and Sc. The reduction, parameter extraction, and errorestimation procedures are discussed in detail. The asymptotic behaviorof the magnitude curve of growth and the radial variation in ellipticityand position angle are used in combination with the linearity of thesurface brightness falloff to fit the disk portion of the profile. TotalI-band magnitudes are calculated by extrapolating the detected surfacebrightness profile to a radius of eight disk scale lengths. Errors inthe magnitudes, typically ~0.04 mag, are dominated by uncertainties inthe sky subtraction and disk-fitting procedures. Comparison is made withthe similar imaging database of Mathewson, Ford, & Buchhorn, both aspresented originally by those authors and after reanalyzing theirdigital reduction files using identical disk-fitting procedures. Directcomparison is made of profile details for 292 galaxies observed incommon. Although some differences occur, good agreement is found,proving that the two data sets can be used in combination with onlyminor accommodation of those differences. The compilation of opticalproperties presented here is optimized for use in applications of theTully-Fisher relation as a secondary distance indicator in studies ofthe local peculiar velocity field.
| Groups of galaxies. III. Some empirical characteristics. Not Available
| The ROSAT/IRAS Galaxy Sample Revisited Galaxies in the ROSAT/IRAS sample were selected by their soft X-ray(0.1-2.4 keV) and far-infrared (lambda = 60 μm) emission. Therelatively large uncertainties in the original ROSAT and IRAS positionscaused some contamination by close pairs and forced the exclusion ofmost ``high-flux'' (S > 10 Jy at lambda = 100 μm) IRAS sourcesfrom the original sample. We used new 1.4 GHz VLA images of all objectsnorth of delta = -45 deg along with improved X-ray and far-infraredpositions to eliminate incorrect identifications, many of which appearedto be starburst galaxies with high X-ray luminosities, log [X(ergs^-1)]> 43. We also used VLA images to search for new X-ray identificationsamong the ``high-flux'' sources with delta > -45 deg. Only two werefound, indicating that luminous starburst galaxies have relatively lowsoft X-ray luminosities, in part due to absorption by a denseinterstellar medium. No starburst galaxies in our revised sample haveX-ray luminosities approaching log [X(ergs^-1)] = 43. We conclude thatmost galaxies in the revised ROSAT/IRAS sample contain X-ray-emittingactive galactic nuclei (AGNs) residing in star-forming disks that emitmost of the lambda = 60 μm radiation. Normal and starburst galaxiesprobably do not account for a significant fraction of the soft X-raybackground.
| Spiral Galaxies with WFPC2. II. The Nuclear Properties of 40 Objects We report the analysis of Hubble Space Telescope Wide Field PlanetaryCamera 2 F606W images of 40 spiral galaxies belonging to the sampleintroduced in Paper I, where 35 other targets were discussed. Wedescribe the optical morphological properties of the new 40 galaxies,derive the surface brightness profiles for 25 of them, and present theresults of photometric decompositions of these profiles into a ``bulge''(R^1/4 or exponential) and a disk component. The analysis of theenlarged sample of 75 galaxies puts on a statistically more solid groundthe main results presented in Paper I: (1) In ~30% of the galaxies, theinner, morphologically distinct structures have an irregular appearance.Some of these ``irregular bulges'' are likely to be currently formingstars. (2) Resolved, central compact sources are detected in about 50%of the galaxies. (3) The central compact sources in galaxies withnuclear star formation are brighter, for similar sizes, than those innon-star-forming galaxies. (4) The luminosity of the compact sourcescorrelates with the total galactic luminosity. Furthermore, the analysisof the enlarged sample of 75 objects shows the following: (a) Several ofthe nonclassical inner structures are well fitted by an exponentialprofile. These ``exponential bulges'' are typically fainter than R^1/4bulges, for a given total galaxy luminosity and (catalog) Hubble typelater than Sab. (b) Irregular/exponential bulges typically host centralcompact sources. (c) The central sources are present in all types ofdisk galaxies, starting with systems as early as S0a. About 60% of Sb toSc galaxies host a central compact source. Many of the galaxies thathost compact sources contain a barred structure. (d) Galaxies withapparent nuclear star formation, which also host the brightest compactsources, are preferentially the early- and intermediate-type (S0a-Sb)systems. (e) None of the features depend on environment: isolated andnonisolated galaxies show indistinguishable properties. Independent ofthe physical nature of the nonclassical inner structures, our mainconclusion is that a significant fraction of galaxies classified fromthe ground as relatively early-type spirals show a rich variety ofcentral properties and little or no morphological/photometric evidencefor a smooth, R^1/4 law bulge. Based on observations with the NASA/ESAHubble Space Telescope, obtained at the Space Telescope ScienceInstitute, which is operated by the Association of Universities forResearch in Astronomy, Inc., under NASA contract NAS 5-26555.
