12. Cholesky factorization

- positive definite matrices
- examples
- Cholesky factorization
- complex positive definite matrices
- kernel methods

Definitions

• a symmetric matrix $A \in \mathbb{R}^{n \times n}$ is *positive semidefinite* if

 $x^T A x \ge 0$ for all x

• a symmetric matrix $A \in \mathbb{R}^{n \times n}$ is *positive definite* if

 $x^T Ax > 0$ for all $x \neq 0$

this is a subset of the positive semidefinite matrices

note: if A is symmetric and $n \times n$, then $x^T A x$ is the function

$$
x^{T}Ax = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}x_{i}x_{j} = \sum_{i=1}^{n} A_{ii}x_{i}^{2} + 2 \sum_{i>j} A_{ij}x_{i}x_{j}
$$

this is called a *quadratic form*

Cholesky factorization and the state of the state of

Example

$$
A = \left[\begin{array}{cc} 9 & 6 \\ 6 & a \end{array} \right]
$$

$$
x^{T}Ax = 9x_1^2 + 12x_1x_2 + ax_2^2 = (3x_1 + 2x_2)^2 + (a - 4)x_2^2
$$

• A is positive definite for $a > 4$

$$
x^T A x > 0 \quad \text{for all nonzero } x
$$

• A is positive semidefinite but not positive definite for $a = 4$

$$
x^T A x \ge 0 \quad \text{for all } x, \qquad x^T A x = 0 \quad \text{for } x = (2, -3)
$$

• A is not positive semidefinite for $a < 4$

$$
x^T A x < 0 \quad \text{for } x = (2, -3)
$$

Simple properties

• every positive definite matrix A is nonsingular

$$
Ax = 0 \quad \Longrightarrow \quad x^T A x = 0 \quad \Longrightarrow \quad x = 0
$$

(last step follows from positive definiteness)

• every positive definite matrix A has positive diagonal elements

$$
A_{ii} = e_i^T A e_i > 0
$$

• every positive semidefinite matrix A has nonnegative diagonal elements

$$
A_{ii} = e_i^T A e_i \ge 0
$$

Schur complement

partition $n \times n$ symmetric matrix A as

$$
A = \left[\begin{array}{cc} A_{11} & A_{2:n,1}^T \\ A_{2:n,1} & A_{2:n,2:n} \end{array} \right]
$$

• the *Schur complement* of A_{11} is defined as the $(n - 1) \times (n - 1)$ matrix

$$
S = A_{2:n,2:n} - \frac{1}{A_{11}} A_{2:n,1} A_{2:n,1}^T
$$

• if A is positive definite, then S is positive definite to see this, take any $x \neq 0$ and define $y = -(A_2^T)$ $_{(2:n,1}^T x)/A_{11};$ then

$$
x^{T} S x = \begin{bmatrix} y \\ x \end{bmatrix}^{T} \begin{bmatrix} A_{11} & A_{2:n,1}^{T} \\ A_{2:n,1} & A_{2:n,2:n} \end{bmatrix} \begin{bmatrix} y \\ x \end{bmatrix} > 0
$$

because A is positive definite

Cholesky factorization and the state of the state of

Singular positive semidefinite matrices

- we mentioned that positive definite matrices are nonsingular (page [12.4\)](#page-3-0)
- if Λ is positive semidefinite, but not positive definite, then it is singular

to see this, suppose A is positive semidefinite but not positive definite

- there exists a nonzero x with $x^T A x = 0$
- since A is positive semidefinite the following function is nonnegative:

$$
f(t) = (x - tAx)^{T} A (x - tAx)
$$

= $x^{T} Ax - 2tx^{T} A^{2} x + t^{2} x^{T} A^{3} x$
= $-2t ||Ax||^{2} + t^{2} x^{T} A^{3} x$

- $f(t) \geq 0$ for all t is only possible if $||Ax|| = 0$; therefore $Ax = 0$
- hence there exists a nonzero x with $Ax = 0$, so A is singular

Exercises

• show that if $A \in \mathbb{R}^{n \times n}$ is positive semidefinite, then

B^TAB

is positive semidefinite for any $B \in \mathbf{R}^{n \times m}$

• show that if $A \in \mathbb{R}^{n \times n}$ is positive definite, then

B^TAB

is positive definite for any $B \in \mathbf{R}^{n \times m}$ with linearly independent columns

