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Parameter Configuration

Abstract

Parameter configuration is a common procedure used in large-scale network protocols to support multiple op-
erational goals. This problem can be formulated as a black-box optimization problem and solved with an efficient
search algorithm. This paper proposes a new heuristic search algorithm, Recursive Random Search(RRS), for
large-scale network parameter optimization. The RRS algorithm is based on the initial high-efficiency property of
random sampling and attempts to maintain this high-efficiency by constantly “restarting” random sampling with
adjusted sample spaces. Due to its root in random sampling, the RRS algorithm is robust to the effect of random
noises in the objective function and is advantageous in optimizing the objective function with negligible parameters.
These features are very important for the efficient parameter optimization of network protocols. The performance
of RRS is demonstrated with the tests on a suite of benchmark functions. The RRS algorithm has been applied to
the adaptive configuration of several network protocols, such as RED, OSPF and BGP. One example application in
OSPF routing algorithm is presented.

1 Introduction

Today’s network protocols like BGP and OSPF were designed for one primary service: “best effort reachability.” But
now network operators want to deploy Virtual Private Networks(VPN), manage traffic within ASes to meet Service
Level Agreements(SLA), and between ASes (at peering points) to optimize complex peering agreements. The design-
ers of such protocols included “parametric hooks” to allow operators to “tweak” the protocols and achieve such traffic
management goals. However, the parameter setting process today is manual and is widely considered a black art.
The configuration of many protocols, such as BGP, is tough, error prone and is likely to get harder as the protocol is
overloaded to serve more functions[1]. Though some tools are emerging to aid operators, a lot more needs to be done.
The on-line simulation system proposed in[2] is one such contribution to this important space, which can be used as
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Figure 1: On-line simulation system for adaptive configuration of network protocols

a “recommendation service” to suggest a variety of “good” parameter settings and illustrate resulting flow patterns
so that operators are better informed than their current manual procedures. As illustrated in Fig 1, the basic idea of
this system is to formulate network protocol configuration as a black-box optimization problem. With the network
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protocol considered as a black-box, network simulation can be used to evaluate its performance for various parameter
settings. Based on this, an optimization algorithm can then be employed to find the good protocol configuration for
the current network conditions. The “black-box” approach allows flexibility in terms of objectives and metrics of the
desired optimization, and hence can be applied to a variety of configuration problems. And it can be used to manage
any network protocol as long as the protocol hastunable parameters and their setting has substantial effect on network
performance.

In this on-line protocol configuration framework, an efficient search algorithm is essential to its success. Although
a large number of optimization algorithms have been proposed and successfully applied in practice[3, 4, 5], there is
no single algorithm which can consistently outperform the others in every problem class[6]. For a specific type of
problems, the performance of a search algorithm is dependent on whether its search strategy fit the features and re-
quirements of the underlying problem. For network parameter optimization, the desired search algorithm should have
high efficiency, scalability andnoise-robustness. Traditional search algorithms, such as genetic algorithm and simu-
lated annealing, could not provide such combination of properties. This paper therefore proposes a new optimization
algorithm, Recursive Random Search(RRS), whose major feature is its basis on random sampling. The Recursive
Random Search algorithm exploits the initial high efficiency of random sampling and remains in this high-efficiency
phase by constantly restarting random sampling with adjusted sampling spaces. In addition, the RRS algorithm is
also robust to noises in the objective function and is of great advantage when dealing with the objective function with
negligible parameters.

The RRS algorithm has been tested on a suite of benchmark functions to examine its efficiency, noise-resistance
and handling of negligible parameters. The results show that RRS outperforms the other algorithms. We have applied
the RRS algorithm to the on-line configuration of several network protocols, such as, RED, OSPF and BGP. Simulation
results demonstrate substantial improvement in network performance when the proposed on-line tuning is deployed.

The rest of this paper is organized as follows: In Section 2, we examine features of network parameter optimization
problems and investigate their impact on the algorithm design. In Section 3, we discuss design concepts of the RRS
algorithm and provide an overview of the algorithm. In Section 4, we describe the details of this algorithm. In Section
5, the tests of the algorithm on a suite of benchmark functions are presented. In Section 6, we summarize one example
application of RRS to the adaptive configuration of OSPF routing algorithm. Finally, we conclude this paper in Section
7.

