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Abstract

This thesis reviews and develops image reconstruction for positron emission tomography 

(PET) with some exploration of the related issues of statistical design and analysis of 

medical experiments that use PET. Following overviews in the first two chapters on image 

analysis in general and PET in particular, the discussion of image reconstruction focuses 

on estimation of hierarchical Bayesian models applicable to raw data. Chapters 2 and 3 

derive reasonably fast algorithms for hierarchical maximum-likelihood and Bayesian image 

estimates, and Chapters 4 and 5 integrate some regularization and smoothing estimates 

into the Bayesian framework.

In addition, this thesis covers several more specific statistical issues associated with 

three key difficulties of PET: the data are indirectly observed, the spatial resolution is 

limited, and the reconstructed image is constrained to be nonnegative. These difficul-

ties explain some of the advantages and drawbacks of linear, maximum-likelihood, and 

Bayesian image estimates. Finally, the ideas presented here are focused by the analysis 

of a specific medical imaging study performed at Massachusetts General Hospital and de-

scribed in Chapter 6. Chapter 7 adapts the models and techniques developed in earlier 

chapters to the applied problem by deriving expressions for bias and variance of local aver-

ages of various PET estimates. The final chapter discusses the difficulties of handling real 

PET data and concludes with an example of how knowledge of biological spatial structures 

affects the design and analysis of medical imaging experiments.
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Notation Appearing in More than One Chapter

Symbol Meaning
Section 

where Defined

9 = (90 Vector of gray levels of pixels 1.1

N Number of pixels in an image 1.1

y = (%) Vector of data 2.1.1

X = (Xj) X = E(Y\g) 2.1.1

n Length of data vector (number of 
tubes)

2.1.1

R = (Rj) Vector of random coincidence rates 2.1.1

a = diag(aj) Diagonal matrix of attenuation 
corrections for tubes

2.1.1

A = (a,j) Matrix of angle factors 2.3

P Forward projection operator 2.3

B Blurring operator 2.3

F Filtering operator for filtered back- 
projection

2.3

“ = (âi) Vector of average attenuation 
corrections for pixels

2.3.2

h = (hk) Vector of regional parameters of an 
image

2.3.4

W Matrix transforming h to a regionally- 
constant image

2.3.4

Region k of an image 2.3.4

Z = (zij) Matrix of unobserved counts in pixels 
and tubes

2.3.2

Z = (zi) 2* - Ej zij 3.3.1

9 Hyperparameters of an image model 3.3.1



Introduction

This thesis discusses image reconstruction for positron emission tomography (PET), to-

ward the general goal of improving the design and analysis of medical imaging experiments. 

To fix ideas and focus attention on realistic issues, this work is presented in the context 

of one study of the physiological effects within the brain of different eye-tracking tasks. 

PET is a useful tool in this study because it measures concentrations of selected chemi-

cals within a functioning organ, the brain, without requiring any physical intrusion. The 

output of this noninvasive procedure is a three-dimensional map (or image) of metabolism 

within a brain and is obtained by a mathematical transfomation of the observed indirect 

data. Current methods of PET image reconstruction are somewhat unsatisfactory, for 

at least two reasons. First, storing and handling three-dimensional information about 

the brain is difficult, and three-dimensional images are generally stored inconveniently 

as arrays of two-dimensional slices. Second, statistical estimation and the interpretation 

of estimates is difficult for a complicated image with many parameters estimated from a 

large array of indirect, noisy data. This thesis attacks the second problem, reviewing and 

providing careful implementations of some PET reconstructions and estimates of their er-

rors, with an eye toward improving estimates by using spatial knowledge about the brain. 

Ultimately this work should be unified by probabilistically incorporating knowledge of the 

brain’s three-dimensional structure into PET images, with enough understanding of the 

uncertainty of the reconstructions to apply the principles of experimental design to future 

PET studies.
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Statistical issues

A typical PET experiment gives each of several patients a series of cognitive tasks and 

during each task produces a three-dimensional scan of the concentration of a radioactive 

isotope within the brain. The experiment’s goal is to understand the effect of the tasks 

on some aspect of brain physiology. (For example, the experiment described in Chapter 

6 of this thesis studies the effect of eye tracking on blood flow in the brain.) A series 

of statistical issues, starting with image reconstruction, arise in such a medical imaging 

experiment. In biological imaging, one must connect image estimation and analysis with 

prior knowledge of the spatial structure under study; this issue influences many phases 

of an experiment, starting with the design. For a PET study, one must pick an isotope 

activated by a process that is differentially activated by the cognitive tasks of interest. 

The brain comprises several dozen anatomical and physiological regions, and the physical 

PET scan can be configured to observe a few selected regions of interest with especially 

high accuracy. At the next step, the spatial resolution of the reconstructed image can be 

improved by knowledge of the locations of regions in the brain within which isotope con-

centration should be roughly uniform. Finally, the results of a medical imaging experiment 

generally are expressed in terms of previously mapped anatomical regions; understand-

ing of the functions of these regions should allow a vast set of image data to be usefully 

reduced. •

A key difficulty arises from the limited spatial resolution of PET scanners: the data do 

not in general allow us to reconstruct fine detail, and the standard reconstruction method 

now in use actually estimates a blurred map of isotope concentration. In fact, if one refuses 

to make any assumptions, then the limited resolution allows no choice but to reconstruct 

a blurred image; however, if a set of assumptions can be expressed probabilistically, one 

can estimate the unblurred image directly by Bayesian methods. This step of course leads 

to two concerns: first, how sensitive is a Bayesian image estimate to its assumptions,
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and second, can the PET data be summarized by a set of plausible images rather than a 

single image? These concerns correspond to the statistical issues of bias and variance of 

estimation.

The ultimate goal of a statistical study of PET is to combine the tasks of experimen-

tal design, image reconstruction, and data reduction, in the following ways. The same 

biological understanding that suggests appropriate summaries of an image (such as aver-

ages within known anatomical regions) can be formalized into assumptions that lead to 

more accurate image estimates. Expressions for bias and variance of estimated images and 

image summaries should lead to answers to design questions such as how many patients 

and tasks are recommended to estimate an effect of a given size. Finally, for a particular 

problem, one can choose an estimation method that leads to a cost-effective design to 

estimate the image summaries of substantive interest.

Outline of this work

The first three chapters of this thesis provide the basics of PET reconstruction—a review 

of recent literature in statistical image estimation from projection data, and some contri-

butions not in the previous literature. Chapter 1 gives a brief overview of image analysis, 

to put the rest of the thesis in perspective. Chapter 2 introduces the physical set-up of 

PET and the relevant mathematics. Filtered back-projection—a Fourier-based method 

that is currently used in practical PET reconstructions-is derived following descriptions 

in standard references but with additional care devoted to the realistic problem of finite 

data. Likelihood-based methods of indirect image reconstruction and their difficulties are 

then reviewed and explored. The derivation presented here of the iterative EM algorithm 

for maximum likelihood image estimation follows previous sources, with two original ex-

tensions. First, the algorithm in this thesis is the first likelihood-based method to account 

for “random coincidences” and “attenuation”—two features of real PET data ignored in 

the literature on EM for PET. Second, the reconstruction algorithm is implemented in

3



terms of high-level “projection” operators; this form is conceptually clear as well as easy 

to implement on computers that currently use the filtered back-projection algorithm.

Chapter 3 of this thesis discusses Bayesian estimation for PET, starting with a review 

of the recently popular approach to image estimation based on Gibbs probability models 

and the stochastic relaxation algorithm. This method is then used for PET by applying a 

homogeneous Bayesian model to the whole image, or separately to each region of the image. 

Once again some recent literature is followed, but with innovations: the implementation 

presented here accounts for the form of real PET data and is expressed in terms of the 

projection operators. In addition, the suggestion is made to average over rather than 

estimate hyperparameters in a Bayesian model of a single image; the averaging can be done 

conveniently—both conceptually and computationally—in both the EM and stochastic 

relaxation algorithms.

Chapters 4 and 5 complete the synthesis of recent PET reconstruction methods from 

a Bayesian perspective. In discussing regularization, or penalized likelihood estimation, 

Chapter 4 describes two methods in the literature: maximum entropy and the aborted 

EM algorithm. Depending on details of the algorithms, each can be interpreted as fully 

or partly Bayesian; we discuss the validity of various confidence statements implied by 

these methods and how they approximate fully Bayesian statements. In particular, a 

replacement for the aborted EM algorithm is proposed that is conceptually more satisfying 

and should be easier to implement. Chapter 5 reviews conditional autoregressive (CAR) 

spatial models (a subclass of the Gibbs models of Chapter 3) and their application to 

image estimation. An original contribution here is to show that linear smoothing yields 

maximum posterior probability estimates under Gaussian CAR models, which are again 

applied to the indirect PET problem through the EM and stochastic relaxation algorithms.

The final three chapters apply image reconstruction methods to a specific medical 

experiment. Chapter 6 describes a recent study at Massachusetts General Hospital of 

ten three-dimensional PET images, each summarized by average blood flow in a set of 

4



anatomical brain regions. An exploratory analysis yields some substantive and statisti-

cal conclusions, and shows the limitations of the design of the study and of the filtered 

back-projection method used to reconstruct the images. Chapter 7 derives the bias and 

variance of estimates of regional averages of images for three reconstruction methods: fil-

tered back-projection, maximum likelihood estimation of regional averages, and general 

Bayes estimation. The bias and variance expressions, based on a weighted least-squares 

approximation, are original, and for practical use are described using computable algo-

rithms as well as formulas in matrix algebra.

The maximum-likelihood and Bayesian estimates are based on assumptions that cannot 

always be tested by PET data; because of this problem the bias of these estimators must 

be studied when their assumptions are wrong. For the medical study being considered, 

the relevant assumptions not testable by PET involve the exact locations of anatomical 

brain regions in different patients, and the pattern of isotope concentration within the 

regions. Chapter 8 explores how assumptions about brain structures may be encoded 

probabilistically and then subsumed into the Bayesian estimation and error analysis. This 

final chapter concludes with an outline of a method, as yet untried, to connect image 

estimation to experimental design, using knowledge of the uncertainty in images derived 

from PET data; design suggestions should allow the investigator to choose a method of 

image reconstruction to suit a particular problem.

This thesis refers constantly to the PET problem and its details. Grounding the 

theoretical work in a practical problem is essential in a problem as complex as image 

reconstruction; however, many of the techniques reviewed and developed here should be 

useful in a variety of problems in spatial statistics.
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Chapter 1

Selective Overview of Image 
Analysis

We define an image as a quantity defined on a two- or three-dimensional space. Before 

getting to specifics of estimation of medical images, we will describe the field of digital 

image processing: computer manipulation of image data. Image processing can be said to 

comprise four tasks: enhancement, restoration, coding, and understanding (Lim, 1988).

Altering an image for human viewers, either for visual clarity or to emphasize some 

special feature, is called image enhancement.

Example 1.1: Adaptive histogram equalization

Consider a monochrome image that ranges in brightness from black to white. 

Assume, however, that the image is composed of several regions, each of fairly 

uniform intensity. The features within any given region will be easier to see 

if the brightness scale in that region is expanded to cover the whole range of 

intensity. That is, the darkest areas in a region become black, the brightest 

areas become white, and intermediate intensities are scaled correspondingly. 

This procedure is adaptive because its transformation adapts to the differences 

in different regions of an image. Histogram equalization refers to spreading out 

the frequencies of various intensity levels (within a region) to cover the entire 

range from black to white.
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The task of image reconstruction (or restoration) is to estimate an image from indirect 

(or blurred) data and is an example of an inverse problem (Meehan, 1990). This thesis 

primarily discusses reconstruction, specifically in the medical imaging context. Here the 

image is the blood flow in a bodily organ, as a function of two or three spatial coordinates. 

The indirect data are collected by electronic instruments outside the organ being studied.

Image coding means compressing a discrete image signal so it can be more easily stored 

or transmitted. This is important in applications such as television that involve a steady 

stream of detailed images; however, we will not discuss this topic here.

Finally, image understanding is the task of symbolically Summarizing an image. This 

is needed when image data are required, not to make a cleaner or better image, but rather 

for some other purpose. For example, a medical scan may be performed with the goal 

of diagnosing an illness. This may be done using an estimated image, but the image 

understanding task is here one of discriminating between sick and healthy patients, and 

can be done statistically.

A companion task of image processing is the design of the data recording mechanism, 

so as to best estimate (or summarize) the image. This topic is rarely discussed in the 

literature and will not be discussed here.

Before narrowing our focus, we will briefly mention two statistical topics that are 

similar to image analysis. Spatial statistics in general studies variables that are indexed 

by two- or three-dimensional location (Ripley, 1981). Such a data structure may differ 

from an “image” by being measured, and perhaps defined, on a fixed discrete set of points. 

(An image, in contrast, is defined on continuous space, even if it may be discretized 

for computation or viewing.) An example of spatial statistics is the analysis of spatial 

autocorrelations among yields of a square array of plots.

A shape is another spatial data structure that is not exactly an “image” (Bookstein, 

1986). A shape is typically estimated and summarized by the relative locations of a set 

of “landmark” vertices. A researcher may wish to summarize a series of shapes and track 
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their changes over time. Typical applications in biology and medicine are the shapes of 

leaves and skulls; the tree-dimensional pattern of anatomical regions in the brain is a 

shape structure that is important for tomography.

1.1 Some topics in image reconstruction

In this section, we use a succession of brief examples to introduce some important and 

ubiquitous concepts, models, and methods.

Example 1.2: Gray levels and pixels

Consider a monochrome image of intensities defined on a square region. For 

practical purposes the continuous range of brightness may be digitized into 256 

gray levels, whose extremes of 0 and 255 represent black and white, respectively. 

The image can be further discretized by dividing the spatial region into a 

grid of N picture elements, or pixels, and summarizing the image by “pixel 

intensities,” each of which is the average gray level (rounded to the nearest 

integer) within a pixel. The original continuous image is now coded as a 

vector g = (g1,... ,gyy) of discrete gray levels.

An assumption of continuity or local smoothness of the image can be expressed 

as follows: neighboring pixels are likely to have similar intensities. Two pixels 

are neighbors if they are close enough for this purpose; the set of all neighbors 

of a pixel is its neighborhood. A maximal set of pixels, all of whose pairs are 

neighbors, is called a clique. Clearly, the exact labeling of neighbors depends 

on how fine the pixel grid is, and also on substantive understanding of the 

continuous image. If the two-dimensional image has been coded as a vector of 

length N, the neighborhood structure may be coded as an N X N matrix.

Example 1.3: Image of categories

In this type of image, each pixel is assigned one of 1 labels. The number of
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labels I is fairly small (/ = 2 for a binary image) and, unlike the previous 

example, the categories are not an approximation of a continuous scale. The 

categories could, for example, be different kinds of terrain in a satellite photo. 

In another example, zeroes and ones in a binary image could stand for black 

and white, respectively, in a display of a monochrome image, such as would 

appear in a newspaper. (The spatial grid of pixels here, however, may very well 

be just a discretization of a continuous space.) An estimate of a categorical 

image may be judged by the proportion of pixels whose estimated labels differ 

from the truth; this discrepancy is called the error rate. Many writers have 

commented that this simple measure can be misleading; Ripley (1988, p. 101) 

gives an example of this.

Example 1.4: Smoothing

Consider an unknown image g of gray levels, to be estimated from a “data” 

image Y that is a pixel-by-pixel sum of truth plus white noise. (That is, the 

noise is composed of independent Gaussian random variables in each pixel 

with zero mean and common variance.) Assume that the true image, unlike 

the noise, is “smooth”—it varies slowly over space. One could consider two 

approaches to averaging and presumably cancelling some of the noise here: 

using an algorithm to smooth the data image or modeling the true, smooth 

image. (Of course, smoothing algorithms may be useful in estimating an image 

model.)

An example of a smoothing algorithm is a moving average applied to the data 

image. This assigns, to each pixel, a weighted average of the gray levels of all 

neighboring pixels in the data image. This of course requires a definition of 

neighborhood”; it would typically be an m x m square of pixels centered at the 

target pixel, for some specified odd integer m. This linear filter will necessarily 

reduce the local differences between pixel gray levels, while barely affecting 
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differences between gray levels of pixels that are far apart. This procedure 

smoothes any sharp features in the data image, whether the features come from 

the noise or the true image. A moving average smoother is not necessarily a 

good procedure for estimating a moving average model of the true image.

In the case of additive independent Gaussian noise, one can consider an image to be 

parameterized by the intensities at its pixels. Then the maximum likelihood estimate of 

the true gray level of a pixel is the data gray level at that pixel; thus, the data image is a 

maximum likelihood estimate of the truth. A less noisy estimate of a smooth true image 

may be obtained by balancing the goals of smoothness and fitting the data; this is called 

regularization and will be discussed in more detail in Chapter 4. (Mitter et al. (1987) 

discuss this topic in more detail; here we refer to regularization in general, not the specific 

form presented in that paper.)

Example 1.5: Maximum penalized likelihood

Continuing Example 1.4, label the unknown true image g; we must create an 

estimate g based on the data image Y. We wish to balance the log-likelihood 

LL(g\Y) with some roughness penalty /(g). The maximum penalized likeli-

hood estimate is the g that maximizes:

ZZ(g|y) - A/(g),

where A is a fixed constant.

This estimate can also be considered the mode of a posterior distribution; in 

this case A is a parameter in a prior distribution for g. If the prior distribution 

for true image (and thus the data image) is stationary, then the smoothness 

parameter A can itself be estimated from the implicit replication in the data 

(Ripley, 1988, p. 6).

Example 1.6: Entropy

Entropy is a measure of uniformity of an image. The entropy, or negative of
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the Kullback-Leibler information, of a vector g = (gi,... ,gN) of gray levels, 

is:

%) = - Çs. iog(y,7m,), 
i

where m = (mi,..., m#), a predefined measure on {1,...,N}, is usually as-

sumed constant. The entropy is maximized by the uniform image g = m. A 

regularization that maximizes entropy subject to a likelihood constraint (or, 

equivalently, an entropy-penalized maximum likelihood estimate) can reliably 

produce smooth image estimates (Gelman, 1989). Entropy cannot strictly be 

called a measure of spatial smoothness, however, because it ignores the loca-

tions of the pixels, being independent of a permutation of pixel labels.

Example 1.7: Inhomogeneous image

Let the true image be composed of several disjoint spatial regions, each of 

which is considered a realization of an independent stationary process. (For 

instance, each region in an agricultural satellite photograph could be a field of 

a single crop.) This situation presents problems for the smoothing approaches 

described above, for two reasons. First, the appropriate amount of smoothing 

will depend on the region of the image; and second, the smoothing process itself 

may blur the boundaries between regions. When the boundaries are known, 

as is sometimes the case in medical imaging, the estimation problem may be 

subdivided, with the advantage that noise estimates may still be pooled across 

regions. When the locations of the boundaries are not known, their estimation 

is a problem of edge detection, in some applications, a task more important 

than estimation within the regions.

Let us step back now and consider the statistical problem of parameter estimation, 

applied to images. Assume that the data Y are n-dimensional (that is, the data can be 

written as a list of n numbers), and are used to estimate an image g of N dimensions (that 
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is, N pixels), considered an approximation to the infinite-dimensional continuous true 

image. Standard asymptotic theory discusses estimation when N < n, both dimensions are 

fixed, and the variance of the estimate of g approaches zero. The method of sieves discusses 

the case when n -> oo and N is allowed to increase too, but at a slower rate (Geman, 1982). 

