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ABSTRACT 

Using recent financial and traffic data on a large sample of airports worldwide, we develop a composite 
non-standard profit function approach to estimate cost and revenue efficiencies of Spanish airports. 
Results show that, while profit margins under cost-efficient conditions are consistent with the existing 
literature, the important losses experienced by small airports in Spain are largely due to revenue 
inefficiency. This can be partially explained by a strict regulation of aeronautical revenues and an 
insufficient promotion of retail activities. Eliminating both cost and revenue inefficiencies would 
eventually move the threshold of profitability well below the traditional one million passenger mark. This 
result is expected to improve the prospects of individualized airport management as it is common in most 
of European and North American countries.  
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1. INTRODUCTION 
 

Several studies have examined cost efficiencies in airport operations, while the revenue 
side has received much less attention. However, the achievement of revenue efficiency 
may be also relevant to guarantee the profitability of an airport and to support its 
competitiveness to attract airline services.  

In this paper, we estimate cost and revenue efficiencies of Spanish airports. In Spain, 
the centralized management of airports have been usually justified on the basis that 
small airports are not able to exploit scale economies. This situation agrees with the 
traditional view on airport operations, which regards small airports (i.e. serving less 
than one million passengers) as unprofitable given their apparent inability to recover 
costs under increasing returns to scale (Doganis, 1992). However, revenue inefficiencies 
could also have a strong influence on the financial viability of small airports. In this 
regard, the traffic threshold that guarantees the profitability of Spanish airports is 
currently more than 4 million passengers  

We want to re-examine the potential profitability of Spanish airports under cost and 
efficiency conditions, especially considering that the above mentioned “break-even 
threshold” is mainly based on early airport studies, e.g. Doganis and Thompson (1974). 
We argue that, since the airport business has radically changed in the last four decades, 
it is sensible to re-check the validity of these traditional views with more recent data. 
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In order to achieve these objectives, we use a composite non-standard profit function 
(CNSPF) approach, adapted from the banking literature, to estimate cost and revenue 
efficiencies for the 42 main commercial airports in Spain during 2010. An unbalanced 
pooled database of 240 airports worldwide will be used in the estimation to increase 
degrees of freedom and also provide a stricter, international benchmark to assess the 
potential profitability of Spain’s regional airports.  

This is the first parametric study to use recent financial data on Spanish Airports since 
the Ministry of Public Works released it in early 2010. The latest cost efficiency 
estimates for Spanish airports, published in 2009, used very old data from 1997, as no 
new disaggregated figures had been published since. Additionally, we want to stress 
that this paper provides the first econometric approach to estimate revenue efficiency in 
the airport industry. Given the high level of representativeness of the worldwide airport 
sample, our estimates can also be expected to serve as the first reference values for this 
important indicator. 

The rest of this paper is organized as follows: Section 2 provides a literature survey on 
airport profitability and cost efficiency in the airport industry. Section 3 describes the 
Spanish airport system. Section 4 introduces the composite non-standard profit function 
estimation methodology. Section 5 describes the airport sample and data sources. This 
is followed by Section 6 which analyzes the profitability of Spanish airports under the 
assumptions of cost efficiency, revenue efficiency and then full profit efficiency. 
Several policy implications are discussed. Finally, Section 7 summarizes the main 
findings. 

2. LITERATURE SURVEY 

To date, there have been no previous attempts to estimate either profit or revenue 
efficiencies for Spanish airports. In other countries, only a limited number of studies 
have tried estimate these indicators using unsophisticated methods. Note that almost all 
existing academic contributions in the field of airport efficiency have focused on 
technical/cost efficiencies1 and no significant attention has been paid to the revenue 
side2. Furthermore, the few cost function studies for Spanish airports used the same old 
database, which makes difficult to extrapolate their results to the current situation.  

Early papers on Spanish airport efficiency are Salazar de la Cruz (1999) and Martín and 
Román (2001), which used Data Envelopment Analysis (DEA) methods to measure 
technical/cost efficiency based on data provided by AENA for different airport subsets 
between 1993 and 1997. More recent papers, e.g. Rendeiro (2005), and Martín et al. 
(2009), employ parametric methodologies such as adjusted least squares and stochastic 
frontier analysis, respectively, over cost function specifications. The second study found 
evidence of significant cost inefficiencies in the Spanish airport system, which the 
authors associate with the existence of cross-subsidies and other behavioural distortions 
that can be traced back to the centralized network management. Even though this 
scenario has not changed since the paper was published in 2009, it is worth noting that 
the above mentioned results are still based on data from 1997, which was the last year 
AENA made network-wide airport-specific financial data available to researchers until 
early 2010. More recently, Tovar and Rendeiro (2010) and Lozano and Gutiérrez (2011) 
have employed alternative methodologies, such as input distance function and the non-

                                                 
1 A comprehensive list of airport efficiency studies can be found in Tovar and Rendeiro (2010). 
2 This could be explained by the highly regulated environment faced by airport companies around the 
world, which effectively hinders their ability to maximize revenues. This scenario is changing, however, 
with the rapid expansion of non-aeronautical activities. 
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parametric slacks-based approach to study different performance aspects of Spanish 
airports. However, to the best of our knowledge, only Bel and Fageda (2011a) make use 
of the recent financial data (2009-2010) for a descriptive analysis. 

The present paper is uncommon in that it uses a worldwide estimating sample to 
analyze efficiency of Spanish airports. In the past, there have been a few studies 
employing worldwide airport databases to estimate cost efficiency, such as e.g. Oum et 
al. (2008), Martín and Voltes-Dorta (2011), and recently Martín et al. (2012). These 
papers are the closest methodological references in regards to the implementation of 
stochastic frontier techniques to a multi-output cost frontier specification (i.e. Stochastic 
Cost Frontiers - SCF). Taking into account that both cost and revenue equations (the 
components of the profit function) share the same basic specification, the applicability 
of the SCF methodology to our case study is straightforward. Crucial points taken from 
these papers are: i) the preference for a second-order translog specification, ii) the use of 
Bayesian estimation techniques, iii) the marginal productivity approach to calculate 
input prices, and iv) hedonic adjustments to the output vector. Regarding average long-
run cost efficiency in the airport industry, Martín and Voltes-Dorta (2011) suggests it is 
around 80% in 2008, though estimates vary widely across different countries. Using a 
similar database, Martín et al. (2012) found an average drop of 5.85% in short-run cost 
efficiency between 2007 and 2009 due to the economic recession. These estimates can 
be used as reference to evaluate our cost efficiency results for 2010.  

In comparison, the concepts of revenue and profit efficiency in the airport industry have 
received much less attention in the literature. Some few studies have examined the 
determinants of revenues but they do not estimate revenue frontiers or any indicator of 
revenue efficiency. In a study for US airports, Van Dender (2007) finds that 
aeronautical revenues per passenger are negatively related with traffic and the number 
of nearby airports. Results for the variable of airline concentration are mixed. Bel and 
Fageda (2010b) and Bilotkach et al. (2012) undertake an empirical analysis of airport 
charges for European airports. Bel and Fageda (2010b) find that airport charges are 
positively related with traffic, while they are negatively related with the share of low-
carriers, airline concentration and the number of nearby airports. In those airports, the 
market power of the airport in relation to airlines could be lower. Furthermore, 
Bilotkach et al. (2012) find that airport charges are higher in hub airports that usually 
are characterized by a low share of low-cost carriers. Concerning commercial revenues, 
the most comprehensive study is that of Fuerst et al. (2011) for a sample of European 
airports. They find that commercial revenues per passenger are positively related with 
the size of the airport, the income of the country and the share of domestic passengers. 
Other interesting studies on commercial revenues have been done by Appold and 
Kasarda (2006) for US and Castillo-Manzano et al. (2010) for Spain.  
 
