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Locality-Preserving Hash Functions for General 
Purpose Parallel Computation t 

A. Chin  2 

Abstract. Consider the problem of efficiently simulating the shared-memory parallel random access 
machine (PRAM) model on massively parallel architectures with physically distributed memory. To 
prevent network congestion and memory bank contention, it may be advantageous to hash the shared 
memory address space. The decision on whether or not to use hashing depends on (1) the communica- 
tion latency in the network and (2) the locality of memory accesses in the algorithm. 

We relate this decision directly to algorithmic issues by studying the complexity of hashing in the 
Block PRAM model of Aggarwal, Chandra, and Snir, a shared-memory model of parallel computation 
which accounts for communication locality. For this model, we exhibit a universal family of hash 
functions having optimal locality. The complexity of applying these hash functions to the shared address 
space of the Block PRAM (i.e., by permuting data elements) is asymptotically equivalent to the 
complexity of performing a square matrix transpose, and this result is best possible for all pairwise 
independent universal hash families. These complexity bounds provide theoretical evidence that 
hashing and randomized routing need not destroy communication locality, addressing an open question 
of Valiant. 

Key Words. General-purpose parallel computation, Communication latency, Block PRAM, Locality, 
PRAM simulations, Universal hashing. 

1. Introduction. For  m a n y  years the parallel r a n d o m  access machine  (PRAM) 
model  has provided a s tandard  theoretical framework for discussing the complex- 
ity of problems and  the performance of parallel algori thms [11], 1-18]. Because of 
the popular i ty  of the model, P R A M  algori thms represent a potential ly rich 
software l ibrary for massively parallel computa t ion .  

However, the P R A M  model  has not  been widely adopted by practi t ioners of 
parallel computing.  Al though both complexity theorists and  practi t ioners view 
efficiency as the p a r a m o u n t  concern in parallel computa t ion ,  their definitions of 
efficiency are disparate. An asymptotic,  worst-case P R A M  complexity b o u n d  is 
meaningless to a software engineer t rying to achieve cons tant  factor speedups on 
real data. Further ,  several aspects of the P R A M  mode l - -name ly ,  freedom from 
communica t ion  latency, asynchrony,  and  componen t  fa i lure- -have  never been 
realized on any  massively parallel computer .  

Recent efforts to close the gap between theory and  practice have provided 
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encouraging results in two areas. First, simulation results by Ranade and others 
[9], [16], [17], [24], [27], [28] have shown how a network of physically 
distributed processing elements can perform general PRAM computations while 
restricting the effects of communication latency and asynchrony. Second, the 
PRAM theory has been extended to more realistic models of parallel computation 
which account for communication latency [1], [2], asynchrony [8], [12], [23], 
[26], [31] and component failure [6], [15], [19]. For surveys of this work, see 
[5], [22], [30], and [31]. 

However, even this enriched PRAM complexity theory continues to diverge 
from the practice of parallel computation in an important respect. Much of the 
practical effort of optimizing parallel software to run on a particular machine goes 
into achieving communication locality: i.e., ensuring that large blocks of data are 
used for communication whenever possible. On the other hand, complexity 
theorists have proposed PRAM simulation algorithms which prevent memory 
contention and/or network congestion by performing universal hashing on the 
shared address space, even though hashing has been believed to destroy communi- 
cation locality [14], [31]. In what follows we refer to the procedure of moving 
the entire contents of the address space into the hashed address space for a given 
hash function as performing the hash function; the complexity of this procedure is 
referred to as the complexity of the hash function. 

In this paper we address this gap in the complexity theory by proposing the 
notion of locality-preserving hash functions for general-purpose parallel computa- 
tion. We exhibit a universal family of hash functions that can be performed in 
asymptotically optimal time on the Block PRAM, a variant of the PRAM model 
which accounts for communication locality. We believe that such hash functions 
will be useful in the development of general-purpose parallel computers which 
exploit communication locality, through both current techniques for supporting 
virtual shared memory, and future application of recent efficient algorithms for 
bit-serial routing. 

Specifically, we foresee the development of parallel architectures which simulate 
the performance of the Block PRAM model on physically distributed memory. 
Such architectures would allow long blocks of data to be pipelined to exploit 
communication locality, but would be able to avoid contention through universal 
hashing. 