Often, however, one desires an image estimate of higher resolution than can be provided by 

the data; that is, the discretization is so fine that N > n. In this case, some assumptions 

must be made to tie the N parameters together. An assumption of smoothness can lead 

to a regularization estimate. Alternatively, one could put a probability model on the true 

image, as illustrated in the following example. ■

Example 1.8: Ising model

Consider a binary image g = (gi,...,gN), in which gi = fl or -1. The 

Ising model (described in many sources, including Ripley, 1988, p. 80) is a 

probability distribution on such images:

’ oc
w

where the product is taken over all pairs ij of nearest neighbors in the square 

lattice. The parameter 3 must be specified; positive values favor equal labels 

on neighboring pixels, so that images with large patches of 1’s and -1’s have 

high probability. Conversely, negative values of 3 favor opposite labels on 

neighboring pixels, yielding checkerboard-type images with high probability. 

Large absolute values of 3 induce long-range dependence in the pixel labels; 

this may be good or bad from a modeling perspective (Besag, 1986).

The Ising model is an example of a Gibbs distribution on the pixel values. In 

general, a Gibbs distribution is identified by a joint probability density that 

factors by cliques. In the Ising model, the cliques are pairs of orthogonally 

(but not diagonally) adjacent pixels. Independence of pixels is a degenerate 

example of a Gibbs distribution in which each pixel is a clique. At the other 
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extreme, any arbitrary distribution has the Gibbs form, if we allow the entire 

set of pixels to be a single clique.

The Ismg model, like all Gibbs distributions, is a Markov field, as identified by the 

following conditional independence property: the probability density of a pixel value, given 

the rest of the image, depends only on its neighbors (Besag, 1974). We will discuss these 

Markov models in more detail in Chapter 3.

With a (prior) probability model of the true image, and a probabilistic relation between 

the truth and the data, the Bayesian approach yields a posterior probability distribution 

for the true image. Typically the unnormalized posterior density can be evaluated for 

any possible image, but the entire ^-dimensional distribution has no simple form, and 

generally cannot even be directly sampled from. Algorithms have been developed for indi-

rectly sampling from Gibbs distributions; stochastic relaxation and the related Metropolis 

algorithm allow a random walk through a distribution of images (Geman and McClure, 

1985; Metropolis et al., 1953). One can sample from a desired distribution by running one 

of these algorithms for a long time and stopping. Simulated annealing is a modification of 

stochastic relaxation that finds the mode of a distribution by randomly walking through 

distributions that are more and more concentrated about the posterior mode (Geman and 

Geman, 1984). The practical utility of this algorithm has been questioned, because: it is 

computationally slow, the distribution may not be well summarized by its mode, and one 

might not fully believe in an W-dimensional prior distribution chosen partly for its simple 

form (Haslett, 1985; Besag, 1986).

1.2 Medical imaging

Medical imaging is relevant to the rest of this thesis; it also illustrates the specialized 

methods for image reconstruction that can arise from a specific problem. Medical imaging 

refers to the use of external measurements to estimate anatomy or physiology inside a 

bodily organ (typically, the brain). Three common forms of medical imaging are magnetic 
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resonance imaging (MRI or NMR), computerized axial tomography (CT or CAT, also 

called transmission tomography), and positron emission tomography (PET). MRI is a very 

accurate procedure that uses magnetic oscillation to estimate the locations of different 

chemical elements in the brain and thus infer the anatomical structure. CT transmits 

x-rays through the head in order to estimate the mass density inside. PET, which is our 

focus in this thesis, provokes and then records radioactive emissions inside the brain to 

estimate blood flow. Most of the methods here are useful, in some form, for all of these 

problems; PET is our running example.

All of these methods create indirect, noisy data. The indirect aspect—that data are 

not recorded in the same space as the image—means that special techniques are needed for 

reconstruction, such as maximum likelihood image estimates using missing data (Shepp 

and Vardi, 1982). A different estimation approach for CT and PET estimation uses the 

fact that, in each of these cases, the data are noisy versions of linear projections of the 

true image. Filtered back-projection—a linear method based on Fourier analysis—creates 

exact band-limited reconstruction from noise-free data and provides a fast approximate 

method from real data. The next chapter describes these methods in detail.
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Chapter 2

Introduction to Emission 
Tomography Reconstruction

This chapter outlines the mathematics and some of the physics of positron emission tomog-

raphy (PET). A discussion of some simple methods of reconstruction will point up some 

of the statistical difficulties of this problem. Section 2.2 briefly discusses Fourier-based re-

construction methods, including filtered back-projection, which is used in current practice. 

Section 2.3 introduces likelihood-based methods; maximum likelihood and Bayesian PET 

reconstructions based on the EM algorithm have appeared in many journals. Shepp and 

Vardi (1982) and others suggested the algorithm presented as steps 1-4 in Section 2.3.2 of 

this paper, but ignored the correction for random coincidences. Carson (1986) suggested 

applying EM to regional parameters (Section 2.3.3 below), and Levitan and Herman (1987) 

and others applied EM to maximum posterior estimation for PET (Section 3.3.2 below); 

all of these papers discussed the simplified problem with no random coincidences. These 

sources apparently did not apply the EM steps using the implementation of steps i-v in 

Section 2.3.2 and may have ignored some of the scattering and attenuation effects.

In general, image reconstruction comprises three tasks. First, one must model the 

noise process; that is, the relation between the true image and the data. Second, one must 

decide which features of the true image are to be reproduced in a picture. Third, one 

must use some algorithm to produce a reconstruction. This medical application falls into 

the category of image reconstruction from projections, because the incomplete observed
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Figure 2.1: Positron emission tomography
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data are random functions of linear projections, from various angles in space, of the true 

image. Furthermore, these random functions are known Poisson random variables, and so 

the first task of estimating the noise process is complete.

The physical procedure of PET is as follows: a person inhales or is injected with a 

radioactive tracer, which the blood carries to the organ of interest, typically the brain. 

Here the radioactive isotope disintegrates, emitting positrons. These in turn hit nearby 

electrons, and the resulting annihilation releases two gamma ray photons traveling in 

nearly opposite directions. Finally, these photons hit a ring of detectors surrounding the 

organ, and the hits along this ring are recorded. Figure 2.1 illustrates the PET procedure.

Each emission within the brain yields a pair of photons, either of which may be ab-

sorbed on its way to the detector ring. If this does not happen, and the rays of emission 

intersect the detector ring, then a pair of (effectively) simultaneous counts will be recorded. 

This coincidence localizes the emission to a cylindrical area between the detectors. A se-

ries of emissions are detected, and are assumed to come from independent locations in 

the organ. The coincidence detector pairs are used to estimate the density function of the 

emission locations.
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2.1 Physical and mathematical summary

Here we introduce a particular PET experiment at Massachusetts General Hospital (MGH), 

as described by Elliott (1989); further details appear in Chapter 6. The experiment mea-

sures metabolic activity in the brain, through the injection of radioactive carbon dioxide 

with a half-life of 2 minutes. (The measurements on a single person take over two hours; 

the radioactive isotope is continuously injected.) Typically, measurements are taken before 

and after a brain stimulus.

Three stacked rings, 2.8 cm apart, each with 96 detectors, encircle the head; each 

detector is about 1 cm x 1 cm in cross-section. To improve spatial sampling of data, the 

whole ring wobbles: the detector ring’s orientation remains unchanged while its position 

moves in a circle of diameter about 1 cm every second. The resulting continuous-time 

data are summarized by grouping data into 13 wobble locations for each projection. We 

will label the cylindrical region defined by a detector pair and a wobble position as a 

tube] tomography data are observed at tubes. The head takes up only part of the area 

within the dector ring, and as a result, coincidences are only recorded in 18 detector pairs 

(yielding 18 X 13 tubes) for each projection angle. In addition, the whole experiment is 

done three times with different vertical positions of the detector rings.

Sometimes photons from two different emissions will simultaneously hit two different 

detectors; this event is called a random coincidence (Hoffman et al., 1981). The rate of 

such events is estimated from the total absorption rates at the separate detectors. Not 

all emissions in the direction of the detectors are recorded; this effect is called attenuation 

(Huang et al., 1979). Typically, about 5,000,000 coincidence counts are recorded, of which 

about a third are “random coincidences.”

The continuous density function of blood flow is a monotonic non-linear function of 

the concentration of radioactive tracer and is approximated over a 128 X 128 grid, on each 

of nine vertical levels.
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A computer program creates two-dimensional pictures using the coincidence rates, 

adjusted for random coincidences and attenuation factors. The filtered back-projection 

algorithm (described in Section 2.2 below) is typically used in practice.

2.1.1 Mathematical description

Assume an emission density function g^z) (in units of emissions/volume), that is a 

function of the Cartesian coordinates x,y,z, and tubes indexed by i = 1,2,. ..,n. (For 

convenience we use the same notation g to describe the following three quantities: the con-

tinuous three-dimensional image g(x, y, z), the continuous two-dimensional image g(x, y), 

and the discretized, usually two-dimensional, image coded as a vector g = (g,).) Physical 

theory and experiment allow us to express the observed emissions as independent random 

variables:

Yj ~ Poisson(Aj),

where the Poisson means Xj are integrals over the brain volume:

xi = Ri + Jff g(x,y,z)aj(x,y,z)aj{x,y,z)dxdydz, (2.1) 

Rj = rate of random coincidences appearing in tube j,

aj(x,y>z) = probability that an emission at (x,y, z) will release

gamma rays in paths leading to tube j, and

aX®, y, z) = conditional probability that such a pair of emitted gamma 

rays will reach the detectors and be recorded.

Physical theory tells us that, approximately:

" Ri can be estimated accurately from the rates of emissions observed separately at 

the two detectors that define tube j.

' aj^x'y' 1S an angle factor—the conditional probability that an emission from point 

(x,y,z) will yield gamma rays in paths leading to tube j-that depends only on the 

geometry of the experiment, and can be regarded as known.
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• aAx,y,^ does not depend on (x,y,z) and so can be written simply as ah which 

depends largely on the integrated mass density within the path of tube j.

The function g(x,y,z) varies with the blood flow and metabolism of the organ. We 

wish to estimate the continuous function g(x, y, z) from the observed Yj’s and the known 

Æ/s, a/s, and a/s. We will follow the practice of the lab at MGH and approximate 

9(x, y, z) by a set of two-dimensional images g(x, y), at nine levels z. Each image plane is 

estimated from its own set of detector data.

Furthermore, we will approximate the two-dimensional angle factors. As pictured in 

Figure 2.3 (in Section 2.2.2), a tube j can be located at angle 9 and distance t from the 

origin, and the projection of a point (x,y) on to angle 9 is te(x,y) = æ cos 0 + y sin 9. 

Due to scattering and the finite widths of detectors, emissions at angle 9 reach a range of 

tubes. The angle factors can be approximated:

**'"(*'^ = #pmj^ , where (2.2)

#proj is the number of projection angles 0,

A" is a kernel function, and

d is comparable to the width of a detector and the “resolution limit.”

The blurring kernel in the conditional probability (2.2) arises because the gamma rays 

are not emitted in exactly opposite directions, and their positions are measured coarsely 

as tube locations; the function K and its scale d can be measured experimentally from 

the counts observed from a point source. In the MGH experiment, K is approximately 

Gaussian and d % 4 mm.

Note that in this approximation, at<e(x,y) is independent of 0, reflecting the assump-

tion that emissions reach all detector angles in equal expected numbers.
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Figure 2.2: Continuous PET projections

projection

2.2 Fourier image reconstruction from projections

The standard method for reconstruction of tomography images is filtered back-projection, 

an algorithm based on the mathematics of the two dimensional Fourier transform. We 

will derive this method, which is an exact solution for the idealized case of continuous 

projection data, and then discuss the approximate method used for real, discrete data.

The Fourier method yields a two-dimensional density estimate that is linear in the 

adjusted coincidence rates (Yj — Rj)/aj; the method is not completely satisfactory with 

finite data, because it ignores the probabilistic data recording mechanism (the Poisson 

distributions of the counts).

2.2.1 Solution for the continuous problem

The continuous Fourier method exactly reconstructs a two-dimensional emission density 

function g(x,y), given an infinite number of detectors and error-free projection data, as 

described in Kak (1984).

In the continuous idealization, projections pe(t) are observed for every polar coordinate 

{0, t), as pictured in Figure 2.2. A projection is an integral of the emission density along 

a straight line at an angle 9 to the x-axis, a minimum distance t from the origin. We can 

express this integral in terms of rotated coordinates (s,t) = (x sin 6 - y cos 9, x cos 0 f
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y sin#):

= J 9(x(s, t), y(s, t)) ds (2.3)

This map from image g(x,y) to projections pg(t) is called the Radon transform or con-

tinuous projection operator. In the notation of equations 2.1 in Section 2.1.1, the third 

dimension is ignored, the projections pe(t) are adjusted expected counts (Xj - Rj)/aj, 

and the kernel K in equation 2.2 is a Dirac delta function; that is, exact projections are 

observed.

We define the continuous Fourier transforms:

= j pe{t)e~'wtdt 

G^xiVy) =

To relate the projections pg(t) to the image g(x, y), we use the “projection-slice theorem,” 

derived here:

= JIg^s1tYyÇsvtf)e-u‘,tdtds (from equation 2.3)

= j j y V '^(^cosa+ÿsmg) dx dy (changing variables)

= G(wcos#, wsin#).

One can now linearly reconstruct a two-dimensional image from exact knowledge of all its 

projections, as follows:

1. For each 6, calculate the Fourier transform of the projections at the angle 9, for 

t 6 (-00,00). This yields for each 6.

2. Combine these to get G(wx,wy).

3. Apply the inverse Fourier transform to get g(x,y).

These steps can equivalently be done by the filtered back-projection algorithm, which 

is based on the following formula:

. I foo roo .
(2.4)
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1 yoo
= (2^ Jo Jo G(wcos*,wsinf)eM^

1 p yoo
= 7^ / / G(wcosf,wsing)eM'™^

»/0 V—oo
1

= 2ir Jo cos y + y sin 6) d0,

where IFT is the inverse Fourier transformation.

This corresponds to the following algorithm:

1. For each 0, calculate Pg^Y

2. For each 0, calculate the inverse Fourier transform of P^w)|w|.

3. Back-project this by averaging these functions over 0 to get g(x, y) (using equation 

2.4).

This method can be effectively adapted to the problem with finitely many detectors.

2.2.2 Finite number of projections

The above formulas still hold, with some slight alterations, for the finite case. Now, of 

course, we cannot hope to reconstruct an arbitrary continuous function g(x, y). Rather, a 

linear algorithm in this discrete-data PET problem reconstructs the Fourier components 

of g(x, y) with low spatial frequency, given exact data at a finite number of angles and 

projections.

To simplify the geometry, we assume that the diameter of the detector ring is much 

larger than that of the organ under study. Our data are the same as in the continuous 

case, except that projections are of tubes of finite width 2R, and we ignore the wobbling 

of the detector ring. The approximation that tubes have equal width is reasonable if the 

support of g—that is, the cross-section of the organ under study—is less than half the 

diameter of the detector ring, as occurs in practice. (The wobble increases the number 

of projections observed and was irrelevant in the last section, which assumed continuous 

data.) To simplify notation, we also ignore attenuation and random coincidences, for which
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Figure 2.3: PET projections of finite width.

discrete projection

ÇW

this procedure corrects with the obvious linear transformation. The following variables 

are pictured in Figure 2.3:

• The number #proj of projection angles equals the number of detectors in the ring. 

Each projection angle corresponds to a series of tubes centered at coordinates r = 

iR, i3R, i5R,..., or r = 0, i2R, i4R,.... Measurements for each projection angle 

0 are a series of counts ^(r), where r is the coordinate of the center of the tube. 

Measurements are taken at #proj projection angles, which equals the number of 

detectors.

• Expected counts are sg(r).

• The emission density g(x,y) has support in the unit circle.

For an emission near the center of the length of a detector tube specified by (r,^, 

the probability that the gamma ray paths will remain in the tube is proportional to the 

distance to the edge of the tube and must be normalized by the number of projection 

angles:

= (1 “ , for t e [r - A, r + R],

This expression is a function of 9 because t = icosO + y sin 9 and is a specific form, 

accounting for finite detector widths but not for scattering, of equation 2.2. The counts 
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in the tube can come from the range t G [r - R, r + R] in coordinates, and so their 

expected number is an integral over this range:

tr+R fL(t)
W) = / dt g(x(s,t),y(s4))a(t,r) ds,

where L(f) = \/l - t2 (The organ lies within the unit circle.)

« x/1 — r2 for a large detector ring, which we assume.

Using the projection pe(t) defined in the continuous case above,

= Lr V ~ ~R~) dt' (2-5)

. and s8(t ) ~ independent Poisson(se(r)).

We will assume that the expected counts sg(r) are actually observed, and define, for 

each angle, the discrete Fourier transform. For each 9, there will be approximately 1 /R 

tubes that intersect the unit circle and thus may receive counts. The Fourier frequencies 

are then w = Of, If,..., Te , and the Fourier transform of interest is:

, for w = k~, k = 0,1,...,!. 
r £ R

Using equation (2.5):

(2.6) 

where 6(t) = t - r, and r is the t-coordinate of the center of the tube in which t lies. The 

sawtooth function 0(f) maps the interval [-1,1] repeatedly on to [-#,#].

Consider the two functions:

M1) = Pe(t)e

and f2(t) _ e«w5(t) A _ RG)h
\ R J ’

which appear inside the integral (2.6), for the range t e [-1,1],

The periods of these functions are generally different. We will make the approximation 

that the functions are uncorrelated. It seems likely, but is not clear, that this assump-

tion introduces no systematic errors in the reconstruction. The approximation simplifies
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equation 2.6 to:

dt

PM fR

(2.7)

Note that the factor is near l for the entire range of Fourier frequencies u 

from 0 to A.

If we assume that pg(t) is band-limited (that is, its Fourier transform is zero above the 

frequency ^), then equation 2.7 allows us to derive #(w) from S8^y

■ 5 (s^)2W.
and we can use the continuous formulas to reconstruct from P6^\ In particular, 

we can apply the following back-projection algorithm:

1. For each 0, calculate S6(w).

2. For each 0, calculate the inverse Fourier transform of

^(^)|^|^ uR/ 2 
sin(wH/2) / ‘

3. Back-project this.

Note that the first two steps above can also be accomplished by convoluting

sg(r) with h(r) = IFT uR/2 y 
sin(a>Æ/2)/

This convolution is called “filtering.”

2.2.3 Filtered back-projection in practice

The wobble slightly alters the case of finitely many projections, improving the approxima-

tions above. Measurements of projections s6(r) are made at more finely-spaced intervals
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of r, allowing the Fourier transform 5g M to be defined at higher frequencies w. Expres-

sion 2.6 becomes a sum over wobble positions, and the integrand can be factorized so that 

/i(t) remains unchanged while /2(*) becomes a sum that approaches a constant as the 

number of wobble positions increase. Approximation 2.7 becomes exact in this case, as 

does the back-projection algorithm. Results are still band-limited, however, due to the 

finite number of projection angles.

The MGH lab uses the filter h(r) = IFT\H, cut off at ignoring the correction 

(sir%/2)) due to the resolution limit expressed in 2.2.2. Cutting off the filter and not 

correcting for blur enhances the low frequencies in the projections in an attempt to smooth 

the image estimate.

