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Definitions

• a symmetric matrix 𝐴 ∈ R𝑛×𝑛 is positive semidefinite if

𝑥𝑇𝐴𝑥 ≥ 0 for all 𝑥

• a symmetric matrix 𝐴 ∈ R𝑛×𝑛 is positive definite if

𝑥𝑇𝐴𝑥 > 0 for all 𝑥 ≠ 0

this is a subset of the positive semidefinite matrices

note: if 𝐴 is symmetric and 𝑛 × 𝑛, then 𝑥𝑇𝐴𝑥 is the function

𝑥𝑇𝐴𝑥 =
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝐴𝑖 𝑗𝑥𝑖𝑥 𝑗 =
𝑛∑︁
𝑖=1

𝐴𝑖𝑖𝑥
2
𝑖 + 2

∑︁
𝑖> 𝑗

𝐴𝑖 𝑗𝑥𝑖𝑥 𝑗

this is called a quadratic form
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Example

𝐴 =

[
9 6
6 𝑎

]
𝑥𝑇𝐴𝑥 = 9𝑥2

1 + 12𝑥1𝑥2 + 𝑎𝑥2
2 = (3𝑥1 + 2𝑥2)2 + (𝑎 − 4)𝑥2

2

• 𝐴 is positive definite for 𝑎 > 4

𝑥𝑇𝐴𝑥 > 0 for all nonzero 𝑥

• 𝐴 is positive semidefinite but not positive definite for 𝑎 = 4

𝑥𝑇𝐴𝑥 ≥ 0 for all 𝑥, 𝑥𝑇𝐴𝑥 = 0 for 𝑥 = (2,−3)

• 𝐴 is not positive semidefinite for 𝑎 < 4

𝑥𝑇𝐴𝑥 < 0 for 𝑥 = (2,−3)
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Simple properties

• every positive definite matrix 𝐴 is nonsingular

𝐴𝑥 = 0 =⇒ 𝑥𝑇𝐴𝑥 = 0 =⇒ 𝑥 = 0

(last step follows from positive definiteness)

• every positive definite matrix 𝐴 has positive diagonal elements

𝐴𝑖𝑖 = 𝑒
𝑇
𝑖 𝐴𝑒𝑖 > 0

• every positive semidefinite matrix 𝐴 has nonnegative diagonal elements

𝐴𝑖𝑖 = 𝑒
𝑇
𝑖 𝐴𝑒𝑖 ≥ 0
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Schur complement

partition 𝑛 × 𝑛 symmetric matrix 𝐴 as

𝐴 =

[
𝐴11 𝐴𝑇2:𝑛,1
𝐴2:𝑛,1 𝐴2:𝑛,2:𝑛

]
• the Schur complement of 𝐴11 is defined as the (𝑛 − 1) × (𝑛 − 1) matrix

𝑆 = 𝐴2:𝑛,2:𝑛 −
1
𝐴11

𝐴2:𝑛,1𝐴
𝑇
2:𝑛,1

• if 𝐴 is positive definite, then 𝑆 is positive definite

to see this, take any 𝑥 ≠ 0 and define 𝑦 = −(𝐴𝑇2:𝑛,1𝑥)/𝐴11; then

𝑥𝑇𝑆𝑥 =

[
𝑦

𝑥

]𝑇 [
𝐴11 𝐴𝑇2:𝑛,1
𝐴2:𝑛,1 𝐴2:𝑛,2:𝑛

] [
𝑦

𝑥

]
> 0

because 𝐴 is positive definite
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Singular positive semidefinite matrices

• we mentioned that positive definite matrices are nonsingular (page 12.4)

• if 𝐴 is positive semidefinite, but not positive definite, then it is singular

to see this, suppose 𝐴 is positive semidefinite but not positive definite

• there exists a nonzero 𝑥 with 𝑥𝑇𝐴𝑥 = 0

• since 𝐴 is positive semidefinite the following function is nonnegative:

𝑓 (𝑡) = (𝑥 − 𝑡𝐴𝑥)𝑇𝐴(𝑥 − 𝑡𝐴𝑥)
= 𝑥𝑇𝐴𝑥 − 2𝑡𝑥𝑇𝐴2𝑥 + 𝑡2𝑥𝑇𝐴3𝑥

= −2𝑡∥𝐴𝑥∥2 + 𝑡2𝑥𝑇𝐴3𝑥

• 𝑓 (𝑡) ≥ 0 for all 𝑡 is only possible if ∥𝐴𝑥∥ = 0; therefore 𝐴𝑥 = 0

• hence there exists a nonzero 𝑥 with 𝐴𝑥 = 0, so 𝐴 is singular
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Exercises