Outline

- positive definite matrices
- **examples**
- Cholesky factorization
- complex positive definite matrices
- kernel methods

Exercise: resistor circuit

$$
\left[\begin{array}{c} y_1 \\ y_2 \end{array}\right] = \left[\begin{array}{cc} R_1 + R_3 & R_3 \\ R_3 & R_2 + R_3 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]
$$

show that the matrix

$$
A = \left[\begin{array}{cc} R_1 + R_3 & R_3 \\ R_3 & R_2 + R_3 \end{array} \right]
$$

is positive definite if R_1, R_2, R_3 are positive

Solution

Solution from physics

- $x^T A x = y^T x$ is the power delivered by sources, dissipated by resistors
- power dissipated by the resistors is positive unless both currents are zero

Algebraic solution

$$
x^{T}Ax = (R_1 + R_3)x_1^2 + 2R_3x_1x_2 + (R_2 + R_3)x_2^2
$$

= $R_1x_1^2 + R_2x_2^2 + R_3(x_1 + x_2)^2$
 ≥ 0

and $x^T A x = 0$ only if $x_1 = x_2 = 0$

Gram matrix

recall the definition of *Gram matrix* of a matrix *B* (page 4.20):

 $A=B^T B$

• every Gram matrix is positive semidefinite

$$
x^T A x = x^T B^T B x = ||Bx||^2 \ge 0 \quad \forall x
$$

• a Gram matrix is positive definite if

$$
x^T A x = x^T B^T B x = ||Bx||^2 > 0 \quad \forall x \neq 0
$$

in other words, B has linearly independent columns

Graph Laplacian

recall definition of node-arc incidence matrix of a directed graph (page 3.29)

$$
B_{ij} = \begin{cases} 1 & \text{if edge } j \text{ ends at vertex } i \\ -1 & \text{if edge } j \text{ starts at vertex } i \\ 0 & \text{otherwise} \end{cases}
$$

assume there are no self-loops and at most one edge between any two vertices

 \overline{a}

Graph Laplacian

the positive semidefinite matrix $A = BB^T$ is called the *Laplacian* of the graph

$$
A_{ij} = \begin{cases} \text{degree of vertex } i & \text{if } i = j \\ -1 & \text{if } i \neq j \text{ and vertices } i \text{ and } j \text{ are adjacent} \\ 0 & \text{otherwise} \end{cases}
$$

the degree of a vertex is the number of edges incident to it

Laplacian quadratic form

recall the interpretation of matrix–vector multiplication with B^T (page 3.31)

• if y is vector of node potentials, then B^T y contains potential differences:

 $(B^T y)_j = y_k - y_l$ if edge j goes from vertex l to k

• $y^T A y = y^T B B^T y$ is the sum of squared potential differences

$$
y^T A y = ||B^T y||^2 = \sum_{\text{edges } i \to j} (y_j - y_i)^2
$$

this is also known as the *Dirichlet energy* function

Example: for the graph on the previous page

$$
yTAy = (y2 - y1)2 + (y4 - y1)2 + (y3 - y2)2 + (y1 - y3)2 + (y4 - y3)2
$$

Weighted graph Laplacian

- we associate a nonnegative weight w_k with edge k
- the weighted graph Laplacian is the matrix $A = B \textbf{diag}(w) B^T$ $(\textbf{diag}(w))$ is the diagonal matrix with vector w on its diagonal)

$$
A_{ij} = \begin{cases} \sum_{k \in N_i} w_k & \text{if } i = j \\ -w_k & \text{if } i \neq j \text{ and edge } k \text{ is between vertices } i \text{ and } j \\ 0 & \text{otherwise} \end{cases}
$$

this is the conductance matrix of a resistive circuit (w_k is conductance in branch k)

Cholesky factorization 12.14

Outline

- positive definite matrices
- examples
- **Cholesky factorization**
- complex positive definite matrices
- kernel methods

Cholesky factorization

every positive definite matrix $A \in \mathbf{R}^{n \times n}$ can be factored as

 $A=R^TR$

where R is upper triangular with positive diagonal elements

- complexity of computing R is $(1/3)n^3$ flops
- *R* is called the *Cholesky factor* of A
- can be interpreted as "square root" of a positive definite matrix
- gives a practical method for testing positive definiteness

