
Algorithmica (1994) 12:170-181 Algorithmica
�9 1994 Springer-Verlag New York Inc.

Locality-Preserving Hash Functions for General
Purpose Parallel Computation t

A. Chin 2

Abstract. Consider the problem of efficiently simulating the shared-memory parallel random access
machine (PRAM) model on massively parallel architectures with physically distributed memory. To
prevent network congestion and memory bank contention, it may be advantageous to hash the shared
memory address space. The decision on whether or not to use hashing depends on (1) the communica-
tion latency in the network and (2) the locality of memory accesses in the algorithm.

We relate this decision directly to algorithmic issues by studying the complexity of hashing in the
Block PRAM model of Aggarwal, Chandra, and Snir, a shared-memory model of parallel computation
which accounts for communication locality. For this model, we exhibit a universal family of hash
functions having optimal locality. The complexity of applying these hash functions to the shared address
space of the Block PRAM (i.e., by permuting data elements) is asymptotically equivalent to the
complexity of performing a square matrix transpose, and this result is best possible for all pairwise
independent universal hash families. These complexity bounds provide theoretical evidence that
hashing and randomized routing need not destroy communication locality, addressing an open question
of Valiant.

Key Words. General-purpose parallel computation, Communication latency, Block PRAM, Locality,
PRAM simulations, Universal hashing.

1. Introduction. For m a n y years the parallel r a n d o m access machine (PRAM)
model has provided a s tandard theoretical framework for discussing the complex-
ity of problems and the performance of parallel algori thms [11], 1-18]. Because of
the popular i ty of the model, P R A M algori thms represent a potential ly rich
software l ibrary for massively parallel computa t ion .

However, the P R A M model has not been widely adopted by practi t ioners of
parallel computing. Al though both complexity theorists and practi t ioners view
efficiency as the p a r a m o u n t concern in parallel computa t ion , their definitions of
efficiency are disparate. An asymptotic, worst-case P R A M complexity b o u n d is
meaningless to a software engineer t rying to achieve cons tant factor speedups on
real data. Further , several aspects of the P R A M mode l - -name ly , freedom from
communica t ion latency, asynchrony, and componen t fa i lure- -have never been
realized on any massively parallel computer .

Recent efforts to close the gap between theory and practice have provided

t This work was started when the author was a student at Oxford University, supported by a National
Science Foundation Graduate Fellowship and a Rhodes Scholarship. Any opinions, findings, conclu-
sions, or recommendations expressed in this publication are those of the author and do not necessarily
reflect the views of the National Science Foundation or the Rhodes Trust.
2 Department of Mathematics, Texas A&M University, College Station, TX 77843, USA.

Received June 19, 1991; revised November 23, 1992. Communicated by Jeffrey Scott Vitter.

Locality-Preserving Hash Functions for General Purpose Parallel Computation 171

encouraging results in two areas. First, simulation results by Ranade and others
[9], [16], [17], [24], [27], [28] have shown how a network of physically
distributed processing elements can perform general PRAM computations while
restricting the effects of communication latency and asynchrony. Second, the
PRAM theory has been extended to more realistic models of parallel computation
which account for communication latency [1], [2], asynchrony [8], [12], [23],
[26], [31] and component failure [6], [15], [19]. For surveys of this work, see
[5], [22], [30], and [31].

However, even this enriched PRAM complexity theory continues to diverge
from the practice of parallel computation in an important respect. Much of the
practical effort of optimizing parallel software to run on a particular machine goes
into achieving communication locality: i.e., ensuring that large blocks of data are
used for communication whenever possible. On the other hand, complexity
theorists have proposed PRAM simulation algorithms which prevent memory
contention and/or network congestion by performing universal hashing on the
shared address space, even though hashing has been believed to destroy communi-
cation locality [14], [31]. In what follows we refer to the procedure of moving
the entire contents of the address space into the hashed address space for a given
hash function as performing the hash function; the complexity of this procedure is
referred to as the complexity of the hash function.