The remainder of this paper is organized as follows. Section 2 defines the 
problem and the complexity model. Section 3 proves a lower bound on the 
expected time complexity of universal hashing. Section 4 gives an optimal algo- 
rithm for performing the hash functions in a particular universal family. Section 
5 describes several areas in the practice of parallel computation where the 
complexity of hashing is of interest. Section 6 concludes. 

2. Preliminaries. Throughout this paper all logarithms are base two. 

2.1. The Block PRAM Model The results in this paper are based on the Block 
PRAM model of parallel computation as introduced by Aggarwal et al. [1]. 
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DEFINITION. A Block PRAM is a collection of p processors, each with a local 
memory of unbounded size, together with a shared memory of unbounded size. 
All processors execute the same program, although a processor may wait instead 
of executing a given instruction. Each arithmetic operation and access to a local 
memory location can be performed in unit time. Accesses to shared memory are 
subject to a delay of I time units due to communication latency. A processor may 
access a block of b consecutive locations in the shared memory in time l + b. No 
read or write conflicts are allowed: concurrent requests for overlapping blocks are 
serialized in some arbitrary order. 

Note that the Block PRAM is essentially an exclusive-read, exclusive-write 
PRAM I-11], [18] with a time charge for the communication latency incurred in 
accessing blocks of shared memory. The effect of this charge on the running time 
of an algorithm depends on the extent to which large blocks are used for 
communication. With its two-level hierarchical memory, the Block PRAM is able 
to account for communication latency and locality while remaining independent 
of any specific network topology. In particular, the Block PRAM time complexity 
of permuting data in shared memory varies according to the permutation; e.g., 
see [1] and [7]. 

2.2. Universal Hashing. Hash functions are used in PRAM simulation to com- 
pute physical addresses for all logical memory accesses, and therefore they should 
be easy to specify and evaluate. Universal families of hash functions were 
introduced by Carter and Wegman [4] as a computationally feasible alternative 
to random hashing. Universal hashing has recently emerged as a key component 
of many PRAM simulations on physically distributed memory [9], [16], [17], 
[24], [27], [28]. 

DEFINITION. A family ~ of hash functions with domain D and range R is said 
to be hu-wise independent if, for all yl . . . . .  yhER, all distinct x~,..., xheD, and 
some constant #, [ { f e  ~ :  f (x l )= Yi, i =  1 . . . . .  h} [<  #lJ/t~l/lR[ h. (Often the sub- 
script # will be omitted.) 

Families with 2-wise (pairwise) independence have useful analytic properties in 
PRAM simulation [2], [24], [28], [31] and may be adequate for all practical 
purposes. This paper focuses on proving bounds for these pairwise independent 
hash families. 

It is an open question whether highly (~o(1)-wise) independent hash families are 
required for PRAM simulations in practice. If so, such families are available. 
Recently, Siegel [28] presented nn(1)-wise independent families of hash functions 
which can be defined in sublinear space and computed in constant time. These 
families, based on expander graphs, are widely applicable in theoretical PRAM 
simulations, including those for the Block PRAM. 

2.3. Hashing on the Block PRAM. We now formalize what it means to perform 
universal hashing on the Block PRAM. We assume that some finite contiguous 
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block in the Block PRAM Shared memory is initially unhashed: the logical 
addresses and the physical addresses are one and the same. Without loss of 
generality, we number these addresses [ 0 " - s -  1]. (In an implementation on 
distributed memory, the physical addresses would be partitioned into modules 
[24]; in this paper, however, we study the movement of data at the address level 
rather than the modular level.) 

To perform a permutation H on this block of the shared memory, it is sufficient 
to perform a sequence of copying instructions on memory elements so that the 
element initially in physical address i finishes in physical address H(i). Such an 
algorithm consisting of copying instructions only is called a conservative algorithm. 
Focusing on the problem of locality in the presence of communication latency, 
Aggarwal et al. [1] restrict the Block PRAM complexity theory of data movement 
to conservative algorithms for performing permutations. For consistency and 
simplicity, we apply the same restrictions to our study of hashing in this paper. 

It should be noted that the hash functions in many universal hash functions 
are not necessarily permutations. It is possible to define a scheme for non- 
injective hashing on the Block PRAM. Suppose we are hashing array X[0. ' -  s - 1] 
using function f :  [0- . . s  - 1] ~ [ 0 " " s  - 1]. The array will be hashed into an 
(uninitialized) s x (s + 1) matrix Y, stored in row-major order, such that, for 
0 < j < s - 1, the first I f -  l(J)l + 1 entries in the column vector Yj are the elements 
of {X(/): i e f -  l(j)} (possibly none) in some order, followed by an end marker. The 
rows of the matrix correspond to successive probes in the hash table, which must 
take place in distinct accesses to the shared memory. 