2 Network Parameter Optimization Problem

Like optimization problems arising in many engineering areas, network parameter optimization can be formulated as
(assume minimization): given a real-valued objective functionf : R

n → R, find a global minimum,

x∗ = arg min
x∈D

f(x) (1)

whereD is the predefined parameter space, usually a compact set inR
n. In these problems, the objective function

f(x) is often analytically unknown and the function evaluation can only be achieved through computer simulation
or other indirect ways. This type of problems are also called “black-box” optimization problems where the objective
function is modeled as a black-box. Since littlea priori knowledge about the black-box is assumed, these problems
are considered very hard to solve. In addition, the objective functions are often non-linear and multi-modal, and these
problems are also calledglobal optimization as opposed to local optimization where there is only one single extreme
in f(x) and are much easier to solve.

Designing or selecting an efficient search algorithm requires examining the features of the target problem. For
network parameter optimization problems, the following features are usually present.

High efficiency is required for the desired search algorithm. More specifically, the emphasis of the search algorithm
should be on finding a better operating point within the limited time frame instead of seeking the strictly global
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optimum. Network conditions vary with time and the search algorithm shouldquickly find better network
parameters before significant changes in the network occur. Furthermore, network parameter optimization is
based on network simulation which might be very time-consuming. This also requires a highly efficient search
algorithm to obtain a desired solution with a minimum number of network simulations.

High dimension is another feature of these problems. For example, AT&T’s network has 1000s of routers and links.
If all OSPF link weights of this network are to be tuned, there will be thousands of parameters present in
the optimization. High-dimensional optimization problems are usually much more difficult to solve than low-
dimensional problems because of “curse of dimensionality”[7].

Noise is often introduced into the evaluation of objective function since network simulation may be used for function
evaluations. Due to inaccuracies in network modeling, simulation, etc., this empirical evaluation of objective
function may be distorted from the original one, in other words, affected by small random noises. Fig 2 shows
an example of 2-dimensional empirical objective function obtained with network simulation. It can be seen that
there exist many irregular small random fluctuations imposed on the overall structure.
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Figure 2: An empirical objective function obtained with network simulation (RED queueing management)

Negligible parameters may also be included in the objective function. These parameters contribute little to the ob-
jective function and should be ruled out from the optimization process. However, in practice, they are normally
very difficult to be identified and eliminated effectively. If the search algorithm is able to automatically excluded
these parameters from the optimization process, the efficiency of the optimization will significantly improved.

“Globally convex” or “big valley” structure[8, 9] may be present in the objective functions. That is, high-quality
local optima tend to center around the global one and be close to each other, whereas low-quality local optima
tend to distribute far way from the global one. “Globally convex” structure appears in many practical optimiza-
tion problems, especially in the situations when the objective function is affected by random noises. Boese[10]
has demonstrated the existence of this structure in complex Traveling Salesman Problem(TSP) and graph bisec-
tion problem, and presented anintuitive graph for this structure(Fig 3). Note that this figure is only an intuitive
illustration of “global convex”. The structure should be considered as a global slowly-varying structure super-
imposed with many local irregularities. The same structure has been found in circuit/graph partitioning and
job-shop scheduling, etc.[11]. Leary[12] also confirmed that there exist similar “funnel” structures in molecular
conformation problems where the potential energy from the forces between atoms is minimized.

The issues described above are common in many practical optimization problems[13, 14]. For such class of prob-
lems, genetic algorithm[15] and simulated annealing[5] are the most common algorithms since they require littlea
priori information from the concerned problem and are generally applicable. However, these algorithms are mainly
designed for full-optimization and often lacking in efficiency. Controlled random search[3], i.e., Price algorithm, is
also recommended for this situation[13, 16] but still suffers from lack of efficiency. In practice, these optimization
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Figure 3: Big valley structure

algorithms are often combined with local search techniques, such as, deepest descent and pattern search, to improve
their efficiency. However, since these local search techniques use fixed local structures to guide the search process,
they are usually susceptive to the effect of noises[17]. For example, in pattern search, the wrong pattern may easily
be derived if the samples for pattern exploration are corrupted by noises. Furthermore, for the objective function with
“globally convex” structures, local methods also perform inefficiently since there exist a large number of low-quality
local optima. Multistart local search algorithms will waste many efforts on examining these low-quality local optima
and essentially work like an inefficient random sampling.