Paradoxically, the most sophisticated analysis of airport profitability is perhaps the 
earliest. Doganis and Thompson (1974) used a cross-section of 18 UK airports in 1968 
to estimate both cost and revenue functions. One of their main conclusions is that cost 
recovery, and thus profitability, of airports serving less than one million annual 
passengers was compromised by high average costs (linked to the presence of 
significant scale economies). Besides that, no efficiency estimates were reported, which 
is only reasonable since Stochastic Frontier Analysis was not developed until Aigner at 
al. (1977). To date, no stochastic profit/revenue frontiers have been estimated for the 
airport industry and the same applies to non-parametric literature. In that regard, an 
alternative approach consists in specifying “total revenue” along with other physical 
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outputs and inputs in a DEA-production function (e.g. Sarkis and Talluri, 2004). While 
this effectively incorporates a price effect into the mix, there is no practical way to 
separate revenue- from technical efficiency afterwards. 

Using a small balanced pool of German airports observed between 1998 and 2007, Ülkü 
(2009) simply uses the ratio of total revenues to total costs as a measurement of revenue 
efficiency and then concludes that there is a strong positive correlation between cost 
efficiency (estimated with DEA) and revenue efficiency. Slightly more developed 
partial factor productivity ratios based on airports’ financial performance are found in 
other publications such as Oum et al. (2003) or TRL (2000), where the latter pays more 
attention to comparability issues such as accounting standards, government subsidies, or 
the degree of outsourcing. These studies employ large, international samples but, 
unfortunately, there is no simple way to translate their results to revenue or profit 
efficiencies as defined in this paper. 

Other approaches to airport profitability include Pagliari and Lei (ref), which found a 
positive relationship between passenger traffic and profitability at UK airports. Their 
results also support the existence of some “break-even” threshold under the observed 
conditions. We aim to check if this result is still valid after correcting for cost and 
revenue inefficiencies. Graham and Dennis (2007) also examine the impact of low-cost 
operations on airport costs and revenues, but it concludes that there is no obvious link 
between low-cost traffic and airport profitability. Finally, a descriptive study of the 
European Union (2002) analyzes the relationship between the revenue-expenditure ratio 
and traffic levels for airports in France, Sweden and United Kingdom. Overall, results 
of this analysis indicate that the profitability threshold is in the range 500.000 to 
700.000 workload units.   

3. THE SPANISH AIRPORT INDUSTRY 

Aeropuertos Españoles y Navegación Aérea (AENA), a public firm dependent on the 
Ministry of Transports, has managed on a centralized basis 47 commercial airports in 
Spain. Until December 2010, AENA was responsible of both the management of 
airports and air traffic control. The law 13/2010 set a new firm, AENA aeropuertos, 
which is just responsible of the management of airports (the settlement of Aena 
aeropuertos was made effective in June 2011). The privatization of AENA aeropuertos 
is currently been discussed but the maintaining of the centralized management has not 
been put into question by the central government.    
 
AENA aeropuertos is the owner of all the facilities available at these airports and it has 
the control of all financial resources generated by them. AENA and the Ministry of 
Transport take all the relevant decisions regarding airports, including investments, 
prices, development of retail activities and the allocation of slots, check-in counters and 
gates to airlines.   
 
The centralized management implies that Spanish airports are not able to compete to 
attract airline services. Furthermore, any financial losses are compensated through a 
cross-subsidy system. Although it is generally claim that the cross-subsidies go from 
large to small airports, Bel and Fageda (2009) showed that large airports specialized in 
tourism have been supporting investments of the rest of airports, including Madrid. 
With the lack of competition and the cross-subsidy system, it is clear that airports in 
Spain do not have strong incentives to be efficient in costs. 
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Along with the weak incentives that Spanish airports have to be efficient in costs, there 
have been a dramatically increase of investments of AENA in the latter years. The 
capacity expansions of Madrid and Barcelona airports have implied an expenditure of 
more than six thousand and three thousand millions of euros, respectively. Furthermore, 
at least ten of the airports managed by AENA aeropuertos do not offer flights in most 
(or even all) days of the year. Just an example may provide arguments for arguing that 
the number of airport devoted to commercial traffic is excessive in Spain. The airport of 
Vitoria is surrounded by other five airports located in a distance of less than 120 
kilometers 
 
Concerning revenues, the Law 25/1998 set the initial values of current aeronautical 
charges (landing and aircraft parking fees, taxes for the use of terminals and so on) and 
other charges including car parking and retail activities developed by AENA. There 
have been traditionally three categories of airports according to their levels of traffic to 
set aeronautical charges. Within the same category, price differences were minimal. 
This means that charges of Madrid and Barcelona, which are in the top ten raking of 
European airports in terms of traffic, were almost identical to some airports with less 
than five million passengers like Seville, Bilbao or Lanzarote. In June 2011, a re-
arrangement of the categories for fixing charges was made effective. The new 
classification of airports in terms of charges includes four categories. Madrid and 
Barcelona are in the first category, the biggest tourist airports are in the second, and the 
other two categories has to do with the levels of traffic.  
 
The update of these charges is proposed by AENA, but the final decision rests with the 
Spanish Parliament in the accompaniment laws of the General Budget Law.  In theory, 
airport charges are based on the total costs of all airports managed by AENA. However, 
in practice these charges are approved by Parliament, so they have been adjusted 
annually in line with charges for other public services (except in 2011 and 2012 were 
charges in Madrid and Barcelona airports have been increased substantially in relation 
to the rest of airports). Thus, charges do not necessarily meet costs. Note also that 
regulation of charges in Spain seem to follow a single-till so that both aeronautical and 
commercial revenues are regulated. Under a single-till, increases in commercial 
revenues will be compensated with lower aeronautical revenues. Lower aeronautical 
charges will push airline traffic, but the single-till regulation may still have some 
influence on the incentives of Spanish airports to develop retail activities in their 
facilities.    
 
Within this context, it is important to stress that AENA has recorded financial losses 
since 2007, making it the airport operator reporting the largest deficit in the world (Bel 
and Fageda, 2011). The current debt of AENA aeropuertos is more than fourteen 
thousand millions of euros. Regarding individual airports, figure 1 shows a positive 
relationship between the levels of traffic and profitability of Spanish airports. Some 
large airports like Madrid (MAD), Barcelona (BCN) or Málaga (AGP) incur in financial 
loses but this is due to the high amortization expenses of recent capacity expansions. 
Overall, only ten airports are profitable in Spain. All of them move more than four 
million passengers per year with the exception of Bilbao with 3.9 million passengers. 
This is in contrast of what have been found in studies for other European airports where 
the profitability threshold may be even lower than one million passengers (Doganis and 
Thomson, 1974; European Commission, 2002). As we mention above, possible 
explanations of the poor financial performance of Spanish airports are over-investment, 
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Figure 1.Passenger traffic vs profitability
Source: AENA (2010), Own elaboration 
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the costs per passenger in relation to the revenues, but still we can find several airports 
with cost per passenger than more than double revenues.  

Finally, 14 airports move much less than 500.000 passengers per year. Some of these 
airports do not offer currently any flight. In most of these airports, the total costs per 
passenger are extraordinarily high in relation to revenues. However, here we should 
distinguish between airports like Logroño which have other airports very close and fast 
access by train and road to the two biggest cities, and airports located in peripheral 
regions like El Hierro, La Gomera or Melilla. In the latter case, social considerations 
could be more relevant than concerns regarding financial performance.  

Data for Spanish airports in table 1 and that used in the empirical analysis developed in 
next sections come from AENA. However, our analysis of cost inefficiencies in Spanish 
airports is going to be conservative because regional and local governments (out of 
AENA) have spent a lot of public resources to subsidize air traffic in the latter years. A 
report of the Spanish competition Commission (2011) indicate that regional and local 
administrations have spent 250 million euros in the period 2007-2011 to subsidize 
airlines to operate in Spanish airports. The amount of euros per passenger spent in 
subsidies is in some cases surprisingly high. For example, Burgos (226), Albacete (90), 
Salamanca (82), León (45), Badajoz (25) or Logroño (20). 
 