This scheme generalizes Block PRAM permutation while preserving locality 
considerations: the complexity of performing permutations is at most doubled, 
and the contiguity of blocks at each probe level is preserved. However, the 
additional time and space complexities of resolving collisions will pass to any 
PRAM simulation which uses the scheme. For simplicity, we do not attempt to 
characterize the Block PRAM complexity of noninjective hashing further in this 
paper. 

2.4. Locality-Preservino Hashin 9. As we are considering communication locality 
in a topology-independent context, we use the Block PRAM model, with a hashed 
shared memory space, to represent a general-purpose parallel computer simulating 
the PRAM model. If a Block PRAM algorithm has asymptotically the same 
running time in hashed and unhashed shared memory, we can say that the hashing 
has preserved the communication locality in the algorithm. 

That is, a Block PRAM algorithm can be performed in hashed shared memory 
by 

(i) unhashing the shared memory, 
(ii) running the algorithm, and 

(iii) rehashing the shared memory. 

If there is no increase in the asymptotic running time of the algorithm, then the 
exploitation of locality by the algorithm has been preserved. This motivates the 
following definition. 
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DEFINITION. Let d be a Block PRAM algorithm with time bound T(n, 1, p) which 
uses at most S(n, l, p) consecutive shared memory locations. Let oge' be a universal 
family of bijective hash functions on [0. . .  S(n, l, p ) -  1]. Then ~ is locality- 
preserving for sJ if, for any f e ~ ,  f can be performed and inverted by a Block 
PRAM on S(n, l, p) consecutive locations in shared memory in time O(T(n, l, p)). 

2.5. Bit-Serial Randomized Routing. Recent bit-serial randomized routing algo- 
rithms [3], [20] provide a theoretical basis for designing massively parallel 
architectures which allow block pipelining and, therfore, exploitation of locality 
as described by the Block PRAM model. These algorithms allow any permutation 
of n message packets of size m to be routed in time O(m + log n) with high 
probability on hypercube and butterfly networks. (Previous randomized routing 
algorithms [13], [21], [27], [29], [32] are designed for fixed-size packets and run 
in time O(m log n) when implemented on real machines [3].) The performance of 
these bit-serial algorithms can be stated in the following theorem. 

THEOREM 2.1. Any permutation of n packets of size m can be routed in O(m + log p) 
time 

�9 with probability 1 - n -urn on a hypercube network with p = n [3], and 

�9 with probability 1 - 2-  2~o,~ on a butterfly network with p = n log n [20]. 

3. The Lower Bound. We prove a lower bound for implementing pairwise 
independent univeral families of bijective hash functions on the Block PRAM. The 
proof depends on a potential function argument first developed in [9a] and [2a] 
and later applied in Theorem 3.3 of [1] to prove a lower bound for transposing 
a square matrix on the Block PRAM. 

Consider any conservative Block PRAM algorithm for performing a permuta- 
tion in shared memory. We can assume the following, while multiplying the 
running time by at most a constant factor: 

(1) Only one copy of each memory element is in use ("live") at any time during 
the execution of the algorithm. 

(2) The shared memory can be subdivided into segment each consisting of 
min(l, p, nil, n/p) memory locations, and execution of the algorithm can be 
subdivided into read rounds and write rounds each taking time t9(0, such that 
during each round, each processor accesses a block of at most l memory 
locations. 

DEFINITION. For  x > 0, define the entropy function H(x) = x log x; by convention 
we take H(0) = 0. 

Let m be a positive integer and let f be a permutation on [ 0 . . . s -  1]. For 
integers j, k, 0 _< j, k ___ [_(s -- 1)/m], let 

Aj, k(f, m) = I{ae [ 0 " " s  -- 1]: L_a/mJ = j  and [_f(a)/mJ -- k}l. 