• show that if 𝐴 ∈ R𝑛×𝑛 is positive semidefinite, then

𝐵𝑇𝐴𝐵

is positive semidefinite for any 𝐵 ∈ R𝑛×𝑚

• show that if 𝐴 ∈ R𝑛×𝑛 is positive definite, then

𝐵𝑇𝐴𝐵

is positive definite for any 𝐵 ∈ R𝑛×𝑚 with linearly independent columns

Cholesky factorization 12.7



Outline

• positive definite matrices

• examples

• Cholesky factorization

• complex positive definite matrices

• kernel methods



Exercise: resistor circuit

−
+y1

x1

R1 R2

R3 −
+ y2

x2

[
𝑦1
𝑦2

]
=

[
𝑅1 + 𝑅3 𝑅3
𝑅3 𝑅2 + 𝑅3

] [
𝑥1
𝑥2

]

show that the matrix
𝐴 =

[
𝑅1 + 𝑅3 𝑅3
𝑅3 𝑅2 + 𝑅3

]
is positive definite if 𝑅1, 𝑅2, 𝑅3 are positive
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Solution

Solution from physics

• 𝑥𝑇𝐴𝑥 = 𝑦𝑇𝑥 is the power delivered by sources, dissipated by resistors

• power dissipated by the resistors is positive unless both currents are zero

Algebraic solution

𝑥𝑇𝐴𝑥 = (𝑅1 + 𝑅3)𝑥2
1 + 2𝑅3𝑥1𝑥2 + (𝑅2 + 𝑅3)𝑥2

2

= 𝑅1𝑥
2
1 + 𝑅2𝑥

2
2 + 𝑅3(𝑥1 + 𝑥2)2

≥ 0

and 𝑥𝑇𝐴𝑥 = 0 only if 𝑥1 = 𝑥2 = 0
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Gram matrix

recall the definition of Gram matrix of a matrix 𝐵 (page 4.20):

𝐴 = 𝐵𝑇𝐵

• every Gram matrix is positive semidefinite

𝑥𝑇𝐴𝑥 = 𝑥𝑇𝐵𝑇𝐵𝑥 = ∥𝐵𝑥∥2 ≥ 0 ∀𝑥

• a Gram matrix is positive definite if

𝑥𝑇𝐴𝑥 = 𝑥𝑇𝐵𝑇𝐵𝑥 = ∥𝐵𝑥∥2 > 0 ∀𝑥 ≠ 0

in other words, 𝐵 has linearly independent columns
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Graph Laplacian

recall definition of node-arc incidence matrix of a directed graph (page 3.29)

𝐵𝑖 𝑗 =


1 if edge 𝑗 ends at vertex 𝑖
−1 if edge 𝑗 starts at vertex 𝑖
0 otherwise

assume there are no self-loops and at most one edge between any two vertices

1

2 3

4

1 54

2

3

𝐵 =


−1 −1 0 1 0

1 0 −1 0 0
0 0 1 −1 −1
0 1 0 0 1


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Graph Laplacian

the positive semidefinite matrix 𝐴 = 𝐵𝐵𝑇 is called the Laplacian of the graph

𝐴𝑖 𝑗 =


degree of vertex 𝑖 if 𝑖 = 𝑗

−1 if 𝑖 ≠ 𝑗 and vertices 𝑖 and 𝑗 are adjacent
0 otherwise

the degree of a vertex is the number of edges incident to it

1

2 3

4

1 54

2

3

𝐴 = 𝐵𝐵𝑇 =


3 −1 −1 −1

−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2


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Laplacian quadratic form

recall the interpretation of matrix–vector multiplication with 𝐵𝑇 (page 3.31)

• if 𝑦 is vector of node potentials, then 𝐵𝑇 𝑦 contains potential differences:

(𝐵𝑇 𝑦) 𝑗 = 𝑦𝑘 − 𝑦𝑙 if edge 𝑗 goes from vertex 𝑙 to 𝑘

• 𝑦𝑇𝐴𝑦 = 𝑦𝑇𝐵𝐵𝑇 𝑦 is the sum of squared potential differences

𝑦𝑇𝐴𝑦 = ∥𝐵𝑇 𝑦∥2 =
∑︁

edges 𝑖 → 𝑗

(𝑦 𝑗 − 𝑦𝑖)2

this is also known as the Dirichlet energy function

Example: for the graph on the previous page

𝑦𝑇𝐴𝑦 = (𝑦2 − 𝑦1)2 + (𝑦4 − 𝑦1)2 + (𝑦3 − 𝑦2)2 + (𝑦1 − 𝑦3)2 + (𝑦4 − 𝑦3)2
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Weighted graph Laplacian

• we associate a nonnegative weight 𝑤𝑘 with edge 𝑘

• the weighted graph Laplacian is the matrix 𝐴 = 𝐵 diag(𝑤)𝐵𝑇
(diag(𝑤) is the diagonal matrix with vector 𝑤 on its diagonal)

𝐴𝑖 𝑗 =


∑
𝑘∈N𝑖

𝑤𝑘 if 𝑖 = 𝑗 (where N𝑖 are the edges incident to vertex 𝑖)

−𝑤𝑘 if 𝑖 ≠ 𝑗 and edge 𝑘 is between vertices 𝑖 and 𝑗

0 otherwise

1

2 3

4

1 54

2

3

𝐴 =


𝑤1 + 𝑤2 + 𝑤4 −𝑤1 −𝑤4 −𝑤2

−𝑤1 𝑤1 + 𝑤3 −𝑤3 0
−𝑤4 −𝑤3 𝑤3 + 𝑤4 + 𝑤5 −𝑤5
−𝑤2 0 −𝑤5 𝑤2 + 𝑤5


this is the conductance matrix of a resistive circuit (𝑤𝑘 is conductance in branch 𝑘)
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Cholesky factorization

every positive definite matrix 𝐴 ∈ R𝑛×𝑛 can be factored as

𝐴 = 𝑅𝑇𝑅

where 𝑅 is upper triangular with positive diagonal elements

• complexity of computing 𝑅 is (1/3)𝑛3 flops

• 𝑅 is called the Cholesky factor of 𝐴

• can be interpreted as “square root” of a positive definite matrix

• gives a practical method for testing positive definiteness
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Cholesky factorization algorithm

[
𝐴11 𝐴1,2:𝑛
𝐴2:𝑛,1 𝐴2:𝑛,2:𝑛

]
=

[
𝑅11 0
𝑅𝑇1,2:𝑛 𝑅𝑇2:𝑛,2:𝑛

] [
𝑅11 𝑅1,2:𝑛
0 𝑅2:𝑛,2:𝑛

]
=

[
𝑅2

11 𝑅11𝑅1,2:𝑛

𝑅11𝑅
𝑇
1,2:𝑛 𝑅𝑇1,2:𝑛𝑅1,2:𝑛 + 𝑅𝑇2:𝑛,2:𝑛𝑅2:𝑛,2:𝑛

]
1. compute first row of 𝑅:

𝑅11 =
√︁
𝐴11, 𝑅1,2:𝑛 =

1
𝑅11

𝐴1,2:𝑛

2. compute 2, 2 block 𝑅2:𝑛,2:𝑛 from

𝐴2:𝑛,2:𝑛 − 𝑅𝑇1,2:𝑛𝑅1,2:𝑛 = 𝑅
𝑇
2:𝑛,2:𝑛𝑅2:𝑛,2:𝑛

this is a Cholesky factorization of order 𝑛 − 1
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Discussion

the algorithm works for positive definite 𝐴 of size 𝑛 × 𝑛

• step 1: if 𝐴 is positive definite then 𝐴11 > 0

• step 2: if 𝐴 is positive definite, then

𝐴2:𝑛,2:𝑛 − 𝑅𝑇1,2:𝑛𝑅1,2:𝑛 = 𝐴2:𝑛,2:𝑛 −
1
𝐴11

𝐴2:𝑛,1𝐴
𝑇
2:𝑛,1

is positive definite (see page 12.5)

• hence the algorithm works for 𝑛 = 𝑚 if it works for 𝑛 = 𝑚 − 1

• it obviously works for 𝑛 = 1; therefore it works for all 𝑛
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Example