2.2.4 Limitations of the Fourier reconstruction

Later chapters will discuss how reconstructions can be analyzed and improved by using 

substantive knowledge of the image context. We restrict our discussion here to limitations 

in the reconstruction of an arbitrary image.

Resolution limit. Given perfect data at finitely many projection angles, the Fourier 

reconstruction of a point source is, approximately, a circular kernel with diameter compa-

rable to the width of a detector. Natterer (1986, chapter 3) gives the resolution Umit as a 

fraction (2ir/#projectons) of the diameter of the image. For the 96 projection angles of the 

MGH lab, this gives a resolution of 1.3 mm in a 20 cm diameter head slice; the practical 

implications of this number are not clear. The reconstruction of an image is then, at best, 

a blurred version of the truth. The resulting image estimate is biased, and fine details of 

the true image will be missed. In any case, the resolution limit, which makes it impossible 

to filter out the blur, comes from finite spatial sampling, not from finite detector widths.

Sampling error. The Fourier-based reconstruction methods are based on various ide-

alizations, the most extreme being the assumption of exact projection data s9(r). When
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Possion counts are substituted for these projections, the resulting image reconstruction 

becomes an unbiased linear estimate of the Fourier reconstruction given noise-free data, 

and can be better understood by calculating the variances and covariances of estima-

tion. Chapter 8 discusses the bias and variance of the image estimate in more detail, and 

Chapter 10 shows some images from the MGH experiment.

2.3 Likelihood for the PET inverse problem

In the context of maximum likelihood reconstruction, this section introduces ideas that 

will be used in later chapters. We begin our statistical study of the two-dimensional PET 

problem by setting up notation. The observed data are a vector Y = (Yi,... ,Yn); each 

Yj is a count at a detector pair and wobble location (of the form ^(r) in Section 2.2.2 

above) with the distribution

Yj ~ Poisson (Xj).

These random variables are assumed independent, and the vector X = of

their means can be expressed in terms of the emission density function g:

X = R + aAg,

where R is a vector of random coincidence frequencies, a = diag(a;) is a diagonal matrix 

of attenuation factors, and A is an all-nonnegative linear transformation of conditional 

probabilities. (R, a, and A are assumed known.) We will discretize the unknown image 

of interest into N pixels:

9 = (gi, • • • ,9n Y

The tranformation A can now be written as an n X N matrix A = (ay) of angle factors 

that can be approximated by equation 2.2.

For clarity, we split the angle factor matrix A into simpler linear operators: A = BP. 

The forward-projection operator P assigns each pixel (x,y) of an image to a location t 

in each projection angle 0; t = x cos0 + ysm0. For each angle, the resulting function 
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of t is the sum of contributions from all image pixels. The computation required is on 

the order of (#pixels x #projection angles). The blur operator B convolutes a vector 

W in Projection space with the kernel K(t) of equation 2.1, for each projection angle 

0. In addition, we define the back-projection operator P*; this is forward-projection in 

reverse, assigning to each pixel a contribution from all of the projection angles, requiring 

the same computation time as forward-projection. The projection operators, as well as 

the blur, can be speeded by operating in the frequency domain, using Fourier transforms 

and interpolation (Stearns, 1990).

As detailed in Section 2.2, P and P1 are not inverses: the inverse of a forward pro-

jection is a filtered back-projection. Labeling the filtering operation as F, the filtered 

back-projection reconstruction from data Y, corrected for random coincidences R and 

attenuation a, is:

g = PtFa-\Y-R). (2.8)

Because of the resolution limit, the filter is inexact: PlF / P~

2.3.1 Exact solutions

The case N > n. The likelihood of the observations Y is maximized by any solution g 

of the equation R+aAg = Y. Solutions of this linear system lie on an (A-n)-dimensional 

hyperplane in the TV-dimensional space of images g. There will typically be an infinity of 

all-nonnegative solution vectors 5, or no such solutions.

Figures 2.4a and 2.4b show the structure of the PET likelihood. The transformation 

g R + aAg maps each positive axis in image space to a ray in the positive orthant of 

data space, emanating from the point R. (A positive axis in image space corresponds to 

a point source image of positive intensity.) The convex hull of all these projected axes, 

shaded in the figures, is the region in data space corresponding to all-nonnegative images. 

Exact all-nonnegative solutions of R 4- aAg = Y exist if the data vector Y lies in this 

region, as in Figure 2.4a. If Y falls outside the shaded region, as in Figure 2.4b, no exact
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Figure 2.4: Constraints on the PET likelihood: the case N > n

True image g Projection X = R + aAg 
Data ~ Poisson(X)

Image Space Data Space

Figure 2.3a: 
Exact solution 

g to Y - R + aAg

Figure 2.3b: 
No exact solution 

g to Y = R + aAg

Shaded areas cover data expectations corresponding to all-nonnegative images g.
Circles around X represent the variability of data Y about their expectations.
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solutions exist. Note that the vector X = R + aAg of expected data necessarily lies within 

this hull, and so Y is only likely to be outside it if X is sufficiently near the edge of the 

hull and the Poisson sample size is small enough. (“Small,” in this context, may be much 

larger than a typical PET data set.)

For “small” sample size, some of the principal components of data help the likelihood 

to identify the true image, while others are nearly useless. (Counts at different wobble 

positions of the same tube are an example of less useful data.) Geometrically, useful 

degrees of freedom correspond to directions in which the shaded convex hull is wide, while 

less useful data correspond to narrow directions in the hull. If the width of the hull in 

some direction is small compared to the Poisson sampling standard deviation of the data, 

then the likelihood will be uninformative in that direction. This topic will be elaborated 

upon in Chapter 4.

The case N < n. The shaded convex hull now lies in an TV-dimensional hyperplane of 

data space that maps one-to-one with the positive orthant of image space.

2.3.2 Maximum likelihood reconstruction

This can be done with various parameterizations of the image. We will first assign a 

nonnegative parameter to each pixel intensity.

Use of the EM algorithm

If they exist, exact all-nonnegative solutions g of R + aAg = Y may be found by linear 

programming techniques (Shepp, 1989). If no such solutions exist, we can use the EM 

algorithm to find the all-nonnegative vector g, generally unique, that maximizes the like-

lihood (Dempster et al., 1977; Shepp and Vardi, 1982; Vardi et al., 1985). We imagine 

missing data: a matrix Z = (z,,) of the number of emissions from pixels i, recorded in 

tubes j, and a vector ZR = (z^) of the number of random coincidences recorded in tube 

j. Then Yj = zRj + zij, and the EM algorithm becomes:
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1. Start with a guess g.

2. E-step: for this Poisson likelihood, we need only calculate the quantities:

and “i-

3. M-step: Find a new estimate, g*, to maximize the complete-data likelihood with 

the above expectations substituted in. The components of this estimate are: g* = 

Ej ^Wy,g)/ô;, where à, = aja^.

4. Relabel g = g* and repeat steps 2 and 3 above.

Implementation for PET

The steps in this iteration, presented algebraically above, may be computed using no 

computer storage or new types of computer operations beyond those of the filtered back- 

projection or Fourier methods now in use. This implementation requires the operations 

of forward-projection, back-projection, and blurring, defined in Section 2.3 above.

i. Start with a guess g. "

ii. Create the vector R+aAg (the denominator of equation 2.9): forward-project g, then 

blur, multiply by attenuation factors, and add random coincidences in projection 

(data) space.

in. Normalize the data y by dividing, component-by-component, by the vector that was 

just calculated in step ii.

iv. Create the image vector p" = £(Z|y,ÿ); take the result of step Hi above, multiply 

by attenuation factors, blur, back-project, multiply by g, and divide by average 

attenuation factors in image space. -
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The image of average attenuation factors can be computed before step i: take a unit 

vector in projection space, multiply by attenuation factors, blur, and back-project.

v. Relabel g = g* and repeat steps ii—iv above.

Advantages and problems with the maximum likelihood estimate

By virtue of being maximum likelihood, this estimate will always be in the allowed pa-

rameter space of all-positive images and, if N < n, is efficient as sample size approaches 

infinity (that is, as the coefficient of variation of the Poisson variables approaches zero).

By defining pixels small enough that N > n, one must estimate more parameters than 

there are data points. It is then hopeless to uses a purely data-based function such as the 

likelihood to pick a unique image estimate. In fact, if N is less than n but still large, then 

the likelihood for moderate sample size will not effectively distinguish among all-positive 

images. As a result, the maximum likelihood estimate will be unacceptably variable and 

have a noisy appearance (Vardi et al., 1985; Snyder et al., 1987). The difficulty comes 

from the uninformative components of data described in Section 2.3.1 above.

If no exact all-nonnegative solutions g of R + aAg = Y exist, then the maximum 

likelihood estimate will lie on the boundary of the space of all-positive images; that is, some 

of its pixel intensities will be zero. In such a problem there will typically be smooth images 

with nearly the same likelihood, and the noisy appearance of the maximum likelihood 

image will contain many distinctive features not strongly supported by the data. This 

behavior can get worse as the number of pixels estimated is increased (Gelman, 1989).

Because of its high variance and possible indeterminacy, the maximum likelihood es-

timate by itself is unsatisfactory for PET; however, the various improvements that have 

been suggested, discussed in the rest of this chapter and in Chapters 3-5, use iterative 

procedures similar to the EM algorithm presented above.
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2.3.3 Parameters covering larger regions

There is nothing in the above discussion that requires one to estimate the image intensity 

within small pixels.” If instead the image is piecewise constant within several larger 

regions,” the nonnegative intensities at these regions can be estimated using the EM 

algorithm, as above (Carson, 1986). If the regions are few enough, the resulting maximum 

likelihood image estimate may be acceptably stable for moderate sample size.

If the image is not constant within regions, we can treat the piecewise-constant im-

age estimate as an estimate of average regional intensities. This will in general be a 

biased estimate, with bias depending on the discrepancy between the true image and 

the piecewise-constant image of true regional averages. Section 7.2 discusses the bias of 

regional estimates in detail.

2.3.4 General image parameters

A different sort of constraint may be placed on the estimated image by covering it with 

overlapping pixels of nonnegative intensity. This reduces the “shaded area” of data space 

in Figure 2.4 in volume but not necessarily in dimension.

Example 2.1: Saturated and unsaturated models

Consider a square array of N “little” pixels, to be modeled by a moving av-

erage of big pixels, each twice as large on a side. A saturated model covers 

the array with four overlapping overlays of N/4 big pixels each; each little 

pixel intensity is then expressed as an average of four independent big pixel 

intensities. In contrast, an unsaturated model uses two overlays of N/4 big pix-

els each, differing in position by a translation along the diagonal of one little 

pixel. Here, each little pixel intensity is an average of two independent mov-

ing average parameters, and the whole image is covered by N/2 independent 

parameters.
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Such models could of course be elaborated with “big pixels” of differing size, allowing an 

arbitrary reduction in the number of independent parameters of a two-dimensional image. 

In addition their contribution to the image need not be as piecewise-constant functions; 

that is, they may be arbitrary kernels (Snyder and Miller, 1985). In general, such a model 

describes an image by an all-nonnegative vector parameter h, with components hk defined 

over regions Q&:

Si = E Wikhk. (2.10)

The weights wik sum to one: wik = 1 for all i.

Here g = Wh, and the likelihood of h is based on the equation X = R + aAWh. 

Estimating h is then the same mathematical problem as estimating g, with the matrix A 

replaced by AW. The effectiveness of this estimation by moving averages comes from the 

nonnegativity constraint on the restrictive parameter space of h and from parsimonious 

parameterization.
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Chapter 3

Overview of Bayesian Image 
Reconstruction

The Bayesian approach has been widely advocated in recent statistical and image recon-

struction literature (for example, Geman and Geman, 1984; Besag, 1989; and many of 

the references in Venetoulias, 1988). Joint probability distributions on pixels are a conve-

nient and flexible framework for modeling images and estimates of images, given data. Of 

course, this approach requires the effort of specifying a prior model and computing and 

summarizing the joint distribution. This chapter will discuss, in detail, the steps needed 

for Bayesian reconstruction of an image of (continuous) gray levels, starting in Section 3.1 

with the method presented in Geman and McClure (1985), and continuing in Section 3.2 

with a review of other, related models and methods in the recent literature.

Many researchers have suggested Bayesian methods to improve the maximum likeli-

hood image estimate for emission tomography (Geman and McClure, 1985; Lange et al., 

1987; and others). Section 3.3 of this paper discusses how to implement Bayesian methods 

in our PET problem by extending the implementation of the EM algorithm using projec-

tion operators as detailed in Section 2.3.2, allowing for prior distributions with unknown 

hyperparameters. Chapters 4 and 5 discuss related theoretical issues while deriving re-

construction algorithms for specific families of Bayesian posterior distributions. Finally, 

Chapter 7 derives the bias and variance of regional averages of maximum likelihood and 

Bayesian PET images.
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3.1 An example of Bayesian reconstruction

A Bayesian analysis allows stable estimation of the many parameters of an image from a 

fixed amount of data. Such a method can be difficult because of computational costs; it 

also requires a prior distribution that reflects the population of images under study. Geman 

and McClure (1985) describe a method of creating and computationally summarizing a 

posterior distribution of possible images g, given a likelihood function based on data 

Y. This section describes this approach, applied to the simplified two-dimensional PET 

problem. For exposition, we will also follow the algorithm for the simple example of 

estimating the four entries in a 2x2 table with margins observed with error. In general, the 

algorithm proceeds in the following steps, to be described in the corresponding subsections 

below.

1. Discretize the image space.

2. Determine the likelihood function; that is, the probabilistic rule that derives the 

observed data from the true image.

3. Set up a Gibbsian distribution for the population of possible images (also see step 

6).

4. Use stochastic relaxation to take a random walk through the posterior distribution 

of images.

5. If desired, use simulated annealing to reach the image of maximum posterior prob-

ability.

6. In practice, it will be necessary to estimate parameters in the Gibbsian prior distri-

bution.
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3.1.1 Pixels

In this approach, the region over which the image is defined must be made discrete. The 

two-dimensional tomography image space is usually divided into a grid of square pixels, 

with the number of pixels being the same order of magnitude as the number of detector 

“tubes” or data points. Emission density is modeled as constant within each pixel.

3.1.2 Likelihood function

For physical reasons, detector counts are assumed to have independent Poisson distribu-

tions. For the PET geometry, E(Y) = X = R + aAg, as detailed in Chapter 2 above. 

The likelihood is:

P(Y\g)x JJ
tubes j

Example 3.1: 2x2 table

In this illustrative example, the image space consists of 4 discrete cells, and 

the data are noisy measurements of the table margins. Consider this set of 
9

data:
11 41

39 . (Due to noise, the row sum (9 f 39) does not equal the

column sum (11+41).) The four data points here are Poisson random variables 

whose expectations are the row and column sums of the table. We wish to 

estimate the vector 0 = (01,... ,54) of table entries, which we parameterize as: 

. Two possible images consistent with the noisy marginal data are:

and

01 02
03 04
2 8
8 32 . The likelihood is:

0 10
10 30

« (01 + 02)9(03 + 04)39(01 + 03)^(02 + 04)41 (3.1)

■ eXP[-(01 + 02) - (03 + 04) - (01 + 03) - (02 + 04)].

3.1.3 Gibbs distribution of images

A distribution defined on an array of variables is called Gibbsian or Markovian if it satisfies 

a certain conditional independence property, which we define after the following example.
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Example 3.2: 2x2 table

Consider the following prior distribution on the four parameters of the table:

The parameter /? must be positive; we will assume at first that it is known. 

This is an example of an intrinsic conditional autoregressive model (Kunsch, 

1987), which will be discussed in more detail in Chapter 5.

This Normal distribution forces positive correlations between neighboring cells 

of the table, and so favors a smoother “image.” It is an improper distribution, 

as it is unaffected by a location shift in the parameters gi. When combined 

with the likelihood (3.1), however, a proper posterior distribution results.

Note that 51 and g^ are conditionally independent in this prior distribution, 

given 52 and 53. Similarly, 52 and 53 are conditionally independent, given 51 

and 54. This is an example of the Markov property, which we will now define.

Definition of Markov field and Gibbs distribution

These expressions characterize certain joint distributions (random fields) on a network of 

variables. In this network, each variable has a (possibly empty) set of neighbor variables. 

The Markov property states that the distribution of a variable, conditional on all the others 

in the network, must be the same as its distribution conditional only on its neighbors. (In 

the 2 x 2 table above, any two cells in the same row and column are neighbors.) Recall 

that a clique is a set of variables, all of which are neighbors. (In the above example, the 

largest cliques are the four pairs of orthogonally but not diagonally adjacent cells.)

Now consider a picture as a single realization of a Markov random field, with each 

pixel intensity being a variable in the field. Consider this realization 5 as the combination 

of its values ((5,), for all s E C) at all cliques C in the network. (This defines the picture 

redundantly, because the values of variables shared by overlapping cliques must agree
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in this specification.) Now, assume the positivity condition: if the values at all of the 

cliques of an image have positive probability, then that image as a whole has positive 

probability. (This condition states that there are no global restrictions on the space of 

images.) If this condition holds for all images defined over the network, then the Gibbs- 

Markov equivalence theorem holds, stating that the joint probability of an image can be 

factored into probabilities of cliques (Besag, 1974):

^(5) « IJ pc^g8\ for all s G C). 
cliques c

Taking logarithms, this can be also be expressed in terms of a potential function U, defined 

on cliques:

logP(g) = -^Uc((g3), for all s G Of 
c

(log P(g) is here defined up to an additive constant.) This joint distribution is called 

Gibbsian. In the example of the 2 x 2 table, the potential function can be written:

UiAg^gj) = ^gi — ft)2, for neighboring cells i and j.

A prior distribution for tomographic images

in the square grid of pixels, Geman and McClure (1985) define the neighborhood of each 

pixel to be the four orthogonally adjacent and four diagonally adjacent pixels; cliques are 

then squares of four adjacent pixels. The potential function must be low for states (images) 

of high probability. In order to favor smooth images, Geman and McClure specify:

U (q- n-\ = . /W “ ft), if cells i and j are orthogonal neighbors
u ” 3 [ ^2^Si - ft), if i and j are diagonal neighbors,

""

The associated prior distribution is « exp(- £ %,ft)) and gives low probability 

to large differences |ft-ftj between neighbors; however, unlike with the Gaussian potential 

function (ft - ft)2, this probability density does not approach zero as that difference 

approaches infinity. This allows the possibility of sharp boundaries in the image.
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3'1 4 The conditional (posterior) distribution of images

Given the data Y, the distribution of the true image g is:

pm « p(yb)Pü).

This is still Markovian, but the cliques are enlarged: in general, two pixels are neighbors 

here if they are neighbors in the prior distribution or in the likelihood. In the example of a 

contingency table with margins observed with error, each row and column of the table is a 

clique in the likelihood. In the PET geometry, the likelihood function factors by “tubes”; 

two pixels are neighbors if they share a tube. Since the tubes are observed at a full range 

of angles, this means that just about all pairs of pixels are neighbors in the likelihood; if 

all pairs of pixels are neighbors, then the set of pixels forms one clique.

We would like to characterize the posterior distribution of images, possibly by sampling 

from it. In general, however, its high dimensionality and complicated structure precludes 

any direct treatment.

Stochastic relaxation

This algorithm is a modification of the Metropolis algorithm for sampling from a dis-

tribution specified by a known, unnormalized density function (Metropolis et al., 1953). 

