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Definitions

e a symmetric matrix A € R™" is positive semidefinite if

xI'Ax >0 forall x

e a symmetric matrix A € R™*" is positive definite if
xTAx >0 forallx#0

this is a subset of the positive semidefinite matrices

note: if A is symmetric and n x n, then x’ Ax is the function

x!Ax = ZZA,]x,x] = ZA”x +22A”xlx]

i=1 j=1 >]

this is called a quadratic form
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x'Ax = 9x% + 12x1x7 + ax% = (3x1 + 2x2)° + (a — 4)x§

e A is positive definite for a > 4

xI'Ax >0 for all nonzero x

e A is positive semidefinite but not positive definite for a = 4

x'Ax >0 forallx, xTAx=0 forx=(2,-3)

e A is not positive semidefinite for a < 4

x'Ax <0 forx=(2,-3)
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Simple properties

e every positive definite matrix A is nonsingular
Ax=0 = xlAx=0 = x=0
(last step follows from positive definiteness)

e every positive definite matrix A has positive diagonal elements

Aii = eiTAei > 0

e every positive semidefinite matrix A has nonnegative diagonal elements

Aji = eiTAei >0
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Schur complement

partition n X n symmetric matrix A as

T
A = All A2:n,1

A2:n,1 A2:n,2:n

e the Schur complement of A1, is defined as the (n — 1) X (n — 1) matrix

1 T
S = A2:n,2:n - A_HA2:n,1A2;n’1
e if A is positive definite, then § is positive definite

to see this, take any x # 0 and define y = —(Agzn X)/A11; then

T T
e L

>0
X A2:n,1 A2:n,2:n X

because A is positive definite
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Singular positive semidefinite matrices

e we mentioned that positive definite matrices are nonsingular (page 12.4)

e if A is positive semidefinite, but not positive definite, then it is singular

to see this, suppose A is positive semidefinite but not positive definite

e there exists a nonzero x with x Ax = 0

e since A is positive semidefinite the following function is nonnegative:
f(1) = (x—tAx) A(x —1Ax)
= xTAx = 2txT A%x + 2T Ax
= —2t||Ax||2 + 2xT Adx
e f(r) > 0foralltis only possible if || Ax|| = O; therefore Ax =0

e hence there exists a nonzero x with Ax =0, so A is singular
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Exercises

e show that if A € R™" is positive semidefinite, then
B'AB

is positive semidefinite for any B € R

e show that if A € R is positive definite, then
B'AB

is positive definite for any B € R™™ with linearly independent columns
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Exercise: resistor circuit

R, R,
X1 X2
Vi R3 2

[M]: Ri+R3  R3 [x1

V2 R3 Ry + R3 )

show that the matrix
A = R1 + R3 R3
R3 R2 + R3

is positive definite if R|, R», R3 are positive
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Solution from physics

e x' Ax = yl'x is the power delivered by sources, dissipated by resistors

e power dissipated by the resistors is positive unless both currents are zero

Algebraic solution

x! Ax

>

Solution

(Rl + R3)x% + 2R3x1x0 + (Rz + R3)x§
Rlx% + sz% + R3 (x1 + X2)2
0

and x’Ax =0onlyifx; =x, =0
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Gram matrix

recall the definition of Gram matrix of a matrix B (page 4.20):
A=B'B
e every Gram matrix is positive semidefinite

xTAx = xTBTBx = ||Bx||> > 0 Vx

e a Gram matrix is positive definite if
x'Ax = x" B Bx = ||Bx||2 >0 Vx#0

in other words, B has linearly independent columns

Cholesky factorization

12.10



Graph Laplacian

recall definition of node-arc incidence matrix of a directed graph (page 3.29)

1 ifedge j ends at vertex i
B;j =4 —1 ifedge j starts at vertex i
0  otherwise

assume there are no self-loops and at most one edge between any two vertices

-1 -1 0 1 O

I 0 -1 0

b= 0 1 -1 -1
0 1 0 1
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Graph Laplacian

the positive semidefinite matrix A = BB! is called the Laplacian of the graph

degree of vertexi ifi=7j

Aijj=9 -1 if i # j and vertices i and j are adjacent

0 otherwise

the degree of a vertex is the number of edges incident to it

A = BB! =

Cholesky factorization
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Laplacian quadratic form

recall the interpretation of matrix—vector multiplication with B! (page 3.31)

e if y is vector of node potentials, then B!y contains potential differences:

(B'y); = yi —y; if edge j goes from vertex I to k

e y'Ay = yI' BBy is the sum of squared potential differences

YAy = IB 1P = > (vj - )’

edgesi — j

this is also known as the Dirichlet energy function

Example: for the graph on the previous page
YAy = (y2—y1)7+ (va = y1)7+ (3= y2)* + (1 = y3)* + (4 — y3)°
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Weighted graph Laplacian

e we associate a nonnegative weight w; with edge k

e the weighted graph Laplacian is the matrix A = B diag(w)B’
(diag(w) is the diagonal matrix with vector w on its diagonal)