The m-wise entropy of f is given by H(f,  rn) = ~i ,  * H(Aj, g(f, m)). 
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Consider  a conservat ive a lgor i thm for per forming  f on the shared memory .  We 
m a y  define the potential functions xj, x(f, m, t), Yi.k(f, m, t) as follows. Fo r  j > 0, 
0 <_ k < I(s - 1)/mJ and 1 < i _< p, let 

Xj, k(f, m, t) = I { a ~ N  w {0}, b ~  [ 0 " " s  - 1]: l_a/m_] = j ,  kb/m_J = k 

and there is a live element  at  shared m e m o r y  address a 

at  the beginning of the t th round  having dest inat ion 

address  b} I, 

and let 

Yi, k(f, m, t) = I{b ~ [ O ' - ' s  - 1]:[_b/m_J = k and there is a live element in 

the local m e m o r y  of processor  i having dest inat ion 

address  b}l. 

No te  in par t icular  that  ~ j , ,  Xj, k(f, m, 1) = H( f ,  m) and ~i , ,  Yi, k(f, m, 1) = 0; also, 
if the a lgor i thm is finished after r rounds,  then ~ j , ,  Xj.k(f, m, r + 1) = s log m and 

~i.k Yi, k(f, m, r + 1) = 0. 

LEMMA 3.1. Let f be a permutation on [0 . . .  n - 1]. Any conservative Block P R A M  
algorithm for  performing f on n consecutive locations in shared memory requires time 

�9 f~((n log m - H( f ,  m))/(p log(2n/(lp)))) for lp<_ n, where m = min(l, p), and 
�9 fl(l(n log m - H( f ,  m))/(n log(21p/n))) for  Ip > n, where m = min(n/l, n/p). 

PROOF. Deno te  cb(f, m, t) = Y'4,k X~,k(f, m, t) + ~i,k Yi, k(f, m, t) and A(I)(r) = 
r  m, r + 1) - * ( f ,  m, 1). F r o m  the above  discussion, we have 

A*(t)  = n log m - H( f ,  m). 

Further ,  it is shown in the p roo f  of  Theo rem 3.3 of  [1] that  A(I)(r) < rpl log(2n/(lp)) 
for Ip < n, m = min(l, iv), and  AO(r) < rn(log(21p/n)) for lp > n, m = min(n/l, n/p). 
Since each round  takes t ime | the stated bounds  follow. [ ]  

THEOREM 3.2. Let ~/g be a 2~-wise independent universal family of  bijective hash 
functions on [ 0 " -  n - 1] and let f be chosen randomly from ~ .  Then any conserva- 
tive Block P R A M  algorithm performing f on n consecutive locations in shared 
memory requires expected time 

�9 I)(n/p + (n log rain(l, p))/(p log(2n/(Ip)))) for  Ip <_ n, and 
�9 f~(l + I log min(n/l, n/p)/log(21p/n)) for  lp > n. 

PROOF. Fo r  each of the cases I = O(1), 1 = ~(n), p = O(1), p = f](n), the above  
bounds  are just  f~(n/p + l), the trivial lower bound.  
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In the nontrivial case let m = min{/, p, n/1, n/p}. Then m = ~o(1) and m = O(x~). 
We estimate E(H(f, m)) as follows: 

E ~ m) - 1))) j.k (Aj'k(f' m)" (Aj'k(f' 

= E(j~k 1{( x l ' x E ' y l ' y 2 ) : x l # x E ' [ - x i / m j = j ' L y i / m j = k ' f ( x i ) =  Y~}[) 

< # m  2 

(by 2u-wise independence); and therefore 

E(H(f, m)) = H(Aj, k(f, 
j,k 

= E(j~ k (Aj, k( f ,  m)'(Aj, k(f, m , - - 1 ) ) ) +  E(j~, k Aj, k( f ,  m)) 

< # m  2 + n 

= O(n)  

= o(n log m), 

and the theorem follows from Lemma 3.1. [] 

4. The Algorithm. In this section we present ~,  a palrwise independent universal 
family of bijective hash functions which can be performed on Block PRAM arrays 
in asymptotically optimal time. Together with Theorem 3.2, this demonstrates that 
the locality-preserving properties of ~ are best possible for a universal family of 
hash functions. 

Throughout this section we consider the problem of performing permutations 
on n ----- 2 k shared memory locations on the Block PRAM. For any k ~ N, it will 
be useful to identify shared memory addresses {0, 1, . . . ,  2 k - -  1} with their binary 
representations {0, 1} k a s  0-1 column vectors of length k (highest-order bits first). 
For x E {0, 1} k, let xi denote the ith element of x. 

