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Abstract
In recent years, stream processing has emerged as a data
analysis technique to handle real-time applications where the
latency of Hadoop is unacceptable. Many popular systems,
such as Twitter’s Storm, provide a rigid platform for per-
forming distributed computations over the network. Storm-
like systems typically provide at-least-once processing with
state management left to the implementor. We present a
novel distributed stream processing framework, Hailstorm1,
which is written in Haskell and provides a platform to per-
form distributed computation on streams of data. By restrict-
ing the class of computation to commutative monoids, our
system is able to provide exactly-once semantics with little
performance loss or added complexity.

1. Introduction
As the Internet has evolved so have user expectations in re-
gards to latency. In one example, Twitter’s trending topics
feature allows users to see breaking stories within minutes
of their emergence. In another, Google Analytics, adminis-
trators are able to see detailed demographic information of
surfers in real time. The volume and velocity of the data in
these systems presents challenges to typical single-machine
programs: data does not fit into memory, and latency re-
quirements imply that error recovery has to be automatic and
nearly instantaneous.

Like MapReduce [6] and batch processing, frameworks
such as Twitter’s Storm [4] and LinkedIn’s Samza [3] have
been created to ease the development of stream processing
applications. In these systems, events of interest are pushed
into distributed queues from user-facing applications (e.g.,
Twitter’s web site). As the events are popped off the queues,
the stream processing framework takes over and transforms
the event using a sequence of computations. For example,
we might receive Tweets from the queue, split on whitespace
and perform a windowed count to determine topics that are
currently trending. Similar to MapReduce, developers using
these systems write algorithms that operate on individual

1 https://github.com/hailstorm-hs/hailstorm

stream units and emit zero or more messages to be handled
by the next stage in computation. The frameworks distribute
the events to clusters running the computation, abstracting
away the unreliable nature of the network.

This paper introduces Hailstorm, a stream processing
framework in Haskell. Unlike Storm and Samza, Hailstorm
mandates that all streaming computations must be both
commutative and monoidal. Like Samza, it requires that
all events must be initially stored as messages in Apache
Kafka [2]. These restrictions allow Hailstorm to make
stronger processing guarantees about events: namely, that
the each event will be processed exactly once in the system.
Furthermore, unlike Storm and Samza, state recovery un-
der error conditions is built-in to the framework. We utilize
Haskell’s purity to guarantee that side-effects of computa-
tion are isolated to a single sink processor at the end of the
computation sequence.

2. Related Work
Hailstorm’s technical design is based on that of Apache
Storm [4]. Storm is a widely used stream processing frame-
work for the Java Virtual Machine (JVM) allowing devel-
opers to upload jobs for continuous processing on a Storm
cluster. Developers create a directed acyclic graph of in-
terconnected processing layers called a topology. Messages
are passed between layers as tuples. Tuples originate in a
spout, which typically reads off of a distributed queue and
are passed between layers of bolts which perform compu-
tation. Each bolt receives a tuple, performs a computation,
and emits zero or more tuples to the next layer. Unlike Hail-
storm, the bolts may have side effects to their computation
and state management/error recovery is left up to each de-
veloper. Accordingly, the system is only able to provide “at
least once” guarantees for processing each message in the
queue. On component failure, Storm enters a “tuple replay”
state where it re-sends messages from spouts in a topology.

The theoretical underpinings of Hailstorm are inspired by
a online essay, “Exactly Once Semantics” [12]. Jackson, a
contributor to the Storm framework, describes Kafka log off-
sets as a vector clock for the system state. This clock allows

https://github.com/hailstorm-hs/hailstorm
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Figure 1: An example Hailstorm topology for word counts

separate processors to perform synchronized snapshots with-
out locking or direct communication. We further describe the
offset clock in Section 3.3.1.