In this paper we address this gap in the complexity theory by proposing the
notion of locality-preserving hash functions for general-purpose parallel computa-
tion. We exhibit a universal family of hash functions that can be performed in
asymptotically optimal time on the Block PRAM, a variant of the PRAM model
which accounts for communication locality. We believe that such hash functions
will be useful in the development of general-purpose parallel computers which
exploit communication locality, through both current techniques for supporting
virtual shared memory, and future application of recent efficient algorithms for
bit-serial routing.

Specifically, we foresee the development of parallel architectures which simulate
the performance of the Block PRAM model on physically distributed memory.
Such architectures would allow long blocks of data to be pipelined to exploit
communication locality, but would be able to avoid contention through universal
hashing.

The remainder of this paper is organized as follows. Section 2 defines the
problem and the complexity model. Section 3 proves a lower bound on the
expected time complexity of universal hashing. Section 4 gives an optimal algo-
rithm for performing the hash functions in a particular universal family. Section
5 describes several areas in the practice of parallel computation where the
complexity of hashing is of interest. Section 6 concludes.

2. Preliminaries. Throughout this paper all logarithms are base two.

2.1. The Block PRAM Model The results in this paper are based on the Block
PRAM model of parallel computation as introduced by Aggarwal et al. [1].

172 A. Chin

DEFINITION. A Block PRAM is a collection of p processors, each with a local
memory of unbounded size, together with a shared memory of unbounded size.
All processors execute the same program, although a processor may wait instead
of executing a given instruction. Each arithmetic operation and access to a local
memory location can be performed in unit time. Accesses to shared memory are
subject to a delay of I time units due to communication latency. A processor may
access a block of b consecutive locations in the shared memory in time l + b. No
read or write conflicts are allowed: concurrent requests for overlapping blocks are
serialized in some arbitrary order.

Note that the Block PRAM is essentially an exclusive-read, exclusive-write
PRAM I-11], [18] with a time charge for the communication latency incurred in
accessing blocks of shared memory. The effect of this charge on the running time
of an algorithm depends on the extent to which large blocks are used for
communication. With its two-level hierarchical memory, the Block PRAM is able
to account for communication latency and locality while remaining independent
of any specific network topology. In particular, the Block PRAM time complexity
of permuting data in shared memory varies according to the permutation; e.g.,
see [1] and [7].

2.2. Universal Hashing. Hash functions are used in PRAM simulation to com-
pute physical addresses for all logical memory accesses, and therefore they should
be easy to specify and evaluate. Universal families of hash functions were
introduced by Carter and Wegman [4] as a computationally feasible alternative
to random hashing. Universal hashing has recently emerged as a key component
of many PRAM simulations on physically distributed memory [9], [16], [17],
[24], [27], [28].

DEFINITION. A family ~ of hash functions with domain D and range R is said
to be hu-wise independent if, for all yl yhER, all distinct x~,..., xheD, and
some constant #, [{ f e ~ : f (x l)= Yi, i = 1 h} [< #lJ/t~l/lR[h. (Often the sub-
script # will be omitted.)

Families with 2-wise (pairwise) independence have useful analytic properties in
PRAM simulation [2], [24], [28], [31] and may be adequate for all practical
purposes. This paper focuses on proving bounds for these pairwise independent
hash families.

It is an open question whether highly (~o(1)-wise) independent hash families are
required for PRAM simulations in practice. If so, such families are available.
Recently, Siegel [28] presented nn(1)-wise independent families of hash functions
which can be defined in sublinear space and computed in constant time. These
families, based on expander graphs, are widely applicable in theoretical PRAM
simulations, including those for the Block PRAM.

2.3. Hashing on the Block PRAM. We now formalize what it means to perform
universal hashing on the Block PRAM. We assume that some finite contiguous

Locality-Preserving Hash Functions for General Purpose Parallel Computation 173

block in the Block PRAM Shared memory is initially unhashed: the logical
addresses and the physical addresses are one and the same. Without loss of
generality, we number these addresses [0 " - s - 1]. (In an implementation on
distributed memory, the physical addresses would be partitioned into modules
[24]; in this paper, however, we study the movement of data at the address level
rather than the modular level.)