LEMMA 4.1. For x ~ {0, 1} k, denote Yc = (x 1 . . . . .  Xk_log 3 and x = (Xl+logv . . . . .  XR). 
Let H be a basic permutation on {0, 1}k: that  is, one that can be expressed in one 
of the following two forms: 

(a) I I (x)= (fl(x), .-., fk-logl(Yr Xl  +k-log/ . . . . .  Xk) , or 
(b) H(x) = (xl, ..-, Xlosp, gl +logp(x) . . . . .  gk(-X)), 
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where f~, gj are 0-1 valued functions f rom {0, 1} k-l~ {0, 1} k-I~ respectively. 
Then a Block P R A M  with p processors and communication latency l can perform 
H conservatively on n = 2 k consecutive locations in shared memory in time O(n/p + l). 

PROOF. We assume l and p are integral powers of two: l can be increased and 
p can be decreased to the next power of two while multiplying the running time 
by at most a factor of four. 

To perform a permutation of type (a), each processor reads n/(lp) blocks of length 
l in shared memory and writes them into their new locations in O(n/p + 1) time. 
(If lp > n, some of the processors will be idle.) 

To perform a permutation of type (b), each processor reads one block of length 
n/p in shared memory, permutes it, and writes it back in O(n/p + l) time. (If p > n, 
some of the processors will be idle.) [] 

LEMMA 4.2 [1, Theorem 3.1]. Let  II  be a rational permutation on {0, l}k: that 
is, one that can be defined by a permutation ~z on [1 . . . k ]  as follows: I I (x )=  
(x~(1) . . . . .  X~(k) ). Then a Block P R A M  with p processors and communication latency 
l can perform H conservatively on n = 2 k consecutive locations in shared memory in 
time 

�9 O(n/p + (n log min(l, p))/(p log(2n/(lp)))) for  lp < n, and 
�9 O(l + l log min(n/l, n/p)/log(21p/n)) for  lp > n. 

DEFINITION. Let M be the set of nonsingular k • k 0-1 matrices. For  each A ~ M 
denote the permutation )ca on {0, 1}* by fa(x) = A x  mod 2. Define the family of 
functions f f  = {fa: A 6 M}. 

In [24-] Mehlhorn and Vishkin observed that ~ is a 2u-wise independent 
universal family of bijective hash functions, where # = ~k= 1(1 -- 2-2) - ~ < e 7/5. 
We now show that the hash functions in ~ can be performed in asymptotically 
optimal time. 

THEOREM 4.3. Let  f ~ ~ Then a Block P R A M  with p processors and communica- 
tion latency I can perform f conservatively on n = 2 k consecutive locations in shared 
memory in time 

�9 O(n/p + (n log rain(l, p))/(p log(2n/(lp)))) for  lp < n, and 
�9 O(l + I log min(n/l, n/p)/log(21p/n)) for  lp > n. 

PROOF. We give the proof for the case Ip < n, I < p; the other cases are analogous. 
Let fa e ~- We recall that any nonsingular square matrix A can be factored into 
the form L U P ,  where L is a lower triangular matrix, U is an upper triangular 
matrix, and P is a permutation matrix [10]. We can perform the permutation A x  
by successively applying P, U, and L to x, Px, and UPx,  respectively. We show 
that each of these permutations can be performed within the stated time bounds. 
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An application of P is just a rational permutation, which can be performed 
within the time bounds in Lemma 4.2. 

Let I denote the k x k identity matrix. We claim that U can be factored into a 
product of nine matrices, each of which represents a basic permutation or a 
rational permutation as described in Lemmas 4.1 and 4.2. We demonstrate this 
by presenting a row reduction of U -  1 to the identity matrix I in nine stages, such 
that each stage of the row reduction corresponds to one matrix in the factorization 
of U. 

Note that U-1,  like U, is also an upper triangular matrix with all l 's along the 
diagonal. Let ri denote the ith row of U -  1 (even as rows are permuted during the 
reduction, rl will continue to refer to the row that was originally the ith row of 
U- l ) .  Then, for subsets S ___ [ l ' " k ] ,  it is possible to perform successive row 
reductions involving only the rows in R(S) = {ri: i~ S} such that each entry (r~)i 
remains one and each entry in {(ri)f i , j~  S, i # j }  becomes zero. 

We also note that a row reduction involving only the first k -  log I rows 
corresponds to a basic permutation of type (a), while a row reduction involving 
only the last k - log p rows corresponds to a basic permutation of type (b). 