Cholesky factorization algorithm

$$
\begin{bmatrix}\nA_{11} & A_{1,2:n} \\
A_{2:n,1} & A_{2:n,2:n}\n\end{bmatrix} = \n\begin{bmatrix}\nR_{11} & 0 \\
R_{1,2:n}^T & R_{2:n,2:n}^T\n\end{bmatrix}\n\begin{bmatrix}\nR_{11} & R_{1,2:n} \\
0 & R_{2:n,2:n}\n\end{bmatrix}
$$
\n
$$
= \n\begin{bmatrix}\nR_{11}^2 & R_{11}R_{1,2:n} \\
R_{11}R_{1,2:n}^T & R_{1,2:n}^T R_{1,2:n} + R_{2:n,2:n}^T R_{2:n,2:n}\n\end{bmatrix}
$$

1. compute first row of *:*

$$
R_{11} = \sqrt{A_{11}}, \qquad R_{1,2:n} = \frac{1}{R_{11}} A_{1,2:n}
$$

2. compute 2, 2 block $R_{2:n,2:n}$ from

$$
A_{2:n,2:n} - R_{1,2:n}^T R_{1,2:n} = R_{2:n,2:n}^T R_{2:n,2:n}
$$

this is a Cholesky factorization of order $n - 1$

Cholesky factorization 12.16

Discussion

the algorithm works for positive definite A of size $n \times n$

- step 1: if A is positive definite then $A_{11} > 0$
- step 2: if A is positive definite, then

$$
A_{2:n,2:n} - R_{1,2:n}^T R_{1,2:n} = A_{2:n,2:n} - \frac{1}{A_{11}} A_{2:n,1} A_{2:n,1}^T
$$

is positive definite (see page [12.5\)](#page-4-0)

- hence the algorithm works for $n = m$ if it works for $n = m 1$
- it obviously works for $n = 1$; therefore it works for all n

Example

$$
\begin{bmatrix} 25 & 15 & -5 \ 15 & 18 & 0 \ -5 & 0 & 11 \end{bmatrix} = \begin{bmatrix} R_{11} & 0 & 0 \ R_{12} & R_{22} & 0 \ R_{13} & R_{23} & R_{33} \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & R_{13} \ 0 & R_{22} & R_{23} \ 0 & 0 & R_{33} \end{bmatrix}
$$

$$
= \begin{bmatrix} 5 & 0 & 0 \ 3 & 3 & 0 \ -1 & 1 & 3 \end{bmatrix} \begin{bmatrix} 5 & 3 & -1 \ 0 & 3 & 1 \ 0 & 0 & 3 \end{bmatrix}
$$

Example

$$
\begin{bmatrix} 25 & 15 & -5 \ 15 & 18 & 0 \ -5 & 0 & 11 \end{bmatrix} = \begin{bmatrix} R_{11} & 0 & 0 \ R_{12} & R_{22} & 0 \ R_{13} & R_{23} & R_{33} \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & R_{13} \ 0 & R_{22} & R_{23} \ 0 & 0 & R_{33} \end{bmatrix}
$$

 \bullet first row of R

$$
\left[\begin{array}{ccc} 25 & 15 & -5 \\ 15 & 18 & 0 \\ -5 & 0 & 11 \end{array}\right] = \left[\begin{array}{ccc} 5 & 0 & 0 \\ 3 & R_{22} & 0 \\ -1 & R_{23} & R_{33} \end{array}\right] \left[\begin{array}{ccc} 5 & 3 & -1 \\ 0 & R_{22} & R_{23} \\ 0 & 0 & R_{33} \end{array}\right]
$$

 \bullet second row of R

$$
\begin{bmatrix} 18 & 0 \ 0 & 11 \end{bmatrix} - \begin{bmatrix} 3 \ -1 \end{bmatrix} \begin{bmatrix} 3 & -1 \end{bmatrix} = \begin{bmatrix} R_{22} & 0 \ R_{23} & R_{33} \end{bmatrix} \begin{bmatrix} R_{22} & R_{23} \ 0 & R_{33} \end{bmatrix}
$$

$$
\begin{bmatrix} 9 & 3 \ 3 & 10 \end{bmatrix} = \begin{bmatrix} 3 & 0 \ 1 & R_{33} \end{bmatrix} \begin{bmatrix} 3 & 1 \ 0 & R_{33} \end{bmatrix}
$$