In contrast to most of the search algorithms, the RRS algorithm is mainly built upon random sampling. RRS
performs the search process based on stochastic information on a certain sample area, therefore, its performance is
less affected by noises. In addition, RRS is more efficient when dealing with the objective function with negligible pa-
rameters. This is because that random samples will still maintain its uniform distribution in the subspace composed of
only those important parameters, and hence effectively removes negligible parameters from the optimization process.
In this way, the efficiency of the search can be improved significantly. For the objective function with “globally con-
vex” feature, RRS is able to detect the overall structure by its initial extensive sampling and approach global optima
very quickly.

3 Design Ideas of Recursive Random Search

Random sampling is the simplest and most widely used search technique, which takes random samples from a uniform
distribution over the parameter space. Despite its simplicity, random sampling is able to provides a strong probabilistic
convergence guarantee, i.e., the optimization result converges to the global optimization with probability 1. Further-
more, random sampling has surprisingly proved to be more efficient than deterministic exploration methods, such
as, grid covering, in terms of some probabilistic criteria and it is especially so for high-dimensional problems[18].
The disadvantage of random sampling is its apparent lack of efficiency. However, we will show that it is in factvery
efficient in its initial steps and its inefficiency is from the later sampling steps. In the following, we first describe the
initial high-efficiency property of random sampling, the basis of the Recursive Random Search algorithm, and then
present the basic idea of RRS.

3.1 Efficiency of Random Sampling

Given an measurable objective functionf(x) on the parameter spaceD with a range of[ymin, ymax], we can define
thedistribution function of objective function values as:

φD(y) =
m({x ∈ D | f(x) ≤ y })

m(D)
(2)
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wherey ∈ [ymin, ymax] andm(·) denotesLebesgue measure, a measure of the size of a set. For example,Lebesgue
measure is area in a 2-dimensional space, and volume in a 3-dimensional space, and so on. Basically, the above
equation represents the portion of the points in the parameter space whose function values are smaller than a certain
levely. φD(y) is a monotonously increasing function ofy in [ymin, ymax], its maximum value is 1 wheny = ymax and
its minimum value ism(x∗)/m(D) wherex∗ is the set of global optima. Without loss of generality, we assume that
f(x) is a continuous function andm(x ∈ D|f(x) = y) = 0,∀y ∈ [ymin, ymax], thenφ(y) will be a monotonously
increasing continuous function with a range of[0, 1]. Assuming ayr ∈ [ymin, ymax] such thatφD(yr) = r, r ∈
[0, 1], ar-percentile set in the parameter spaceD can be defined:

AD(r) = {x ∈ D | f(x) ≤ yr } (3)

Note thatAD(1) is just the whole parameter spaceD andlimε→0 AD(ε) will converge to the global optima. Suppose
the sample sequence generated byn steps of random sampling isxi, i = 1 . . . n andxn

(1) is the one with the minimum
function value, then the probability ofxn

(1) in AD(r) is:

P (xn
(1) ∈ AD(r)) = 1− (1− r)n = p (4)

Alternatively, ther value of ther-percentile set thatxn
(1) will reach with probabilityp can be represented as:

r = 1− (1− p)1/n (5)

For any probabilityp < 1, r will tend to 0 with increasingn, that means, random sampling will converge to the global
optima with increasing number of samples. Fig 4 shows ther-percentile set thatn steps of random sampling can
reach with a probability of99%. We can see thatrandom sampling is highly efficient at initial steps since r decreases
exponentially with increasing n, and its inefficiency is from later samples. As shown in Fig 4, it takes only 44 samples
to reach a point inAD(0.1) area, whereas all future samples can only improver value ofxn