To perform a permutation H on this block of the shared memory, it is sufficient
to perform a sequence of copying instructions on memory elements so that the
element initially in physical address i finishes in physical address H(i). Such an
algorithm consisting of copying instructions only is called a conservative algorithm.
Focusing on the problem of locality in the presence of communication latency,
Aggarwal et al. [1] restrict the Block PRAM complexity theory of data movement
to conservative algorithms for performing permutations. For consistency and
simplicity, we apply the same restrictions to our study of hashing in this paper.

It should be noted that the hash functions in many universal hash functions
are not necessarily permutations. It is possible to define a scheme for non-
injective hashing on the Block PRAM. Suppose we are hashing array X[0. ' - s - 1]
using function f : [0- . . s - 1] ~ [0 " " s - 1]. The array will be hashed into an
(uninitialized) s x (s + 1) matrix Y, stored in row-major order, such that, for
0 < j < s - 1, the first I f - l(J)l + 1 entries in the column vector Yj are the elements
of {X(/): i e f - l(j)} (possibly none) in some order, followed by an end marker. The
rows of the matrix correspond to successive probes in the hash table, which must
take place in distinct accesses to the shared memory.

This scheme generalizes Block PRAM permutation while preserving locality
considerations: the complexity of performing permutations is at most doubled,
and the contiguity of blocks at each probe level is preserved. However, the
additional time and space complexities of resolving collisions will pass to any
PRAM simulation which uses the scheme. For simplicity, we do not attempt to
characterize the Block PRAM complexity of noninjective hashing further in this
paper.

2.4. Locality-Preservino Hashin 9. As we are considering communication locality
in a topology-independent context, we use the Block PRAM model, with a hashed
shared memory space, to represent a general-purpose parallel computer simulating
the PRAM model. If a Block PRAM algorithm has asymptotically the same
running time in hashed and unhashed shared memory, we can say that the hashing
has preserved the communication locality in the algorithm.

That is, a Block PRAM algorithm can be performed in hashed shared memory
by

(i) unhashing the shared memory,
(ii) running the algorithm, and

(iii) rehashing the shared memory.

If there is no increase in the asymptotic running time of the algorithm, then the
exploitation of locality by the algorithm has been preserved. This motivates the
following definition.

174 A. Chin

DEFINITION. Let d be a Block PRAM algorithm with time bound T(n, 1, p) which
uses at most S(n, l, p) consecutive shared memory locations. Let oge' be a universal
family of bijective hash functions on [0. . . S(n, l, p) - 1]. Then ~ is locality-
preserving for sJ if, for any f e ~ , f can be performed and inverted by a Block
PRAM on S(n, l, p) consecutive locations in shared memory in time O(T(n, l, p)).

2.5. Bit-Serial Randomized Routing. Recent bit-serial randomized routing algo-
rithms [3], [20] provide a theoretical basis for designing massively parallel
architectures which allow block pipelining and, therfore, exploitation of locality
as described by the Block PRAM model. These algorithms allow any permutation
of n message packets of size m to be routed in time O(m + log n) with high
probability on hypercube and butterfly networks. (Previous randomized routing
algorithms [13], [21], [27], [29], [32] are designed for fixed-size packets and run
in time O(m log n) when implemented on real machines [3].) The performance of
these bit-serial algorithms can be stated in the following theorem.

THEOREM 2.1. Any permutation of n packets of size m can be routed in O(m + log p)
time

�9 with probability 1 - n -urn on a hypercube network with p = n [3], and

�9 with probability 1 - 2- 2~o,~ on a butterfly network with p = n log n [20].

3. The Lower Bound. We prove a lower bound for implementing pairwise
independent univeral families of bijective hash functions on the Block PRAM. The
proof depends on a potential function argument first developed in [9a] and [2a]
and later applied in Theorem 3.3 of [1] to prove a lower bound for transposing
a square matrix on the Block PRAM.

Consider any conservative Block PRAM algorithm for performing a permuta-
tion in shared memory. We can assume the following, while multiplying the
running time by at most a constant factor:

(1) Only one copy of each memory element is in use ("live") at any time during
the execution of the algorithm.