25 15 −5
15 18 0
−5 0 11

 =


𝑅11 0 0
𝑅12 𝑅22 0
𝑅13 𝑅23 𝑅33



𝑅11 𝑅12 𝑅13
0 𝑅22 𝑅23
0 0 𝑅33


=


5 0 0
3 3 0

−1 1 3




5 3 −1
0 3 1
0 0 3


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Example


25 15 −5
15 18 0
−5 0 11

 =

𝑅11 0 0
𝑅12 𝑅22 0
𝑅13 𝑅23 𝑅33



𝑅11 𝑅12 𝑅13
0 𝑅22 𝑅23
0 0 𝑅33


• first row of 𝑅

25 15 −5
15 18 0
−5 0 11

 =


5 0 0
3 𝑅22 0

−1 𝑅23 𝑅33




5 3 −1
0 𝑅22 𝑅23
0 0 𝑅33


• second row of 𝑅[

18 0
0 11

]
−
[

3
−1

] [
3 −1

]
=

[
𝑅22 0
𝑅23 𝑅33

] [
𝑅22 𝑅23
0 𝑅33

]
[

9 3
3 10

]
=

[
3 0
1 𝑅33

] [
3 1
0 𝑅33

]
• third column of 𝑅: 10 − 1 = 𝑅2

33, i.e., 𝑅33 = 3
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Solving equations with positive definite 𝐴

solve 𝐴𝑥 = 𝑏 with 𝐴 a positive definite 𝑛 × 𝑛 matrix

Algorithm

• factor 𝐴 as 𝐴 = 𝑅𝑇𝑅

• solve 𝑅𝑇𝑅𝑥 = 𝑏

– solve 𝑅𝑇 𝑦 = 𝑏 by forward substitution
– solve 𝑅𝑥 = 𝑦 by back substitution

Complexity: (1/3)𝑛3 + 2𝑛2 ≈ (1/3)𝑛3 flops

• factorization: (1/3)𝑛3

• forward and backward substitution: 2𝑛2
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Cholesky factorization of Gram matrix

• suppose 𝐵 is an 𝑚 × 𝑛 matrix with linearly independent columns

• the Gram matrix 𝐴 = 𝐵𝑇𝐵 is positive definite (page 4.20)

two methods for computing the Cholesky factor of 𝐴, given 𝐵

1. compute 𝐴 = 𝐵𝑇𝐵, then Cholesky factorization of 𝐴

𝐴 = 𝑅𝑇𝑅

2. compute QR factorization 𝐵 = 𝑄𝑅; since

𝐴 = 𝐵𝑇𝐵 = 𝑅𝑇𝑄𝑇𝑄𝑅 = 𝑅𝑇𝑅

the matrix 𝑅 is the Cholesky factor of 𝐴
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Example

𝐵 =


3 −6
4 −8
0 1

 , 𝐴 = 𝐵𝑇𝐵 =

[
25 −50

−50 101

]

1. Cholesky factorization:

𝐴 =

[
5 0

−10 1

] [
5 −10
0 1

]
2. QR factorization

𝐵 =


3 −6
4 −8
0 1

 =


3/5 0
4/5 0

0 1


[

5 −10
0 1

]
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Comparison of the two methods

Numerical stability: QR factorization method is more stable

• see the example on page 8.16

• QR method computes 𝑅 without “squaring” 𝐵 (i.e., forming 𝐵𝑇𝐵)

• this is important when the columns of 𝐵 are “almost” linearly dependent

Complexity

• method 1: cost of symmetric product 𝐵𝑇𝐵 plus Cholesky factorization

𝑚𝑛2 + (1/3)𝑛3 flops

• method 2: 2𝑚𝑛2 flops for QR factorization

• method 1 is faster but only by a factor of at most two (if 𝑚 ≫ 𝑛)
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Sparse positive definite matrices

Cholesky factorization of dense matrices

• (1/3)𝑛3 flops

• on a standard computer: a few seconds or less, for 𝑛 up to several 1000

Cholesky factorization of sparse matrices

• if 𝐴 is very sparse, 𝑅 is often (but not always) sparse

• if 𝑅 is sparse, the cost of the factorization is much less than (1/3)𝑛3

• exact cost depends on 𝑛, number of nonzero elements, sparsity pattern

• very large sets of equations can be solved by exploiting sparsity
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Sparse Cholesky factorization

if 𝐴 is sparse and positive definite, it is usually factored as

𝐴 = 𝑃𝑅𝑇𝑅𝑃𝑇

𝑃 a permutation matrix; 𝑅 upper triangular with positive diagonal elements

Interpretation: we permute the rows and columns of 𝐴 and factor

𝑃𝑇𝐴𝑃 = 𝑅𝑇𝑅

• choice of permutation greatly affects the sparsity 𝑅

• there exist several heuristic methods for choosing a good permutation
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Example