 

Table 1. Traffic, revenues and costs at Spanish airports (2010) 

airport Pax 
(million)  

Share lcc Share 
charter 

hhi cargo 
(kt) 

Pax per 
square 
meter 

Landing 
charge per 
tone (EUR) 

Total costs 
per pax 
(EUR) 

Aeronautical 
revenues per 
pax (EUR) 

Commercial 
revenues per pax 

(EUR) 
ALBACETE (ABC) 0.01 0.00 0.43 0.62 0.00 5.13 4.36 293.10 11.51 0.89 
ALICANTE (ALC) 9.38 0.59 0.04 0.15 3.11 175.04 6.07 6.19 5.95 3.40 
ALMERIA (LEI) 0.79 0.12 0.31 0.46 0.01 31.60 5.37 20.33 5.80 4.14 

ASTURIAS (OVD) 1.36 0.12 0.12 0.28 0.11 77.89 5.44 10.71 6.50 2.47 
BADAJOZ (BJZ) 0.06 0.00 0.43 1.00 0.00 13.90 4.39 44.79 6.37 0.82 

BARCELONA (BCN) 29.21 0.35 0.03 0.11 104.28 41.53 6.07 14.81 7.44 3.90 
BILBAO (BIO) 3.88 0.18 0.05 0.18 2.55 76.92 6.04 10.00 7.20 3.34 

BURGOS (RGS) 0.03 0.00 0.76 1.00 0.00 14.44 4.38 172.34 6.25 0.60 
CORDOBA  (ODB) 0.01 0.00 1.00 0.00 0.00 6.83 4.04 732.30 21.65 10.19 

FUERTEVENTURA (FUE) 4.17 0.16 0.26 0.17 1.71 44.88 6.04 7.99 5.14 2.85 
GIRONA (GRO) 4.86 0.78 0.20 0.92 0.06 162.13 5.19 4.98 5.07 2.53 

GRAN CANARIA (LPA) 9.49 0.13 0.15 0.18 24.53 86.55 6.02 6.59 5.17 2.71 
GRANADA (GRX) 0.98 0.23 0.35 0.28 0.04 115.52 5.45 14.93 5.82 2.15 

HIERRO (VDE) 0.17 0.00 0.08 1.00 0.15 66.68 1.31 36.50 1.75 1.64 
IBIZA (IBZ) 5.04 0.28 0.25 0.14 3.00 138.10 5.93 6.47 4.96 2.25 

JEREZ (XRY) 1.04 0.09 0.76 0.25 0.13 64.79 5.46 17.13 5.87 4.31 
LA CORUÑA (LCG) 1.10 0.14 0.35 0.32 0.25 84.31 5.45 13.85 6.52 2.06 
LA GOMERA (GMZ) 0.03 0.00 0.18 1.00 0.01 10.68 1.31 170.21 3.08 3.39 

LA PALMA (SPC) 0.99 0.01 0.16 0.49 0.94 93.09 5.31 20.16 3.13 1.95 
LANZAROTE (ACE) 4.94 0.17 0.26 0.18 3.79 84.27 6.05 6.83 5.00 2.66 

LEON (LEN) 0.09 0.03 0.41 0.84 0.00 10.49 4.42 89.10 6.32 1.71 
LOGROÑO (RJL) 0.02 0.00 0.85 1.00 0.00 6.13 4.38 224.64 8.15 2.45 
MADRID (MAD) 49.87 0.17 0.00 0.28 373.91 50.31 6.09 16.06 8.97 3.26 
MALAGA (AGP) 12.06 0.40 0.17 0.07 3.06 30.34 6.07 11.91 6.49 3.72 
MELILLA (MLN) 0.29 0.00 0.16 1.00 0.34 159.29 3.06 41.59 4.27 0.44 

MENORCA (MAH) 2.51 0.18 0.19 0.22 2.40 125.18 5.92 13.03 5.32 2.41 
MURCIA (MJV) 1.35 0.61 0.17 0.22 0.00 105.83 4.54 9.76 5.08 3.03 
PALMA (PMI) 21.12 0.24 0.16 0.14 17.29 95.99 6.07 6.13 5.76 2.12 

PAMPLONA (PNA) 0.29 0.00 0.37 0.86 0.04 23.51 4.45 31.14 6.17 2.40 
REUS (REU) 1.42 0.28 0.66 0.72 0.25 109.90 5.20 11.61 5.32 2.10 

SALAMANCA (SLM) 0.04 0.00 0.91 0.89 0.00 10.80 4.41 95.65 10.88 1.16 
SAN SEBASTIAN (EAS) 0.29 0.00 0.26 0.86 0.02 104.26 4.44 27.48 5.94 3.04 

SANTANDER (SDR) 0.92 0.29 0.24 0.53 0.00 45.09 4.51 14.13 5.37 1.96 
SANTIAGO (SCQ) 2.17 0.34 0.20 0.24 1.96 115.86 5.45 11.09 5.91 2.49 
SEVILLA (SVQ) 4.22 0.36 0.28 0.22 5.47 68.14 6.06 8.72 6.45 3.19 

TENERIFE NORTE (TFN) 4.05 0.04 0.00 0.29 15.94 75.53 5.99 8.14 4.12 1.86 
TENERIFE SUR (TFS) 7.36 0.24 0.34 0.07 4.29 86.17 6.09 7.86 5.96 3.62 
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VALENCIA (VLC) 4.93 0.23 0.26 0.26 11.43 132.46 6.04 8.70 6.87 3.37 
VALLADOLID (VLL)  0.39 0.17 0.47 0.55 0.03 87.26 4.49 21.70 5.65 2.11 

VIGO (VGO) 1.09 0.07 0.15 0.28 0.90 139.99 5.43 14.62 6.63 2.19 
VITORIA (VIT) 0.04 0.00 0.85 0.50 27.96 7.24 4.56 388.44 48.49 16.16 

ZARAGOZA (ZAZ) 0.61 0.25 0.49 0.32 42.54 37.29 4.56 25.60 8.93 2.00 
Note: pton indicates average landing charge per ton MTOW. Source: AENA (2011), Own elaboration 
 
 

4. ESTIMATION METHODOLOGY 

4.1 The composite non-standard profit function approach 

The econometric estimation of a standard profit function	�(�, �), where p and ω 
represent output and input prices, respectively, was considered a priori the suitable 
method to evaluate profit efficiencies in the airport industry. However, note that the 
standard profit maximization problem (See e.g. Kumbhakar, 2006) assumes that firms 
adjust output quantities (y) and input demands (x) while taking all prices as given (i.e. 
fixed by competitive markets). This scenario does not fit well with the reality of 
airports, which have limited control over their output level (i.e. traffic), while also being 
traditionally considered natural monopolies that face limited competition in their 
catchment areas (Doganis, 1992). These considerations led us to the search for an 
alternative method to estimate profit efficiency that allows for output quantities to be 
fixed and leaves output prices as a decision variable based on actual market conditions. 

The solution was found by reviewing the large body of literature on profit efficiency in 
the banking sector. The studies by Berger et al. (1996) and Humphrey and Pulley (1997) 
introduced the alternative profit function	�(�, �), later referred by Kumbhakar (2006) 
as non-standard profit function (NSPF). Under this approach, firms maximize profits 
(i.e. revenue minus cost) subject to the technological constraint y=f(x) and a pricing 
opportunity set p=(y, ω). The latter incorporates pricing heuristics, market position, and 
demand conditions in transforming exogenous y and ω into endogenous p (Lozano-
Vivas, 1997). Besides allowing for i) fixed outputs and ii) the possibility of market 
power, Berger et al. (1996) also notes that the NSPF may provide useful when iii) there 
are unmeasured differences in service quality across the sample, and iv) prices cannot 
be accurately measured. These four characteristics fit our airport case study perfectly3.  

Despite all advantages, only recently have Restrepo-Tobón and Kumbhakar (2011) fully 
studied the duality properties of p=(y,ω), thus finally validating the microeconomic 
foundations of the apparently ad-hoc formulation of the NSPF. However, they also 
found that the econometric estimation of profit inefficiencies in e.g. a stochastic frontier 
setting will lead to biased estimates unless revenue and cost inefficiencies are included 
separately in the model. This fact, in combination with the difficulties in 
accommodating negative profits in a translogarithmic specification4, led the authors to 
develop the composite non-standard profit function (CNSPF) approach, in which the 
cost frontier C(y,ω) and the revenue frontier R(y,ω), with their corresponding 
inefficiencies, are estimated separately. This is the method we apply in this paper. 