(1) at most by 0.1.
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Figure 4:AD(r) of xn
(1) in random sampling with probability 0.99

3.2 Overview of The RRS Algorithm

The basic idea of RRS is to maintain the initial efficiency of random sampling by “restarting” it before its efficiency
becomes low. However, unlike the other methods, such as hillclimbing, random sampling cannot be restarted by
simply selecting a new starting point. Instead we accomplish the “restart” of random sampling bychanging its sample
space. Basically, we perform random sampling for a number of times, then move or resize the sample space according
to the previous samples and start another random sampling in the new sample space. Given a black-box objective
function, a desired optimization process should start with inspecting macroscopic features of the objective function,
and then look further into microscopic features in selected promising areas. The search process of RRS algorithm
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is fully consistent with this idea. In the beginning of the search, RRS performs sampling from the whole parameter
space and thus examines the overall structure of the objective function. With the search continuing and the sample
space gradually shrinking, the search gets more and more details of the objective function until it finally converges to
a local optimum.

A stochastic search algorithm usually comprises two elements:exploration andexploitation. Exploration exam-
ines the macroscopic features of the objective function and aims to identify promising areas in the parameter space,
while exploitation focuses on the microscopic features and attempts to exploit local information to improve the so-
lution quickly. Various search techniques can be used for these two purposes. Since macroscopic features are hard
to characterized, some unbiased search techniques, such as random search and random walk, are often used for ex-
ploration. Some algorithms also try to build a simple model to characterize the macroscopic features of the objective
function and perform exploration based on this model. However, to choose an appropriate model for a certain prob-
lem is very difficult and requires extensivea priori knowledge. Local search methods are the most commonly used
techniques for exploitation, and hence exploitation is also calledlocal phase in many literature and accordingly explo-
ration is also known asglobal phase. Derivative-based local search methods, such as quasi-Newton method[19] and
deepest descent[20], are very efficient for differentiable objective functions, however, they are not suitable for many
practical problem because of its sensitivity to noises and limitation for the differentiability of objective function[13].
Direct search, such as Nelder-Mead simplex method[21] and pattern search[22], do not exploit the derivative of the
objective function and are more suitable for the concerned problems.

Basically, the RRS algorithm uses random sampling for exploration and recursive random sampling for exploita-
tion. Ideally it should only execute the exploitation procedure in promising areas. However, it is difficult to determine
which areas are more promising and should be exploited. Many algorithms, such as multistart type algorithms, do not
differentiate areas and hence may waste much time in trivial areas. Our approach is to identify a certainr-percentile
setAD(r) and only start exploitation from this set. In this way, most of trivial areas will be excluded from exploitation
and thus the overall efficiency of the search process can be improved. This can be illustrated by the example shown
in Fig 5. The left graph shows a contour plot of a 2-dimensional multi-modal objective function and the right graph
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Figure 5: Contour plot of an objective function(left) and its region ofAD(0.05)(right)

shows the set ofAD(0.05). As shown in the figure, the function has many local optima; however, only three regions of
attraction remain inAD(0.05) (shaded areas in the right plot). Each of these regions encloses a local optimum and the
one with the biggest size happens to contain the global optimum. This is often true for many optimization problems
since the region of attraction containing the global optimum usually has the largest size [7]. If we perform random
sampling on the whole parameter space, the samples falling inAD(r) are also uniformly distributed overAD(r),
consequently, they are more likely to belong to the region containing the global optimum. That means, if exploitation
is started from these points, the search will arrive at the global optimum with a larger probability than other non-global
optima.

It is desirable that the size ofAD(r) region identified by exploration is as small as possible such that most of
trivial areas are filtered out. On the other hand, its smallest size is limited by the efficiency of random sampling, i.e.,
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it should be within the reach of initial high-efficiency steps of random sampling so that identifying a point in it will
not take too long to lower the overall efficiency.