Google’s MillWheel system [1] also addresses the issue
of exactly once delivery of messages in a stream process-
ing context. Like Storm, messages flow through layers of
computation to end up at a final result. MillWheel provides
exactly-once semantics by maintaining set of recently pro-
cessed tuples, discarding those that have recently appeared.
Users of MillWheel are required to manually ensure that all
computations are idempotent, as system failure induces mes-
sage re-delivery to the same processor.

3. Hailstorm Overview
Figure 1 shows a complete example of a Hailstorm system
used to calculate trending hashtags in real-time using the
Twitter firehose. We give a brief overview of the various
components and describe them in detail in the upcoming
sections.

Apache Kafka is used as the sole queuing mechanism for
messages. Messages are consumed off of Kafka parti-
tions and then entered into Hailstorm along with their
offset within the partition.

Spouts are responsible for getting data into Hailstorm.
Along with a user-specified conversion function, they
consume ByteStrings from Kafka and forward them as
tuples to the next layer of computation.

Bolts are the fundamental units of computation in Hail-
storm. Bolts take a user-specified pure monoidal oper-
ation which takes a (state, input-tuple) pair and produces
a (state, output-tuple) pair. Bolt state is periodically per-
sisted to the snapshot store. Figure 1 shows multiple lay-
ers of bolts.

Sinks are the final stage of Hailstorm processing. Like bolts,
sinks take tuples from the previous layer and perform

Figure 2: Structure of Kafka partitions

user-specified computation. However, unlike bolts, the
computation runs inside the IO monad allowing the user
to connect Hailstorm to the real world: databases, web
services or even the console.

Topologies are user-specified directed acyclic graphs which
describe how bolts, spouts and sinks connect together.

Grouping functions are functions that produce a hash value
for a given input tuple. When emitting a tuple to the next
layer in the topology, a processor uses the hash value
to determine which instance of the target processor to
send a tuple to. For example, if a bolt has 3 instances,
and a spout emits a tuple t whose hash under the bolt’s
grouping function g(t) is 2 (mod 3), then the tuple will
be emitted to the third instance (index 2) of the target
bolt.

Apache Zookeeper is used as a global service registry for
Hailstorm. Processors are registered as into Zookeeper
and removed whenever failures occur.

The negotiator in Hailstorm manages the state of a topol-
ogy: it is responsible for negotiating tuple snapshots and
performing error recovery. The negotiator itself main-
tains no state: if it dies, it can be resumed on any machine
with no data loss.

3.1 Apache Kafka
Apache Kafka [2] is a distributed commit log that is used
to buffer data between producing systems (e.g., the Twitter
Firehose) and Hailstorm topologies. As described in 3.3.1,
Hailstorm requires the use of Kafka so it can guarantee
exactly-once processing of messaages. Messages are com-
mitted to specific topics, each with many partitions. Within
each partition, commits are guaranteed to be linearly or-
dered according to time, with Kafka providing an offset for
each message. Figure 2, from the Kafka website, shows the
anatomy of a single topic as writes get fanned out to differ-
ent partitions. Consumers, such as Hailstorm spouts, are able
to read from individual partitions with a topic and consume
mesages. Since the messages are structured in a log, it is pos-



sible to “rewind” consumers and have them read messages
from earlier points in the log. Kafka also has a configerable
replication mechanism and is able to maintain its ordering
even in the event of machine failure.

The latest version of the Kafka protocol lacks bindings
for Haskell, however the librdkafka [7] library provides up-
to-date bindings for C. As part of completing Hailstorm,
we created the Haskakafka2 library that exposes librdkafka
through Haskell’s C FFI. We have since made the bindings
available on Hackage for others to use.

3.2 Apache Zookeeper
Apache Zookeeper [5] is a highly-available distributed con-
figuration service, which Hailstorm uses extensively for pro-
cess registry and synchronization. Zookeeper’s data model
is roughly analogous to a tree-structured file system, where
nodes can either be directories or small files. Nodes are ei-
ther created indefinitely or registered as ephemeral nodes,
which are automatically deleted when their creator’s con-
nection is terminated. Most Zookeeper libraries also im-
plement watchers on nodes which allow a program to be
asynchronously notified whenever a node or a node’s data
changes.

