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Prior distribution

Theprior distribution is a key part of Bayesian infer-
ence (see Bayesian methods and modeling) and rep-
resents the information about an uncertain parameter
� that is combined with the probability distribution of
new data to yield theposterior distribution, which
in turn is used for future inferences and decisions
involving �. The existence of a prior distribution for
any problem can be justified by axioms of decision
theory; here we focus on how to set up a prior distri-
bution for any given application. In general,� can and
will be a vector, but for simplicity we will focus here
on prior distributions for parameters one at a time.

The key issues in setting up a prior distribution
are:

ž what information is going into the prior distri-
bution;

ž the properties of the resulting posterior distri-
bution.

With well-identified parameters and large sample
sizes, reasonable choices of prior distributions will
have minor effects on posterior inferences. This def-
inition of ‘well identified’ and ‘large’ sample size
might seem to be circular, but in practice one can
check the dependence on prior distributions by a
sensitivity analysis: comparing posterior inferences
under different reasonable choices of prior distribu-
tion (and, for that matter, different reasonable choices
of probability models for data).

If the sample size is small, or available data pro-
vide only indirect information about the parameters of
interest, the prior distribution becomes more impor-
tant. In many cases, however, models can be set up
hierarchically, so that clusters of parameters have
shared prior distributions, which can themselves be
estimated from data.

Example

We illustrate with an example from a model in phar-
macokinetics, the study of the absorption, distribu-
tion, and elimination of drugs from the body. For
this particular study, about 20 measurements were
available on six young adult males, and a model
was fit with 15 parameters per person (which we
label �kl for personk and parameterl), along with

two variance parameters,�2
1 and �2

2, indicating the
scale of measurement/modeling error. The data (con-
centrations of a compound in blood and exhaled air
over time) are only indirectly informative of the indi-
vidual level parameters, which refer to equilibrium
concentrations, volumes, and metabolic rates inside
the body.

This is a nice example to use here because dif-
ferent principles for assigning prior distributions are
relevant for different parameters in the model, as we
now discuss.

Noninformative Prior Distributions

We first consider the variance parameters�2
1 and

�2
2, which are actually quite well identified in the

posterior distribution. For these, a noninformative
uniform prior distribution works fine. (A uniform dis-
tribution on the log standard deviations was used, but
enough information was available from the data that
the choice of noninformative prior distribution was
essentially irrelevant, and one could just as well have
assigned a uniform prior distribution on the variances
or the standard deviations.) The uniform prior distri-
bution here isimproper – that is, the function used
as a ‘prior probability density’ has an infinite integral
and is thus not, strictly speaking, a probability den-
sity at all. However, when formally combined with
the data likelihood it yields an acceptable proper pos-
terior distribution.

Highly Informative Prior Distributions

At the other extreme, fairly precise scientific infor-
mation is available on some of the parameters�kl in
the model. For example, parameter 8 represents the
mass of the liver as a fraction of lean body mass;
from previous medical studies, the liver is known to
be about 3.3% of lean body mass for young adult
males, with little variation. The prior distribution for
log�k,8 (for personsk D 1, . . . , 6) is assumed nor-
mal with mean�8 and standard deviation8; �8
was given a normal prior distribution with mean
log	0.033
 and standard deviation log	1.1
, and 8
was given an inverse�2 prior distribution with scale
log	1.1
 and two degrees of freedom. This setup sets
the parameters�k,8 approximately to their prior esti-
mate, 0.033, with some variation allowed between
persons.
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Moderately Informative Hierarchical Prior
Distributions

Finally, some of the physiological parameters�kl are
not well estimated by the data – thus, they require
informative prior distributions – but scientific infor-
mation on them is limited. For example, in this
particular study, parameter 14 represents the maxi-
mum rate of metabolism of a certain compound; the
best available estimate of this parameter for healthy
humans is 0.042, but this estimate is quite crude
and could easily be off by a factor of 10 or 100.
The maximum rate of metabolism is not expected
to vary greatly between persons, but there is much
uncertainty about the numerical value of the param-
eter. This information is encoded in ahierarchi-
cal prior distribution: log�k,14 ¾ N	�14, 2

14
, with
�14 ¾ Nflog	0.042
, [log	10
]2g and 14 ¾ Inv�2

f2, [log	2
]2g. Thus, the parameters�k,14 for the dif-
ferent personsk are expected to vary by about a factor
of 2, with their overall level estimated at about 0.042,
with a multiplicative uncertainty of about a factor of
10. To express this subtle statement of prior uncer-
tainty, the hierarchical prior distribution is needed.

What Would Happen if Noninformative Prior
Distributions Were Used for All the Parameters in
this Example?

In our parameterization, noninformative prior distri-
butions on the parameters�kl correspond to setting
k D 1 for each parameterk, thus allowing each
person’s parameters to be estimated from that per-
son’s own data. If noninformative prior distributions
were assigned to all the individual parameters, then
the model would fit the data very closely but with
scientifically unreasonable parameters – for example,
a person with a liver weighing 10 k. This sort of diffi-
culty is what motivates a researcher to specify a prior
distribution using external information.

Theory

Most of the theoretical work on prior distributions has
been on two topics: first, determining the conditions
that must be satisfied by the prior and data distribu-
tions so that the posterior distribution is well behaved;
and second, setting up rules for noninformative prior
distributions that satisfy various invariance principles.

These strands of research are related, in that prior dis-
tributions set up based on invariance rules alone will
make sense only if they lead to reasonable posterior
distributions.

Perhaps the most well known theoretical result is
that, for variance parameters� in a linear regres-
sion model, the uniform prior distribution for log�
is acceptable when applied to the lowest level vari-
ance component butnot acceptable for higher level
variance components. For these, a uniform prior dis-
tribution on � is acceptable, in the sense that the
posterior distribution will be proper if sample sizes
are moderate or large. By ‘not acceptable’, we refer to
prior distributions that yield improper posterior dis-
tributions, even when the data really supply enough
information to estimate the parameter accurately.
These theoretical results do not giverecommended
models, but rather are useful inruling out certain nat-
ural seeming models with poor statistical properties.

Conversely, one might seek to avoid theoretical
considerations entirely and simply pick a ‘subjective’
prior distribution that best represents one’s scientific
knowledge about the set of uncertain parameters in
the problem. In practice, however, subjective knowl-
edge is hard to specify precisely, and so it is important
to study the sensitivity of posterior inferences. In
many problems, the key issue in setting up the prior
distribution is the specification of the model into
parameters that can be clustered hierarchically.

Literature

Recent theoretical and applied overviews of Bayesian
statistics, including many examples and uses of
prior distributions (mostly noninformative), appear
in [3], [4] and [7]. See [2] for a review of decision
theoretic foundations, and [3] and [8] for full discus-
sions on the theoretical principles for distributions
and many references on the topic. The hierarchical
prior distribution for the pharmacokinetic example is
discussed in [6] and, briefly, in section 18.1 of [7].
Setting up noninformative prior distributions for mul-
tivariate models is an important topic of current
research; see [1] and [5].
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