4 Algorithm Details

The basic idea of the RRS algorithm is to use random sampling to explore the whole parameter space and only start
exploitation, i.e., recursive random sampling, for those points which fall in a certainAD(r) region. The pseudo-code
of the algorithm is shown in Algorithm 1 and we will explain its details in the following with reference to the lines of
the pseudo-code.

4.1 Exploration

In the exploration phase, random sampling is used to identify a point inAD(r) for exploitation. The value ofr should
be first chosen. Based on this value and a predefined confidence probabilityp, the number of samples required to
makePr(xn

(1) ∈ AD(r)) = p can be calculated as(according to Equation 4):n = ln(1−p)
ln(1−r) (line 1 in pseudo-code).

The algorithm uses the value off(xn
(1)) in the firstn samples as the threshold valueyr(line 4) and any future sample

with a smaller function value thanyr is considered to belong toAD(r). In later exploration, a newxn
(1) is obtained

everyn samples andyr is updated with the average of thesexn
(1) (lines [21-23]). Note that this calculation ofyr is

not intended to be an accurate estimation of the threshold forAD(r), instead it only function as the adjustment for
the balance between exploration and exploitation. In other words, it is to ensure that on the average the exploration
process will not continue forn samples and hence enter its low-efficiency phase.

In this exploration method, the confidence probabilityp should choose a value close to 1, for example, 0.99.
The value ofr decides the balance between exploration and exploitation and should be chosen carefully as discussed
before. According to the current experience, we have usedr = 0.1 andp = 0.99 in the algorithm, and with such
values it only takes44 samples to find a point for the estimation ofyr.

4.2 Exploitation

As soon as exploration finds a promising pointx0 whose function value is smaller thanyr, we start a recursive random
sampling procedure in the neighborhoodN(x0) of x0. The initial size ofN(x0) is taken as the size ofA(r), i.e.,
r · m(D), whereD is the original parameter space sincex0 belongs toA(r) with a high probability. Currently a
simple method is used to constructN(x0): assume the parameter spaceD is defined by the upper and lower limits for
its ith element,[li, ui], the neighborhood ofx0 with a size ofr ·m(D) is the original parameter space scaled down by
r, i.e.,NS,r(x0) = {z ∈ S | |zi − x0,i| < r1/n · (ui − li)}(line 10), wherex0,i is ith element ofx0 andzi ith element
of z. With this new sample spaceNS,r(x0), random sampling is continued. And then based on the obtained samples,
the sample space is re-aligned or shrunk as exemplified in Fig 6 until its size falls below a predefined levelsl, which
decides the resolution of the optimization.

Re-align sub-phase As described above, exploitation first starts in the neighborhoodN(x0) of x0. If φN(x0)(f(x0))
(defined in Equation 5) is large, that means most points inN(x0) are better thanx0. Therefore, if we do random
sampling inN(x0), it will be highly likely to find a point better thanx0 with a small number of samples. Let’s
define an expected value ofφN(x0)(f(x0)), υ, with a confidence probabilityq, random sampling should find a

better point inN(x0) with l = ln(1−q)
ln(1−υ) (line 2) samples. If a better point is found withinl samples, we replace

x0 with this point, move the sample space to the newN(x0) and keep its size unchanged (lines [11-13]). This
is calledre-align operation. For example, in Fig 6, the exploration identifies a promising pointC1 and then the
exploitation (i.e., random sampling) start in the neighborhoodR1 of C1. After a few samples, a new pointC2

is found to be better thanC1, hence the sample space is moved fromR1 to the neighborhoodR2 of C2. In this
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Algorithm 1: Recursive Random Search

1 Initialize exploration parametersp, r, n← ln(1− p)/ ln(1− r) ;
2 Initialize exploitation parametersq, υ, c, st, l← ln(1− q)/ ln(1 − υ);
3 Taken random samplesxi, i = 1 . . . n from parameter spaceD;
4 x0 ← arg min1≤i≤n(f(xi)), yr ← f(x0), addf(x0) to the threshold setF;
5 i← 0, exploit f lag ← 1, xopt ← x0;
6 while stopping criterion is not satisfied do
7 if exploit f lag = 1 then