sparsity pattern of 𝐴 Cholesky factor of 𝐴

pattern of 𝑃𝑇𝐴𝑃 Cholesky factor of 𝑃𝑇𝐴𝑃
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Solving sparse positive definite equations

solve 𝐴𝑥 = 𝑏 with 𝐴 a sparse positive definite matrix

Algorithm

1. compute sparse Cholesky factorization 𝐴 = 𝑃𝑅𝑇𝑅𝑃𝑇

2. permute right-hand side: 𝑐 := 𝑃𝑇𝑏

3. solve 𝑅𝑇 𝑦 = 𝑐 by forward substitution

4. solve 𝑅𝑧 = 𝑦 by back substitution

5. permute solution: 𝑥 := 𝑃𝑧
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Quadratic form

suppose 𝐴 is 𝑛 × 𝑛 and Hermitian (𝐴𝑖 𝑗 = 𝐴̄ 𝑗𝑖)

𝑥𝐻𝐴𝑥 =
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝐴𝑖 𝑗𝑥𝑖𝑥 𝑗

=
𝑛∑︁
𝑖=1

𝐴𝑖𝑖 |𝑥𝑖 |2 +
∑︁
𝑖> 𝑗

(𝐴𝑖 𝑗𝑥𝑖𝑥 𝑗 + 𝐴̄𝑖 𝑗𝑥𝑖𝑥 𝑗)

=
𝑛∑︁
𝑖=1

𝐴𝑖𝑖 |𝑥𝑖 |2 + 2 Re
∑︁
𝑖> 𝑗

𝐴𝑖 𝑗𝑥𝑖𝑥 𝑗

note that 𝑥𝐻𝐴𝑥 is real for all 𝑥 ∈ C𝑛
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Complex positive definite matrices

• a Hermitian 𝑛 × 𝑛 matrix 𝐴 is positive semidefinite if

𝑥𝐻𝐴𝑥 ≥ 0 for all 𝑥 ∈ C𝑛

• a Hermitian 𝑛 × 𝑛 matrix 𝐴 is positive definite if

𝑥𝐻𝐴𝑥 > 0 for all nonzero 𝑥 ∈ C𝑛

Cholesky factorization

every positive definite matrix 𝐴 ∈ C𝑛×𝑛 can be factored as

𝐴 = 𝑅𝐻𝑅

where 𝑅 is upper triangular with positive real diagonal elements
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Regularized least squares model fitting

• we revisit the data fitting problem with linear-in-parameters model (page 9.9)

𝑓 (𝑥) = 𝜃1 𝑓1(𝑥) + 𝜃2 𝑓2(𝑥) + · · · + 𝜃𝑝 𝑓𝑝 (𝑥)
= 𝜃𝑇𝐹 (𝑥)

• 𝐹 (𝑥) = ( 𝑓1(𝑥), . . . , 𝑓𝑝 (𝑥)) is a 𝑝-vector of basis functions 𝑓1(𝑥), . . . , 𝑓𝑝 (𝑥)

Regularized least squares model fitting (page 10.7)

minimize
𝑁∑︁
𝑘=1

(
𝜃𝑇𝐹 (𝑥 (𝑘)) − 𝑦(𝑘)

)2
+ 𝜆

𝑝∑︁
𝑗=1

𝜃2
𝑗

• (𝑥 (1), 𝑦(1)), . . . , (𝑥 (𝑁), 𝑦(𝑁)) are 𝑁 examples

• to simplify notation, we add regularization for all coefficients 𝜃1, . . . , 𝜃𝑝
• next discussion can be modified to handle 𝑓1(𝑥) = 1, regularization ∑𝑝

𝑗=2 𝜃
2
𝑗
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Regularized least squares problem in matrix notation

minimize ∥𝐴𝜃 − 𝑏∥2 + 𝜆∥𝜃∥2

• 𝐴 has size 𝑁 × 𝑝 (number of examples × number of basis functions)

𝐴 =


𝐹 (𝑥 (1))𝑇
𝐹 (𝑥 (2))𝑇

...

𝐹 (𝑥 (𝑁))𝑇

 =

𝑓1(𝑥 (1)) 𝑓2(𝑥 (1)) · · · 𝑓𝑝 (𝑥 (1))
𝑓1(𝑥 (2)) 𝑓2(𝑥 (2)) · · · 𝑓𝑝 (𝑥 (2))
... ... ...