> wy ifi=j (where N; are the edges incident to vertex i)
keN;
Aij =9 —wy if i # j and edge k is between vertices i and j
0 otherwise

A
—Wl +Wor+Wwyq —Wjq —W4y —W9
1 A= —W] w1+ w3 —W3 0
B —Wy W3 W3+ Wg+ws —ws
—W) 0 —Ws5 wo + Ws

2 @

this is the conductance matrix of a resistive circuit (w is conductance in branch k)
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Cholesky factorization

every positive definite matrix A € R™" can be factored as
A=R'R

where R is upper triangular with positive diagonal elements

e complexity of computing R is (1/3)n> flops
e R is called the Cholesky factor of A
e can be interpreted as “square root” of a positive definite matrix

e gives a practical method for testing positive definiteness
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Cholesky factorization algorithm

Air o Apm | R 0 !Ru Ri 2 ]
= T T
A2:n,1 A2:n,2:n R1,2;n R2:n,2:n 0 R2:n,2:n
2
B Ry, R11R12:n
= T T T
I RllRl,Z:n R1,2:nR1’23”+R2:n,2:nR2:”’23”

1. compute first row of R:

2. compute 2, 2 block R».;, 2., from

A2:n,2:n - R{Q;HRI,Z:n = Rg;n’z;nRZ:n,Z:n
this is a Cholesky factorization of order n — 1
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Discussion

the algorithm works for positive definite A of size n X n

e step 1: if A is positive definite then A;; > 0

e step 2: if A is positive definite, then

1
T T
Az;n,z;n - Rl’Q:an,Z:n = A2:n,2:n - A11A2:n,1A2:n,1

is positive definite (see page 12.5)
e hence the algorithm works for n = m if it works forn =m — 1

e it obviously works for n = 1; therefore it works for all n

Cholesky factorization 12.17



[ 25
15
| -5

Cholesky factorization

15
18
0

—5

1

Example

[ Ry O

Ri2 R

| R13 R23

—_ U9 N
_— W O

w O O

0
0

R33

12.18



[ 25

15
-5

e first row of R

15
18
0

[ 25

15

| -5

e second row of R

|

e third column of R: 10 — 1 = R?
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Solving equations with positive definite A

solve Ax = b with A a positive definite n X n matrix

Algorithm

e factor A as A = R'R
e solve RIRx = b

— solve Ry = b by forward substitution
— solve Rx = y by back substitution

Complexity: (1/3)n° +2n% = (1/3)n> flops

e factorization: (1/3)n°

e forward and backward substitution: 2n2
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Cholesky factorization of Gram matrix

e suppose B is an m X n matrix with linearly independent columns

e the Gram matrix A = B! B is positive definite (page 4.20)

two methods for computing the Cholesky factor of A, given B

1. compute A = B! B, then Cholesky factorization of A

A=R'R

2. compute QR factorization B = OR; since
A=B'B=R'OT"QR =R'R

the matrix R is the Cholesky factor of A
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Comparison of the two methods

Numerical stability: QR factorization method is more stable

e see the example on page 8.16
e QR method computes R without “squaring” B (i.e., forming B! B)

e this is important when the columns of B are “almost” linearly dependent

Complexity

e method 1: cost of symmetric product B! B plus Cholesky factorization

mn® + (1/3)n3 flops

e method 2: 2mn? flops for QR factorization

e method 1 is faster but only by a factor of at most two (if m > n)
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Sparse positive definite matrices

Cholesky factorization of dense matrices
e (1/3)n° flops

e on a standard computer: a few seconds or less, for n up to several 1000

Cholesky factorization of sparse matrices

e if A is very sparse, R is often (but not always) sparse
e if R is sparse, the cost of the factorization is much less than (1/3)n°
e exact cost depends on n, number of nonzero elements, sparsity pattern

e very large sets of equations can be solved by exploiting sparsity
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Sparse Cholesky factorization
if A is sparse and positive definite, it is usually factored as
A= PR'RP!