4.2 Model specification 

At the very minimum, the econometric estimation of a CNSPF requires data on total 
costs (TC), total revenues (R), outputs (Y), and input prices (ω) of airports equally 

                                                 
3 The wide range of discounts offered by the airports to signatory airlines, often negotiated in a case-by-
case basis, invalidates the used of published charges as price indicators for this type of empirical research. 
4 Slightly over half of our sample airports recorded negative profits during the sample period. 
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focused on (long-run) cost minimization and revenue maximization. The preferred 
functional form for both C(y,ω) and R(y,ω) is the transcendental logarithmic-translog 
(Christensen et al., 1973), which is the most commonly used in this kind of empirical 
studies. A second-order translog expansion on (y,ω) presents the following structure: 

(1)		
� = 
� + ∑ 
�� 	
�� + ∑ ��� 	
�� + ∑ ∑ ���	
�� ��	
��+
�

�
�∑ ∑ ���	
��	
���� +

	�ℎ��ℎ	
��	
�ℎ+��, 

where Q represents either total costs or revenues, and ε denotes statistical disturbance. 
The translog cost function is typically estimated jointly with its cost-minimizing input 
shares (s) by means of a Seemingly Unrelated Equations Regression – SURE (Zellner, 
1962). Input share equations can be easily obtained by differentiating and applying 
Shephard’s Lemma5: 

(2)              	�� =
�� �
!"

= #!"

#��

��

$"
= #%&!"

#%&��
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�� + ∑ ��'( 	
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If panel data is available, the model can be completed with the time variable (t) in order 
to account for technological change in the industry (Stevenson, 1980).  

Previous studies (e.g. Martín and Voltes-Dorta, 2011) have specified up to five outputs 
in the airports’ cost function: aircraft movements (ATMs), domestic/Schengen 
passengers (dom), international/transborder passengers (int), metric tons of cargo (cgo), 
and commercial revenues (rev). In this paper, however, commercial revenues will be 
removed from the output vector as they become part of the dependent variable in the 
revenue equation. Given the very high correlation between said variable and the other 
physical outputs, the remaining four-dimensional output vector is expected to still 
provide an accurate characterisation of the overall airport business. Furthermore, ATMs 
will be hedonically adjusted using the airport’s average landed Maximum Take-Off 
Weight (MTOW) as a quality variable (Spady and Friedlaender, 1978): 

(3)                               ln ln (ln )MTOW
i i iATM ATM MTOWψ= +

 

This equation is expected to capture the differences in marginal costs imposed by 
different aircraft models. In order to keep a fixed output reference between the cost and 
revenue frontiers, the hedonic coefficient will be estimated only in the cost function 
model (due to its strong cost motivation). The estimated value of ψ will then be imposed 
in the revenue model. 

The profit system also features three input prices: capital (ωc) materials (ωm), and 
labor/personnel (ωp). The price of labor is obtained by dividing labor costs by the full-
time equivalent employees (fte) of the airport authority. The calculation of the prices of 
capital and materials is more complex: the respective costs are divided by a quantity 
index based on marginal productivity ratios, calculated for a predefined set of physical 
inputs assumed to represent the airport’s overall demand for these factors. Marginal 
productivities are estimated from the only multi-output ray production frontier provided 
in the literature6. For the capital price, the reference inputs were terminal surface and 
runway length. For materials, we used check-in desks and boarding gates. As prices are 
related to the observed costs, they reflect each airport’s specific circumstances (i.e., 
labor policies, scope of outsourcing, etc...). This reduces the need for data 

                                                 
5Differentiating costs with respect to a price leads to the input demand function (Shephard, 1953) 

#"

#�
= ) 

6 See Appendix B in Martín and Voltes-Dorta (2011a). 
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homogenization and, if there are enough sample airports with the same characteristics, it 
allows for fair efficiency comparisons between airports from different regions7. 

At one point, the specification of a service quality indicator (e.g. terminal surface per 
passenger) was considered. However, it was later removed from the cost function 
because “excessive” service quality is actually one of the main problems of regional 
airports in Spain, many of them with blatantly oversized terminal buildings for their 
present and (foreseeable) future traffic levels (e.g. Albacete, Leon, Salamanca, etc…). 
Removing this variable is crucial for the cost frontier to reallocate all these extra costs 
into the inefficiency component. On the revenue side, the airports’ ability to translate 
higher service quality into higher prices is implicit in the pricing opportunity set. 
Additional descriptors of traffic mix and market conditions (Z) are exclusive of the 
revenue equation8. These are the share of low-cost flights, the share of charter (non-
scheduled) flights, and the Hirschmann-Herfindahl index of airline traffic shares as a 
proxy for airline dominance. According to Bel and Fageda (2010b), these variables are 
crucial in determining the airport’s degree of market power. Furthermore, two 
geographical dummies (Europe and Asia-Pacific) are also included in order to account 
for different passenger expenditure patterns (Martel, 2009). 

The full specification of the profit system is shown in Appendix A. Note that additional 
parametric restrictions are included in order to impose linear homogeneity in ω9. 

4.3 Stochastic frontier analysis and Bayesian estimation 

It is likely that sample airports may have incurred in cost/revenue inefficiencies during 
the sample period. An airport is said to be inefficient if it fails to generate the maximum 
possible revenue while also incurring in the minimum feasible cost given a set of 
exogenous variables (outputs, input prices, market conditions, etc..). An additional one-
sided disturbance term can be introduced in both cost and revenue frontiers in order to 
account for these inefficiencies, leading to a stochastic frontier specification (Aigner et 
al., 1977). Given the non-linear complexities of the proposed models, they will be 
estimated using Bayesian inference (Van der Broeck et al., 1994). WinBUGS (Lunn et 
al., 2000) is the preferred statistical package, as it allows us to adapt the codification 
proposed in Griffin and Steel (2007). This assumes that the dependent variable (i.e. 
logged costs/revenues) is normally distributed, with the above described translog 
equation as the mean and *+�as the white noise variance: 

(4)                                 	
,-�.
/ ∼ 1(	
,-�. (�, 2, 3, 4) + 5�.

" , *+6�) 

(5)                               		
7�.
/ ∼ 1(	
,-�. (�, 2, 3, 8, 4) − 5�.

: , *+6�) 

TCa and Ra represent actual costs/revenues, TC0 and R0 are the minimum cost/maximum 
revenue frontiers, and uC, uR are both a positively-valued error terms measuring cost and 
revenue inefficiencies, respectively. These parameters are allowed to vary over time 
without imposing any firm-specific constraints. Given the long temporal dimension of 
                                                 
7German airports tend to cover a wider range of core activities in-house, which leads to higher operating 
costs/revenues than similar airports in other countries. However, since they have also higher input prices, 
their frontier costs will be also higher (according to Kumbhakar and Lowell (2003) the revenue function 
can also be expected to be non-decreasing in input prices). Thus, each airport will face a cost/revenue 
frontier adequate to its internal structure. 
8 We prefer a more strict specification for the cost function. One may argue that the construction of 
cheaper terminal spaces to accommodate low-cost traffic may lead to reduced operating costs for the 
airport. This impact, however, is likely to be captured by the capital input price. 
9 The revenue equation is not necessarily linearly homogenous in ω, but this property was imposed in 
order to keep the functional forms equivalent (Restrepo-Tobón and Kumbhakar, 2011). 
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the estimating dataset (1985-2010), which covers recession periods and other demand 
shocks, it cannot be expected that firms’ efficiencies vary systematically over time (as 
in the Battese and Coelli, 1995 and Cuesta, 2000 models). Thus, the inefficiency of 
airport i at period t (uit) is simply assumed to be exponentially distributed with mean λ-1: 

(6)                                         5�.
"~exp(?");	 5�.

:~exp(?:) 

Prior distributions must be assigned to the parameters. The cost/revenue frontier 
coefficients (β) follow a non-informative normal distribution with zero mean and 
infinite variance10. In the same spirit, a gamma distribution (0.01, 0.001) is assigned to 
the models’ inverse-variance (white noise). The distributional structure the λ  
parameters (Griffin and Steel, 2007), allows us to impose prior ideas about mean 
cost/revenue efficiency (r*) in the airport industry. Regarding cost efficiency, r* is set at 
0.854 as indicated in Martín and Voltes-Dorta (2011). Given the absence of previous 
evidence on the subject of airports’ revenue efficiency, a non-informative uniform prior 
was set in the revenue equation. Similarly, the ψ coefficient of the hedonic ATM 
function was also assigned a uniform distribution U(0,2). 