Let 

S~ = [ 1 " "  k - (3 log/)/2], 

$2 = [1 + k - (3 log/) /2 . . ,  k - log/] ,  

S 3 = [1 + k - log l " -  k - (log l)/2], 

and 

S 4 = [1 + k -- ( log / ) /2" .  k]. 

The reduction steps may be described as follows: 

1. Row-reduce among the first k - log I rows: i.e., R(S 1 w $2). This corresponds 
to a basic permutation of type (a). 

2. Row-reduce among the last log I rows: i.e., R(S 3 w $4). Since log 1 < k - log p, 
this corresponds to a basic permutation of type (b). 

3. Permute the rows by exchanging the submatrices R(S2) and R(S3). This 
corresponds to a rational permutation. 

4. The first k - log l rows are now R(S 1 w $3). Row-reduce among these rows. 
This corresponds to a basic permutation of type (a). 

5. The last log l rows are now R(S2 w $4). Row-reduce among these rows. This 
corresponds to a basic permutation of type (b). 

6. Permute the rows by exchanging the submatrices R(S3) and R(S4). This 
corresponds to a rational permutation. 

7. The first k - log I rows are now R(S1 w $4). Row-reduce among these rows. 
8. The last log l rows are now R(S2 w $3). Row-reduce among these rows. 
9. Permute the rows into the original order. 

The factorization of L is analogous and omitted. 



Locality-Preserving Hash Functions for General Purpose Parallel Computation 179 

We have factored f into a constant number of basic and rational permutations, 
so that the complexity bounds follow immediately from Lemmas 4.1 and 4.2. [] 

The following observation follows immediately from Theorems 3.2 and 4.3: 

COROLLARY 4.4. Let Y '  be a universal family of hash functions, and let d be a 
Block P R A M  algorithm. I f  ~ '  is locality-preserving for d ,  then so is o ~. 

5. Applications. Our results suggest that hashing is not necessarily an obstacle 
to exploiting locality in general-purpose parallel computation. For example, a 
parallel architecture may be designed specifically to simulate the performance of 
the Block PRAM model on physically distributed memory using bit-serial rando- 
mized routing. When it is desirable to exploit locality as in many special-purpose 
applications, the machine will allow long blocks to be pipelined as in the Block 
PRAM model. When more finely grained parallelism is required, the machine can 
use hashing to prevent contention in order to support an efficient PRAM 
simulation. By using a locality-preserving hash family such as ~, such an 
architecture would be able to switch quickly between the two modes of operation. 
The unhashed mode would be preferred whenever possible to maximize the 
effective parallelism, since the general PRAM simulation requires a high degree 
(lff) of parallel slackness [1, Theorem 6.1]. 

The complexity of the data movement required to perform hashing is of 
independent interest in other contexts. 

�9 Automatic hashing: Even if the shared memory is always hashed, it will still be 
necessary to change the hash function from time to time [25], [27]. Rehashing 
is required, for example, if a particular hash function proves ineffective in 
preventing contention during a given computation. 

�9 Partially hashed shared memory: In certain shared-memory designs, some of the 
memory address space will be hashed and some left unhashed [12]. The 
complexity of hashing is important in determining the possible advantages of 
this approach, and the cost of changing the partition. 

�9 Input/output: Files will be read into (and out from) the shared memory in 
unhashed form and will need to be hashed (and unhashed). 

6. Conclusion. In this paper we have studied the complexity of performing 
universal hash functions using conservative Block PRAM algorithms, demon- 
strating in particular that hashing need not destroy communication locality. 
We have focused on the complexity of data movement so as to address directly 
the issue of locality. As a result, we have left many issues open for future study. 

The PRAM simulation on the Block PRAM described in Theorem 6.1 of [1] 
relies on a conservative Block PRAM algorithm for performing general permu- 
tations. It remains unclear to what extent the necessary off-line computations 
would affect the simulation's performance in practice. 
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The Block P R A M  complexity of universal hash families with higher degrees 
of independence remains open. For  these families, can the lower bound  of 
Theorem 3.2 be improved, or  the upper  bound  of Theorem 4.3 be extended? 
The discovery of locality-preserving, highly independent hash famil ies-- together  
with improved bit-serial routing algorithms, incorporat ing fault tolerance--wil l  
constitute significant progress toward providing for the exploitation of locality 
in general purpose parallel computat ion.  The precise relationship between the 
independence and locality-preserving properties of hash families will be a challen- 
ging and rewarding study. 
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