𝑓1(𝑥 (𝑁)) 𝑓2(𝑥 (𝑁)) · · · 𝑓𝑝 (𝑥 (𝑁))


• 𝑏 is the 𝑁-vector 𝑏 = (𝑦(1), . . . , 𝑦(𝑁))
• we discuss methods for problems with 𝑁 ≪ 𝑝 (𝐴 is very wide)

• the equivalent “stacked” least squares problem (p.10.3) has size (𝑝 + 𝑁) × 𝑝
• QR factorization method may be too expensive when 𝑁 ≪ 𝑝
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Solution of regularized LS problem

from the normal equations:

𝜃 = (𝐴𝑇𝐴 + 𝜆𝐼)−1𝐴𝑇𝑏 = 𝐴𝑇 (𝐴𝐴𝑇 + 𝜆𝐼)−1𝑏

• second expression follows from the “push-through” identity

(𝐴𝑇𝐴 + 𝜆𝐼)−1𝐴𝑇 = 𝐴𝑇 (𝐴𝐴𝑇 + 𝜆𝐼)−1

this is easily proved, by writing it as 𝐴𝑇 (𝐴𝐴𝑇 + 𝜆𝐼) = (𝐴𝑇𝐴 + 𝜆𝐼)𝐴𝑇

• from the second expression for 𝜃 and the definition of 𝐴,

𝑓 (𝑥) = 𝜃𝑇𝐹 (𝑥) = 𝑤𝑇𝐴𝐹 (𝑥) =
𝑁∑︁
𝑖=1

𝑤𝑖𝐹 (𝑥 (𝑖))𝑇𝐹 (𝑥)

where 𝑤 = (𝐴𝐴𝑇 + 𝜆𝐼)−1𝑏
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Algorithm

1. compute the 𝑁 × 𝑁 matrix 𝑄 = 𝐴𝐴𝑇 , which has elements

𝑄𝑖 𝑗 = 𝐹 (𝑥 (𝑖))𝑇𝐹 (𝑥 ( 𝑗)), 𝑖, 𝑗 = 1, . . . , 𝑁

2. use a Cholesky factorization to solve the equation

(𝑄 + 𝜆𝐼)𝑤 = 𝑏

Remarks

• 𝜃 = 𝐴𝑇𝑤 is not needed; 𝑤 is sufficient to evaluate the function 𝑓 (𝑥):

𝑓 (𝑥) =
𝑁∑︁
𝑖=1

𝑤𝑖𝐹 (𝑥 (𝑖))𝑇𝐹 (𝑥)

• complexity: (1/3)𝑁3 flops for factorization plus cost of computing 𝑄
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Example: multivariate polynomials

𝑓 (𝑥) is a polynomial of degree 𝑑 (or less) in 𝑛 variables 𝑥 = (𝑥1, . . . , 𝑥𝑛)

• 𝑓 (𝑥) is a linear combination of all possible monomials

𝑥
𝑘1
1 𝑥

𝑘2
2 · · · 𝑥𝑘𝑛𝑛

where 𝑘1, . . . , 𝑘𝑛 are nonnegative integers with 𝑘1 + 𝑘2 + · · · + 𝑘𝑛 ≤ 𝑑

• number of different monomials is(
𝑛 + 𝑑
𝑛

)
=
(𝑛 + 𝑑)!
𝑛! 𝑑!

Example: for 𝑛 = 2, 𝑑 = 3 there are ten monomials

1, 𝑥1, 𝑥2, 𝑥2
1, 𝑥1𝑥2, 𝑥2

2, 𝑥3
1, 𝑥2

1𝑥2, 𝑥1𝑥
2
2, 𝑥3

2
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Multinomial formula

(𝑥0 + 𝑥1 + · · · + 𝑥𝑛)𝑑 =
∑︁

𝑘0+···+𝑘𝑛=𝑑

(𝑑 + 1)!
𝑘0! 𝑘1! · · · 𝑘𝑛! 𝑥

𝑘0
0 𝑥

𝑘1
1 · · · 𝑥𝑘𝑛𝑛

sum is over all nonnegative integers 𝑘0, 𝑘1, . . . , 𝑘𝑛 with sum 𝑑

• setting 𝑥0 = 1 gives

(1 + 𝑥1 + 𝑥2 + · · · + 𝑥𝑛)𝑑 =
∑︁

𝑘1+···+𝑘𝑛≤𝑑
𝑐𝑘1𝑘2···𝑘𝑛𝑥

𝑘1
1 𝑥

𝑘2
2 · · · 𝑥𝑘𝑛𝑛

• the sum includes all monomials of degree 𝑑 or less with variables 𝑥1, . . . , 𝑥𝑛

• coefficient 𝑐𝑘1𝑘2···𝑘𝑛 is defined as

𝑐𝑘1𝑘2···𝑘𝑛 =
(𝑑 + 1)!