(8)												� ∼ 1(0,0),			*+6� ∼ B(0.01,0.001), ? ∼ exp(−	EFG∗) , 3 ∼ I(0,2) 

After both equations have been estimated, cost and revenue efficiency of airport i at 
period t (Ceffit, Reffit,) can be easily calculated from the corresponding uit: 

(9)                              -KLL�. = expM−5�.
" N ; 				7KLL�. = exp	(−5�.

:) 

 

5. DATABASE AND DATA SOURCES 

Even though this paper aims at investigating airport profitability in Spain, an 
international database will be used in the estimation of both cost and revenue frontiers. 
Besides increasing degrees of freedom, using international data allows us to measure the 
profit efficiency of Spanish airports against a representative industry-wide frontier, not a 
Spanish one. This is expected to improve the analysis by helping to identify the impact 
on productivity and profitability of AENA’s unique consolidated network management, 
in comparison to other large samples of small regional airports from e.g. the UK, US, or 
France. This impact cannot be captured by using only Spanish data. 

Data collection was completed for the following variables: i) total costs (tc): labor (lab), 
materials (mat), and capital (cap); ii) Revenues: aeronautical (aero) and non-
aeronautical (rev); iii) Outputs: Domestic-Schengen (dom) and international-transborder 
passengers (int), air transport movements (atm), average landed Maximum Take-off 
Weight (mtow), and metric tons of cargo (cgo); iv) Infrastructure: gross floor area in m2 

of passenger terminal buildings (ter), runway length in m (run), number of boarding 
gates (gat), and check-in desks (chk); v) Other: time (t), full-time employees (fte), 
Hirschmann-Herfindhal index of airline traffic shares (hhi), share of charter flights 
(scha), share of low-cost flights (slcc). In order to integrate this data with the worldwide 
estimating sample (described below), all monetary variables were converted to 2010 
Purchasing Power Parity (PPP) USD using OECD’s exchange rates. 

We employ the well-known airport cost categories defined by Doganis (1992). Labor 
costs include salaries and wages, retirement, and health benefits. “Materials” costs 
include maintenance, utilities, external services and other administrative costs. Finally, 

                                                 
10 Normal distributions in Equation 7 follow WinBUGS’ notation:  N(mean, inverse-variance) 
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capital costs comprise depreciation of fixed assets and interest paid. Note that these 
costs only take into account the activities performed in-house by the reporting company, 
(typically the airport operator). These tend to vary widely across airports. Section 3 
discussed how the calculated input prices take this heterogeneity into account.  

On the revenue side, we can distinguish between aeronautical and non-aeronautical 
sources. The first are those collected mainly through airport charges (landing, terminal, 
security, etc...) levied on the users (airlines, passengers, etc...) to (partially) cover the 
costs of aeronautical infrastructure. Note that Air Navigation Services are excluded 
from our data. Non-aeronautical activities are those indirectly related to the transport 
activity and typically cover retail, parking, catering, etc..., which the airport company 
either operates directly (through a subsidiary) or receives a rent from a concessionaire. 
For the purposes of this paper, aeronautical and non-aeronautical revenues are 
aggregated and a single “total revenue” equation will be estimated. The separation of 
both revenue streams is left for future research since it requires a deeper investigation of 
the actual concepts included in each category across the worldwide sample. 

Disaggregated financial data on Spanish airports has been very difficult to obtain in 
recent times as the strong investments dragged down AENA’s profitability, which led to 
increased opacity. Only recently were these figures released to the public by the 
Ministry of Public Works (Ministerio de Fomento - MFOM) in the midst of an intense 
debate over the management of the public airport system. We had access to the final 
figures audited by the National Accounting Office – Tribunal de Cuentas (TDC, 2012). 
This publicly available report provides financial data on 42 out of the 48 public airports 
in Spain for 2009 and 2010 (See Table 4). Traffic data on aircraft movements, 
passengers and cargo was compiled from AENA’s statistics portal. Very detailed 
information on capacity and infrastructure for the individual airports is provided in their 
Master Plans, which are also publicly available in the MFOM’s website. Airline traffic 
shares, used to calculate the variables hhi, slcc, and scha, were obtained from the 
Official Airline Guide’s iNet Schedules Tool. 

As mentioned before, the Spanish data is merged with a large, supplementary 
worldwide sample obtained from Martín et al. (2012). This database includes 108 
airports from Europe (France, UK, Austria, Germany, Italy, Russia, Turkey, and others), 
72 from North America (US and Canada) and 11 from Asia-Pacific (mainly China, 
Australia, and New Zealand). A wide variety of airport sizes and output mixes is 
present, and the sample includes almost every major passenger and cargo hub in all 
featured countries11. After merging the Spanish data, the estimating sample is an 
unbalanced pooled database of 240 airports, observed between 1985 and 2010 (for 
grand total of 2250 observations). In 2009, the combined sample airports served 2.64 
billion passengers and 47 million metric tons of cargo, which represent 51% and 58% of 
worldwide traffic, respectively (ACI, 2010). 

Table 2.Overview of the Spanish airport sample (2010) 

 
tc 

(PPP'000) atm dom int 
cgo 
(t) 

aero 
(PPP'000) 

rev 
(PPP'000) 

mtow 
(t) 

ter 
(m2) 

mean 71,780 47,281 3,444,491 1,143,684 15,536 41,361 18,631 54 77,180 

max 1,054,039 433,706 34,959,586 14,906,527 373,911 588,763 213,632 94 991,256 

min 3,605 1,243 7,839 1 1 132 13 6 1,150 

std 179,965 79,914 6,752,239 2,607,595 59,374 100,740 40,447 24 190,274 
Source: AENA (2011), TDC (2012), Airports’ Master Plans 

                                                 
11 Given the instrumental nature of this data, and since it has been used in the past (See also Martín and 
Voltes-Dorta, 2011a; and Martín and Voltes-Dorta, 2011b), readers are referred to the above-mentioned 
studies for the complete list of sample airports and data sources. 
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The existence of significant profit inefficiencies in the Spanish network can be easily 
inferred from Tables 2 and 3, which provide some descriptive statistics for both the 
Spanish sample (2010) and the combined worldwide estimating sample (1985-2010). In 
Spain, the scale of production ranges from 1,200 annual ATMs in Albacete up to 433 
thousand ATMs in Madrid-Barajas. This range is contained in the worldwide sample 
(Table 3), where the scale of production ranges between 100 and 980,000 ATMs at 
Córdoba (1991) and Atlanta (2007), respectively. As expected, this large variability can 
also be observed in total costs and the infrastructure indicators. The average Spanish 
airport serves around 4.5 million annual passengers (3.4 domestic and 1.1 international), 
it has operating costs of 15.95 PPP USD per passenger, while only collecting 13.35 PPP 
USD per passenger in operating revenues (9.25 and 4.1 PPP USD from aeronautical and 
non-aeronautical sources, respectively). This estimate compares poorly with the 
international average of 16.10 PPP USD (9.99 aeronautical and 6.11 non-aeronautical).  

Table 3. Overview of the estimating sample: Worldwide airports (1985-2010). 

 
tc 

(PPP'000) atm dom int cgo  
(t) 

aero 
(PPP'000) 

rev 
(PPP'000) 

mtow 
(t) 

ter  
(m2) 

mean 146,430 136,170 7,335,177 3,573,776 208,179 109,021 66,669 60 101,431 

max 2,991,697 981,402 80,858,789 63,323,180 3,840,941 1,576,708 1,128,305 397 1,382,000 

min 707 100 1 1 1 10 1 6 500 

geom12 - 62,161 1,653,629 354,877 17,853 - - - - 

std 236,328 158,309 11,110,015 7,270,590 484,282 194,308 114,829 34 142,256 
Source: Martín et al. (2012), Own elaboration 

Bel and Fageda (2010a) also mention excess capacity as one of the main reasons for the 
lack of profitability of Spanish airports. In order to illustrate that, we now calculate the 
average ratio of passengers to terminal surface from the Tables above. Spanish airports 
serve, on average, 58 passengers per square meter (ppsm) of terminal, while the industry 
average is 108 ppsm, much closer to well-established 100 ppsm benchmark typically 
used for airport design (and explicitly acknowledged in most Spanish airports’ Master 
Plans). With this simple evidence, and further to the information shown in Figure 1, it 
can be concluded that the Spanish airport system is, on average, clearly not profitable 
under the existing conditions. 