Stochastic relaxation performs a random walk through a distribution of images. As de-

tailed below, it creates a sequence of pictures g^\g^2\ g^\...:

1. Start with a picture g^ that has positive probability.

2. At each step, change the intensity of g at just one pixel. As many steps are per-

formed, cycle through the pixels in any order.

3. Say that, at step t, pixel 1 is being altered. Then, choose from the distribution
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4. The sequence of images gW produced by this algorithm is an ergodic Markov process 

whose stationary distribution is the desired P(gi,... ,g/v|y).

Example 3.3: 2x2 table

We will describe the application of stochastic relaxation to this example, with 

the variables and probability distributions given above. We will assume a start-
2 8ing image g(°) =
8 32 , and for our first step we will update the variable g^.

Then we can write, g^ = 2
93

8
32 . We must sample from the distribution:

P(93\gi = 2,52 = 8,54 = 32, y ) a (53 f 2^(53 f 32)39exp(-53)

• exP(—/^[(53 - 2)2 + (53 - 32)2]).

If 53 is assumed to be restricted to a finite number of values, their relative 

conditional probabilities can be easily calculated, and a sample may be drawn. 

The restriction to a finite space may be done for computational convenience 

rather than for substantive reasons. To do stochastic relaxation, we can con-

tinue by successively updating 54,51^2,^3,5'4, • •., not necessarily in a regular 

order.

Stationary distribution of stochastic relaxation

The sequence of pictures g^t) produced by stochastic relaxation form an irreducible, aperi-

odic Markov process (all its transition probabilities are positive). Then, by a fundamental 

theorem of Markov chains (Feller, 1968, Section XV.7), 5^ approaches a stationary distri-

bution as t -> 00. Under the stationary distribution, which we label 7(5), the probability 

that a stochastic relaxation update of pixel 1 will change its state from 51 = a to g^ = b 

is:

f(9i = a,g2,...,gN) • ^(51 = ^52,. .,5iv,y). (3.2) 
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Similarly, the probability of the reverse switch—from image (A,#,, --^n ) to (a,#, 

is:

/(Pi = b,g2,...,gN). P(gx = a\g2,...,gN,Y). (3.3)

Note that these two probabilities (3.2) and (3.3) are conditional on the rest of the image, 

gi,...,gN, and the data Y. Since / is a stationary distribution, the probabilities must be 

equal:

f(gi = g,g2,---,gyv) _ P(gi = a\g2, ...,gN,Y) 
f(9i = b,g2,...,gN) P(gi = b\g2,... ,gN, Y) 

_ = a,92,---,9N\y)
^(Si = b1g2l...1gN\YY

This is satisfied if and only if /(y) = P(g\Y) for every image g. (The above argument can 

be applied to each of the N pixels.)

The updating sequence of stochastic relaxation requires relative conditional probabil-

ities. Using the Markov property of the posterior distribution, we can simplify:

P(9i\92,---,gN,Y) = P(5i(neighbors ofgi,Y),

and so on. This calculation is computationally suited to distributions with small, local 

neighborhoods.

Output pictures

The limiting distribution of this algorithm is the desired posterior distribution of images; 

unfortunately, gW and g^3^ are dependent, for any finite s. We want independent samples 

from P<g\YY these can be approximated with pictures gW, for several well-separated 

values of t, from a single random walk of stochastic relaxation. Geman and McClure 

(1985) suggest starting with a simple approximate picture, running the algorithm for 25 

super-steps (with a super-step defined as an update of all N pixels in haphazard order), 

and using the outcomes of five successive super-steps: g^^^g^27^,... ,g(30N\ These are 

averaged for an estimate of the mean E(g\Y\ Presumably, one would need to wait longer 

between samples to get a good estimate of the variability of g in this distribution.
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3.1.5 Simulated annealing

The iterations of stochastic relaxation can be gradually altered so that the algorithm 

converges to the mode of a distribution. To find the maximum value of f(g), simulated 

annealing applies stochastic relaxation to the probability density proportional to [/(g)]\ 

The random walk starts at 7 = 1, and gradually increases 7 to infinity as the algorithm 

proceeds. Geman and Geman (1984) prove that if 7 increases gradually enough, then 

the random walk converges almost surely to an absolute maximum of f(g). In practice, 

they suggest increasing 7 faster than the speed at which convergence is guaranteed, and 

concluding the random walk in finite time at the value 7 = 00. (At this point, the 

algorithm steps only to adjacent points of higher probability.) Ripley (1988, p. 99) gives 

some practical suggestions for speeding simulated annealing.

3.1.6 Estimating hyperparameters

The prior distribution used above typically depends on some unknown hyperparameters 

which must be estimated from image data. Geman and McClure (1985) estimate their 

image parameter P by maximum likelihood, using the EM algorithm, averaging over the 

unobserved image vector g. Their goal is to maximize:

log = log j P(Y\g, P)P{g\P) dg.

For standard hierarchical models (including this one), P(Y\g,P) = P(Y\g\ independent 

of P, and

Zp

From Dempster et al. (1977) the maximium likelihood estimate is the P that satisfies:

&(n<7)i/;) = f(y(4)M^ (3.4)

The E step of the EM algorithm corresponds to calculating the expectations in equation 

3.4, conditional on a guessed parameter P; the M step solves the equation to yield an 

updated guess of p.
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Example 3.4: 2x2 table

The prior distribution P^g^') here is 4-dimensional Normal, so

and = --^log Zg

2 
" ?

To use the result (3.4), we need E(V(g)\Y,^y Through stochastic relaxation 

we can estimate this quantity, to any degree of accuracy, for any fixed value of 

P- As an estimate, we can use the average value of V(g) from several states in 

the iteration; e.g.,

nü) = ^(^') + V(gW) + ... + Vf^l)).

We can now apply the EM algorithm to estimate P:

1. Start with a guess p.

2. E-step: approximate V = E(V(g)\Y,P}, by as above.

3. M-step: find a new estimate P* to solve the equation:

E(V(g)\0*) = V. (For the 2 x 2 table, this equation yields: 

0* = 2/K)

4. Relabel P = P* and repeat steps 2 and 3 above.

PET example

Geman and McClure (1985) use EM to estimate the parameter P for a problem that is 

similar to PET. Following the algorithm presented above, we find that the M-step is more 

difficult than in the simple Normal example. For PET, E(V(g)\p) is no longer a simple 

formula and must be evaluated numerically. For any fixed p, we can estimate E(V(g)\P) 

by stochastic relaxation on the prior distribution P(g\P). To estimate E(V(g)\P) as a
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function of P, we must do this stochastic relaxation for several possible values of 3- (For 

a fixed family of prior distributions, this can be done “offline” and needs not be repeated 

for each new data set.) For the M-step we must then invert this function to find 3* • As 

a procedure which yields only a point estimate, this EM application seems unappealingly 

complicated and slow.

Estimating other hyperparameters

The above PET model also has a scale parameter 6 for local differences between intensities 

gi in neighboring cells. Geman and McClure (1985) report that results do not vary much 

with 6 values chosen comparable to the level of typical variation between neighboring pixel 

intensities.

3.2 Comments on Bayesian image reconstruction

This section covers in more generality some of the aspects of Bayesian reconstruction 

illustrated above. We elaborate on the choices made in the above example, discussing 

some topics briefly or only with a reference, and indicating what will be covered more 

deeply in later chapters.

3.2.1 The discrete image space

The Fourier reconstruction discretizes a continuous image of intensities (gray levels) in 

the frequency domain; pixels partition the spatial domain. In the latter case one defines 

a continuous image as having constant intensity within pixels. The shape of the pixel 

grid can be chosen for computational convenience; most work involves square grids, but a 

circularly symmetric grid requires fewer angle factor calculations for PET reconstructions 

(Silverman et al., 1990). A grid of hexagons has been suggested for models of images with 

internal edges (Besag, 1989).

We allow the pixels to outnumber the number of data degrees of freedom. Because 

pixel selection is arbitrary, we should hope that our reconstructions are not sensitive to

45



the number of pixels, at least if that number is large enough, for any given set of data. In a 

Bayesian context, these reconstructions depend on a family of prior models: a distribution 

for each pixellization. The requirement that posterior results do not depend on the pixel 

grid restricts the choice of these prior families.

3.2.2 The likelihood function

For the PET problem, it is considered fairly accurate to describe the tube counts, corrected 

for random coincidences, as independently Poisson distributed (Alpert et al., 1982). For 

computational convenience, these may often be approximated by Normal distributions on 

the original or the square root scale. Transforming data and image intensities by the 

square root also stabilizes the variance in the likelihood, which may be desirable (Johnson 

et al., 1989). Generally, image data are like tomography data in that their likelihood 

depends on linear functions (such as projections) of the true image. One difficulty of 

tomography is that its likelihood involves functions of the image whose neighborhoods are 

tubes, which are not spatially localized.

3.2.3 Image models

This section briefly introduces some of the statistical literature on image modeling. In 

general, models can be seen as constraints for estimated images or as families of true 

images for which we desire efficient estimates. In the Bayesian context, an image model 

is a prior distribution on image space. One family of image models, suggested by Besag 

(1974, 1986), are conditional autoregressions; these will be discussed fully in Chapters 5 

and 6. We will here briefly discuss some other simple models.

Smooth functions

Rather than model an image pixel-by-pixel, we may fit a smooth function onto continuous 

image-space. Functions such as two-dimensional polynomials may be fit by a relatively 

small number of parameters. Such a model may be too restrictive to fit an entire image,
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but may be useful to “detrend” before fitting a pixel-level model or to fit a small, smooth 

region within the larger image.

Moving average models

By analogy with time series analysis, we can embed pixel intensities in a moving average 

model by expressing them as different averages of independent underlying parameters. 

There is a greater variety of such models in two dimensions than in one, as illustrated by the 

saturated and unsaturated models presented in Section 2.3.4. The reduction in parameters 

should make estimation of such a model easier. However, estimation of spatially spread- 

out parameters may cause computational instability, as pointed out by Silverman et al. 

(1990) in the context of sieve models.

More general autocorrelation models . .

A model of spatially-indexed Gaussian variables is determined by its two-dimensional 

variogram (or the covariance function, if the process is stationary; see Section 5.1 for more 

details). One may explicitly specify these functions (or fit from an empirical variogram or 

correlogram), or derive them from a conditional probability model. Cliff and Ord (1981, 

chapter 6) discuss the autocorrelations of some spatial models. These do not generally have 

simple mathematical forms; for example, a Gibbs distribution, as described in detail in 

Section 3.1.3 of this paper, is simply defined by local conditional probability distributions, 

but has a complicated autocorrelation matrix.

More complicated spatial models can be formed by adding the random variables of 

two simpler models (Besag, 1974, 1989). Posterior properties of the summed model can 

be evaluated using stochastic relaxation on the two component variables, even if the full 

model has a complicated correlation and neighborhood structure.

Finally, we can create a spatial model on pixels from a continuous model, as follows. 

Start with a two-dimensional Fourier power spectrum (for a two- dimensional image) and
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alias this to obtain a spectrum on the pixel lattice. Then multiply by the spectrum of a 

two-dimensional moving average at the pixel level, so as to model pixel intensities that 

are averages within pixel areas, rather than mere samples of the image function. Finally, 

apply an inverse Fourier transform to yield the homogeneous covariance structure in two 

dimensions.

Segmentation models

The simplest image distributions are spatially homogeneous, based only on the concept 

of spatial smoothness. In practice, though, we may wish to model discontinuities, and 

subdivide an image into disjoint, locally smooth regions. If the locations of these regions 

are known, we can easily apply an independent stationary distribution within each region. 

In the more difficult problem, the locations of the regions, or the boundaries between 

them, must themselves be estimated. We may attack this problem by defining a binary 

edge ’ random variable between every pair of adjacent pixels in the image. If an edge 

variable equals 1, this defines a boundary, and the adjacent pixels are considered to be 

in different regions of the image. A Markov model may then be defined on the space of 

edges and pixels, including rules to ensure that the boundaries form continuous paths; 

there will still be a local neighborhood structure. Geman and Geman (1984) and Johnson 

et al. (1989) discuss such models.

Because of poor spatial resolution, it does not seem possible to estimate boundaries 

directly from PET data. However, it may be possible to use the sharp boundaries of an 

MRI scan to estimate boundaries for a PET scan on the same patient; the two images 

can have similar region boundary patterns, but unrelated images within the regions; for 

example, MRI and PET brain scans of the same person may have this property1.

1 Augustine Kong, private communication.
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3.2.4 Estimation of the image

In a Bayesian context, one may summarize one’s knowledge of the true image by presenting 

independent samples from its posterior distribution. Different single-image estimates cor-

respond to minimization of different loss functions. The posterior mean image minimizes 

the sum of squared errors by pixel, while the posterior mode minimizes the all-or-nothing 

loss criterion over the whole image. One can define more complicated losses, such as 

all-or-nothing over each pixel, which is minimized by the pixel-by-pixel mode; however, 

the human observer’s criterion of image restoration quality has yet to be captured by any 

single mathematical loss function.

Stochastic relaxation

As described in the previous section, stochastic relaxation allows one to randomly walk 

through a posterior distribution, and the related algorithm of simulated annealing con-

verges to a mode image. These methods have been criticized as slow and computationally 

expensive (Besag, 1986). This may change, however, with the spread of parallel processing, 

or even careful implementation on ordinary computers (Ripley, 1988, p.95).

Approximate and other methods

Usually presented as alternatives to simulated annealing reconstructions of the mode im-

age, approximate Bayesian methods save computation time and may be more robust to 

departures from the prior model (Haslett, 1985; Besag, 1986). This robustness may be 

important in the case of a Markov model that has been specified for computational conve-

nience. One may accept such a model as fitting “local” behavior without trying to use it 

to fit a whole image. The various local or approximate methods in the literature typically 

take an iterative algorithm such as stochastic relaxation, subsitituting an approximation 

for the exact iterative step.
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3.2.5 Parameter estimation for an image model

Probability distributions in the statistical image reconstruction literature typically depend 

on a few parameters, which we will label as a vector 9. For example, in the density: 

f(4)<xexp(-^g(a^ £ - /<)]),

‘ neighbors ij
the three parameters (p,(r,p) = 9 determine the level, conditional variance, and local 

correlation of the stationary image process. In general, such parameters will not be known 

and so must be estimated from the data in order to successfully estimate the image g. 

This can be difficult; for example, the above density function contains a normalizing 

constant that is a function of the parameters and is the determinant of a N x N matrix. 

It is generally computationally impossible to calculate normalizing constants for spatial 

models; Besag (1977) and Whittle (1954) give approximations for some Gaussian processes 

on an infinite lattice.

Estimating parameters, given the true image

Methods have been proposed to estimate image parameters when evaluation of the like-

lihood function is impossible. We first consider the problem of approximately estimating 

image parameters directly from an image. (This should be easier than estimation from 

indirect, noisy data.) If the image model is Markovian, Besag (1974) suggests the coding 

method of estimating its parameters, using the conditional independence property:

1. Choose a subset S of pixels that are jointly independent, conditional on the other 

pixels in the image. For example, if each pixel has four (orthogonally adjacent) 

neighbors, then a set of half the pixels, forming the black squares of a checkerboard 

arrry, will be conditionally independent.

2. Estimate the image parameters from the intensities of the pixels in S, conditional 

on the intensities of the other pixels. This estimation should be easy, because the 

conditional likelihood is a product of individual likelihoods for pixels in S.
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3. Repeat these steps for other conditionally independent subsets of the image grid, 

and combine the parameter estimates. (In the example of orthogonally-adjacent 

neighbors, there will be two subsets S to average estimates over.)

Another approximate method is to maximize the pseudo-likelihood of the image:

PLW) «11^'1^ 5j, for all 3 + %)• 
i

The normalizing factor of this density is easily calculated as the product of N one-

dimensional normalizing constants, and the pseudo-likelihood is then generally easily 

maximized (Besag, 1975). The pseudo-likelihood, multiplied by a prior density on 0, 

is proportional to a pseudo-posterior density PP(0|y) if desired. (The parameter 0 is 

typically assigned a noninformative prior distribution.)

Estimating image parameters from data

We now move to the harder task of estimating parameters 0 and image g from data Y. We 

can estimate 0 and g simultaneously by applying stochastic relaxation to the N+1 variables 

(51,•••,57V,#), conditional on Y. This requires simulation from probability densities like

Purest of image, 0, Y) (3.5)

and P(%,X). (3.6)

Sampling from (3.5), conditional on 0, is just step 3 in the stochastic relaxation algorithm 

described above in Section 3.1.4. To sample from (3.6), note that P^g/Y) = P^g); this 

sampling may be only approximate (e.g., from the pseudo-posterior distribution defined 

above).

3.2.6 Summarizing uncertainty in estimates

In general, a Bayesian analysis can be summarized by a posterior confidence region contain-

ing the possible estimates of highest posterior probability. Unfortunately, such a summary
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is difficult for a distribution on images defined on more than two or three pixels. Beyond 

a point estimate, one can use stochastic relaxation to create several samples from the pos-

terior distribution. It is not clear how long the algorithm must run to yield approximately 

independent samples, for any particular set of data.

For a more direct approach, we can approximate the sampling variability of any image 

estimate by resampling the data from its estimated sampling distribution and then study-

ing the variability of the resulting image estimates, one for each resampled data set. We 

use this method in Chapter 6 and discuss its theoretical validity in Chapter 7.

3.3 Implementation of Bayesian methods for PET

The methods suggested in this chapter can be most conveniently implemented for the 

PET problem by embedding the problem in a hierarchical probability model. This section 

summarizes this approach, which uses data augmentation to complete the hierarchical 

model and stochastic relaxation to simulate from the joint posterior distribution. The 

computer implementation of stochastic relaxation for the PET likelihood is an extension 

of the EM algorithm introduced in Section 2.3.2 and can be programmed using the methods 

of conventional (Fourier) reconstruction. We also adapt this algorithm to find maximum 

posterior density images or maximum likelihood estimates of regional parameters.

3.3.1 The hierarchical probability model

We observe data Y, from an unknown image g, drawn from a prior distribution with 

parameters 6. To these we add the vector parameter Z = (zlt.. ,,zN), where zj is the 

number of emissions from pixel j that are recorded in the detector tubes. In the notation 

of Section 2.3.2, Zj = Adding the new parameter Z is called data augmentation 

(Tanner and Wong, Johnson et al., 1989) and places the parameters (y, Z,g, 0) in a conve-

nient Markovian model with neighborhoods (Y,Z), (Z,g), and (g^ as shown in Figure 

3.3.1.
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Figure 3.1: The hierarchical probability model

in image 
model

indirect direct . hyperparameters
(observed) (unobserved) . image

data counts counts

Sampling from the posterior distribution

We wish to sample from P(y|K) and will do so by looking at g in samples from P(Z,g, 6\Y\ 

This joint distribution can be sampled by stochastic relaxation, in three steps:

1. P(Z\Y,g, 0) = P(Z\Y,g) is a multinomial distribution, with total sample size param-

eter m = and parameters rm = E(zi\Y,g) for the pixels i. These expectations 

can be easily derived from the result of the E-step of the EM algorithm of Section 

2.3.2: E(z,) = E; Z(^

2. P(g\Y,Z,0) = P(g\Z, 9) may be simulated by stochastic relaxation for a Markovian 

model on the components of y, as discussed in Sections 3.1.4 and 3.2.4. In this case, 

we may think of our larger procedure as stochastic relaxation on (Z,gi,...,gN,9\Y). 