𝑘0! 𝑘1! 𝑘2! · · · 𝑘𝑛! with 𝑘0 = 𝑑 − 𝑘1 − · · · − 𝑘𝑛
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Vector of monomials

write polynomial of degree 𝑑 or less, with variables 𝑥 ∈ R𝑛, as

𝑓 (𝑥) = 𝜃𝑇𝐹 (𝑥)

• 𝐹 (𝑥) is vector of basis functions

√
𝑐𝑘1···𝑘𝑛 𝑥

𝑘1
1 𝑥

𝑘2
2 · · · 𝑥𝑘𝑛𝑛 for all 𝑘1 + 𝑘2 + · · · + 𝑘𝑛 ≤ 𝑑

• length of 𝐹 (𝑥) is 𝑝 = (𝑛 + 𝑑)!/(𝑛! 𝑑!)
• multinomial formula gives simple formula for inner products 𝐹 (𝑢)𝑇𝐹 (𝑣):

𝐹 (𝑢)𝑇𝐹 (𝑣) =
∑︁

𝑘1+···+𝑘𝑛≤𝑑
𝑐𝑘1𝑘2···𝑘𝑛 (𝑢𝑘1

1 · · · 𝑢𝑘𝑛𝑛 ) (𝑣𝑘1
1 · · · 𝑣𝑘𝑛𝑛 )

= (1 + 𝑢1𝑣1 + · · · + 𝑢𝑛𝑣𝑛)𝑑

• only 2𝑛 + 1 flops needed for inner product of length 𝑝 = (𝑛 + 𝑑)!/(𝑛! 𝑑!)
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Example

vector of monomials of degree 𝑑 = 3 or less in 𝑛 = 2 variables

𝐹 (𝑢)𝑇𝐹 (𝑣) =



1√
3𝑢1√
3𝑢2√
3𝑢2

1√
6𝑢1𝑢2√
3𝑢2

2
𝑢3

1√
3𝑢2

1𝑢2√
3𝑢1𝑢

2
2

𝑢3
2



𝑇 

1√
3𝑣1√
3𝑣2√
3𝑣2

1√
6𝑣1𝑣2√
3𝑣2

2
𝑣3

1√
3𝑣2

1𝑣2√
3𝑣1𝑣

2
2

𝑣3
2


= (1 + 𝑢1𝑣1 + 𝑢2𝑣2)3
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Least squares fitting of multivariate polynomials

fit polynomial of 𝑛 variables, degree ≤ 𝑑, to points (𝑥 (1), 𝑦(1)), . . . , (𝑥 (𝑁), 𝑦(𝑁))
Algorithm (see page 12.33)

1. compute the 𝑁 × 𝑁 matrix 𝑄 with elements

𝑄𝑖 𝑗 = 𝐾 (𝑥 (𝑖), 𝑥 ( 𝑗)) where 𝐾 (𝑢, 𝑣) = (1 + 𝑢𝑇𝑣)𝑑

2. use a Cholesky factorization to solve the equation (𝑄 + 𝜆𝐼)𝑤 = 𝑏

• the fitted polynomial is

𝑓 (𝑥) =
𝑁∑︁
𝑖=1

𝑤𝑖𝐾 (𝑥 (𝑖), 𝑥) =
𝑁∑︁
𝑖=1

𝑤𝑖 (1 + (𝑥 (𝑖))𝑇𝑥)𝑑

• complexity: 𝑛𝑁2 flops for computing 𝑄, plus (1/3)𝑁3 for the factorization, i.e.,

𝑛𝑁2 + (1/3)𝑁3 flops
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Kernel methods

Kernel function: a generalized inner product 𝐾 (𝑢, 𝑣)
• 𝐾 (𝑢, 𝑣) is inner product of vectors of basis functions 𝐹 (𝑢) and 𝐹 (𝑣)
• 𝐹 (𝑢) may be infinite-dimensional