6. RESULTS AND DISCUSSION 

Two parallel chains of the profit system were run 300,000 times with a burn-in of 
100,000 draws to reduce the impact of initial values. Convergence of all parameters was 
checked with the Gelman-Rubin statistic implemented in WinBUGS. The estimated 
coefficients of both cost and revenue frontiers are shown in Table 4. Note that the vast 
majority of parameters are significant at 95% confidence level. The cost model provides 
very interesting conclusions about airport technology. The inverse of the sum of the 
first-order output coefficients yields the (geometric) average airport’s scale elasticity. 
This results in a value of 1.65, indicating that airports operating around 2 million 
passengers (See Table 3) enjoy increasing returns to scale (IRS) and hence, average 
operating costs can be assumed to decrease with the scale of production. The positive 
squared output interactions indicate that these significant IRS will inevitably become 
exhausted at some undetermined point. The negative dom*int interaction, however, 
indicates that airports are benefiting from cost complementarities between domestic and 
international passenger movements in order to expand their IRS range.  

These results are very similar to Martín and Voltes-Dorta (2011). On the contrary, our 
positive and significant time-related interactions are in sharp contrast to those obtained 
                                                 
12 Geometric means represent the approximation point for the translog frontiers. 
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in previous literature. These indicate technical regress during the sample period, which, 
in other words, means that e.g. passenger traffic has become more expensive over the 
years. The explanation is quite simple: other studies featured non-aviation revenues as 
an exogenous output in the cost function, thus allowing for a clear separation between 
passenger-aeronautical and passenger-commercial production processes. Removing this 
variable from our cost function eliminates this distinction and hence, the strong 
development of commercial activities, with all their increased operating costs, appears 
as technical regress. Finally, the hedonic coefficient indicates that marginal ATM costs 
increase more than proportionally with aircraft weight. 

Regarding the revenue frontier, the positive signs of the Asia-Pacific and European 
dummies suggest that average passenger expenditure is higher in these regions than in 
the reference North American airports. A possible explanation for this result is the 
specific management model of airports in US which account for a high proportion of 
North American airports in our sample. In this country, airports act like a landlord and 
airlines are usually involved in the construction and management of terminals. The 
coefficients for the other traffic descriptors have negative signs. Hence, revenues are 
lower in airports with higher airline concentration and a higher share of low-cost and 
charter airlines. Note that the values of aeronautical revenues are usually much higher 
than those of commercial revenues so that the explanation of results for these variables 
is strongly influenced by aeronautical revenues. In this regard, we find similar results as 
in Bel and Fageda (2010b); the market power of airports in relation to airlines should be 
lower when airline concentration is higher, and the share of low-cost and charter carriers 
is higher. The negotiation power of an airline with a high share in an airport should be 
relatively high and both low-cost and charter airlines have less difficulties to move their 
planes to other airports (network airlines must built a complex structure of routes to 
develop efficiently their hub-and spoke operations).   

Table 4. CNSPF estimation results 

Cost Frontier  Revenue Frontier 
node  mean  sd 2.50% 97.50%   mean  sd 2.50% 97.50% 
constant 10.31000 0.01381 10.29000 10.34000  11.10000 0.04098 11.02000 11.18000 
atmh 0.31160 0.01798 0.27680 0.34700  0.29790 0.02839 0.24260 0.35430 
dom 0.19090 0.01059 0.17000 0.21120  0.15310 0.01763 0.11890 0.18780 
int 0.12240 0.00511 0.11240 0.13230  0.19520 0.00884 0.17840 0.21250 
cgo 0.04108 0.00583 0.02967 0.05244  0.08069 0.00862 0.06394 0.09788 
wc 0.33420 0.00163 0.33100 0.33740  0.11690 0.01557 0.08596 0.14720 
wm 0.36250 0.00148 0.35960 0.36540  0.39460 0.01741 0.36100 0.42830 
wp 0.30330 0.00165 0.30010 0.30650  0.48850 0.01979 0.44940 0.52670 
atmh*wc 0.04380 0.00197 0.03995 0.04764  0.06240 0.01846 0.02617 0.09859 
atmh*wm -0.01106 0.00182 -0.01460 -0.00742  -0.07650 0.01642 -0.10890 -0.04470 
atmh*wp -0.03274 0.00202 -0.03672 -0.02885  0.01410 0.01915 -0.02326 0.05204 
dom*wc 0.00094 0.00090 -0.00081 0.00273  0.04150 0.00942 0.02337 0.06020 
dom*wm 0.00444 0.00080 0.00287 0.00598  -0.00555 0.00934 -0.02390 0.01264 
dom*wp -0.00252 0.00093 -0.00433 -0.00071  -0.01389 0.00884 -0.03135 0.00312 
int*wc -0.00480 0.00069 -0.00614 -0.00345  0.02248 0.00617 0.01043 0.03451 
int*wm 0.00266 0.00059 0.00149 0.00383  0.01738 0.00566 0.00608 0.02824 
int*wp 0.00078 0.00072 -0.00063 0.00220  -0.08835 0.01471 -0.11800 -0.05966 
cgo*wc -0.00073 0.00105 -0.00278 0.00135  -0.00923 0.00748 -0.02379 0.00548 
cgo*wm -0.00067 0.00091 -0.00248 0.00110  -0.02055 0.00709 -0.03438 -0.00664 
cgo*wp 0.00093 0.00111 -0.00125 0.00310  -0.01985 0.01393 -0.04752 0.00693 
0.5*wc2 0.10090 0.00289 0.09536 0.10650  0.06129 0.02915 0.00525 0.11760 
wc*wm -0.09894 0.00195 -0.10270 -0.09504  -0.12900 0.02288 -0.17380 -0.08467 
wc*wp -0.01584 0.00267 -0.02106 -0.01057  -0.08558 0.03572 -0.15500 -0.01460 
0.5*wm2 0.13220 0.00250 0.12740 0.13710  0.00341 0.02921 -0.05379 0.06140 
wm*wp -0.00240 0.00247 -0.00726 0.00241  0.03785 0.03192 -0.02493 0.09992 
0.5*wp2 -0.00501 0.00490 -0.01471 0.00437  0.14330 0.05111 0.04651 0.24670 
0.5*atmh2 0.05256 0.00463 0.04349 0.06162  0.06214 0.00755 0.04762 0.07748 
0.5*dom2 0.02706 0.00146 0.02417 0.02987  0.01912 0.00233 0.01454 0.02367 
dom*int -0.00336 0.00119 -0.00568 -0.00099  -0.00928 0.00249 -0.01424 -0.00448 
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0.5*int2 0.01419 0.00093 0.01238 0.01601  0.02256 0.00147 0.01967 0.02543 
0.5*cgo2 -0.00165 0.00144 -0.00449 0.00116  0.00664 0.00196 0.00283 0.01050 
time 0.01000 0.00146 0.00712 0.01283  -0.00066 0.00230 -0.00518 0.00380 
time*atmh 0.00596 0.00199 0.00201 0.00990  0.00837 0.00302 0.00244 0.01421 
time*dom 0.00176 0.00095 -0.00011 0.00364  0.00197 0.00180 -0.00153 0.00556 
time*int -0.00271 0.00050 -0.00370 -0.00174  -0.00623 0.00079 -0.00782 -0.00468 
time*cgo 0.00106 0.00089 -0.00071 0.00279  0.00120 0.00128 -0.00131 0.00370 
time*wc 0.00155 0.00041 0.00074 0.00236  -0.01037 0.00318 -0.01675 -0.00414 
time*wm 0.00093 0.00037 0.00020 0.00167  -0.00792 0.00281 -0.01342 -0.00247 
time*wp -0.00451 0.00045 -0.00542 -0.00365  -0.05600 0.00573 -0.06734 -0.04488 
EUR - - - -  0.26190 0.03690 0.18900 0.33410 
AP - - - -  0.28680 0.05409 0.18060 0.39170 
slcc - - - -  -0.16700 0.05712 -0.27740 -0.05217 
scha - - - -  -0.42630 0.06025 -0.54440 -0.30710 
hhi - - - -  -0.37020 0.04949 -0.46610 -0.27110 
psi (hedonic) 1.10326 0.11727 0.91112 1.36256  - - - - 
lambda 4.42200 0.18100 4.08600 4.79700  1.82700 0.05220 1.72600 1.93100 