// Exploit flag is set, start exploitation process
8 j ← 0, fc ← f(x0), xl ← x0, ρ← r;
9 while ρ > st do

10 Take a random samplex′ from ND,ρ(xl);
11 if f(x′) < fc then

// Find a better point, re-align the center of sample space to the new point
12 xl ← x′, fc ← f(x′);
13 j ← 0;

else
14 j ← j + 1;

endif
15 if j = l then

// Fail to find a better point, shrink the sample space
16 ρ← c · ρ, j ← 0;

endif
endw

17 exploit f lag ← 0, updatexopt if f(xl) < f(xopt);

endif
18 Take a random samplex0 from S;
19 if f(x0) < yr then

// Find a promising point, set the flag to exploit
20 exploit f lag ← 1;

endif
21 if i = n then

// Update the exploitation threshold everyn samples in the parameter space
22 Add min1≤i≤n(f(xi)) to the threshold setF;
23 yr ← mean(F), i← 0;

endif
24 i← i + 1;

endw
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way, even if the initialN(x0) (i.e.,R1 in the example) might miss the local optimum, the later re-align moves
will still lead the search to converge to the local optimum.

Shrink sub-phase If random sampling fails to find a better point inl samples, that suggestsφN(x0)(f(x0)) is smaller
than the expected levelυ. In this case, we reduceN(x0) by a certain ratioc ∈ [0, 1], i.e., generate a new
neighborhoodN′(x0) whose size isc · m(N(x0)) (lines [15-16]). This is calledshrink operation, which is
performed only when wefail to find a better point inl samples. When the size of sample space is reduced
to a value such thatφN(x0)(f(x0)) is larger thanυ, then “re-align” will take over again to moves to the local
optimum. With re-align and shrink alternately performed, the sample space will gradually converge to the local
optimum. For example, in Fig 6, afterl unsuccessful samples inR2, the sample space is shrunk toR3, then to
R4 if sampling inR3 continue to fail. The exploitation process continues until the size of sample space falls
below a certain threshold, whose value is dependent on the resolution requirement of the optimization problem.

5 Tests on Standard Benchmark Functions

As discussed before, the design objectives of RRS are: high efficiency, scalability to high-dimensional problems,
robustness to function evaluation noises and capability of handling negligible parameters. This section will present
the performance tests of RRS in these aspects. A suite of classical benchmark functions have been used in our
performance tests, such as, Square Sum, Rastrigin[23] and Griewangk[7], most of which have a large number of local
optima and are considered very difficult to optimize. For example, Fig 7 shows the 2-dimensional version of one
benchmark function, Rastrigin function.

Rastrigin function
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Figure 7: Two-dimensional Rastrigin function (Note: our tests use 20-2000 dimensional versions of this function.)

The performance of a search algorithm is usually measured by examining the number of function evaluations
to obtain a point satisfying a certain goodness criterion. Since the emphasis of our design objective is not on full
optimization but achieving high efficiency in the limited time frame, we have used the convergence curve of the
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optimization, i.e., the optimization result as a function of the number of function evaluations, to compare the efficiency
of algorithm especially in the initial part of the optimization process. Basically, we execute the search algorithm for
a certain number of function evaluations and draw the convergence curve. The performance of the algorithms are
compared based on these convergence curves.

5.1 Tests on Efficiency of RRS

In the efficiency tests, the performance of RRS is compared with two popular search algorithms: controlled random
search and multistart pattern search. Controlled random search is recommended for black-box optimization problems
in many literature[24, 13]. Multistart type algorithms are also one of the most popular methods in practice[14] and
have been demonstrated to work very well and outperform some more sophisticated algorithms, such as genetic
algorithm and simulated annealing, in many practical problems[25, 26, 27]. Pattern search[22] is one of local search
techniques which are usually recommended for black-box optimization[28].