The conditional likelihood P^Z\g, 6) = P(Z\g) is of Poisson form and can be ap-

proximated by a Normal density on the square root scale:

« #(7^, 1/4), (3.7)

where âi = a,a,,, in the notation of Section 2.3.2. This is conjugate to a Normal 

prior distribution P(y/g\6) on the square-root image vector = (y/g^); in this 

parameterization, sampling from P(g\Z,0) can sometimes be done directly. For 

example, the posterior mean and variance of a Gaussian conditional autoregression 

may be calculated by (noniterative) smoothing, as detailed in Section 5.2.2.
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3. P(O\Y, Z, g) _ P(0\g) may be approximately sampled from using the pseudo-posterior 

distribution of Section 3.2.5.

3.3.2 Maximum posterior estimation

The EM algorithm of Section 2.3.2 can be also be adapted to Bayesian maximum pos-

terior estimation. If paramters 6 are known, this requires only altering the M-step to 

maximize the complete-data posterior density function, with the expectations of the E-

step substituted in. To obtain the maximum posterior estimate in a problem with unknown 

hyperparameters 9, we treat both Z and 9 as missing data in the EM algorithm, which 

follows the steps:

1. Start with a guess g.

2. E-step (likelihood): Calculate E(Z\Y,g): the E-step in Section 2.3.2.

3. E-step (prior): Determine the function £(logP(#)|y,g) = £(logP(g)|g). The ex-

pectation is taken over the unknown 9.

4. M-step (posterior): Find a new estimate, g*, to maximize the complete-data poste-

rior density with the above expectations substituted in.

5. Relabel g = g* and repeat steps 2-4 above.

We may combine the Normal approximation (equation 3.7) with a conjugate Nor-

mal prior distribution P(y/g\9) by altering the M-step of this algorithm to maximize the 

(approximate) complete-data posterior density of y/g rather than g. The resulting EM 

algorithm converges to the posterior mode of y/g.

For examples of easy implementation of the new E-step (prior) and M-step (posterior), 

see Sections 4.3 and 5.2.2. For another example, the “regional” maximum likelihood 

estimate, presented just below, can be interpreted as a maximum posterior estimate, 

given a flat prior distribution on the regional parameters.
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3.3.3 Maximum likelihood with regional parameters

We can easily apply the EM iteration to maximum likelihood estimation over the more 

general regions, in which the image g is parameterized by a vector h of regional weighted 

averages, as detailed in Sections 2.3.3 and 2.3.4. The new algorithm requires three new 

steps, which we will present in terms of the PET implementation-that is, the second 

algorithm of Section 2.3.2. One step comes before the EM iteration, one alters its step iv, 

and one comes at the end of the iteration:

* with a guess of the vector h that characterizes the image. Calculate g = Wh 

(equation 2.10).

iv. Follow step iv, but correct for average attenuation using the average attenuation 

image in regions rather than pixels.

v. Regionally sum g* to yield h* = Wtg-. Expand he to create the new image estimate 

g = Wh*.

This iteration leads to the maximum likelihood estimate of h, assuming constant intensity 

within regions.

We can generalize this model by placing a prior distribution on the image intensity 

within regions. In this case, the steps above can be incorporated into the algorithm of 

Section 3.3.2 to yield the maximum posterior estimate for regional averages.
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Chapter 4

Regularization and Bayesian 
Estimation for Images

In an ill-posed problem, the desired solution to an equation varies greatly as the conditions 

of the equation are slightly perturbed. The method of regularization yields an approxi-

mate solution that is less sensitive to the conditions (Tikhonov and Arsenin, 1977). In the 

statistical context, a regularized estimator allows some bias (with an imperfect fit to the 

data) so as to lower its sampling variance. In the PET context, the maximum likelihood 

estimate may be considered to be the ill-posed solution, to be replaced by a smoother 

maximum penalized likelihood image. Section 4.1 discusses the application of penalized 

likelihood to image reconstruction and how this may sometimes, but not always, be con-

sidered a Bayesian method. The following section defines the approximate “degrees of 

freedom” addressed by a set of indirect, noisy data address, and estimate this number for 

PET. Finally, we discuss implementations of penalized likelihood for PET reconstruction 

and, in particular, suggest an improvement to the approximate regularization method of 

running EM and stopping before convergence.

4.1 Maximum penalized likelihood

We confine our discussion to the method of maximum penalized likelihood, which gives an 

image estimate g that maximizes LL(g\Y) - Xf(g): the log-likelihood LL of the estimate 

g given data Y, minus the penalty function f, weighted by the regularization parameter X.
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This is of course equivalent to the posterior mode of g, based on the prior density function 

proportional to exp(-AHowever, the regularization method can be applied in a 

non-Bayesian context, in which case its penalty need not correspond to any empirically 

plausible distribution of images.

The penalty function is typically chosen to give the regularized estimate a desired 

smoothness; for example, locally continuous images are favored by the penalty: /(g) = 

c'A9i ~ gj)2, where = 1 if pixels i and j are neighbors and 0 otherwise. The 

parameter A determines the smoothness of the regularization estimate and, conversely, its 

fit to the data. As A varies from 0 to 00, it indexes a family of solutions, ranging from 

the maximum likelihood image estimate to the globally least-penalized image (typically, 

a constant).

Titterington (1985) discusses this method for an image estimation problem identical 

to ours (except that his sampling distribution is Normal, not Poisson) and gives several 

examples of penalty functions and their implications.

4.1.1 Choice of regularization parameter

By Lagrange multipliers, maximizing the penalized likelihood LL(g\Y) - A/(g) is equiva-

lent to maximizing:

LL(g\Y), subject to the constraint /(g) < /0)

or minimizing:

/(g), subject to the constraint LL(g\Y) > LLq ,

where the constraint values /0 and LLq  are determined by A and the likelihood function. 

The relation among /0, LLq , and A depends in general on the data, so regularizations 

with LLq , /o, or A fixed are three different procedures. Specifying A yields the maximum 

posterior mode corresponding to the prior density proportional to exp(-A/(g)); specifying 

/o or LLq  does not in general determine a prior distribution on g independent of data and 

does not correspond to any posterior mode.
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To get one estimate g, we need one value A (or /0 or LL0\ which we may estimate 

from the data in different ways. If we think of A as a hyperparameter in a hierarchical 

probability model, we can estimate it from its (Bayesian) posterior distribution, and then 

estimate g using the posterior mode (say) of A (following the steps of Section 3.3 for PET). 

This two-step procedure can be justified in Bayesian terms as an approximation to the 

marginal posterior mode of g.

4.1.2 Constraining the log-likelihood

A different approach to setting the regularization parameter is to fix the log-likelihood 

constraint LL0. Typically this has been set at its unconditional mean, which asymptot-

ically equals -n/2, where n is the number of data points. (We assume the likelihood is 

scaled to equal 1 when the data equal their expectations.) This has seen some practical 

use (Gull and Daniell, 1978), but suffers from some theoretical and practical difficulties 

(Titterington, 1984).

The set of images g for which LL(g\Y) > LL0 is a confidence region for g whose size 

is set by the position of LL0 in the unconditional distribution of the log-likelihood; for 

example, setting LL0 = -n/2 gives an approximate 50% region. However, setting LL0 

unconditionally on data Y leads to confidence intervals whose size varies widely with Y, 

rendering them useless for PET data of moderate sample size. The most obvious problem 

with a fixed log-likelihood constraint for PET comes from the requirement that the image 

estimate be nonnegative: for any fixed LL0, there will be a positive probability of observing 

data Y such that no all-nonnegative image g satisfies LL{g\Y) > LL0. Clearly then, the 

value LLq must be chosen based on the data.

Furthermore, many researchers report that setting LL0 = -n/2 oversmoothes the 

image estimate. This is no surprise, considering that the usual expected value of residual 

X2 statistic is the number of data points minus the number of parameters estimated. To 

the extent that the image is being estimated at all, the residual x2 statistic -2LL(g\Y) 
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should average less than n (Gull, 1989).

Finally, the following example illustrates that no fixed constraint Lo can even ap-

proximately correspond to a fully Bayesian model (that is, a model in which the prior 

distribution exists independent of the data).

Example 4.1: Estimation from direct Normal data

We consider the problem of estimating the vector X from data Y, under the 

model:

Yi~N(Xi,<r2), i = 1,..., n,

with independent prior distributions: Xi ~ and the data variance

°2 known. The regularization parameter is then A = r~2. Assume n is large 

enough so that p. is essentially fixed by the data.

A noninformative prior distribution on r2 leads to the posterior mode f2 = 

max(0,Sy — a2), where is the standard deviation of the data. The maximum 

penalized likelihood estimate of X, with r2 known, has components:

X - 7-2 y   °2
‘ a2+T2Yi + a2 + r2^

with fit to data:

-ML(X\Y) = A

i
2

= (a2 + ,.2)2 “ ^2-

This has unconditional expectation:

2
E(-2LL(X\YV = ^2—n,

a value that declines from n to 0 as a2 decreases from oo to 0 (that is, as 

data sample size increases for each Yi). Clearly, no fixed constraint value LL0 

can apply to this whole range of scenarios. In fact, even a constraint such as
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setting LL0 to the posterior expectation E(LL(X\Y)\Y) will not work over this 

range, as is apparent when we note that in this case the sampling expectation 

E(LLq ) = E(LL{X\Y)) = —n/2. This fits the Bayesian model only as a2 —► 0; 

that is, if there were no data. .

Semi-Bayesian interpretation

We have seen that regularization with a likelihood constraint that is fixed exactly or in 

expectation does not correspond to any fully Bayesian posterior mode. However, we can 

interpret likelihood-constrained regularization “semi-Bayesianly,” in terms of confidence 

regions determined by a probability model. (To paraphrase Titterington (1984), we give 

an interpretation, not a justification, of a method currently in use.)

In the PET problem, the data Y tell us about their expectations X, but nothing about 

the image g, given X; that is, the likelihood of any image g depends only on the smaller 

vector X. The semi-Bayesian approach follows the following steps:

1. Define a prior distribution on g, or just on X.

2. Apply Bayesian inference to X, yielding a posterior confidence region for the log-

likelihood: LL(X\Y) > LL0(Y).

3. Choose the image estimate g that minimizes the roughness /(g), while consistent 

with the confidence region: LL(g\Y) > LL0(Y).

This is semi-Bayesian in that we use a prior distribution, but only to get a posterior region 

for X. In fact, this prescription does not require that the roughness penalty in step 3 be 

proportional to the logarithm of the prior distribution in step 1. Choosing a 50% confidence 

region in step 2 corresponds approximately to the use of the posterior expectation of LL 

as a constraint. This in turn is not far from the fixed constraint LL0 - -n/2, which 

equals the posterior mean on average.
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4. 2 How many parameters can be estimated?

We now return to the question posed earlier: for moderate sample sizes, how much do 

PET data tell us? With finer and finer discretization, we can estimate any number N 

of parameters (pixel intensities) of an image. Of course, the n data points % allow us 

to estimate only n of these parameters; in a Bayesian context, the posterior distribution 

differs from the prior for no more than 71 degrees of freedom. In fact, as this section 

shows, we may not be able to effectively estimate even n parameters from small-sample 

PET data.

Degrees of freedom for smoothing estimates can be defined in many ways (Hastie and 

Tibshiram, 1990, chapter 3); for our purposes we define the degrees of freedom that data 

Y supply about the parameter vector f to be the expected distance between the prior and 

posterior means, on a metric weighted by the prior precision:

DF = £(E(£|y) - £^))War(^(^|y) _ £(£)).

The outer expectation averages over the prior distribution for f and the sampling dis-

tribution for Y. (We assume Normal, or approximately Normal, distributions.) As the 

sampling variance Var(F|f) ranges from zero to infinity, DF ranges from n to 0, where n 

is the length of the data vector Y. PET sample sizes such as appear in our experiment 

place us somewhere between these extremes, as we discuss after this simple example.

Example 4.2; Direct Normal data

We expand the example in Section 4.1.2 by allowing unequal prior variances: 

we are estimating the vector X of length n from independent observations 

Y: Yi ~ NÇX^a2), with independent prior distributions, Xj ~ 2). We

assume a2, and r2 are known for all i. The posterior mean (also posterior 

mode for this Normal example) vector X has components:

- y _ Tj g2
' a3 + r? i + +

61



We are interested in how much the data influence the estimate X; that is, how 

far the posterior mean E(X\Y) is from the prior mean E(X). This distance, 

on a metric weighted by the prior precision, is:

1 2
E - A

with unconditional expectation DF = Conveniently, the following

relation also holds with the maximum penalized likelihood estimate X:

= n - DF.

We would like to know the number of data degrees of freedom in the PET problem; 

that is, the number of independent image parameters that the data allow us to estimate, 

at any given data sample size. We find that we can apply the rule DF = n — E(—2LL) 

to indirect PET reconstruction with a Normal prior distribution. In this discussion, we 

will assume that the pixels are small enough that they outnumber the data (N > n) and 

we approximate the Poisson by a Normal likelihood; this should cause no trouble in any 

practical example, such as the experiment at the Massachusetts General Hospital, in which 

tube counts generally exceed 100.

4.2.1 Bayesian estimate

We first consider PET estimation of an unknown image given a Normaj prior 

distribution on the image g. Such a distribution corresponds to a Normal distribution 

on the linear transformation X = R + aAg (in the notation of Section 2.3). We can 

normalize to X, with components X, = Xi/(X^where X^ue _ ^ + ^^true^. 

the approximate Poisson likelihood has a spherical distribution in X. Rotating the prior 

distribution on X to its principal components reduces the problem to the above example 

of direct Normal data. The linear transformations we have just done do not affect the 
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posterior mode or the value of the likelihood at that point. Thus, we can calculate DF as 

follows:

1. Sample image g from its prior distribution.

2. Sample data Y from its sampling distribution, given g. Calculate —2LL(g\Y), which 

has expectation n.

3. Calculate the posterior mode g and its x2 statistic -2LL(g\Y). Save the difference 

-2LL(g\Y)-2LL(g\Y).

4. Repeat steps 1-3 and average the results to yield a numerical estimate of DF = 

n - E(-2LL(g\Y)).

This theoretical calculation uses only the prior distribution and the likelihood—that is, 

the structure of the experiment—and no specific data.

4.3 Regularization for PET

We can implement penalized likelihoods for image reconstruction in terms of a prior density 

function P(y|A) oc exp(-A/(g)), with a noninformative hyperprior distribution on A. 

Application of the EM algorithm of Section 3.3.2 yields the regularized maximum posterior 

image, which can be given a Bayesian interpretation.

Similar to regularization is the aborted EM algorithm—running the EM algorithm of 

Section 2.3.2, starting with the uniform image, and stopping the iteration before conver-

gence, to yield a smooth image that fits the data (Vardi et al., 1985; Veklerov and Llacer, 

1987). As discussed in Section 2.3.2, the maximum likelihood image estimate is typically 

highly variable, and early stopping regularizes the estimate towards the uniform starting 

image. Deciding at what point to stop the EM iteration in this approach is similar to the 

choice of a regularization parameter for maximum penalized likelihood. A serious flaw 

of this method, at least theoretically, is that the final image depends on the choice of 
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the initial image of the iteration; by starting at the uniform image, we regularize toward 

uniformity.

This method running EM and stopping early—can be made more rigorous by re-

placing it with maximum penalized likelihood with a simple quadratic penalty function: 

A#) = Xà(\Æ, - M)2- For a Bayesian estimate, we can then run the EM algorithm of 

Section 3.3.2 toward a posterior mode of y/g = (y/gi), based on a noninformative hyper-

prior distribution on /z, A. (This parameterization offers mathematical convenience and 

should have only minor effects on a practical image reconstruction.) The E-step (prior) 

and M-step (posterior) for this model are particularly simple:

3. E-step (prior): Up to a constant,

logP(g) = £(ffi _ p)2,

and so we must substitute £((l/r2)lg) and E^/r^g) into this expression. Using 

a noninformative prior distribution on /z, a2 yields:

^(logP(y)ls) = -A- " V^)2,

where y/g and are the mean and variance of the y/gï values.

4. M-step (posterior): The effect of the prior distribution is to shrink the estimates 

obtained by the M-step of the algorithm in Section 2.3.2: for each pixel j, the 

estimate of component yfâ is pulled a fraction 1/(1 f 40,^ ) toward the mean 
  VS
Vg.
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Chapter 5

Linear Smoothing and 
Conditional Autoregressive 
Models

Simple linear smoothers have been suggested for use in image reconstruction procedures 

(Silverman et al., 1990). In some cases, these are optimal Bayesian estimators under con-

ditional autoregressive (CAR) prior models (Gelman, 1990). This chapter begins with 

a brief review of CAR models, in the context of Normal stationary and non-stationary 

spatial processes. We then identify a smoothing step in the EM algorithm as a poste-

rior conditional expectation operator based on a nonstationary CAR prior image model; 

Bayesian estimates based on a CAR prior distribution can be obtained with the EM algo-

rithm using a linear smoother and the algorithms derived in Chapters 2 and 3. We thus 

unify two methods—smoothing and Bayesian estimation—designed to improve the overly 

noisy maximum likelihood image estimate.

5.1 Gaussian spatial processes

A multivariate Normal distribution is a simple probability model on a lattice of real-valued 

variables, given its second-order properties. The two sections of this chapter introduce the 

Gaussian spatial model and image estimation within this model.
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5.1.1 Conditional autoregressive models

We will consider multivariate Normal distributions on gray levels defined on a square grid 

of pixels: g = . ,gN). As described in Cliff and Ord (1981), any such distribution is

defined by its conditional means and variances:

j 
Var(y,|yj, all j / i) = r?.

This chapter assumes the homogeneous model in which the unconditional means 

are equal. We define c„ = 0 for all i and label the matrix of coefficients C = (cj and of 

conditional variances T = diag(r^). Unless g is defined as the logarithm of image intensity, 

the distribution may have to be truncated to be positive; we will ignore the difficulties 

this creates.

This distribution can be thought of as Markovian; its neighborhood structure is deter-

mined by the nonzero elements in C: gt and g3 are neighbors ifc^/O. Of special interest 

are the first order and second order schemes, in which each pixel is a neighbor of the four 

and eight nearest pixels, respectively. (Some corrections must be made at the edge of the 

grid, of course.)

The precision of this distribution is (/ - C^T"\ If ^3 Cij = 1 for all i, then the 

precision matrix is noninvertible and the model is non-stationary (Cliff and Ord, 1981).

5.1.2 Correlations and semivariograms

The CAR model can be understood through its correlation structure as well as its condi-

tional form given above. We will here consider conditional autoregressions on the infinite 

lattice, with common residual variance r2 = 1 and coefficients that can be expressed as 

Cij = ck, where k is the (two-component vector) difference in the positions of pixels i and 

j. This model has spectral density

, 7-2
) 1 - ck cos(w • k) ’ (5-1)
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for W € (-7T, t t ] x (-7T,7rj, as shown by Rosanov (1968). Calculating correlations pk (or 

semivariograms 7k in the nonstationary case) for this model is tricky, and is discussed in 

detail in Besag (1981) and Kunsch (1987). We will summarize their results, along with 

some other calculations, in this section.

Stationary distributions with low correlations

A CAR model with low correlations will have low coefficients cy; this section derives an 

approximation of the covariance using:

(I - C)-1 = I+C + c2 + .... (5.2)

The first-order approximation, valid as C - O, is pk « ck, and can be improved by writing 

the quadratic term as:

C2 = ul + vC + W,

giving a matrix R = (pk) of correlations:

For example, Gelman (1990) considers a second-order scheme with coefficients ck = c 

for the eight nearest neighbors. In this case, C2 « 8c2/ + 3cC, and so pk « for the 

eight neighbors, and, to first order, correlations are zero at greater distances.