(2) The shared memory can be subdivided into segment each consisting of
min(l, p, nil, n/p) memory locations, and execution of the algorithm can be
subdivided into read rounds and write rounds each taking time t9(0, such that
during each round, each processor accesses a block of at most l memory
locations.

DEFINITION. For x > 0, define the entropy function H(x) = x log x; by convention
we take H(0) = 0.

Let m be a positive integer and let f be a permutation on [0 . . . s - 1]. For
integers j, k, 0 _< j, k ___ [_(s -- 1)/m], let

Aj, k(f, m) = I{ae [0 " " s -- 1]: L_a/mJ = j and [_f(a)/mJ -- k}l.

The m-wise entropy of f is given by H(f, rn) = ~i , * H(Aj, g(f, m)).

Locality-Preserving Hash Functions for General Purpose Parallel Computation 175

Consider a conservat ive a lgor i thm for per forming f on the shared memory . We
m a y define the potential functions xj, x(f, m, t), Yi.k(f, m, t) as follows. Fo r j > 0,
0 <_ k < I(s - 1)/mJ and 1 < i _< p, let

Xj, k(f, m, t) = I { a ~ N w {0}, b ~ [0 " " s - 1]: l_a/m_] = j , kb/m_J = k

and there is a live element at shared m e m o r y address a

at the beginning of the t th round having dest inat ion

address b} I,

and let

Yi, k(f, m, t) = I{b ~ [O ' - ' s - 1]:[_b/m_J = k and there is a live element in

the local m e m o r y of processor i having dest inat ion

address b}l.

No te in par t icular that ~ j , , Xj, k(f, m, 1) = H(f , m) and ~i , , Yi, k(f, m, 1) = 0; also,
if the a lgor i thm is finished after r rounds, then ~ j , , Xj.k(f, m, r + 1) = s log m and

~i.k Yi, k(f, m, r + 1) = 0.

LEMMA 3.1. Let f be a permutation on [0 . . . n - 1]. Any conservative Block P R A M
algorithm for performing f on n consecutive locations in shared memory requires time

�9 f~((n log m - H(f , m))/(p log(2n/(lp)))) for lp<_ n, where m = min(l, p), and
�9 fl(l(n log m - H(f , m))/(n log(21p/n))) for Ip > n, where m = min(n/l, n/p).

PROOF. Deno te cb(f, m, t) = Y'4,k X~,k(f, m, t) + ~i,k Yi, k(f, m, t) and A(I)(r) =
r m, r + 1) - * (f , m, 1). F r o m the above discussion, we have

A*(t) = n log m - H(f , m).

Further , it is shown in the p roo f of Theo rem 3.3 of [1] that A(I)(r) < rpl log(2n/(lp))
for Ip < n, m = min(l, iv), and AO(r) < rn(log(21p/n)) for lp > n, m = min(n/l, n/p).
Since each round takes t ime | the stated bounds follow. []

THEOREM 3.2. Let ~/g be a 2~-wise independent universal family of bijective hash
functions on [0 " - n - 1] and let f be chosen randomly from ~ . Then any conserva-
tive Block P R A M algorithm performing f on n consecutive locations in shared
memory requires expected time

�9 I)(n/p + (n log rain(l, p))/(p log(2n/(Ip)))) for Ip <_ n, and
�9 f~(l + I log min(n/l, n/p)/log(21p/n)) for lp > n.

PROOF. Fo r each of the cases I = O(1), 1 = ~(n), p = O(1), p = f](n), the above
bounds are just f~(n/p + l), the trivial lower bound.