• third column of $R: 10 - 1 = R_{33}^2$, *i.e.*, $R_{33} = 3$

Cholesky factorization 12.19

Solving equations with positive definite

solve $Ax = b$ with A a positive definite $n \times n$ matrix

Algorithm

- factor A as $A = R^T R$
- solve $R^T R x = b$
	- $-$ solve $R^T y = b$ by forward substitution
	- $-$ solve $Rx = y$ by back substitution

Complexity: $(1/3)n^3 + 2n^2 \approx (1/3)n^3$ flops

- factorization: $(1/3)n^3$
- forward and backward substitution: $2n^2$

Cholesky factorization of Gram matrix

- suppose B is an $m \times n$ matrix with linearly independent columns
- the Gram matrix $A = B^T B$ is positive definite (page 4.20)

two methods for computing the Cholesky factor of A , given B

1. compute $A = B^T B$, then Cholesky factorization of A

$$
A = R^T R
$$

2. compute QR factorization $B = QR$; since

$$
A = B^T B = R^T Q^T Q R = R^T R
$$

the matrix
$$
R
$$
 is the Cholesky factor of A .

Example

$$
B = \begin{bmatrix} 3 & -6 \\ 4 & -8 \\ 0 & 1 \end{bmatrix}, \qquad A = B^{T}B = \begin{bmatrix} 25 & -50 \\ -50 & 101 \end{bmatrix}
$$

1. Cholesky factorization:

$$
A = \begin{bmatrix} 5 & 0 \\ -10 & 1 \end{bmatrix} \begin{bmatrix} 5 & -10 \\ 0 & 1 \end{bmatrix}
$$

2. QR factorization

$$
B = \begin{bmatrix} 3 & -6 \\ 4 & -8 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3/5 & 0 \\ 4/5 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 5 & -10 \\ 0 & 1 \end{bmatrix}
$$

Comparison of the two methods

Numerical stability: QR factorization method is more stable

- see the example on page 8.16
- QR method computes R without "squaring" B (*i.e.*, forming $B^T B$)
- \bullet this is important when the columns of B are "almost" linearly dependent

Complexity

• method 1: cost of symmetric product $B^T B$ plus Cholesky factorization

 $mn^{2} + (1/3)n^{3}$ flops

- method 2: $2mn^2$ flops for QR factorization
- method 1 is faster but only by a factor of at most two (if $m \gg n$)

Sparse positive definite matrices

Cholesky factorization of dense matrices

- $(1/3)n^3$ flops
- on a standard computer: a few seconds or less, for n up to several 1000

Cholesky factorization of sparse matrices

- if A is very sparse, R is often (but not always) sparse
- if R is sparse, the cost of the factorization is much less than $(1/3)n^3$
- exact cost depends on n , number of nonzero elements, sparsity pattern
- very large sets of equations can be solved by exploiting sparsity

Sparse Cholesky factorization

if \overline{A} is sparse and positive definite, it is usually factored as

 $A=PR^{T}RP^{T}$

 P a permutation matrix; R upper triangular with positive diagonal elements

Interpretation: we permute the rows and columns of A and factor

$$
P^T A P = R^T R
$$

- \bullet choice of permutation greatly affects the sparsity R
- there exist several heuristic methods for choosing a good permutation

Example

pattern of $P^{T}AP$

 ${}^{T}AP$ Cholesky factor of $P^{T}AP$

Solving sparse positive definite equations

solve $Ax = b$ with A a sparse positive definite matrix

Algorithm

- 1. compute sparse Cholesky factorization $A = PR^TRP^T$
- 2. permute right-hand side: $c := P^T b$
- 3. solve $R^T y = c$ by forward substitution
- 4. solve $Rz = y$ by back substitution
- 5. permute solution: $x := Pz$

Outline

- positive definite matrices
- examples
- Cholesky factorization
- **complex positive definite matrices**
- kernel methods

Quadratic form

suppose A is $n \times n$ and Hermitian $(A_{ij} = \bar{A}_{ji})$

$$
x^{H}Ax = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}\bar{x}_{i}x_{j}
$$