 
Cost and revenue inefficiencies for the average sample airport can be calculated as the 
inverse of the respective lambda coefficients, these are 22.62% and 54.7%, respectively. 
The latter indicates that airports, on average, should be able to generate slightly over 
twice their actual revenue. This estimate may appear, at first, to be excessive, but note 
that the estimated profit system is not restricted by any fixed factors or external 
restrictions. Therefore, airports lacking commercial orientation, appropriate retail 
facilities, facing draconian price regulations, or having subsidized airport charges will 
incur in significant revenue inefficiencies as they may be compared against best-
practice airports (probably) from other regions. Having Spanish airports subjected to 
these strict benchmarks is necessary in order to find out if they could possibly stand on 
their own in the event of being managed individually. Cost and revenue efficiencies for 
Spanish airports, along with other traffic, financial, and infrastructure indicators for 
2010, are summarized in Table 5. Traffic-weighted inefficiency averages for Spanish 
airports are 31% and 34% for cost and revenue inefficiencies, respectively. If only small 
airports (those serving less than 1 mppa) are considered, the same figures are 23% and 
58%. These sharp differences can be explained by the disproportionate impact of the 
minority of large airports in the calculations, with the small-airport values being closer 
to the aforementioned worldwide average (around 2 mppa) in terms of airport size. 

Cost inefficiencies are mainly determined by the scale of traffic and the utilisation of the 
capacity. The utilization of the capacity is dependent on traffic and indivisibilities 
related with recent investments. In a centralized network management, cost 
inefficiencies may also come from weak incentives due to the lack of competition and 
the cross-subsidiation system.  

Revenue inefficiencies are also associated with traffic levels but also with the type of 
airlines that are operating there (low-cost, charter, network) and the share of dominant 
airlines. Furthermore, an insufficient commercial orientation of the airport and 
aeronautical charges that does not reflect neither costs nor demand conditions could also 
explain revenue inefficiencies.  

Looking at data in table 5, it seems that revenue inefficiencies are more important than 
cost inefficiencies for almost all airports. The cost efficiency of 14 airports is clearly 
lower than the mean sample values. With the exception of Valencia and Tenerife Sur, 
all these airports are characterized by a low utilisation of the capacity (low passengers 
per square meter). These include large airports like Madrid, Barcelona and Málaga with 
recent capacity expansions and airports with very low traffic volumes like for example 
Albacete, Burgos or la Gomera.  
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From table 5, we can also see that the revenue efficiency of 14 airports is clearly lower 
than the mean sample values. All these airports are characterized by low traffic 
volumes. Along with this information, it is also interesting to stress that the airports 
with the best revenue efficiency performance are large airports specialized in tourism. 
Generally, these airports show a high diversification of airlines operating there and a 
high share of low-cost and/or charter carriers. Among the most revenue efficient 
airports, the only exception is the airport of Barcelona which has a higher proportion of 
network carriers offering flights.  

The largest Spanish airport, Madrid, has a revenue efficiency indicator just slightly 
higher than the mean sample values and two airports with more than 4 million 
passengers, Valencia and Tenerife Norte, show a poor revenue efficiency performance 
as well. In all these three airports, the proportion of network carriers is relatively high. It 
is likely that airport charges in these airports, particularly Madrid airport, are too low.  

Airport profitability under efficient conditions is also explored in Table 5. Both profit-
over-revenues and profit-over-cost indicators are calculated under different 
assumptions: i) using the actual values, ii) correcting for cost efficiency13 (-Ceff), iii) 
correcting for revenue efficiency14 (-Reff), and iv) correcting for both (-C&Reff). The 
profit-over-cost values for Spanish airports are shown in Figures 2 to 4. 

Under the assumption of cost efficiency, five airports with financial loses using actual 
values would become profitable; Madrid, Barcelona, Málaga, Oviedo and Murcia. The 
first three are big airports that have expanded capacity recently, while the other two 
have traffic levels of about 1.3 million passengers so they are operating under increasing 
returns to scale. In this regard, it is clear that just few airports are not profitable because 
they are not able to fully exploit scale economies. Likely, the utilisation of the capacity 
will increase in the coming years in the three large unprofitable airports.  

In contrast, a much higher number of airports would be profitable under the assumption 
of just revenue efficiency. Under such assumption, 14 airports would become profitable: 
Madrid, Málaga, Tenerife Norte, Menorca, Santiago de Compostela, Reus, Oviedo, 
Murcia, La Coruña, Vigo, Jerez, La Palma, Granada, Zaragoza. Another two, Barcelona 
and El Hierro, would be very close to profitability. In fact, most of airports with more 
than 500.000 passengers per year would become profitable under the assumption of 
revenue efficiency. This is within the traffic threshold in which the European 
Commission (2002) set the profitability of airports in France, Sweden and United 
Kingdom.    

Finally, under the assumptions of cost and revenue efficiency only ten airports would be 
unprofitable; Valladolid, Melilla, San Sebastián, Salamanca, Vitoria, Burgos, La 
Gomera, Córdova, Logroño and Albacete. These airports have low traffic levels and 
most of places where they are located are well connected though trains and roads. 
Recall that regional and local governments have spent a great amount of public 
resources in subsiding private airlines to operate in these facilities. This additional 
source of inefficiency is not considered in our analysis because it is out of the 
responsibility of the airport operator. Only the functioning of La Gomera and Melilla, 
which are located in peripheral places, could be justified on social grounds.  

 

                                                 
13 This is achieved by just multiplying the actual cost by the cost efficiency estimate. 
14 Efficient revenues are calculated by dividing the actual figures by the corresponding efficiency. 
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Table 5. Traffic, efficiency, and profitability indicators at Spanish airports (2010) 

Airport 
tc/pax 
(EUR) 

trev/pax 
(EUR) Ceff Reff 

Profit/ 
Revenue -Ceff -Reff -C&Reff 

Profit/ 
Cost -Ceff -Reff -C&Reff 

ALBACETE (ABC) 293.10 12.4 0.643 0.096 -2264% -1420% -126% -45% -96% -93% -56% -31% 
ALICANTE (ALC) 6.19 9.35 0.914 0.664 34% 40% 56% 60% 51% 65% 128% 149% 
ALMERIA (LEI) 20.33 9.94 0.598 0.555 -105% -22% -13% 32% -51% -18% -12% 47% 

ASTURIAS (OVD) 10.71 8.97 0.760 0.684 -19% 9% 18% 38% -16% 10% 22% 61% 
BADAJOZ (BJZ) 44.79 7.19 0.728 0.210 -523% -354% -31% 5% -84% -78% -23% 5% 

BARCELONA (BCN) 14.81 11.34 0.525 0.799 -31% 31% -4% 45% -23% 46% -4% 82% 
BILBAO (BIO) 10.00 10.54 0.796 0.739 5% 25% 30% 44% 5% 33% 43% 79% 

BURGOS (RGS) 172.34 6.85 0.744 0.189 -2417% -1773% -377% -255% -96% -95% -79% -72% 
CORDOBA (ODB) 732.30 31.84 0.674 0.184 -2200% -1449% -323% -185% -96% -94% -76% -65% 

FUERTEVENTURA (FUE) 7.99 7.99 0.672 0.779 0% 33% 22% 48% 0% 49% 28% 91% 
GIRONA (GRO) 4.98 7.6 0.928 0.613 34% 39% 60% 63% 52% 64% 149% 168% 

GRAN CANARIA (LPA) 6.59 7.88 0.754 0.764 16% 37% 36% 52% 20% 59% 57% 108% 
GRANADA (GRX) 14.93 7.97 0.862 0.482 -88% -62% 10% 22% -47% -38% 11% 28% 

HIERRO (VDE) 36.50 3.39 0.892 0.099 -976% -859% -7% 5% -91% -90% -6% 5% 
IBIZA (IBZ) 6.47 7.21 0.843 0.673 10% 24% 40% 49% 12% 32% 66% 96% 