Stationary distributions with high correlations

As Ck l' the correlations pk -* 1, and the power expansion of (Z-C)-1 is no longer 

useful. Instead, the correlations can be calculated by solving the recurrence relation

Pk = 6k + Y,cipk+h (5.3)

where 6k = 1 if k = 0 and 0 otherwise (Spitzer, 1964). Besag (1981) studies the solution 

of this equation for the first-order neighborhood; calculation is tricky even in the simplest 

case of constant coefficients.

67



We can determine the asymptotic form of the correlation as \k\ oo by approxi-

mating the Fourier transform of the spectral density (5.1). For the isotropic first-order 

neighborhood, Besag (1981) approximates the long-range correlations by a Bessel function 

proportional to

Nonstationary distributions

A CAR model is nonstationary if its coefficients ck sum to 1. Such a model is intrinsic of 

order 0 (this is not the same “order” used to describe neighborhoods) and has a well-defined 

semivanogram, whose properties we briefly review (Matheron, 1973; Kunsch, 1987). The 

semivariogram 7 is a function of the lattice vector k and is defined by:

2?k = Var(g, — for any lattice point i,

and can be calculated from the spectral density function:

For a stationary process, 7* = (1 - /%)Var&.

For fixed conditional variance r2, the semivariogram of a stationary CAR model con-

verges to a well-defined limit as _ L For small lags k, one can calculate the 

semivariogram for the unit-variance model by integration and the use of the recurrence 

relation (5.3) with the formal substitution (which can be rigorously justified) of p0 - % 

for pk. Spitzer (1964, chapter 15) discusses the first-order neighborhood example in detail 

and calculates its semivariogram exactly for small lags and approximately for general lags.

For large lags, Kunsch (1987), based on Spitzer (1964), derives the asymptotic form of 

7k for large lags k:

Ik ~ constant • r2log\k\, as k -+ 00.

This constant is easily calculated: it is 2/sr and 4/3* for the symmetric first and second- 

order models, respectively.
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5.2 Bayesian estimation with a CAR prior distribution

Besag (1974) and others have suggested using intrinsic conditional autoregressions as a 

family of prior distributions on images. In this section we apply this model to PET and 

derive its simple implementation with EM computations.

5.2.1 Direct Normal likelihood

We first describe the estimation procedure in the simpler context of direct, Normal data. 

We assume a data vector y = (ÿi,... ,yN), that depends on the parameter g = (^,... ,gN):

y\g, ~ N(g, S), S = diag(of).

We will assume a nonstationary CAR model (that is, an improper prior distribution) on 

g with coefficient matrix C and conditional variance T = diag(f). (This ignores edge 

effects in the image grid.) This prior distribution is Normal and Markovian, and so is 

the likelihood, in the trivial sense that each pixel is its own clique in the likelhood. The 

posterior distribution is then also Normal and Markovian, with the same cliques as in the 

prior model; that is, the posterior distribution is a CAR model.

The posterior distribution is stationary, with mean and variance:

E(g\y) = (S^ + ^-C^T-1)-^-1^,

Var(5|y) = (S^ f (/-C')T-^)-\

The posterior mean can be written as SY, and the posterior variance as SS, where the 

smoothing operator S is defined by:

5-1 = 7 + ST-V-C) (5.4)

= (Z+ET-^-C),

and C = (êÿ) is defined by:

- a?
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The matrix S is then the covariance for a stationary CAR model with coefficient matrix 

C and residual variances (7+ LT-1). Because the prior distribution is improper, S acts 

as a weighted averaging operator; that is, s,-, = 1 for all i.

If a is comparable or smaller than r2, then C corresponds to a CAR model with 

low correlations, and the first-order approximation for the correlations from equation 5.2 

holds. The smoothing operator S is then well-approximated by a local average (Gelman, 

1990).

A fully Bayesian estimate using this family of prior models requires estimating or 

averaging over the prior residual variance r2, which can be done using the methods of 

Section 3.2.5.

5.2.2 PET likelihood

We can generalize the above results to the PET problem by using Normal approximations 

to some conditional distributions. In the notation of Section 3.3, we wish to estimate 

the image parameter g in the Markovian model of data Y and unobserved direct image 

data Z, true image g, and image model parameters 0. For a CAR model, 0 = (C,T), 

which we will assume known. As discussed in Section 3.3, we can then sample from the 

posterior density P(Z,g\Y), and thus of P«), by alternately sampling from P(Z\Y,g) 

(as described in Section 3.3.2) and P(g\Z,0).

Taking advantage of the Normal approximation (equation 3.7), we place a nonsta- 

tionary CAR model on the transformed image (^), which reduces to the problem of 

Section 5.2.1 with direct Normal observations y, = with unequal sampling vari-

ances aj = 1/(45,). (The vector 5, is defined in Section 2.3.2.) If 0 is unknown, we can 

use the stochastic relaxation algorithm of Section 3.3.1.

To get a posterior mode instead, we would run the EM algorithm, calculating for the 

M-step the conditional posterior mode SZ, with 5 defined by equation 5.4 as the smoother 

for a direct Normal likelihood. This M-step calculates g^ as in step 3 of the iteration in
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Section 2.3.2, and then locally smoothes y/gf by S. When treated as unknown, 8 be 

estimated by averaging over its posterior distribution using the EM algorithm of Section 

3.3.2.

Silverman et al. (1990) suggest this algorithm—incorporating a smoother in the M 

step but assuming 8 is known—and call it “EMS.” Their smoother uses a second-order 

neighborhood for each pixel and, as described in Section 5.2.1 and the discussion fol-

lowing equation 5.2, approximately corresponds to an intrinsic second-order CAR prior 

distribution with variance at least comparable to the sampling variance. The new deriva-

tion described above places the EMS algorithm in a Bayesian context, with the bonus of 

showing us how to average over an unknown 8 by a simple modification of the iterative 

algorithm.
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Chapter 6

Exploratory Analysis of a 
Tomography Study

The final chapters of this thesis focus on a study of brain activity using PET, performed 

at McLean Hospital and Massachusetts General Hospital. The study gave inconclusive 

results, and we examine it with the goal of designing a more effective future experiment. 

This chapter gives the medical and technical background for the study and displays and 

analyzes some of its data.

6.1 Medical background and experimental details

Schizophrenia has been empirically linked to problems with eye movement. To understand 

how eye movement is controlled by the brain, a PET study was done with five normal 

patients; as we shall see, this was too small a sample to measure effects of interest. Each 

patient performed two tasks—smooth pursuit and saccadic eye movement—with a PET 

scan of carbon dioxide concentration taken for each task. Elliott (1989) describes in detail 

the eye-tracking tasks, as well as the rest of the PET study discussed in this chapter.

Each patient and experimental condition yielded a three-dimensional PET scan (each 

comprising 9 two-dimensional slices) of isotope concentrations; the raw images were trans-

formed nonlinearly, pixel by pixel, into blood flow values. (We ignore the details of this 

transformation and any questions about its accuracy.) The investigators are interested 

in the locations in the brain that are activated by smooth pursuit but not by saccadic
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tracking, for this purpose, each three- dimensional blood flow image is summarized by 

its average within each of 117 anatomical regions of the brain. The outcome of the PET 

scans, for each patient, is then the contrast in the blood flow intensity maps between 

saccadic and smooth tasks. In the language of experimental design, the study is a facto-

rial experiment of regions x patients x tasks, and region X task effects are of primary 

interest. Substantive prior hypotheses include the belief that the superior colliculus is 

activated by saccadic eye movement more than smooth pursuit. (The superior colliculus 

is a small region, with a cross-section about 10 mm in diameter in each hemisphere, which 

contains a sensory map of the visual field.) The experiment was designed to confirm this 

hypothesis by showing an effect in the superior colliculus. Substantive hypotheses were 

advanced about other brain regions, which we do not discuss here.

6.1.1 Details of the reconstruction

This study required two steps to transform the PET data into medically useful results: (1) 

combining coincidence counts with other data to reconstruct individual images of isotope 

concentration and thus of blood flow; and (2) averaging and comparing results across 

patients. We will describe these steps in reverse order.

Comparing results across patients

Images from different patients are compared on the space of a standard brain. Each 

person’s brain is assumed to be an affine (linear) transformation of the standard brain, with 

this transformation preserving the relative positions and sizes of the different anatomical 

brain regions. A “brain atlas” partitions the standard brain into about sixty regions, each 

of which is assumed to have a common biological function for all normal patients.

As detailed in Section 2.1, each person’s brain is reconstructed in nine parallel layers, 

oriented and positioned based on the location of the head in the scanner. The PET layers 

are interpolated to the coordinates of the standard brain. Transformation parameters for 

each person are determined based on measured anatomical landmarks measured from a
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CT scan, as described in Senda (1988) and Elliott (1989).

This method is imprecise, for at least two reasons. First, people’s brains differ beyond 

the range of an affine transformation and cannot be so easily transformed into invari-

ant standard” coordinates. Second, the nine reconstruction layers are far enough apart 

that some brain regions may be largely missed by the PET measurements, so a three-

dimensional image interpolated on the standard brain can be misleading, with scans on 

different patients missing different parts of the brain. This last effect is somewhat under 

the experimenter s control. In the study discussed here, the superior colliculus was aligned 

to be in the center of a PET layer for each patient, ensuring accurate measurement for 

this region.

Reconstructing a single image

Each two-dimensional layer was reconstructed by the Fourier-based filtered back-projection 

algorithm, described in Section 2.2, using data from detector pairs and wobble locations 

(tubes), corrected for estimated attenuation and random coincidences. Section 7.1.1 below 

discusses the blurring and variance inherent in the filtered back-projection reconstruction. 

Table 6.1 shows a bit of PET data from a single brain layer of one patient: raw counts, 

random coincidences, and relative attentuation and exposure time factors for the 13 wob-

ble positions of a typical detector pair. One can look at images of individual slices and 

at the difference between reconstruction images for two tasks applied to the same patient. 

As discussed in Section 6.2.2, the visible features of these difference images are largely due 

to sampling variablity; true region x task effects only show up visually when averaged 

over several patients.

6.2 Analysis of regional summaries

For the MGH study, each three-dimensional PET scan was summarized by the average 

blood flow in 117 regions of the standard brain. Blood flow in each region was summarized
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Table 6.1: Data from a single PET detector pair

Wobble 
position

Relative 
exposure 

times
Coincidence 

counts

Expected 
random 

coincidences
1 .132 838 220
2 .095 591 159
3 .073 462 122
4 .062 391 105
5 .058 382 96
6 .052 312 86
7 .055 315 91
8 .052 269 86
9 .058 314 96

10 .062 346 105
11 .073 395 122
12 .095 508 159
13 .132 736 _ 220

by the average in a 20.4 mm diameter disk of the transformed images. (The cerebral cortex 

is approximately 20 mm wide.) Five patients and two tasks yielded a 2x5x 117 data array, 

with about a tenth of the data missing because the scans did not include all the regions 

for every patient. Following a logarithmic transformation of the all-positive regional blood 

flows, we fit a linear model of patient, region, task, and interaction effects.

6.2.1 Analysis of variance

Least-squares estimates of the one-way and two-way interactions were calculated by EM 

iteration of analysis of variance calculations on observed and missing data (Little and 

Rubin, 1987/. The results are presented in Table 6.2.

6.2.2 Sampling variances

As described in Section 7.1.2, we simulated ten sets of fake data from the Poisson data of 

each of the 9 X 2 x 5 two-dimensional PET scans in this study. Reconstructing each image 

and transforming to the standard brain gave ten independent simulated replications of the 

threeTw by adding independent errors with the variance of the
three-way interaction; the resulting estimated ANOVA was not sensitive to the multiply imputed values.
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Table 6.2: ANO VA of log (regional blood flow)

Source df SS VMS
Total 1069 83.3 .28
Task 1 1.5 1.2
Patient 4 21.6 2.3
Patient X task 4 .4 .32
Region 116 50.7 .66

averaging hemispheres 74 48.9 .81
diffs between hemispheres 42 1.8 .21

Region x task 116 .16 .038
averaging hemispheres 74 .12 .041
diffs between hemispheres 42 .04 .030

Region x patient 414 13.2 .18
averaging hemispheres 261 10.2 .20
diffs between hemispheres 153 2.9 .14

Region x patient x task 414 .49 .035
averaging hemispheres 261 .36 .037
diffs between hemispheres 153 .13 .030

Notes: (1) Because of missing observations, sums of squares do not sum to “Total.” (2) 
The analysis is on the logarithmic scale, so .030 represents a 3.0% change, etc.
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study, which we viewed as approximating the sampling variability. A comparison of the 

simulated difference images with the real difference images between two tasks for a single 

patient suggests that the signals of task effects on the image are hard to distinguish from 

the noise from the Poisson data counts; Section 7.1.2 explains the local correlations in the 

reconstruction of experimental noise that causes the appearance of spatial clustering in 

real and simulated difference images.

We summarized each simulated standard brain image by its regional averages, thus 

creating ten hypothetical replications for each cell in the above analysis of variance. The 

resulting region X patient X task x simulated replication error has a standard deviation 

of .026. Improved data collection or image reconstruction should reduce this error, with 

a lower bound of x/ 035^ - .0262 for true patient x region x task variation.

6.2.3 Typical region x task effects

We are interested in the region x task effects—the average task effects across patients, lo-

calized by region. These are barely larger than the patient x region x task effects, against 

which they must be compared in order to detect real differences. Thus, a huge number 

of patients would be needed to estimate typical effects of interest as summarized in this 

experiment. The simulated replications above suggest that eliminating experimental noise 

would approximately halve the sample size needed to discover region x task effects amidst 

the variability among patients. The region x task effects could also be more accurately 

estimated in the ANOVA framework if their 116 degrees of freedom were structured into 

meaningful contrasts.

Region X task effects, averaged over patients, varied from -.04 to .04 for the 74 re-

gions, averaging over hemispheres. To estimate the magnitude of the true effects, we esti-

mated the region X task effects as Normally distributed random effects, treating between- 

hemisphere and three-way interactions as independent Normal errors, with the remaining 

effects and interactions estimated as fixed. The resulting random effects standard devia-
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tion estimate was about .01.

6.2.4 Results for one region of interest

The study at hand clearly does not allow accurate estimation of the spatial pattern of 

average task effects across patients, whether expressed as an image or summarized by 

brain region averages. However, it may be possible to accurately estimate task effects in 

a few selected regions of the brain with particularly large task effects or small variance 

among patients. The superior colliculus is one such region: the experimenters expected 

a substantial negative task effect here, and they carefully aligned this region in the same 

place for each patient. This experimental setup is designed to minimize the between- 

patient variance of effects in the aligned area; to take advantage of this, Elliott (1989) 

dispensed with the analysis of variance and just estimated the task effect and its standard 

error for the superior colliculus using data from that region only. The difference, (smooth 

- saccadic), of the logarithms of average blood flow in the superior colliculus, averaged 

over the five patients, is -.027, with a standard error of only .012, based on four degrees 

of freedom. By contrast, the standard error from the analysis of variance, pooled among 

regions, is .020 = • .030. The sample variance of task effects across patients was

lower for the superior colliculus then all but one of the other 116 regions. The lower 

variance in the superior colliculus is consistent with the belief that lining up the region 

reduced variability in the regional average among patients, the region identically across 

patients helped. The superior colliculus is more accurately estimated for two reasons: first, 

alignment within a two-dimensional reconstruction slice allowed PET to better observe 

this region; and second, consistent alignment for all patients reduced variability of the 

region x task effect across patients.

6.3 Conclusions from the exploratory study

The analysis presented in this chapter suggest ways in which a future PET study may be 

improved. First, the random effects analysis shows that region x task effects are mostly 
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around 1.0%, which makes them hard to distinguish in the simple ANOVA framework. 

Second, the residual region x patient x task variance of (.030)2 appears divided roughly 

evenly between experimental noise and true variability among patients. The analysis could 

thus be substantially improved by reducing either of these two variances. The variance 

of regional averages due to experimental noise may quite possibly be lowered by a better 

reconstruction algorithm, as discussed in Chapter 7. As illustrated above for the case of 

the superior colliculus, variance of regional averages among patients can be decreased by 

careful alignment of the brains of different patients. Extending this improvement to all 

brain regions requires a more accurate three-dimensional model of the variation in the 

shapes and structures of patients’ brains.
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Chapter 7

Bias and Variance of Estimates

Chapters 2 and 3 above presented some methods for estimating tomographic images, and 

Chapter 6 described how image estimates were used to draw substantive conclusions for 

a specific experiment. To better link image reconstruction to reality, we need to know 

how an estimate can be wrong, whether because of sampling variation or because the 

assumptions underlying the estimate are violated.

An image reconstruction can be thought of as a statistical estimator and be described 

by its sampling properties. Here we discuss the second-order properties of image re-

constructions and estimates of regional averages, theoretically and for the eye-tracking 

experiment described in Chapter 6. We focus on two estimates described in Chapter 

2—the standard method of filtered back-projection and the maximum likelihood estimate 

of image intensities by region—and then generalize to the Bayes estimates of Chapter 3, 

which in general estimates regional averages more accurately than the regional maximum 

likelihood estimate. (Either estimate is of course preferable to the indeterminate or wildly 

variable maximum likelihood estimate over independent pixels.) From the familiar sta-

tistical definition, the bias of an image estimate is the expectation of the pixel-by-pixel 

difference between the estimate and the true image, averaging over the data, conditional 

on the true image. For Bayesian models, we may further average over a distribution of true 

images. This chapter primarily considers the bias and sampling variance of the average 

image intensities within spatially-localized anatomical regions. We provide new algorithms
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for computing bias and variance of maximum-likelihood and Bayesian estimates using the 

projection operators developed in Chapter 2,

The resolution limit from projection data sampled at finitely many projection angles, 

mentioned in Section 2.2.4, means that no assumption-free consistent estimator exists 

for an image from PET data: the best that can be done is a blurred estimate such as 

filtered back-projection. Instead of trying to estimate the continuous image, we follow the 

methods of Chapter 6 and try to estimate regional averages. Here too, PET data do not 

allow consistent or even asymptotically unbiased estimates of regional averages without 

strong assumptions about the image function within regions.

The major causes of bias and variance of estimates of regional averages for PET are: 

(1) error (or uncertainty) in the locations of regions, (2) limited spatial resolution, (3) 

incomplete three-dimensional sampling, and (4) sampling variation. First, PET, with its 

limited resolution, does not identify anatomical regions, and so region locations must be 

interpolated from a brain atlas, as described in Section 6.1.1. Different patients have 

differently-shaped brains and cannot all be described by a common brain atlas. Mislo-

cation of brain regions leads to bias in regional averages; uncertainty in region locations 

yields uncertainty in regional summaries, especially for comparison among patients. In 

addition a method that uses region locations to obtain more accurate reconstructions, but 

mislocates the regions, yields a biased estimate of the image itself. Second, the bias in an 

image estimate caused by limited spatial resolution will propagate to regional averages. 