=
$$
\sum_{i=1}^{n} A_{ii}|x_{i}|^{2} + \sum_{i>j} (A_{ij}\bar{x}_{i}x_{j} + \bar{A}_{ij}x_{i}\bar{x}_{j})
$$

=
$$
\sum_{i=1}^{n} A_{ii}|x_{i}|^{2} + 2 \operatorname{Re} \sum_{i>j} A_{ij}\bar{x}_{i}x_{j}
$$

note that $x^H Ax$ is real for all $x \in \mathbb{C}^n$

Complex positive definite matrices

• a Hermitian $n \times n$ matrix A is positive semidefinite if

 $x^H A x \ge 0$ for all $x \in \mathbb{C}^n$

• a Hermitian $n \times n$ matrix A is positive definite if

 $x^H Ax > 0$ for all nonzero $x \in \mathbb{C}^n$

Cholesky factorization

every positive definite matrix $A \in {\bf C}^{n \times n}$ can be factored as

$$
A = R^H R
$$

where *is upper triangular with positive real diagonal elements*

Cholesky factorization and the state of the state of

Outline

- positive definite matrices
- examples
- Cholesky factorization
- complex positive definite matrices
- **kernel methods**

Regularized least squares model fitting

• we revisit the data fitting problem with linear-in-parameters model (page 9.9)

$$
\hat{f}(x) = \theta_1 f_1(x) + \theta_2 f_2(x) + \dots + \theta_p f_p(x) \n= \theta^T F(x)
$$

• $F(x) = (f_1(x), \ldots, f_p(x))$ is a p-vector of basis functions $f_1(x), \ldots, f_p(x)$

Regularized least squares model fitting (page 10.7)

minimize
$$
\sum_{k=1}^{N} \left(\theta^T F(x^{(k)}) - y^{(k)} \right)^2 + \lambda \sum_{j=1}^{P} \theta_j^2
$$

• $(x^{(1)}, y^{(1)}), \ldots, (x^{(N)}, y^{(N)})$ are N examples

- to simplify notation, we add regularization for all coefficients $\theta_1, \ldots, \theta_p$
- next discussion can be modified to handle $f_1(x) = 1$, regularization $\sum_{j=2}^{p}$ θ^2 \overline{i}

Regularized least squares problem in matrix notation

$$
\text{minimize} \quad \|A\theta - b\|^2 + \lambda \|\theta\|^2
$$

• A has size $N \times p$ (number of examples \times number of basis functions)

$$
A = \begin{bmatrix} F(x^{(1)})^T \\ F(x^{(2)})^T \\ \vdots \\ F(x^{(N)})^T \end{bmatrix} = \begin{bmatrix} f_1(x^{(1)}) & f_2(x^{(1)}) & \cdots & f_p(x^{(1)}) \\ f_1(x^{(2)}) & f_2(x^{(2)}) & \cdots & f_p(x^{(2)}) \\ \vdots & \vdots & & \vdots \\ f_1(x^{(N)}) & f_2(x^{(N)}) & \cdots & f_p(x^{(N)}) \end{bmatrix}
$$

- *b* is the *N*-vector $b = (y^{(1)}, \ldots, y^{(N)})$ $\overline{}$
- we discuss methods for problems with $N \ll p$ (A is very wide)
- the equivalent "stacked" least squares problem (p.10.3) has size $(p + N) \times p$
- QR factorization method may be too expensive when $N \ll p$

Solution of regularized LS problem

from the normal equations:

$$
\hat{\theta} = (A^T A + \lambda I)^{-1} A^T b = A^T (A A^T + \lambda I)^{-1} b
$$

• second expression follows from the "push-through" identity

$$
(ATA + \lambda I)^{-1}AT = AT(AAT + \lambda I)^{-1}
$$

this is easily proved, by writing it as $A^T(AA^T + \lambda I) = (A^TA + \lambda I)A^T$