In the tests, the search algorithms are executed on each function with dimension varying from 20 to 2000. To
eliminate randomness caused by stochastic elements in the search algorithms, each test is repeated for 50 times with
random starting points and the average of the results is used. The following parameters for the RRS algorithm have
been used in the tests:p = 0.99, r = 0.1, c = 0.5, υ = 0.8, q = 0.99, st = 0.001. Fig 8 shows one set of test
results for Rastrigin function. Complete results on all benchmark functions are presented in [29]. The results show
that the RRS algorithm performs much more efficiently than the other two search algorithms. Controlled random
search is more like pure random search in the beginning of the search. From the results, we can see that it does
perform very efficiently at its initial few steps and is better than multistart pattern search. However, with the search
continuing, its performance quickly degrades since random sampling loses its efficiency in later sampling. The results
also demonstrated that multistart pattern search cannot perform well for the objective function with a large number of
local optima.
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Figure 8: Performance tests on Rastrigin function

5.2 Tests on Noise-Resistance of RRS

Compared with local search methods, random sampling is more robust to the effect of noises. This section will com-
pare the performance of RRS and multistart pattern search algorithm for noise-affected objective functions. Directly
imposing random noises on the objective function may introduce the randomness into test results. Therefore, to obtain
consistent results, Rastrigin function have been used to emulate the situations where the evaluation of the objective
function is affected by small noises. Rastrigin function is defined as:

f(x) = n ·A +
n∑

i=1

(x2
i −A · cos(2πxi)) (6)

It can be also considered as a simple sphere function
∑n

i=1 x2
i superimposed with the noise term

∑n
i=1 A · cos(2πxi).

The magnitude of noises is determined by the value ofA. To test the noise-resistance of the search algorithms, we vary
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the noise level in Rastrigin function, i.e., the value ofA, and see how the search algorithms perform under different
magnitudes of noises. Note that the noise magnitude should not be too large to distort the overall structure of the
original function. Fig 9 shows the test results on Rastrigin functions with different noise level and different dimensions.
The results demonstrate that increasing magnitude of noises seriously degrade the performance of multistart pattern
search while the effect on RRS is slight.
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Figure 9: Noise-resistance tests of search algorithms

5.3 Tests on Objective Functions with Negligible Parameters

To simulate the situation of negligible parameters, ann-dimensional test function in Equation (7) is used:

f(x) =
5∑

i=1

x2
i + 10−12 ·

n∑
i=5

x2
i (7)

where−500 < xi < 500, i = 1 . . . n. In this function, the first five parameters essentially determine the function
value while the others are trivial parameters with little effect. The tests are performed for the cases where there are 0, 5
and 10 negligible parameters, and the performances of RRS and multistart pattern search are compared. Fig 10 shows
the test results. It can be seen that the introduction of trivial parameters has little effect on the performance of RRS
while the performance of multistart patter search degrades considerably with increasing number of trivial parameters.
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Figure 10: Performance tests on objective functions with negligible parameters

6 Application to Parameter Optimization of Network Protocols

The RRS algorithm has been applied to the adaptive configuration of several network protocols. For example, Random
Early Detection(RED) algorithm is dynamically tuned to maintain its stability in varying network conditions and
achieve high utilization as well as low queueing delay. And we have also tunedlocal_pref attributes of a BGP
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domain to achieve the load balancing objective for outbound traffic. These applications are presented in detail in [30].
This section summarizes one of them as an example, i.e., traffic engineering by tuning OSPF routing metrics.

Traffic engineering is a very important aspect in networking research. The objective of traffic engineering is
to distribute the offered traffic load evenly across the network such that network resources are optimally utilized. In
current Internet, IP traffic is mapped onto the network by standard routing protocols. However, these routing protocols
normally do not take into account current network conditions and Quality of Service(QoS) constraints. As a result,
the routing generated by these algorithms tend to generate a highly uneven mapping of traffic. That is, some links may
get very congested and the other may be consistently underutilized.