P a permutation matrix; R upper triangular with positive diagonal elements

Interpretation: we permute the rows and columns of A and factor
P'AP =R'R

e choice of permutation greatly affects the sparsity R

e there exist several heuristic methods for choosing a good permutation

Cholesky factorization
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Solving sparse positive definite equations

solve Ax = b with A a sparse positive definite matrix

Algorithm

1. compute sparse Cholesky factorization A = PR RP?
permute right-hand side: ¢ := PTh

solve RTy = ¢ by forward substitution

solve Rz = y by back substitution

a &~ W N

permute solution: x := Pz
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Quadratic form

suppose A is n X n and Hermitian (A;; = Aj;)

xH Ax

ZZAJXXJ

i=1 j=1

Z}Al,|x,|2 + Z(A,]x,x] +A,]x X )

i=1 i>]

Z A,l|xl|2 + 2ReZ AjjXix |
i=1 i>]

note that x/ Ax is real for all x € C"

Cholesky factorization
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Complex positive definite matrices

e a Hermitian n X n matrix A is positive semidefinite if

HAx >0 forallx e C"

e a Hermitian n X n matrix A is positive definite if

xHAx >0 forall nonzero x € C"

Cholesky factorization

every positive definite matrix A € C"*" can be factored as
A =RUR
where R is upper triangular with positive real diagonal elements

Cholesky factorization
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Regularized least squares model fitting

e we revisit the data fitting problem with linear-in-parameters model (page 9.9)

f(x) = 01AX) +02H(x) + - +0,f(x)
0T F (x)

o F(x)=(f1(x),...,fp(x))is a p-vector of basis functions fi(x), ..., fp(x)

Regularized least squares model fitting (page 10.7)

N 2) p
minimize Z(QTF(x(k))—y(k)) +1>6]

k=1 j=1
o (xW yMy " (x™),y(N)) are N examples
e to simplify notation, we add regularization for all coefficients 64, ..., 6,

e next discussion can be modified to handle fi(x) = 1, regularization 2522 0?

Cholesky factorization 12.30



Regularized least squares problem in matrix notation

minimize ||A6 — b||2 + /l||0||2

e A has size N X p (number of examples X number of basis functions)

[ Fx)T
F(x®)T

F(x(.N))T

C AGD) A GD)
AP fH(xP)

ARG )

e b isthe N-vector b = (y(l), .. .,y(N))

fp(x(l)) -
fp(x(z))

£y

e we discuss methods for problems with N <« p (A is very wide)

e the equivalent “stacked” least squares problem (p.10.3) has size (p + N) X p

e QR factorization method may be too expensive when N <« p

Cholesky factorization
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Solution of regularized LS problem

from the normal equations:
O=(ATA+aD)7'ATb = AT(AAT + A7 'b
e second expression follows from the “push-through” identity
(ATA +AD7TAT = AT(AAT + aD)7!
this is easily proved, by writing it as AT (AAT + A1) = (ATA + A AT

e from the second expression for 6 and the definition of A,

N
f(x)=0"F(x) =wlAF (x) = Z wl-F(x(i))TF(x)
i=1

where w = (AAT + A~ 1b

Cholesky factorization
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Algorithm

1. compute the N x N matrix Q = AA!, which has elements

Qi = Fax'NYITF(xW), ij=1,....N

2. use a Cholesky factorization to solve the equation

(Q+Aw=0>b

Remarks

e § = ATw is not needed; w is sufficient to evaluate the function f(x):
A N .
fx) = > wiF «")F(x)
i=1

e complexity: (1/3)N? flops for factorization plus cost of computing Q
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Example: multivariate polynomials

f(x) is a polynomial of degree d (or less) in n variables x = (x1, ..., x,)

e f(x) is alinear combination of all possible monomials

kl k2 e o o kn
X1 X, Xy
where k1, ..., k, are nonnegative integers with k; + ko +---+ k, < d

e number of different monomials is

( n+d ): (n+d)!

n n!d!

Example: for n = 2, d = 3 there are ten monomials

2 2 3 2 2 3
19 X], x2a xla x1x2’ x25 xla x1x23 x1x23 x2

Cholesky factorization
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Multinomial formula

d+1)!
(X0 +x]+--+x)% = Z . ‘(k ‘ )k 'xgoxlfl---x,li”
k0+...+kn:d 0- 1- °°° n-
sum is over all nonnegative integers kg, k1, ..., k, with sum d
e setting xg = 1 gives
(1+x;+x2+--- +xn)d = Z cklkz...knxlflxlgz x -x,lff”
ki+-+k,<d
e the sum includes all monomials of degree d or less with variables x, ..., x,
o coefficient cy ...k, is defined as
d+1)! _
Chikyk, ( ) with ko=d-k;—---—k,

T kolki kol -+ k!
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Vector of monomials

write polynomial of degree d or less, with variables x € R, as
flx)=0"F(x)
e ['(x) is vector of basis functions

\Cki -k, xlqulz€2 x -xfl” forall ki +kr+---+k, <d

e lengthof F(x)isp =(n+d)!/(n!d!)

e multinomial formula gives simple formula for inner products F (1)’ F(v):

k kny ..k ky
Fu)'F(v) = D Chikgeky (WY (V] vy

ki++k,<d

e only 2n + 1 flops needed for inner product of length p = (n +d)!/(n! d!)
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Example

vector of monomials of degree d = 3 or less in n = 2 variables

Cholesky factorization

F(u)'F(v)

1
\uy
\us
Vi

\/guluz
Vi
3

Uy
\/gu%uz
\/§u1u§

3

u

2

-T..