• from the second expression for $\hat{\theta}$ and the definition of A,

$$
\hat{f}(x) = \hat{\theta}^T F(x) = w^T A F(x) = \sum_{i=1}^N w_i F(x^{(i)})^T F(x)
$$

where
$$
w = (AA^T + \lambda I)^{-1}b
$$

Algorithm

1. compute the $N \times N$ matrix $Q = AA^T$, which has elements

$$
Q_{ij} = F(x^{(i)})^T F(x^{(j)}), \quad i, j = 1, ..., N
$$

2. use a Cholesky factorization to solve the equation

$$
(Q + \lambda I)w = b
$$

Remarks

• $\hat{\theta} = A^T w$ is not needed; w is sufficient to evaluate the function $\hat{f}(x)$:

$$
\hat{f}(x) = \sum_{i=1}^{N} w_i F(x^{(i)})^T F(x)
$$

 $\bullet\,$ complexity: $(1/3)N^3$ flops for factorization plus cost of computing ${\cal Q}$

Example: multivariate polynomials

 $\hat{f}(x)$ is a polynomial of degree d (or less) in *n* variables $x = (x_1, \ldots, x_n)$

• $\hat{f}(x)$ is a linear combination of all possible monomials

$$
x_1^{k_1}x_2^{k_2}\cdots x_n^{k_n}
$$

where k_1, \ldots, k_n are nonnegative integers with $k_1 + k_2 + \cdots + k_n \leq d$

• number of different monomials is

$$
\left(\begin{array}{c}n+d\\n\end{array}\right)=\frac{(n+d)!}{n!\;d!}
$$

Example: for $n = 2$, $d = 3$ there are ten monomials

1,
$$
x_1
$$
, x_2 , x_1^2 , x_1x_2 , x_2^2 , x_1^3 , $x_1^2x_2$, $x_1x_2^2$, x_2^3

Multinomial formula

$$
(x_0 + x_1 + \dots + x_n)^d = \sum_{k_0 + \dots + k_n = d} \frac{(d+1)!}{k_0! k_1! \dots k_n!} x_0^{k_0} x_1^{k_1} \dots x_n^{k_n}
$$

sum is over all nonnegative integers k_0, k_1, \ldots, k_n with sum d

• setting $x_0 = 1$ gives

$$
(1 + x_1 + x_2 + \dots + x_n)^d = \sum_{k_1 + \dots + k_n \le d} c_{k_1 k_2 \dots k_n} x_1^{k_1} x_2^{k_2} \dots x_n^{k_n}
$$

- the sum includes all monomials of degree d or less with variables x_1, \ldots, x_n
- coefficient $c_{k_1k_2\cdots k_n}$ is defined as

$$
c_{k_1k_2\cdots k_n} = \frac{(d+1)!}{k_0! \, k_1! \, k_2! \, \cdots \, k_n!}
$$
 with $k_0 = d - k_1 - \cdots - k_n$

Vector of monomials

write polynomial of degree d or less, with variables $x \in \mathbf{R}^n$, as

$$
\hat{f}(x) = \theta^T F(x)
$$

• $F(x)$ is vector of basis functions

$$
\sqrt{c_{k_1\cdots k_n}}\,x_1^{k_1}x_2^{k_2}\cdots x_n^{k_n} \qquad \text{for all } k_1 + k_2 + \cdots + k_n \le d
$$

- length of $F(x)$ is $p = (n + d)!/(n! d!)$
- multinomial formula gives simple formula for inner products $F(u)^T F(v)$:

$$
F(u)^T F(v) = \sum_{k_1 + \dots + k_n \le d} c_{k_1 k_2 \dots k_n} (u_1^{k_1} \dots u_n^{k_n}) (v_1^{k_1} \dots v_n^{k_n})
$$

=
$$
(1 + u_1 v_1 + \dots + u_n v_n)^d
$$

• only $2n + 1$ flops needed for inner product of length $p = (n + d)!/(n! d!)$

Example

vector of monomials of degree $d = 3$ or less in $n = 2$ variables

$$
F(u)^{T}F(v) = \begin{bmatrix} \frac{1}{\sqrt{3}u_{1}} \\ \sqrt{3}u_{2} \\ \sqrt{3}u_{2}^2 \\ \sqrt{3}u_{1}^2 \\ \sqrt{3}u_{2}^2 \\ u_1^3 \\ \sqrt{3}u_{1}^2u_{2} \\ \sqrt{3}u_{1}u_{2}^2 \\ u_2^3 \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{3}v_{1} \\ \sqrt{3}v_{2}^2 \\ \sqrt{3}v_{1}^2 \\ v_1^3 \\ v_2^3 \\ \sqrt{3}v_{1}^2v_{2}^2 \\ v_2^3 \end{bmatrix}
$$

$$
= (1 + u_1 v_1 + u_2 v_2)^3
$$

Least squares fitting of multivariate polynomials

fit polynomial of n variables, degree $\leq d$, to points $(x^{(1)},y^{(1)}),$ $\ldots,$ $(x^{(N)},y^{(N)})$ $\overline{}$