Suppose the offered traffic load in a network is defined by a demand matrix, where the row index represents
the source, the column index is the destination and the element of the matrix is the offered load from the source
to the destination. The demand matrix can be obtained through network measurement or estimation. A routing
algorithm will decides the network path taken by the traffic from a source to a destination. In this way, the traffic load
represented by the demand matrix is mapped to the network. Open Shortest Path First(OSPF) is thede facto standard
routing protocol for the intra-domain traffic, i.e., the traffic transfered within the same network domain. In OSPF
algorithm, each network link is assigned with a link weight and the routing decision is completely based on the values
of the link weights i.e., it routes the traffic from source to destination through the path with the minimum total link
weight. Traditionally, the link weights in OSPF are set heuristically without considering QoS requirements. With the
knowledge of the demand matrix, the OSPF link weights can be tuned to achieve traffic engineering objectives. This
tuning problem has been demonstrated to be NP-hard [31] can be tackled with a black-box optimization approach.

To formulate the black-box optimization problem for OSPF link weight setting, an optimization objective, i.e., the
performance metric of the network, has to be defined first. Consider a network composed ofn links. For one linkli,
we calculate its link costφi based on the following formula:

φi(xi) =




1 for 0 ≤ xi < 1/3
3 for 1/3 ≤ xi < 2/3
10 for 2/3 ≤ xi < 9/10
70 for 9/10 ≤ xi < 1
500 for 1 ≤ xi < 11/10
5000 for 10 ≤ xi

(8)

wherexi is the normalized traffic load distributed on linkli. Then, the objective of this optimization problem is to
minimize the total link cost

Φ =
n∑

i=1

φi (9)

This performance metric has been used for the design of AT&T WorldNet backbone network[31]. It heavily penalizes
the routing causing congestion. Consequently the optimization of this metric will result in a good routing which
evenly distributes traffic and voids link congestion.

Let w denote the link weight vector, whoseith element is the link weight for linkli. For each specificw, network
simulation is run to evaluate the objective functionΦ. Given a parameter space forw, optimization can be performed
to obtain the optimal or near-optimal solution ofw. Fig 11 shows the convergence curves of RRS on ARPANET
and MCI network topologies which have 140 and 62 link weights, respectively. For comparison, we also show the
convergence curves of a tabu-enhanced multistart hillclimbing search algorithm used in [31]. The straight lines in the
figures indicates the performance metric when one of heuristic configuration methods, unit link weights, is used. The
results show that the RRS algorithm performs very efficiently in the test. If we use the performance of the heuristic
setting as the benchmark level, we can see that RRS may find a solution better than the heuristic setting with 62.4%
fewer function evaluations than the other algorithm.

Besides the performance metric presented in this paper, we also tried other metrics, such as, overall packet loss
rate, whose optimization is especially important for TCP traffic load. In practice, the operator can formulate arbitrarily

12



0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700 800 900 1000

O
pt

im
iz

at
io

n 
re

su
lt

Number of function evaluations

Convergence Curve for ARPANET Network

Recursive Random Search
Multistart Hillclimbing

unit weights OSPF

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700 800 900 1000

O
pt

im
iz

at
io

n 
re

su
lt

Number of function evaluations

Convergence Curve for MCI Network

Recursive Random Search
Multistart Hillclimbing

unit weights OSPF

Figure 11: Convergence curves of optimization algorithms for OSPF link weight setting of ARPANET(140 links) and
MCI network(62 links)

complex objectives according to their needs and request RRS to work on it to give the best-answer-so-far within a time
bound.

7 Conclusion

This paper presented a new heuristic search algorithm, Recursive Random Search, which is designed for on-line
network configuration optimization problems where the efficiency and noise-robustness of the algorithm are highly
emphasized. In contrast to most other search algorithms, the new algorithm is mainly based on random sampling
and does not include any traditional local search methods which are not scalable to high-dimensional problems and
sensitive to the effect of noises. By constantly restarting random sampling with adjusted sample spaces, high efficiency
at initial steps of random sampling can be maintained.

The test results on a suite of benchmark functions have shown that the RRS algorithm performs very efficiently,
and is more robust to the effect of noises than the other algorithms. It is also demonstrated that RRS is of great
advantage when dealing with the problems with negligible parameters. The RRS algorithm has been successfully
used to the on-line configuration of several network protocols, such as RED, BGP and OSPF. However, its potential
applications are not limited to these and the employment on other network protocols is under investigation.
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