1
Var,
Vav,
Va2

\/6V1V2
Va3
3

V1
\/§V%V2
\/§v1v§

3

v

2

(1 +uyvy + u2v2)3
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Least squares fitting of multivariate polynomials

fit polynomial of n variables, degree < d, to points (xD, y(1), .., (xV) y (M)
Algorithm (see page 12.33)

1. compute the N x N matrix Q with elements
Qij = K(x(i),x(j)) where K(u,v) = (1 + uTv)d

2. use a Cholesky factorization to solve the equation (Q + Al)w = b

e the fitted polynomial is

N N
F0) =D wik (%) = > wi(1+ (x1D)Tx)?
=1 i=1

e complexity: nN? flops for computing Q, plus (1/3)N? for the factorization, i.e.,

nN? + (1/3)N? flops
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Kernel methods

Kernel function: a generalized inner product K (u, v)

e K(u,v) is inner product of vectors of basis functions F(u) and F(v)
e F'(u) may be infinite-dimensional

e kernel methods work with K (u, v) directly, do not require F(u)

Examples

e the polynomial kernel function K (1, v) = (1 + ulv)?

e the Gaussian radial basis function kernel

loe = v||?
K(u,v) =exp(—
(1. v) = exp (————)

e kernels exist for computing with graphs, texts, strings of symboils, ...
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Example: handwritten digit classification

we apply the method of page 12.38 to least squares classification

training set is 10000 images from MNIST data set (= 1000 examples per digit)
vector x is vector of pixel intensities (size n = 28% = 784)

we use the polynomial kernel with degree d = 3:
K(u,v) = (1 +ulv)?

hence F(z) has length p = (n+d)!/(n!d!) = 80931145
we calculate ten Boolean classifiers
fi(x) =sign(fi(x)), k=1,...10
fk(x) distinguishes digit £k — 1 (outcome +1) form other digits (outcome —1)

the Boolean classifiers are combined in the multi-class classifier

f (x) = argmax fk(x)
k=1,..., 10
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Least squares Boolean classifier

Algorithm: compute Boolean classifier for digit k — 1 versus the rest

1. compute N X N matrix Q with elements

Qij = (1+ N4, i j=1,....N

2. define N-vector b = (y, ..., y(M)) with elements

@ _ | +1 x® is an example of digit k — 1
Y77 -1 otherwise

3. solve the equation (Q + Al)w =b

the solution w gives the Boolean classifier for digit £k — 1 versus rest
~ N .
fi@) = > wi(1+ (xD)Tx)
i=1
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Complexity

e the matrix Q is the same for each of the ten Boolean classifiers

e hence, only the right-hand side of the equation
(Q+Ahw = )"

is different for each Boolean classifier

Complexity

e constructing Q requires N?/2 inner products of length n: nN? flops

e Cholesky factorization of Q + AI: (1/3)N? flops

e solve the equation (Q + AI)w = y9 for the 10 right-hand sides: 20N? flops
e total is (1/3)N> + nN?
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Classification error

-o- Training set

6 | & Testset |
s ~
S 4| :
(D)
c
(_3 3, [ | i i il |
©
O
%2 *
%)
©
O 1t i

OFr °® - - - - - .

1072 109 102/1 10% 100

percentage of misclassified digits versus 4
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Confusion matrix

Predicted digit

Digit 0 1 2 3 4 5 6 7 8 9  Total
0 965 1 0 0 0 1 8 2 3 0 980
1 0 1127 2 1 1 0 2 1 1 0 1135
2 6 2 988 4 1 1 5 16 8 1 1032
3 0 0 7 973 0 12 0 8 6 4 1010
4 1 3 0 0 957 0 3 1 3 14 982
5 3 0 0 5 0 874 5 2 2 1 892
6 9 4 0 0 5 2 937 0 1 0 958
7 0 13 13 1 5 0 0 987 2 7 1028
8 3 1 3 11 4 4 3 5 934 6 974
9 3 4 2 7 13 3 1 6 4 966 1009

All 990 1155 1015 1002 986 897 964 1028 964 999 10000

e multiclass classifier (1 = 10%) on 10000 test examples

e 292 digits are misclassified (2.9% error)

Cholesky factorization 12.44



Examples of misclassified digits

Predicted digit

Digit 0 1 2 3 4

B @ E

b

Cholesky factorization
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Examples of misclassified digits

Predicted digit

0

Digit

R EIX

12.46
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