Algorithm (see page [12.33\)](#page-36-0)

1. compute the $N \times N$ matrix Q with elements

$$
Q_{ij} = K(x^{(i)}, x^{(j)})
$$
 where $K(u, v) = (1 + uTv)d$

- 2. use a Cholesky factorization to solve the equation $(Q + \lambda I)w = b$
- the fitted polynomial is

$$
\hat{f}(x) = \sum_{i=1}^{N} w_i K(x^{(i)}, x) = \sum_{i=1}^{N} w_i (1 + (x^{(i)})^T x)^d
$$

• complexity: nN^2 flops for computing Q , plus $(1/3)N^3$ for the factorization, *i.e.*,

$$
nN^2 + (1/3)N^3
$$
 flops

Kernel methods

Kernel function: a generalized inner product $K(u, v)$

- $K(u, v)$ is inner product of vectors of basis functions $F(u)$ and $F(v)$
- $F(u)$ may be infinite-dimensional
- kernel methods work with $K(u, v)$ directly, do not require $F(u)$

Examples

- the polynomial kernel function $K(u, v) = (1 + u^T v)^d$
- the *Gaussian radial basis function* kernel

$$
K(u, v) = \exp(-\frac{\|u - v\|^2}{2\sigma^2})
$$

• kernels exist for computing with graphs, texts, strings of symbols, ...

Example: handwritten digit classification

we apply the method of page [12.38](#page-41-0) to least squares classification

- training set is 10000 images from MNIST data set (\approx 1000 examples per digit)
- vector x is vector of pixel intensities (size $n = 28^2 = 784$)
- we use the polynomial kernel with degree $d = 3$:

$$
K(u, v) = (1 + uT v)3
$$

hence $F(z)$ has length $p = (n + d)!/(n! d!) = 80931145$

• we calculate ten Boolean classifiers

$$
\hat{f}_k(x) = sign(\tilde{f}_k(x)), \quad k = 1, \dots 10
$$

 $\hat{f}_k(x)$ distinguishes digit $k - 1$ (outcome +1) form other digits (outcome -1)

• the Boolean classifiers are combined in the multi-class classifier

$$
\hat{f}(x) = \underset{k=1,\dots,10}{\text{argmax}} \tilde{f}_k(x)
$$

Least squares Boolean classifier

Algorithm: compute Boolean classifier for digit $k - 1$ versus the rest 1. compute $N \times N$ matrix Q with elements

$$
Q_{ij} = (1 + (x^{(i)})^T x^{(j)})^d, \quad i, j = 1, ..., N
$$

2. define N-vector $b = (y^{(1)}, \ldots, y^{(N)})$ with elements

$$
y^{(i)} = \begin{cases} +1 & x^{(i)} \text{ is an example of digit } k - 1\\ -1 & \text{otherwise} \end{cases}
$$

3. solve the equation $(Q + \lambda I)w = b$

the solution w gives the Boolean classifier for digit $k - 1$ versus rest

$$
\tilde{f}_k(x) = \sum_{i=1}^{N} w_i (1 + (x^{(i)})^T x)^d
$$

Complexity

- the matrix Q is the same for each of the ten Boolean classifiers
- hence, only the right-hand side of the equation

$$
(Q + \lambda I)w = y^d
$$

is different for each Boolean classifier

Complexity

- $\bullet\,$ constructing Q requires $N^2/2$ inner products of length $n\colon\,nN^2$ flops
- Cholesky factorization of $Q + \lambda I$: $(1/3)N^3$ flops
- solve the equation $(Q + \lambda I)w = y^d$ for the 10 right-hand sides: $20N^2$ flops
- total is $(1/3)N^3 + nN^2$

Classification error

percentage of misclassified digits versus λ

Cholesky factorization 12.43

Confusion matrix

• multiclass classifier ($\lambda = 10^4$) on 10000 test examples

• 292 digits are misclassified (2.9% error)

Examples of misclassified digits

Examples of misclassified digits