| Spiral Galaxies with WFPC2. III. Nuclear Cusp Slopes In this paper, the third of a series dedicated to the investigation ofthe nuclear properties of spiral galaxies, we (1) model the Wide FieldPlanetary Camera 2 F606W nuclear surface brightness profiles of 41spiral galaxies presented in Papers I and II with the analytic lawintroduced by Lauer et al. and (2) deconvolve these surface brightnessprofiles and their analytic fits, so as to estimate the nuclear stellardensities of bulges of spiral galaxies. We find that the nuclear stellarcusps (quantified by the average logarithmic slope of the surfacebrightness profiles within 0.1"-0.5") are significantly different forR^1/4 law and exponential bulges. The former have nuclear propertiessimilar to those of early-type galaxies, i.e., similar values of nuclearcusps for comparable luminosities, and increasingly steeper stellarcusps with decreasing luminosity. By contrast, exponential bulges have(underlying the light contribution from photometrically distinct,central compact sources) comparatively shallower stellar cusps, andlikely lower nuclear densities, than R^1/4 law bulges. Based onobservations with the NASA/ESA Hubble Space Telescope, obtained at theSpace Telescope Science Institute, which is operated by the Associationof Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.
| ROSAT All-Sky Survey observations of IRAS galaxies. I. Soft X-ray and far-infrared properties The 120 000 X-ray sources detected in the RASS II processing of theROSAT All-Sky Survey are correlated with the 14 315 IRAS galaxiesselected from the IRAS Point Source Catalogue: 372 IRAS galaxies showX-ray emission within a distance of 100 arcsec from the infraredposition. By inspecting the structure of the X-ray emission in overlayson optical images we quantify the likelihood that the X-rays originatefrom the IRAS galaxy. For 197 objects the soft X-ray emission is verylikely associated with the IRAS galaxy. Their soft X-ray properties aredetermined and compared with their far-infrared emission. X-ray contourplots overlaid on Palomar Digitized Sky Survey images are given for eachof the 372 potential identifications. All images and tables displayedhere are also available in electronic form.
| Total magnitude, radius, colour indices, colour gradients and photometric type of galaxies We present a catalogue of aperture photometry of galaxies, in UBVRI,assembled from three different origins: (i) an update of the catalogueof Buta et al. (1995) (ii) published photometric profiles and (iii)aperture photometry performed on CCD images. We explored different setsof growth curves to fit these data: (i) The Sersic law, (ii) The net ofgrowth curves used for the preparation of the RC3 and (iii) A linearinterpolation between the de Vaucouleurs (r(1/4) ) and exponential laws.Finally we adopted the latter solution. Fitting these growth curves, wederive (1) the total magnitude, (2) the effective radius, (3) the colourindices and (4) gradients and (5) the photometric type of 5169 galaxies.The photometric type is defined to statistically match the revisedmorphologic type and parametrizes the shape of the growth curve. It iscoded from -9, for very concentrated galaxies, to +10, for diffusegalaxies. Based in part on observations collected at the Haute-ProvenceObservatory.