176 A. Chin

In the nontrivial case let m = min{/, p, n/1, n/p}. Then m = ~o(1) and m = O(x~).
We estimate E(H(f, m)) as follows:

E ~ m) - 1))) j.k (Aj'k(f' m)" (Aj'k(f'

= E(j~k 1{(x l ' x E ' y l ' y 2) : x l # x E ' [- x i / m j = j ' L y i / m j = k ' f (x i) = Y~}[)

< # m 2

(by 2u-wise independence); and therefore

E(H(f, m)) = H(Aj, k(f,
j,k

= E(j~ k (Aj, k(f , m)'(Aj, k(f, m , - - 1))) + E(j~, k Aj, k(f , m))

< # m 2 + n

= O(n)

= o(n log m),

and the theorem follows from Lemma 3.1. []

4. The Algorithm. In this section we present ~, a palrwise independent universal
family of bijective hash functions which can be performed on Block PRAM arrays
in asymptotically optimal time. Together with Theorem 3.2, this demonstrates that
the locality-preserving properties of ~ are best possible for a universal family of
hash functions.

Throughout this section we consider the problem of performing permutations
on n ----- 2 k shared memory locations on the Block PRAM. For any k ~ N, it will
be useful to identify shared memory addresses {0, 1, . . . , 2 k - - 1} with their binary
representations {0, 1} k a s 0-1 column vectors of length k (highest-order bits first).
For x E {0, 1} k, let xi denote the ith element of x.

LEMMA 4.1. For x ~ {0, 1} k, denote Yc = (x 1 Xk_log 3 and x = (Xl+logv XR).
Let H be a basic permutation on {0, 1}k: that is, one that can be expressed in one
of the following two forms:

(a) I I (x)= (fl(x), .-., fk-logl(Yr Xl +k-log/ Xk) , or
(b) H(x) = (xl, ..-, Xlosp, gl +logp(x) gk(-X)),

Locality-Preserving Hash Functions for General Purpose Parallel Computation 177

where f~, gj are 0-1 valued functions f rom {0, 1} k-l~ {0, 1} k-I~ respectively.
Then a Block P R A M with p processors and communication latency l can perform
H conservatively on n = 2 k consecutive locations in shared memory in time O(n/p + l).

PROOF. We assume l and p are integral powers of two: l can be increased and
p can be decreased to the next power of two while multiplying the running time
by at most a factor of four.

To perform a permutation of type (a), each processor reads n/(lp) blocks of length
l in shared memory and writes them into their new locations in O(n/p + 1) time.
(If lp > n, some of the processors will be idle.)

To perform a permutation of type (b), each processor reads one block of length
n/p in shared memory, permutes it, and writes it back in O(n/p + l) time. (If p > n,
some of the processors will be idle.) []

LEMMA 4.2 [1, Theorem 3.1]. Let II be a rational permutation on {0, l}k: that
is, one that can be defined by a permutation ~z on [1 . . . k] as follows: I I (x)=
(x~(1) X~(k)). Then a Block P R A M with p processors and communication latency
l can perform H conservatively on n = 2 k consecutive locations in shared memory in
time

�9 O(n/p + (n log min(l, p))/(p log(2n/(lp)))) for lp < n, and
�9 O(l + l log min(n/l, n/p)/log(21p/n)) for lp > n.

DEFINITION. Let M be the set of nonsingular k • k 0-1 matrices. For each A ~ M
denote the permutation)ca on {0, 1}* by fa(x) = A x mod 2. Define the family of
functions f f = {fa: A 6 M}.

In [24-] Mehlhorn and Vishkin observed that ~ is a 2u-wise independent
universal family of bijective hash functions, where # = ~k= 1(1 -- 2-2) - ~ < e 7/5.
We now show that the hash functions in ~ can be performed in asymptotically
optimal time.

THEOREM 4.3. Let f ~ ~ Then a Block P R A M with p processors and communica-
tion latency I can perform f conservatively on n = 2 k consecutive locations in shared
memory in time

�9 O(n/p + (n log rain(l, p))/(p log(2n/(lp)))) for lp < n, and
�9 O(l + I log min(n/l, n/p)/log(21p/n)) for lp > n.

PROOF. We give the proof for the case Ip < n, I < p; the other cases are analogous.
Let fa e ~- We recall that any nonsingular square matrix A can be factored into
the form L U P , where L is a lower triangular matrix, U is an upper triangular
matrix, and P is a permutation matrix [10]. We can perform the permutation A x
by successively applying P, U, and L to x, Px, and UPx, respectively. We show
that each of these permutations can be performed within the stated time bounds.