Third, the coarseness of the three-dimensional sampling means that some regions may be 

captured completely by a layer of the PET scan, while other features smaller than 1 cm 

in diameter may fall between layers. Furthermore, different patients with different brain 

shapes will be aligned differently in the scanner and so will have different features missed 

in their brain scans; we will ignore three-dimensional difficulties here. Fourth, the Poisson 

variation of the data counts will of course lead to sampling variation in any image estimate 

and summary statistics.
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7.1 Filtered back-projection

The filtered back-projection method, described above in Sections 2.2 and 6.1.1, recon-

structs the convolution of the true image with a blurring filter and is an approximately 

unbiased estimate of the blurred image. Mathematically, a nonparametric estimate of a 

continuous image from indirect PET data must be blurred because of the ill-posedness on 

the Radon transform inversion problem (Natterer, 1986); the filtered back-projection im-

age is blurred by the frequency cutoff of the reconstruction filter and the lack of correction 

for detector resolution (Section 2.2.3).

7.1.1 Bias

This section decomposes the bias of regional averages of the filtered back-projection image 

caused by reconstruction blur and errors or ignorance in region locations.

Blur

Blurring biases estimates of regional averages, especially for small regions (the “partial 

volume effect” of Hoffman et al., 1979), with consequences for experimental design. We 

approximate the reconstruction blur by a circular Gaussian kernel with standard deviation 

4.5 mm (estimated from the reconstruction of a point source of radiation) and examine 

the bias of the average image intensity of the superior colliculus, approximated as a disk 

with diameter 15 mm. The average of the reconstructed image in this disk is a mixture 

of 55% superior colliculus and 45% neighboring regions.

Averaging within a disk. In general, we can estimate the average of the true image 

within a region by the average of the image estimate within a disk, centered on the region 

of interest but not necessarily the same size. Averaging in a larger disk reduces sampling 

variance, but at the risk of incurring bias (see Section 7.1.2 below), while a smaller disk 

reduces bias from blurring. The bias due to blurring depends of course on the differences
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between intensity levels of adjoining regions; this simple analysis is appropriate for the 

bias of the estimate of task effect for a region surrounded by regions with zero task effects. 

For example, the estimate in Chapter 6 of the superior colliculus by a disk of diameter 

20.4 mm is biased by up to -65%; the true task effect for that region is thus probably 

about three times as high as estimated by the circular region.

Mislocation of regions

Error in the map of region boundaries does not affect the filtered back-projection image, 

of course, but does bias estimates of average intensity in regions (Mazziota et al., 1981). 

Typical mislocations are believed to be on the order of 5 mm; the magnitudes of individual 

mislocations depend on the region and how a patient is aligned in the scanner. Mislocation 

of a region by a shift in a random direction affects the bias of the estimate of average region 

intensity as if it were added to the reconstruction blur.

A simple model of ignorance of the position of a region is that the true region is 

shifted from its expected position by a rigid displacement, generated by a circularly-sym- 

metric Normal distribution. For the simple model, we can read off the combined bias from 

reconstruction blurring and region mislocation from Figure 7.1 above. For example, a blur 

of standard deviation 4.5 mm combined with a mislocation error of standard deviation 5 

mm yields a blur of 6.7 mm and thus a bias of -62% when estimating a constant disk of 

unit intensity with diameter 15 mm surrounded by an image of zero intensity.

If mislocation varies among patients (that is, they are aligned differently in the scanner 

or their brains are configured differently), then the bias due to mislocation will vary, 

contributing to between-patient variance of region estimates. In the study described in 

Chapter 6, careful alignment of patients reduced this source of variance to yield a more 

precise estimate of task effect for the superior colliculus than for other regions.
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7.1.2 Variance

The sampling variance of a PET image estimate comes from the Poisson distribution in 

the likelihood (see Sections 2.1.1 and 2.3). The filtered back-projection reconstruction (g 

in equation 2.8) is linear and its first and second moments are thus easily calculated (for 

example, see Alpert et al., 1982). Furthermore, hundreds of counts are observed in most 

data tubes, so we can approximate the reconstructed image pixels gi, given the data Y, 

as jointly Normally distributed.

Pixel variances and covariances can be calculated analytically for an all-constant im-

age, say, using the known reconstruction filter. It is easier, however, to simulate the 

sampling variation of the data and propagate to the reconstructed image, approximating 

the unknown Poisson expectations by observed data. The simulated correlations between 

reconstructed pixel intensities are virtually isotropic, and we display correlation as a func-

tion of squared distance (in pixel units) in Figure 7.1. (Pixel dimensions are 2.55 mm x 

2.55 mm.) The filtered back-projection is a linear combination of approximately Normally 

distributed counts, and so the pixel estimates have a covariance structure based on moving 

averages over tubes. The tubes run across the whole image; however, the contributions 

of the moving average from any pixel cancel for faraway pixels, and the correlation struc-

ture of Figure 7.1 can, to a very close approximation, be generated by the isotropic local 

moving average process with coefficients displayed in Figure 7.2.

We are interested in regional averages rather than individual pixels. Figure 7.3 displays 

the variance of the logarithms of averages of clusters of nearby pixels for different cluster 

sizes, normalized by multiplying by cluster size. The normalized curve levels off for areas 

larger than 20 pixels (an area of 130 mm2, corresponding to a disk of diameter 13 mm), 

which fits the essentially local pattern of noise correlation (Whittle, 1956). The average 

estimated image intensity within a region of area |Q*| > 130 mm2 has sampling variance 

approximately inversely proportional to |Q&|, for the filtered back-projection PET images 

of Chapter 6. (The numerical level of variance is not directly comparable to the simu-
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Figure 7.1. Simulated noise correlations of a filtered back-projection reconstructed image
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Figure 7.2: Moving average coefficients for reconstruction noise
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Figure 7.3: Normalized noise variance of reconstructed regions
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lated noise variance of Section 6.2.2 because of the nonlinear transformation from isotope 

concentration to blood flow.)

7.2 Maximum likelihood for regional averages

Estimating one parameter per region should be easier and less variable than estimating 

the intensities of the potentially infinite number of pixels of a continuous image. This 

section considers a method described in Sections 2.3.3 and 3.3.3: maximum likelihood 

estimation of the average image intensities within regions. If the true image were constant 

within known regions, this is of course an asymptotically unbiased estimate of the 50 or 

so regional parameters, with no bias from lack of resolution or blurring. Of course, the 

true image is not constant within regions, and the region locations are not exactly known 

anyway. The maximum likelihood estimate can still be run as if the image were constant 

within regions, and then the resulting bias can be examined.
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7.2.1 Weighted least-squares estimate

In this section we approximate the bias by approximating the maximum likelihood esti-

mate of region intensities by a weighted least-squares estimate; that is, we approximate 

the Poisson by a Normal likelihood, and ignoring the constraint that the image be all-

nonnegative. The Normal approximation is reasonable, considering the hundreds of counts 

typically observed in each data tube, and the nonnegativity constraint becomes irrelevant 

in a large sample problem. When estimating parameters for 50 regions instead of 10,000 

pixels, a PET data set of 5,000,000 counts in 96 projection angles is large enough. If 

anything, ignoring the nonnegativity constraint makes our approximation conservative, 

because the constraint decreases the magnitude of bias.

First we recall and define some notation based on Section 2.3:

g is the vector of pixel intensities g,, 

h is the vector of average intensities hk of regions %, 

1^1 *s the vector of region areas (in pixels) |%|.

If g is constant within regions, then we can write g = Wh, where W is a matrix of zeroes 

and ones: gj = hk for j E ük. In general,

h = inr1^,

and we define the discrepancy 6 from a regionally-constant image:

6 = g — Wh.

The corrected data vector is Ÿ = a"\Y - R), where the attenuation factors and 

expected random coincidence rates a and R are assumed known, and we define S to be 

the diagonal matrix of sampling variances of Ÿ, given the true image g. From the Poisson 

likelihood:

S = a~2diag(E(y|5)).
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We approximate E(Y\g) by Y and assume it is known exactly.

Assuming a regionally-constant image—that is, 6 = 0—the corrected data Ÿ satisfy 

— AWh.^ and the weighted least-squares estimate of h from the data Y is:

h = ÇW1 AWyxWl .

7.2.2 Bias

The weighted least-squares estimate has bias

Bias(A) = E(h - h\g)

= ^A^AWY^A^Ag-h.

Substituting g = Wh f 8 yields:

Bias(h) = ^A^AWy^A^AÔ, (7.1)

which we will express as U 1V8. This bias is independent of the regional averages h and 

is proportional to 8. In contrast, the bias of the filtered back-projection estimate of a 

region depends on the intensities of neighboring regions and does not vanish when 8 = 0.

Computation

We can compute the bias of h for any image discrepancy vector 8, using the forward-

projection, back-projection, and blurring operations of Section 2.3.2. We must first cal-

culate the square matrix U = W^^AW, of rank equal to the number of regions, and 

its inverse. To calculate one row of U (that is, %, for one region k and all regions /):

1. (Multiply by W) Start with an image that is 1 in each pixel of region k and 0 

elsewhere.

2. (Multiply by A) Forward-project and blur, yielding a vector in data space.

3. (Multiply by S-1) Divide, component-by-component, by the data vector Y and 

multiply, component-by-component, by the square of the vector a of attenuation 

factors.
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4. (Multiply by A') Blur and back-project, yielding an image vector.

5. (Multiply by W1^ Sum this image over regions and record the vector of regional 

sums.

U is of moderate rank and can be easily computed and inverted once. We can then 

compute the bias of h by multiplying 6 by V = W1 A1^-1 A (following steps 2-5 above) 

and then multiplying by U~\

Averaging over a distribution of images

Equation 7.1 expresses the bias as a function of the unwieldy (and inestimable) parameter 

vector 6. It is of more interest to examine this bias averaged over various distributions of

6. The resulting mean and variance of bias tells us about the robustness of h for different 

models with S 0. .

For convenience, we place a Normal prior distribution on 6:

E(6\h) = 0

Var(g|A) = T.

(The zero conditional expectation merely asserts that no individual pixel intensity is ex-

pected beforehand to stand out as specifically higher or lower than others in its region.) 

We label T$ as the variance of 6:

Tg = Var(^|h)

= (I - W|Q|-iW')Var(dW -

= (I- W^^W^T.

Under this model, the bias of weighted least-squares estimate can summarized by:

f(Bias(fi)) = 0

Var(Bias(Â)) = U^VÇI - W^W^TV^-1. (7.2)
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With knowledge of T and the number and locations of the regions ük, this variance matrix 

can be calculated, one row at a time, using the operators above.

Nonuniformity within regions

The two forms of discrepancy from an image constant within known regions yield two kinds 

of covariance matrix T; we first consider variation within known regions. Nonuniformity 

can be modeled by the methods of Section 3.2.3 (except for segmentation models); each 

method can be formulated probabilistically, leading to a family of matrices T which can 

be substituted into equation 7.2.

Mislocation of regions

The second way we can have S 0 is by incorrectly locating region boundaries. If the 

regions are mislocated but the image is constant within true regions, the discrepancy 

6 = 9 - Wh be Piecewise constant within areas of overlap of the true and assumed 

region maps. We can then use equation 7.1 to calculate the bias of h due to a typical 

mislocation of a given image. Samples of mislocations from a probability distribution, 

combined with the true image g (or a probability distribution on g) yield samples from a 

distribution of 6, which equation 7.1 transforms to samples of Bias(A).

Alternately, it may be possible to calculate the variance of the bias directly from 

equation 7.2. In any case, this bias depends on the true region intensities as well as the 

true region locations. In general, both nonuniformity and mislocation lead to bias; these 

effects are additive, so the resulting biases in their weighted least squares estimates add 

too. We can approximate the covariance matrix T for any simple probabilistic model of 

uncertain region locations, as follows.

1. Start with a Normal model: given the vector h of region averages, assign pixels i 

and j a covariance of if i and j fall in the same brain region, and zero covariance 

otherwise. For a homogeneous model, 7% depends only on the distance between the
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pixels.

2. Consider two pixels i and j. To summarize our uncertainty, we place a probability 

distribution on the regions in which these pixels fall. The largest effect of this 

distribution on Var(g|h) will occur for pairs of pixels located near an uncertain 

region boundary. Here we will approximate T., by for all pixels i and j except 

those near a common region boundary.

3. For pixels i and j in regions 0% or Q;, define:

pn = P(j,j e Oi), pig = p(i e Oi j g  o2),

P21 = P(i E 02, j € Oi), P22 = P(i, j E 02).

From these probabilities and the average image intensities hi and hi in regions Oi 

and 02, we can determine = Cov(^,^|A). After some algebra, this yields:

Tij = (Pll + Pil)Tij + (P11P22 - P12P21)(hi - h2)2.

4. In practice, this expression simplifies for most pixels i and j:

(a) If : and j are clearly in different regions, then Tij = 0 from the specification of 

T° in step 1 above.

(b) Similarly, if i and j are clearly in the same region, then = T^.

(c) If i is not near a boundary and is clearly in region Q1; say, then p2i = P22 = 0, 

and Tij = P(j g Oi) • Tfj.

5. We are simplifying expressions by ignoring pixels near the intersection of three or 

more regions.

7.2.3 Variance

The sampling variance of the regional maximum likelihood estimate is easily calculated 

from the weighted least-squares form:

Var(Â|p) = U-1
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= (7.3)

7.2.4 Comparison with filtered back-projection

Like the weighted least-squares estimate, the filtered back-projection image is a linear 

multiple of the corrected data vector, allowing simple algebraic expression of its first 

two moments. The results may be compared with equations 7.2 and 7.3 for the regional 

maximum likelihood estimate. In the notation of equation 2.8, the filtered back-projection 

reconstruction is g = PtFŸ; the vector of regional averages is then h = |Q|~1 WtPtFŸ, 

with bias and variance:

Bias(Â) = \ü\~1WtPtF{AWh + 6) - h

Var (À) =

The bias vector and covariance matrix are be easily calculated (given h, 6, and E), using 

the forward-projection operator P, the back-projection operator P*, and the filter F.

7.3 Bayesian estimates

The maximum likelihood estimate of the vector h of regional averages can be improved 

by generalizing the assumption of constant intensity within regions to allow a probability 

distribution on the pattern of the intensities within regions. Our Bayesian estimate is then 

the maximum likelihood estimate of h, averaging over the distribution of the nuisance 

parameter 6. (We implicitly assign a noninformative prior distribution to h.) This section 

shows that the Bayesian estimate, even with the wrong prior distribution, is better than 

the regional maximum likelihood estimate under the stronger wrong assumption that 

the image is constant within regions; this result leads to bounds on the accuracy of the 

Bayesian estimate of h.

7.3.1 Weighted least-squares estimate

Following the procedure of Section 7.2.1 above, we approximate the Bayeseian estimate by 

a weighted least-squares estimate h* based on a Normal likelihood and prior distribution.
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As before, the approximating Normal likelihood is defined by:

£(K|M) = Ag

= AWh + A8

Var(f|h,6) = S.

We assign the prior distribution:

Z(6|h) = 0

Var(^|h) = Tg.

Combining, and thus averaging over 6:

E(Ÿ\h) = AWh

Var(f|A) = S + ATsAt.

The weighted least-squares estimate of h, averaging over ê, is:

h* = (WtA*[S + ATsA^AW^W1^^ f ATsA^Y.

As in Section 7.2.1, it is fruitful to evaluate the sampling properties of this estimate, 

averaged over some model for 8. We distinguish the modeled prior distribution (7.4), 

which is used to obtain the Bayesian estimate, from the “true” prior distribution of 8, 

over which we will average. In general, these two distributions will be different.

We can compare the Bayesian bias and variance to the results (7.2) and (7.3) for the 

estimate assuming the image is constant within regions (6 = 0). Of course, the Bayes 

posterior expectation has the lowest model-averaged mean squared error, assuming the 

model is true. The Bayesian estimate shrinks pixel intensities partly toward local and 

regional averages, whereas the estimate assuming <5 = 0 shrinks pixel intensities all the 

way to regional averages.
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7.3.2 Correct prior distribution

We first consider the simpler case in which the modeled prior distribution is the truth. In 

this case, the mean squared error of the weighted least-squares estimate, averaged over Ô,

is simply:

mse(h*) = (WM f[S + ATsA1]^ AW)~X. (7.4)

This can be decomposed into bias and variance:

Bias(À’) = ^A^ + ATsA^AW^W^^ + ATgA^AS

. = (7.5)

^(Bias(h*)) = 0

Var(Bias(h*)) = U^V.TgV'U^ (7.6)

Var(A%) = + ATsAVAHA^ + ATgA^AWU..

Unfortunately, these are hard to compute directly, because they require the inversion of 

the large matrix [S f ATgA^. For simple patterns of Tg, the inverse may be calculated by 

Fourier methods or approximated.

7.3.3 Incorrect prior distribution

If the modeled prior distribution is wrong, we are interested in the bias and variance of the 

Bayesian estimate based on the model F(6), averaged over the true distribution ?^"^(<5).

The sampling variance is unchanged from equation 7.6, no matter what the true prior 

distribution is, since we assume S is known. (In any case, perturbations of the prior dis-

tribution should not perturb S enough to seriously affect the sampling variance formula.) 

For simplicity we assign a Normal distribution to

E(6\h) = 0

Var(d|h) = 7?™.
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From equation 7.5, the true bias has mean and variance:

2(Bias(h*)) = 0

Var(Bias(h*)) = U^V^^U-1.

In summary: with the right model, the Bayesian method shrinks 6 the optimal amount 

towards zero; with the wrong model, it is still better than the result obtained using extreme 

assumption <5 = 0. The mean squared errors of the correct Bayesian estimate h* and the 

estimate h assuming a constant image within regions thus give a lower and upper bound 

for the mean squared error of the Bayesian estimate with a misspecified prior distribution 

W

7.4 Limit of infinite sample size

It is interesting to follow the bias and variance as the number of data counts approaches 

infinity; that is, as the elements of the diagonal matrix S approach zero while the rest 

of the parameters remain unchanged. The sampling variance Var(h%) is proportional to 

S and thus approaches zero in this limit for any estimate; this makes sense, as we are 

estimating the finite-dimensional parameter h.

In contrast, the bias of region estimates declines but does not approach zero as data 

counts increase, because of the resolution limit from the finite PET sampling. Even 

with infinite counts, the discrete data Y do not allow precise estimation of the contin-

uous variable 6. In filtered back-projection, bias comes from the reconstruction blur; 

the maximum-likelihood region estimates are biased because <5 0 in general; and the

Bayesian reconstruction is biased because 6 cannot be perfectly estimated, even given the 

correct prior distribution.

In the limit of infinite data counts, the mean squared error of the maximum likelihood 

estimate h approaches the expected squared bias. From equation 7.2, this is:

inf mse(h') = u^VT^U-1.
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Now consider the Bayesian estimate with correct prior distribution. To let data counts 

approach infinity, we set £ = 0 in equation 7.4 and the mean squared error approaches 

the nonzero limit:

inf mse(h*) = (W* A'lATsA*]-1 AW)~\

a bound on how accurately h can be estimated, even with infinte data counts and with 6 

sampled from a known prior distribution.

In the limit of continuous PET data at a continuous range of angles, we find that 6 

can be estimated, the matrices A and A* become invertible, and the mean squared error of 

the Bayesian estimate (with known prior distribution) approaches zero for infinite sample 

size. The dependence of the accuracy on sample size varies with assumptions about the 

image—in our model, the prior variance Ts. Johnstone and Silverman (1990) discuss the 

accuracy of estimation under a different parameterization of the local variation of the 

image.
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Chapter 8

Image Reconstruction and 
Experimental Design

This concluding chapter discusses how to apply the statistical theory developed earlier in 

the thesis to the design and analysis of PET experiments. Section 8.1 discusses practical 

implementation of statistical methods to real PET data; the difficulties begin with, but 

are not limited to, the random coincidence and attenuation effects handled in Chapter 2. 