• kernel methods work with 𝐾 (𝑢, 𝑣) directly, do not require 𝐹 (𝑢)

Examples

• the polynomial kernel function 𝐾 (𝑢, 𝑣) = (1 + 𝑢𝑇𝑣)𝑑

• the Gaussian radial basis function kernel

𝐾 (𝑢, 𝑣) = exp (−∥𝑢 − 𝑣∥
2

2𝜎2 )

• kernels exist for computing with graphs, texts, strings of symbols, . . .
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Example: handwritten digit classification

we apply the method of page 12.38 to least squares classification

• training set is 10000 images from MNIST data set (≈ 1000 examples per digit)

• vector 𝑥 is vector of pixel intensities (size 𝑛 = 282 = 784)

• we use the polynomial kernel with degree 𝑑 = 3:

𝐾 (𝑢, 𝑣) = (1 + 𝑢𝑇𝑣)3

hence 𝐹 (𝑧) has length 𝑝 = (𝑛 + 𝑑)!/(𝑛! 𝑑!) = 80931145

• we calculate ten Boolean classifiers

𝑓𝑘 (𝑥) = sign( 𝑓𝑘 (𝑥)), 𝑘 = 1, . . . 10

𝑓𝑘 (𝑥) distinguishes digit 𝑘 − 1 (outcome +1) form other digits (outcome −1)

• the Boolean classifiers are combined in the multi-class classifier

𝑓 (𝑥) = argmax
𝑘=1,...,10

𝑓𝑘 (𝑥)

Cholesky factorization 12.40



Least squares Boolean classifier

Algorithm: compute Boolean classifier for digit 𝑘 − 1 versus the rest

1. compute 𝑁 × 𝑁 matrix 𝑄 with elements

𝑄𝑖 𝑗 = (1 + (𝑥 (𝑖))𝑇𝑥 ( 𝑗))𝑑, 𝑖, 𝑗 = 1, . . . , 𝑁

2. define 𝑁-vector 𝑏 = (𝑦(1), . . . , 𝑦(𝑁)) with elements

𝑦(𝑖) =
{ +1 𝑥 (𝑖) is an example of digit 𝑘 − 1
−1 otherwise

3. solve the equation (𝑄 + 𝜆𝐼)𝑤 = 𝑏

the solution 𝑤 gives the Boolean classifier for digit 𝑘 − 1 versus rest

𝑓𝑘 (𝑥) =
𝑁∑︁
𝑖=1

𝑤𝑖 (1 + (𝑥 (𝑖))𝑇𝑥)𝑑
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Complexity

• the matrix 𝑄 is the same for each of the ten Boolean classifiers

• hence, only the right-hand side of the equation

(𝑄 + 𝜆𝐼)𝑤 = 𝑦d

is different for each Boolean classifier

Complexity

• constructing 𝑄 requires 𝑁2/2 inner products of length 𝑛: 𝑛𝑁2 flops

• Cholesky factorization of 𝑄 + 𝜆𝐼: (1/3)𝑁3 flops

• solve the equation (𝑄 + 𝜆𝐼)𝑤 = 𝑦d for the 10 right-hand sides: 20𝑁2 flops

• total is (1/3)𝑁3 + 𝑛𝑁2
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Classification error
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Confusion matrix

Predicted digit

Digit 0 1 2 3 4 5 6 7 8 9 Total

0 965 1 0 0 0 1 8 2 3 0 980
1 0 1127 2 1 1 0 2 1 1 0 1135
2 6 2 988 4 1 1 5 16 8 1 1032
3 0 0 7 973 0 12 0 8 6 4 1010
4 1 3 0 0 957 0 3 1 3 14 982
5 3 0 0 5 0 874 5 2 2 1 892
6 9 4 0 0 5 2 937 0 1 0 958
7 0 13 13 1 5 0 0 987 2 7 1028
8 3 1 3 11 4 4 3 5 934 6 974
9 3 4 2 7 13 3 1 6 4 966 1009
All 990 1155 1015 1002 986 897 964 1028 964 999 10000

• multiclass classifier (𝜆 = 104) on 10000 test examples

• 292 digits are misclassified (2.9% error)
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Examples of misclassified digits

Predicted digit

Digit 0 1 2 3 4 5 6 7 8 9

0

1

2

3

4
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Examples of misclassified digits

Predicted digit

Digit 0 1 2 3 4 5 6 7 8 9

5

6

7

8

9
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