178 A. Chin

An application of P is just a rational permutation, which can be performed
within the time bounds in Lemma 4.2.

Let I denote the k x k identity matrix. We claim that U can be factored into a
product of nine matrices, each of which represents a basic permutation or a
rational permutation as described in Lemmas 4.1 and 4.2. We demonstrate this
by presenting a row reduction of U - 1 to the identity matrix I in nine stages, such
that each stage of the row reduction corresponds to one matrix in the factorization
of U.

Note that U-1, like U, is also an upper triangular matrix with all l 's along the
diagonal. Let ri denote the ith row of U - 1 (even as rows are permuted during the
reduction, rl will continue to refer to the row that was originally the ith row of
U- l) . Then, for subsets S ___ [l ' " k] , it is possible to perform successive row
reductions involving only the rows in R(S) = {ri: i~ S} such that each entry (r~)i
remains one and each entry in {(ri)f i , j~ S, i # j } becomes zero.

We also note that a row reduction involving only the first k - log I rows
corresponds to a basic permutation of type (a), while a row reduction involving
only the last k - log p rows corresponds to a basic permutation of type (b).

Let

S~ = [1 " " k - (3 log/)/2],

$2 = [1 + k - (3 log/) /2 . . , k - log/] ,

S 3 = [1 + k - log l " - k - (log l)/2],

and

S 4 = [1 + k -- (log /) /2" . k].

The reduction steps may be described as follows:

1. Row-reduce among the first k - log I rows: i.e., R(S 1 w $2). This corresponds
to a basic permutation of type (a).

2. Row-reduce among the last log I rows: i.e., R(S 3 w $4). Since log 1 < k - log p,
this corresponds to a basic permutation of type (b).

3. Permute the rows by exchanging the submatrices R(S2) and R(S3). This
corresponds to a rational permutation.

4. The first k - log l rows are now R(S 1 w $3). Row-reduce among these rows.
This corresponds to a basic permutation of type (a).

5. The last log l rows are now R(S2 w $4). Row-reduce among these rows. This
corresponds to a basic permutation of type (b).

6. Permute the rows by exchanging the submatrices R(S3) and R(S4). This
corresponds to a rational permutation.

7. The first k - log I rows are now R(S1 w $4). Row-reduce among these rows.
8. The last log l rows are now R(S2 w $3). Row-reduce among these rows.
9. Permute the rows into the original order.

The factorization of L is analogous and omitted.

Locality-Preserving Hash Functions for General Purpose Parallel Computation 179

We have factored f into a constant number of basic and rational permutations,
so that the complexity bounds follow immediately from Lemmas 4.1 and 4.2. []

The following observation follows immediately from Theorems 3.2 and 4.3:

COROLLARY 4.4. Let Y ' be a universal family of hash functions, and let d be a
Block P R A M algorithm. I f ~ ' is locality-preserving for d , then so is o ~.

5. Applications. Our results suggest that hashing is not necessarily an obstacle
to exploiting locality in general-purpose parallel computation. For example, a
parallel architecture may be designed specifically to simulate the performance of
the Block PRAM model on physically distributed memory using bit-serial rando-
mized routing. When it is desirable to exploit locality as in many special-purpose
applications, the machine will allow long blocks to be pipelined as in the Block
PRAM model. When more finely grained parallelism is required, the machine can
use hashing to prevent contention in order to support an efficient PRAM
simulation. By using a locality-preserving hash family such as ~, such an
architecture would be able to switch quickly between the two modes of operation.
The unhashed mode would be preferred whenever possible to maximize the
effective parallelism, since the general PRAM simulation requires a high degree
(lff) of parallel slackness [1, Theorem 6.1].

The complexity of the data movement required to perform hashing is of
independent interest in other contexts.

�9 Automatic hashing: Even if the shared memory is always hashed, it will still be
necessary to change the hash function from time to time [25], [27]. Rehashing
is required, for example, if a particular hash function proves ineffective in
preventing contention during a given computation.