Understanding of anatomical regions within the brain is key to the analysis and sometimes 

to the estimation of PET images. Section 8.2 introduces probability models to describe 

uncertainty and variation in the spatial patterns of brain regions of different patients. 

Section 8.3 connects image estimation to experimental design, focusing on sources of vari-

ation in PET reconstruction and analyis, with an example of the analysis required for the 

statistical design of a medical imaging study. We conclude with a review of hierarchical 

Bayesian estimation for medical imaging as an example of estimation from indirect, noisy 

data.

8.1 Applying likelihood-based methods to real PET data

As discussed in Chapters 2 and 3, maximum likelihood and Bayesian estimates have 

the advantage of yielding all-nonnegative images using the known Poisson distribution 

of the data, and their bias and variance can be calculated as described in Chapter 7. 

Furthermore, maximum likelihood estimates with parameter restrictions (Sections 2.3.3

97



and 2.3.4) and Bayesian or regularized smoothing estimates avoid the noisy appearance 

of the simple maximum likelihood estimate of pixel intensities. Finally, the Bayesian 

approach allows easy incorporation of prior knowledge (for example, about the spatial 

structure of a brain) and automatically summarizes posterior uncertainty.

Implementing the methods of Section 2.3 and Chapters 3-5 for PET requires compu-

tation, data handling, image modeling, and image analysis; the complications of each of 

these four tasks are described below.

Computation

The core of any maximum likelihood or Bayesian estimate for PET is the iterative EM 

or stochastic relaxation algorithm, either of which is based on the iterative procedure 

(steps z-v) of Section 2.3.2. The forward and back-projection operators required for this 

algorithm can easily be adapted from the computer code for the filtered back-projection 

algorithm and requires no additional storage. One iteration of the EM algorithm (or 

of stochastic relaxation) takes about twice as long as a back-projection. Stearns (1990) 

suggests a fast method based on Fourier transforms and interpolation to replace filtered 

back-projection; it should be similarly possible to speed the steps of the EM algorithm 

using Fourier transforms. Finally, the blurring operator required for an EM reconstruction 

of finite-resolution PET data is a convolution that is easily implemented directly or by 

Fourier methods.

PET data

Chapter 2 discusses the corrections for random coincidences and attenuations, which are 

the major nuisances of PET data and require alterations in published statistical recon-

struction algorithms. In addition, the corrections themselves are noisy, which affects the 

likelihood in tubes with near-zero counts, requiring special care for these data points. An-

other common practical problem, missing data, is luckily easy to handle exactly in the EM
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or stochastic relaxation framework. In addition, the model may be expanded to anticipate 

problems such as defective or mislocated radiation counter. Finally, one must look at the 

fit of a model to real data; for PET, one can compare this fit—perhaps expressed as a 

log-likelihood ratio or a x2 statistic—to the fit of the model to a similar set of data simu-

lated from an image estimate. If the fit to real data is much worse, then the model may 

be ignoring a source of error or uncertainty. Implementation of likelihood-based methods 

has revealed a lack of fit of the Poisson model to the raw data of the study described in 

Chapter 6; further study is needed to explain this departure. Unfortunately, real PET 

data are unwieldy—even a two-dimensional data set from the experiment of Chapter 6 

comprises 20,000 tubes and 5,000,000 counts—and so it is difficult to search for recording 

errors or patterns of outliers.

Image modeling •

Image estimation based on homogeneity within brain regions requires knowledge of re-

gion locations and boundaries. The simplest example of applying such knowledge is to 

set the estimated image intensity to zero outside the body. Unfortunately, boundary in-

formation is hard to use even when it is known, particularly because of the difficulty of 

storing in books or computers—three-dimensional information about spatial structure. 

For example, labeling the cross-sections of regions in a two-dimensional slice of arbitrary 

orientation in the brain is difficult practice if given only an atlas of brain regions stored 

two-dimensionally. The task of identifying brain regions is further complicated by the 

variation in brain shapes among patients and the inaccuracy of measuring brain anatomy 

on individuals. Finally, the connection between anatomical regions and brain physiology 

is not well understood and it may be risky to assume such knowledge in estimating a PET 

image—after all, one of the purposes of PET is to learn about this connection.
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Image analysis

Brain region locations are needed for analysis and summary as well as estimation of medical 

images, and so variation and uncertainty in spatial structures complicates the analysis 

stage of a PET study. In addition, the isotope concentrations estimated by PET must 

be nonlinearly transformed into the physiological variables of interest; inaccuracy in the 

transformation further degrades estimates of task effects.

8.2 Spatial models of brain structure

Brain structure is the key connection between image estimation and the design and anal-

ysis of experiments such as that described in Chapter 6. As detailed in Elliott (1989), the 

brain is conventionally divided into about 50 anatomical regions in each hemisphere; the 

“standard.” locations and boundaries of these regions are recorded in a brain atlas, but 

there is of course variation in the size and shape of different brains. (Indeed, an individual 

brain changes shape as a person ages.) We might hope to estimate region boundaries from 

PET, perhaps through image segmentation modeling (Section 3.2.3); however, the reso-

lution of PET is too poor to allow accurate estimation of sharp boundaries in a practical 

setting. We would like to know the location of the regions for each patient under study, 

or at least know our uncertainty about the region locations.

Information about anatomical brain regions comes from physical skull measurement 

and CT and MRI scans (see Section 1.2). As described in Section 6.1.1, each individual 

brain in the study was affinely (linearly) transformed to the standard brain by match-

ing physical landmarks—objectively identifiable positions in the bone structure—from CT 

scans to the brain atlas. To the extent that the variety of brain shapes cannot be sum-

marized by a linear family, these transformations lead to inefficient and biased estimates 

of regional effects in a study with many patients.
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8.2.1 Deformable templates

We sketch a general family of models of spatial structure called deformable template models 

because they fit deformations of a pattern, or template, of brain region boundaries (Chow 

et al., 1989). In the PET context these models are transformations from the atlas in the 

standard brain to region locations in real brains. For simplicity, this section describes 

two-dimensional models; three-dimensional extensions are straightforward.

Global and local models

We first distinguish between two classes of models of spatial variation: a global trans-

formation is deterministically described by a few parameters and so follows the global 

pattern of the template (brain atlas). Like a global specification, a local shape model may 

be determined by only a few parameters; however, the shape under a local model is only 

probabilistically constrained and thus has the freedom to fit local data. (A local model 

may be thought of as a tensor field; Goodall, 1983.) One can fit a global model to the 

overall size and shape of the brain and then apply a local model to allow for variation 

among region boundaries in true brains relative to the template pattern.

The affine transformation used for Chapter 6 is an example of a global transformation, 

mathematically equivalent to a general mapping of the labeled vertices of a triangle. The 

six scalar parameters of the affine transformation in two dimensions are then identified as 

two for shape, one for scale, two for translation, and one for rotation. More complicated 

global transformations are possible; for example, the bilinear mapping transforms the 

labeled vertices of a quadrilateral; four of its eight parameters alter the shape of the 

transformed object. The affine transformation transforms all interior regions similarly 

and preserves straight lines; the bilinear does neither (Bookstein, 1986).
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Local Markovian shape models

A family of global models that successfully fit the anatomy of real brains, relative to the 

brain atlas, would be of great use to medical imaging as well as of substantive interest in 

its own right. Until this happens, however, it seems necessary to fit flexible local models 

to the variation of spatial structure among brains. There seem to be two ways to construct 

such models: by transforming the space on which the regions are defined (possibly using 

a discrete lattice for computational purposes) or by directly transforming elements of the 

boundaries between regions. Local Markovian models can be applied naturally in either 

parameterization; to be specific we outline here an example of a local model of region 

boundaries.

Start with a template—a map of region locations and boundaries in a brain slice. Ap-

proximate the region boundaries by polygons and define the log-length 19 and orientation 

of each directed edge tin the template. We will model the possible interlocking patterns 

of region boundaries by deforming the edges of these polygons in the template. The local 

model allows the boundaries to vary under the following constraints: the outside boundary 

of the template is fixed (it can be fit with a global model); the two-dimensional topology 

of the network of edges and labeled regions is fixed; and boundaries cannot intersect. For 

a real map of region boundaries—a deformed template—we define random variables 4 and 

& for the log-lengths and orientations of edges:

4 =

and & = $ + %,

and place a Gibbs distribution (equivalent to a Markov model) on the deformations (<%) 

and (<%) from the template:

P(6l,6</>) ex JJ exp(-Ui(6li,6lj) - (8.1)
neighbors i,j

For simplicity, define the edges i and j to be neighbors if they share a vertex and set 

the potential functions Ui and Uto be Gaussian with two parameters each to describe 
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variance and local correlation. (The mean deviation from the template in the local model 

is naturally zero.)

The probabilities (8.1) must be set to zero for those cases forbidden by the previous 

paragraph, such as intersecting boundaries. Due to these restrictions, this local model is 

not truly Markovian (or Gibbsian); the approximation may be close for reasonable choices 

of parameter values in Ui and however.

Computer simulation

The restrictions of equation 8.1 and the paragraph preceding it define a probability model 

on maps of region boundaries and can be visualized through the simulation. Unfortu-

nately , the density (8.1) is unnormalized and highly multivariate and cannot be directly 

sampled. However, an algorithm exists for simulating a random walk through a probabil-

ity distribution, requiring only calculation of a function proportional to the probability 

density function (Metropolis et al., 1953). This application of the Metropolis algorithm 

loops through the interior vertices of the network of region boundaries, altering one ver-

tex at a time. Like the stochastic relaxation algorithm described in Section 3.1.4, the 

Metropolis algorithm is computationally well-suited to a Gibbs distribution, requiring lo-

cal calculation of ratios of conditional probabilities at each step. By altering only interior 

vertices in simulating the probability distribution of edges, the iterates of the algorithm 

automatically satisfy the constraints of a fixed outside boundary and unchanged network 

topology. The further constraint of non-intersecting boundaries can be satisfied by run-

ning the Metropolis algorithm and picking out of its stream of iterates those region maps 

that satisfy the constraint.
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. 8*3 Experimental design and comparison of reconstruction 
methods

Now that we have some idea of the difficulties of statistical modeling and estimation 

of PET images, we explore the applied problem of interest: the design and analysis of 

medical imaging experiments. The design of a study such as that described in Chapter 6 

involves parameters such as the number of tasks, patients, and replications, true region x 

task effects, and various components of variance. The main products of the analysis are 

summaries of region x task contrasts, averaged over patients and structured by regions 

(by hemisphere, function, anatomy, etc.). The following sources of error influence the 

experiment:

e True region x patient x task variation is the limiting factor on the precision 

of such study of region x task effects with a fixed number of patients.

• Variation in spatial brain structure among patients (discussed in Section 8.2 

above) affects the bias of region estimates (Chapter 7) and, perhaps more impor-

tantly, the effectiveness of averaging region estimates among patients.

• Limited resolution of the PET scan, a concern even with infinite data counts, 

blurs image estimates or makes them subject to untestable assumptions. In either 

case the resulting region estimates are biased (Chapter 7), and there is reduced 

statistical precision for estimates of region x task effects, especially for small regions.

• Sampling error due to finite data (discussed in Section 2.3) is of course the final 

level of variation in any experiment.

8.3.1 Example of an analysis for experimental design

This section considers a hypothetical future study based on the actual study presented in 

Chapter 6, but with replications on each patient and task. Assume an anlysis of logarithms 

of regional averages mimicking that presented in Section 6.2; then experimental design 
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requires the expression of region x task and residual region X task x patient variances 

in terms of modeled variance components. In addition one would want region x task 

estimates and variances among patients for selected regions of interest such as the superior 

colliculus. The following simple model illustrates how the experimental design could begin.

Model and definitions

Assume npat patients (indexed by p), two tasks, a fixed number of regions (indexed by r), 

and nrep replications (indexed by j). Label the following true effects, all on the log scale:

region effects (averaging the two tasks) Ar,

region x task effects BT,

region x task x patient effects Bpr, 

region X task x patient x replication effects Bprj.

It is a plausible approximation that the regional average value Ar is constant across 

patients and replications. It is reasonable to model region x task effects as fixed for 

some regions of interest and random for the others, and to model higher-level interactions 

as random effects:

- AT(^r,^),

- #(2pr,r2).

The variance r2 should increase with the time interval between replicates.

Summary of data and image estimates

Two-dimensional images will be estimated using filtered back-projection; assume that the 

true images of isotope concentration are constant within regions. Ignore three-dimensional 

effects and the nonlinear transformation from isotope concentration to blood flow. Re-

gional average blood flow is then summarized, as in Chapter 6, by a circular average of
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the reconstructed image; the difference yprj in the logarithms of these circular averages 

between the two tasks is one “data point” for subsequent analysis. Make the reasonable 

assumption that the data are Normally distributed:

yprj ~

with variances that depend on the region r and may be lower for regions, such as the 

superior colliculus in Chapter 6, that are carefully positioned to lie wholly within a PET 

slice.

The expected circular averages cprj are biased estimates of the true task effects Bprj, 

because of ignorance of exact region locations and blurring of the PET image estimate. 

Express this bias as fpr: the fractional contribution of region r to the circular average 

of the reconstructed image estimating region r. Unless a region is precisely localized in 

the same position in the PET scan for all patients, fpr will vary with p. (Section 7.1.1 

estimates fpr to be 35% for the superior colliculus in the study described in Chapter 6.) 

Transforming to the log scale yields the approximate result:

Cprj - fpr Bprj + (1 - f?r)Bprj,

where fpr is defined by:

logit (/pr) = logit (/pr) + Ar - Âr,

Bprj is a weighted average of the effects Bpsj in regions s neighboring r, and Âr is defined 

analogously.

Estimates of task effects

Again following the straightforward methods of Chapter 6, the region x task effects of 

interest are obtained by averaging summaries of image differences over patients and repli-

cations. We will decompose the variance of this summary step by step, starting with the 
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region X patient x task summary ypr., averaging over replications:

yPr- ~ N(cpr.,a?/niep), (8.2)

with the subscripted dot meaning “average over replications.” Also,

Cpr- = fprBpr■ + (1 - fpr)Bpr.. (8.3)

The average Bpr. has mean Bpr and variance T2/nrep; the mean and variance of Bpr. 

should be closer to zero than its components, as it is an average over several neighboring 

regions. Approximate the mean to be zero and the number of neighboring regions by five; 

combining equations 8.2 and 8.3 yields: '

ypr• ~ N(fprBpr, [fpr + |(1 - fpr^T2/ntep + (^/"rep)- (8.4)

Assume that all the coefficients /'r are known; then a linear and approximately unbi-

ased estimate of the region x task effect Br is

Ô _ ypr •

Further calculation, proceeding from expression (8.4), leads to an approximate form for 

the sampling variance of the region x task estimate:

Var (Br) = — 
npat

where // and (v/)r are the average and coefficient of variation of the fractions fpr over 

the npat patients.

The four terms on the right side of equation 8.5 correspond to four sources of variance 

in the medical imaging experiment. The first term, driven by (v/)2, represents variance 

among patients in the location of region r. The second term is proportional to v2—the 

variance among patients of true task effects. The third and fourth terms are proportional 

to the replication variance r2 and the sampling variance a2, respectively, and also depend 

on the variables (yf)2 and
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Experimental design

The immediate design problem for the above proposed experiment is to choose npat and 

nrep> given rough estimates of the magnitudes of task effects BT and the variance com-

ponents detailed above. Further problems within the same image estimation and analysis 

framework are to align the patients in the PET scanner and to pick the shapes over which 

to estimate regional averages from PET images, again with the goal of minimizing the 

variance (8.5). Good design choices require biological knowledge, as coded in the vari-

ables and (v/)2, as well as a previous study such as that of Chapter 6 to estimate 

variance components of true effects.

8.3.2 Comparison of reconstruction methods

The virtues of an image reconstruction method depend of course on the intended use of 

the output image; a reconstruction may be useful for the visual exploration of a PET scan 

but not for estimating averages within fixed anatomical regions, or vice-versa. The lack of 

a clear choice among estimates is especially apparent in light of the limited resolution of 

PET, which forces all reconstructions to be biased or depend on unverifiable information. 

In the specific context of linear estimation of region x task effects, however, competing 

reconstruction methods may be compared by performing competing experimental design 

calculations, as in Section 8.3.1 above, and then choosing a reconstruction method on 

which a cost-effective study can be based.

8.4 Conclusion

This thesis reviews and develops image reconstruction for positron emission tomography 

(PET) with some exploration of the related issues of statistical design and analysis of a 

factorial experiment using PET. Following overviews in the first two chapters on image 

analysis in general and PET in particular, the discussion of image reconstruction focuses 

on estimation of hierarchical Bayesian models. Such models turn out to fit neatly into 
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the indirect form of PET data, even after accounting for realistic data corrections, and 

can be estimated using iterative EM and stochastic relaxation algorithms. As detailed in 

Chapters 2 and 3, the Bayesian estimation algorithms can be expressed in terms of opera-

tors used in standard linear image reconstruction algorithms; in addition, estimation using 

the hierarchical model conveniently averages over nuisance parameters. Chapters 4 and 

5 integrate some regularization and smoothing estimates into the Bayesian framework, in 

particular identifying local spatial smoothing as a case of estimation from a nonstationary 

Gaussian conditional autoregressive prior model.

In addition, this thesis covers several more specific statistical issues associated with 

three key difficulties of PET. First, PET data are indirectly observed, requiring an inverse 

of an integral transform to reconstruct an image. Fourier analysis is useful for this task 

and motivates filtered back-projection, a linear reconstruction method that is exact for 

continuously observed, noise-free data and is currently used in real PET scanners. Sec-

ond, the mathematical constraint that an image be a nonnegative function explains some 

of the unsatisfactory properties of maximum likelihood image reconstruction from indi-

rect, noisy data sources such as PET. The failure of maximum likelihood motivates the 

aforementioned regularized and smoothed image estimates, which in turn suggest some 

specific Bayesian methods. A third difficulty is the resolution limit: every PET image 

estimate must be based on assumptions that cannot be verified from the data, leading 

to bias in estimation that is serious for filtered back-projection and may be reduced with 

Bayesian estimation. Interestingly, estimation bias often manifests itself as a blur in the 

reconstructed image.

Finally, the ideas presented here are focused by the analysis of a specific medical 

imaging study performed at Massachusetts General Hospital. Chapter 6 presents an ex-

ploratory analysis of the effects of substantive interest, which are based on local averages 

of PET images. Chapter 7 adapts the models and techniques developed in earlier chapters 

to the applied problem by deriving expressions for bias and variance of local averages 
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of various PET estimates. The final chapter begins with the difficulties of applying the 

likelihood-based estimates of Chapters 2-5 to real PET data; a direct implementation, not 

presented here, of the maximum likelihood estimate suggests that the statistical model of 

PET data, reviewed here in Chapter 2, is incomplete in practice. The thesis concludes 

with a discussion of statistical design for the medical study and the dependence of design 

and analysis on knowledge of biological spatial structures, not estimable from PET, which 

can themselves be modeled probabilistically. In its eight chapters, this thesis derives, uni-

fies, and motivates a family of image estimates and reconstruction algorithms applicable to 

noisy projection data and also explores the limits of image reconstruction for experiments 

based on PET.
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