JEREZ (XRY) 17.13 10.18 0.894 0.462 -68% -50% 22% 30% -41% -34% 29% 44% 
LA CORUÑA (LCG) 13.85 8.58 0.875 0.433 -61% -41% 30% 39% -38% -29% 43% 64% 
LA GOMERA (GMZ) 170.21 6.47 0.726 0.063 -2533% -1812% -65% -20% -96% -95% -39% -17% 

LA PALMA (SPC) 20.16 5.08 0.872 0.240 -296% -246% 5% 17% -75% -71% 5% 21% 
LANZAROTE (ACE) 6.83 7.66 0.858 0.574 11% 23% 49% 56% 12% 31% 95% 128% 

LEON (LEN) 89.10 8.03 0.533 0.162 -1009% -491% -80% 4% -91% -83% -44% 4% 
LOGROÑO (RJL) 224.64 10.06 0.660 0.086 -2019% -1299% -83% -21% -95% -93% -45% -17% 
MADRID (MAD) 16.06 12.23 0.662 0.489 -31% 13% 36% 57% -24% 15% 56% 135% 
MALAGA (AGP) 11.91 10.21 0.539 0.817 -17% 37% 5% 49% -14% 59% 5% 94% 
MELILLA (MLN) 41.59 4.71 0.923 0.385 -782% -714% -240% -213% -89% -88% -71% -68% 

MENORCA (MAH) 13.03 7.73 0.806 0.571 -69% -36% 4% 22% -41% -26% 4% 29% 
MURCIA (MJV) 9.76 8.11 0.781 0.580 -20% 6% 30% 46% -17% 6% 43% 84% 
PALMA (PMI) 6.13 7.88 0.777 0.806 22% 40% 37% 51% 29% 66% 60% 105% 

PAMPLONA (PNA) 31.14 8.57 0.664 0.333 -263% -141% -21% 20% -72% -59% -17% 25% 
REUS (REU) 11.61 7.42 0.918 0.478 -56% -43% 25% 31% -36% -30% 34% 46% 

SALAMANCA (SLM) 95.65 12.42 0.806 0.158 -694% -540% -25% -1% -87% -84% -20% -1% 
SAN SEBASTIAN EAS) 27.48 8.98 0.881 0.480 -206% -169% -47% -29% -67% -63% -32% -23% 

SANTANDER (SDR) 14.13 7.33 0.602 0.640 -93% -16% -24% 26% -48% -14% -19% 34% 
SANTIAGO (SCQ) 11.09 8.4 0.801 0.715 -32% -6% 6% 24% -24% -5% 6% 32% 
SEVILLA (SVQ) 8.72 9.64 0.819 0.717 9% 26% 35% 47% 10% 35% 54% 88% 

TENERIFE NORTE (TFN) 8.14 5.98 0.768 0.492 -36% -4% 33% 49% -26% -4% 49% 94% 
TENERIFE SUR (TFS) 7.86 9.58 0.717 0.845 18% 41% 31% 50% 22% 70% 44% 101% 

VALENCIA (VLC) 8.70 10.24 0.700 0.508 15% 41% 57% 70% 18% 68% 132% 231% 
VALLADOLID (VLL) 21.70 7.76 0.841 0.498 -179% -135% -39% -17% -64% -57% -28% -15% 

VIGO (VGO) 14.62 8.82 0.926 0.396 -66% -54% 34% 39% -40% -35% 52% 64% 
VITORIA (VIT) 388.44 64.65 0.676 0.480 -501% -306% -189% -95% -83% -75% -65% -49% 

ZARAGOZA (ZAZ) 25.60 10.93 0.861 0.355 -134% -102% 17% 28% -57% -50% 20% 40% 

 

 

 

 

 

 

 



 

Figure 2 Impact of cost efficiency on 
Source: AENA (2011), Own elaboration 

Figure 3 Impact of revenue efficiency on profitability of Spanish Airports 
Source: AENA (2011), Own elaboration 

Figure 4 Impact of cost and revenue
Source: AENA (2011), Own elaboration 
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In Spain, the centralized management has been traditionally justified on the basis that 
small airports are not able to exploit scale economies. From our analysis, revenue 

airports. Within a 
, few airports would be clearly unprofitable. In fact, just 

those airports with less than 500.000 passengers would likely incur in financial loses. 
This suggests the viability of an individualized management as it is common in most of 
European and North American countries. In such a context, it would be advisable that 
airport charges were set according to the specific costs and demand conditions of each 
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airport. Furthermore, the financial viability of small airports could be guaranteed with 
an adequate promotion of commercial activities in their facilities.  

Our analysis suggests that the revenue side in airport operations should deserve more 
attention. In fact, the Spanish case illustrate that revenue inefficiencies are crucial to 
understand difficulties of some airports to be profitable. Note also that airport managers 
may have restrictions to afford cost inefficiencies related with the use of the capacity. 
Indeed, there are indivisibilities associated with new investments and the amount of 
traffic than an airport may generate is usually dependent upon local demand. However, 
they may have more flexibility in promoting commercial activities in their sites. And a 
strict regulation of aeronautical revenues should be just clearly justified in those cases 
where the market power of the airport in front of the airlines is strong.  

As a final remark, future research should look into the disaggregation of aeronautical 
and non-aeronautical revenues, perhaps with the estimation of a three-equation profit 
system. This separation will allow for a better characterization of the impact of 
managerial factors such as ownership or price regulation on aeronautical revenue 
efficiency.  
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APPENDIX A. Model specification  

A.1 Long-run cost frontier 

	
,-�. = F(�,�, 4) + 5�. + O�. = 
� + 
�P4Qℎ + 
RSEQ + 
T�
4 + 
UVFE + �W�X
+ �Y�( + �Z�[ + �\P4Qℎ ∙ �X + ���P4Qℎ ∙ �( + ���P4Qℎ ∙ �[

+ ���SEQ ∙ �X + ��RSEQ ∙ �( + ��TSEQ ∙ �[ + ��U�
4 ∙ �X + ��W�
4
∙ �( + ��Y�
4 ∙ �[ + ��ZVFE ∙ �X + ��\VFE ∙ �( + ���VFE ∙ �[

+ ^��0.5 ∙ �X ∙ �X + ^���X ∙ �( + ^�R�X ∙ �[ + ^�T0.5 ∙ �( ∙ �(

+ ^�U�( ∙ �[ + ^�W0.5 ∙ �[ ∙ �[ + ��Y0.5 ∙ P4Qℎ ∙ P4Qℎ + ��Z0.5
∙ SEQ ∙ SEQ + ��\SEQ ∙ �
4 + �R�0.5 ∙ �
4 ∙ �
4 + �R�0.5 ∙ VFE ∙ VFE
+ `R�4 + `RR4 ∙ P4Qℎ + `RT4 ∙ SEQ + `RU4 ∙ �
4 + `RW4 ∙ VFE + `RY4 ∙ �X
+ `RZ4 ∙ �( + `R\4 ∙ �[ + 5�. + O�. 

aX = �W + �\P4Qℎ + ���SEQ + ��U�
4 + ��ZVFE + ����X + ^���( + ^�R�[ + `RY4 

a( = �Y + ���P4Qℎ + ��RSEQ + ��W�
4 + ��\VFE + ����X + ^�T�( + ^�U�[ + `RZ4 

a[ = �Z + ���P4Qℎ + ��TSEQ + ��Y�
4 + ���VFE + ��R�X + ^�U�( + ^�W�[ + `R\4 

 

A.2 Revenue frontier 

	
,7�. = F(�, �, 4) + �T�bI7 + �T�cd + �T��	VV + �TR�VℎP + �TTℎℎ� + 5�. + O�. 

 

A.3 Equations/restrictions common to both models 

P4Qℎ = P4Q + 3�Q4Ee 

�W + �Y + �Z = 1; �\ + ��� + ��� = 0; 		��� + ��R + ��T = 0;		��U + ��W + ��Y = 0;  

��Z + ��\ + ��� = 0; ��� + ��� + ��R = 0;^�� + ^�T + ^�U = 0; ^�R + ^�U + ^�W = 0; 

`TU + `TW + `TY = 0 

 

(all variables in g(.), except time, are logged and deviated from their sample averages) 
 

 

 

 