�9 Partially hashed shared memory: In certain shared-memory designs, some of the
memory address space will be hashed and some left unhashed [12]. The
complexity of hashing is important in determining the possible advantages of
this approach, and the cost of changing the partition.

�9 Input/output: Files will be read into (and out from) the shared memory in
unhashed form and will need to be hashed (and unhashed).

6. Conclusion. In this paper we have studied the complexity of performing
universal hash functions using conservative Block PRAM algorithms, demon-
strating in particular that hashing need not destroy communication locality.
We have focused on the complexity of data movement so as to address directly
the issue of locality. As a result, we have left many issues open for future study.

The PRAM simulation on the Block PRAM described in Theorem 6.1 of [1]
relies on a conservative Block PRAM algorithm for performing general permu-
tations. It remains unclear to what extent the necessary off-line computations
would affect the simulation's performance in practice.

180 A. Chin

The Block P R A M complexity of universal hash families with higher degrees
of independence remains open. For these families, can the lower bound of
Theorem 3.2 be improved, or the upper bound of Theorem 4.3 be extended?
The discovery of locality-preserving, highly independent hash famil ies-- together
with improved bit-serial routing algorithms, incorporat ing fault tolerance--wil l
constitute significant progress toward providing for the exploitation of locality
in general purpose parallel computat ion. The precise relationship between the
independence and locality-preserving properties of hash families will be a challen-
ging and rewarding study.

Acknowledgments. I wish to thank my supervisor, Dr. William F. McColl, for
introducing me to many of these issues and for continual encouragement, and
to the referees for suggesting improvements in the presentation of the paper.

References

[1] A. Aggarwal, A. K. Chandra, and M. Snir, On communication latency in PRAM computa-
tions, Proc. First ACM Syrup. on Parallel Algorithms and Architectures, 1989, pp. 11-21.

[2] A. Aggarwal, A. K. Chandra, and M. Snir, Communication complexity of PRAMs, Theoret.
Comput. Sci. 71 (1990), 3-28.

[2a] A. Aggarwal and J. S. Vitter, The input/output complexily of sorting and related problems,
Comm. ACM 31(9) (1988), 1116-1127.

I-3] W. Aiello, T. Leighton, B. Maggs, and M. Newman, Fast algorithms for bit-serial routing on
a hypercube, Proc. 2nd Annual ACM Symp. on Parallel Algorithms and Architectures, 1990,
pp. 55-64.

[4] J.L. Carter and M. N. Wegman, Universal classes of hash functions, J. Comput. System Sci.
18 (1979), 143--154.

I-5] A. Chin, Complexity issues in general-purpose parallel computation, D.Phil. thesis, Oxford
University, 1991.

[6] A. Chin, Latency hiding for fault-tolerant PRAM computations, Proc. lnternat. Conf. on Sets,
Graphs and Numbers, D. Miklos, ed, North-Holland, Amsterdam, 1992,

[7J A. Chin, Permutations on the Block PRAM, Inform. Process. Left. 45 (1993), 69-73.
[81 R. Cole and O. Zajieek, The APRAM: incorporating asynchrony into the PRAM model, Proc.

First Annual ACM Symp. on Parallel Al#orithms and Architectures, 1989, ppl 169-178.
E9] M. Dietzfelberger and F. Meyer auf der Heide, How to distribute a dictionary in a complete

network, Proc. 22nd Annual ACM Syrup. on Theory Computing, 1990, pp. 117-127.
1-9a] R.W. Floyd, Permuting information in idealized two-level storage, in Complexity of Computer

Calculations, R. Miller and J. Thatcher, eds., Plenum, New York, 1972, pp. 105-109.
1-10] G.E. Forsythe and C. B. Moler, Computer Solution of Linear Algebraic Systems, Prentice-Hall,

Englewood Cliffs, NJ, 1967.
[11] A. M. Gibbons and W. Rytter, Ef~cient Parallel Algorithms, Cambridge University Press,

Cambridge, 1988.
[12] P. Gibbons, The asynchronous PRAM: a semi-synchronous model for shared memory MIMD

machines, Ph.D. thesis, University of California at Berkeley, 1989.
[13] J. H~stad, T. Leighton, and M. Newman, Fast computation using faulty hypercubes, Proc. 21st

Annual ACM Symp. on Theory of Computing, 1989, pp. 251-263.
[14] T. Heywood and S. Ranka, A practical hierarchical model of parallel computation: the model,

Technical Report SU-CIS-91-06, Syracuse University, Syracuse, NY 10991.