| Optical Rotation Curves and Linewidths for Tully-Fisher Applications Abstract image available at:https://adsabs.harvard.edu/cgi-bin/nph-bib_query?1997AJ....114.2402C&db_key=AST
| Spiral Galaxies with WFPC2.I.Nuclear Morphology, Bulges, Star Clusters, and Surface Brightness Profiles Abstract image available at:https://adsabs.harvard.edu/cgi-bin/nph-bib_query?1997AJ....114.2366C&db_key=AST
| Classification of IRAS-selected X-Ray Galaxies in the ROSAT All-Sky Survey To explore the possibility that star-forming galaxies or obscuredSeyfert galaxies, both of which are known to be luminous infraredsources, contribute significantly to the cosmic X-ray background, wehave carried out an extensive program to obtain accurate spectroscopicclassifications of the BoIler et al. (1992) catalog of IRAS sourcesdetected in the ROSAT All-Sky Survey. This has involved careful opticalspectroscopy, a review of the literature, and efforts to reveal thecontaminants in the sample. Classifications have been determined for 210of the 241 X-ray sources in the catalog; 105 are presented here for thefirst time. A large number of IR/X-ray source chance coincidences arefound in this sample; of the 40-50 expected, we have identified 18firmly and have established strong cases for 29 others. Most chancecoincidences involve bright stars or Seyfert galaxies close (inprojection) to IR- bright H II galaxies. Although this work wasmotivated initially by the report that a new class of X-ray-luminous,normal spiral galaxies was to be found in this sample, we find noevidence for such a class. Most of the extragalactic X-ray sources areactive galactic nuclei (AGNs), consistent with the results of previousstudies of X-ray-selected objects. However, many of these AGNs exhibitweak or heavily reddened Seyfert features in their optical spectra. Inaddition, two rare types of AGNs are found in this sample withsurprising frequency: I Zw 1 objects (also called narrow-line Seyfert 1galaxies) and starburst/Seyfert composite galaxies, a new class ofluminous X-ray sources. We have shown that the Boller et al. object202103 - 223434 (= IRAS 20181-2244), reported to be the best example ofa narrow-line quasar, is actually a member of the I Zw 1 class. Theenigmatic starburst/Seyfert composite galaxies have optical spectradominated by the features of H II galaxies but X-ray luminositiestypical for Seyfert galaxies. Close examination of their optical spectrareveals subtle Seyfert signatures: [O III] lines broader than all otherlines in the spectrum and, in some cases, a weak, broad Hαcomponent. Obscuration of the active nucleus is likely to explain theX-ray and optical properties of these objects. We describe a scenario inwhich such optically innocuous, obscured AGNs could comprise animportant new component of the X-ray background.
| Deep r-Band Photometry for Northern Spiral Galaxies We present r-band surface photometry for 349 northern Sb-Sc UGCgalaxies, from a total of 627 CCD images. For each galaxy, we presentsurface brightness profiles, isophotal and total magnitudes, isophotalradii, and structural parameters from exponential fits to the disk. Onehundred ninety-five galaxies have been observed more than once. Allnights with a photometric transformation scatter greater than 0.022 magwere rejected. Sky errors are investigated carefully and yield profilesthat are reliable down to 26 r mag arcsec^-2^, Deep isophotal magnitudesare as accurate as +/-0.019, and extrapolated magnitudes are internallyconsistent to within 0.020. We compare visual (UGC) and CCD isophotaldiameters and show that axial ratio must be included as a thirdparameter. Comparison with the r-band CCD photometry of Kent andWillick, and accounting for sky errors, suggest typical errors for totalmagnitudes of +/-0.08. Our data are also shown to be zero-pointed on thesame Gunn r system as that of Kent and Willick. Ellipticity measurementsagree very well except for progressively face-on galaxies where spiralstructure is more conspicuous. The ellipticity internal error is lessthan 0.02, or about 3^deg^ for inclinations. Our internal extinctioncorrection implies that disks are semitransparent in their outer parts.We caution that comparison of central surface brightnesses and scalelengths is complicated by the subjective nature of their measurement;extreme care must be applied when using such quantities. We measure anapparent Freeman law of (μ_0,c_) = 20.08 +/- 0.55 r mag arcsec^-2^.This magnitude-limited sample was originally derived for studies oflarge-scale motions in the local universe. The deep CCD photometry isalso ideally suited for matching spectroscopic studies, mass modeling,galaxy structural analysis, etc.
| Bias Properties of Extragalactic Distance Indicators. VI. Luminosity Functions of M31 and M101 Look-alikes Listed in the RSA2: H0 Therefrom Galaxies whose morphologies are similar to M 101 (Sc I) and M3 1 (Sb I-II) are listed in two tables. The selection is made by inspecting directimages of Shapley-Ames galaxies in the recent Carnegie Atlas ofGalaxies. Absolute magnitudes, calculated from redshifts, give meanvalues of
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Catalogs and designations:
|