Locality-Preserving Hash Functions for General Purpose Parallel Computation 181

[15] P. Kanellakis and A. Shvartsman, Efficient parallel algorithms can be made robust, Proc. 8th
Annual A CM Symp. on Principles o f Distributed Computing, 1989, pp. 211-222.

[16] A. Karlin and E. Upfal, Parallel hashing: an efficient implementation of shared memory,
J. Assoc. Comput. Mach. 35 (1988), 876-892.

[17] R.M. Karp, M. Luby, and F. Meyer aufder Heide, Efficient PRAM simulation on a distributed
memory machine, Proc. 24th Annual A CM Symp. on Theory o f Computing, 1992, pp. 318-326.

[18] R.M. Karp and V. Ramachandran, Parallel algorithms for shared-memory machines, Handbook
o f Theoretical Computer Science (J. van Leeuwen, ed.), North-Holland, Amsterdam, 1990,
pp. 869-942.

[19] Z.M. Kedem, K. V. Palem, and P. G. Spirakis, Efficient robust parallel computations, Proc.
22nd Annual A C M Syrup. on Theory o f Computing, 1990, pp. 138-148.

[20] F.T. Leighton and C. G. Plaxton, A (fairly) simple circuit that (usually) sorts, Proc. 31st Annual
IEEE Symp. on Foundations of Computer Science, 1990, pp. 264-274.

[21] Y.-D. Lyuu, Fast fault-tolerant parallel communication and on-line maintenance using informa-
tion dispersal, Proc. Second A C M Syrup. on Parallel Algorithms and Architectures, 1990,
pp. 378-387.

[22] W. F. McColl, General purpose parallel computing, in Lectures on Parallel Computation,
A. Gibbons and P. Spirakis, eds., Cambridge University Press, Cambridge, 1993, pp. 337-391.

[23] C. Martel, A. Park, and R. Subramonian, Optimal asynchronous algorithms for shared-memory
parallel computers, Technical Report CSE-89-8, University of California at Davis, 1989.

[24] K. Mehlhorn and U. Vishkin, Randomized and deterministic simulations of PRAMs by parallel
machines with restricted granularity of parallel memories, Acta Inform. 21 (1984), 339-374.

[25] J.K. Mullin, A caution on universal classes of hash functions, Inform. Process. Lett. 37 (1991),
247-256.

[26] N. Nishimura, Asynchronous shared memory parallel computation, Proc. Second Annual A CM
Symp. on Parallel Algorithms and Architectures, 1990, pp. 76-84.

[27] A.G. Ranade, How to emulate shared memory, Proc. 28th Annual IEEE Syrup. on Foundations
o f Computer Science, 1987, pp. 185-194.

[28] A. Siegel, On universal classes of fast high-performance hash functions, their time-space tradeoff,
and their applications, Proc. 30th IEEE Symp. on Foundations o f Computer Science, 1989,
pp. 20-25.

[29] E. Upfal and A. Wigderson, How to share memory in a distributed system, Proc. 25th Annual
IEEE Syrup. on Foundations o f Computer Science, 1984, pp. 171-180.

[30] L.G. Valiant, A bridging model for parallel computation, Comm. A C M 33 (1990), 103-111.
[31] L.G. Valiant, General purpose parallel architectures, Handbook o f Theoretical Computer Science

(J. van Leeuwen, ed.), North-Holland, Amsterdam, 1990, pp. 103-110.
[32] L.G. Valiant and G. J. Brebner, Universal schemes for parallel communication, Proc. 13th

Annual ACM Syrup. on Theory o f Computing, 1981, pp. 263-277.