When a Hailstorm processor starts up, it immediately
registers an ephemeral node with its identifier underneath
a Zookeeper directory called living_processors. As de-
scribed in Section 3.6, the negotiator monitors this directory
to ascertain the health of the system.

Hailstorm uses the hzk library [13], which exposes the
Zookeeper C library to Haskell. The watcher notifications in
Hailstorm occur in a seperate (OS) thread, which communi-
cates the value of the change back to the worker thread using
an MVar3.

3.3 Spouts
Spouts4 are the starting point for any flow of information
through the Hailstorm system. Each spout has a one-to-one
connection with a Kafka partition.

When specifying the topology, a client provides a pure
function that converts a Kafka message to a tuple in a suit-
able form for processing by downstream processors (see
Listing 1). For example, a simple “word count” topology
could convert a word from Kafka into a (word, 1) tuple to
facilitate counting in downstream bolts.

Along with the tuple itself, a spout also sends a (parti-
tion, offset) pair corresponding to the origin of the tuple.
This forms the Payload, used in downstream processors for
making snapshots (see 3.4.1).

2 http://hackage.haskell.org/package/haskakafka
3 See ZKCluster.hs
4 See Spout.hs

data Spout =
Spout { -- ...

, convertFn :: BS.ByteString
-> PayloadTuple

, -- ...
}

Listing 1: Client interface for a spout

3.3.1 Clock
We define the notion of a vector clock that determines the
state of all processors regardless of message ordering. Put
simply, the clock is a map of Kafka partition names to offset
values. More formally, a clock C will contain an offset C[p]
for each Kafka partition p that feeds the topology.

Hailstorm uses clocks to ensure safe error recovery for
processors, as outlined in the following sections.

3.4 Bolts
Bolts5 form the computational portion of the Hailstorm
topology. Each bolt maintains an internal state (represented
by the type BoltState), which is updated as the computa-
tion advances. The key characteristic of Hailstorm bolt states
is that they are commutative monoids6. This allows any state
to be represented as a mappend of one or more older states.
Commutativity ensures that ordering of messages is unim-
portant to the final result. Monoids have important implica-
tions for crash recoverability: a snapshot of an older state
allows computations to start from that point forward instead
of starting from scratch.

A subset of the client-provided bolt interface is shown
in Listing 2. Incoming tuples are converted to a monoidal
BoltState to facilitate merging with the existing state. The
conversion is performed using tupleToStateConverter
(a function that converts a key-value pair into a singleton

map would be an example). The mergeFn performs commu-
tative mappend. The tuples themselves are transformed us-
ing the new state and transformTupleFn) and forwarded
downstream.

3.4.1 Updating state with incoming tuples
Incoming tuples are always merged into the existing bolt
state. Depending on whether the negotiator has posted a
desired snapshot clock (see Section 3.6), this could involve
either one or two states:

• When there is no snapshot being requested, incoming
tuples are merged into a single state instance. The output
tuple from a bolt is calculated using this single state.

5 See Downstream.hs
6 This is not enforced. It is the client’s responsibility to provide a mergeFn
definition that performs a commutative mappend between two BoltState
instances.

http://hackage.haskell.org/package/haskakafka


data Bolt =
Bolt { -- ...

, transformTupleFn ::
PayloadTuple -> BoltState
-> PayloadTuple

, emptyState :: BoltState
, mergeFn :: BoltState ->

BoltState -> BoltState
, tupleToStateConverter ::

PayloadTuple -> BoltState
-- ...
}

Listing 2: Client interface for a bolt

• When a bolt receives a negotiator request to perform a
snapshot, it splits its current state into state A and B: its
current state becomes A and it initializes B to mempty.

• As long as the bolt is not eligible to perform a snap-
shot (see Section 3.4.2 for when this is determined), the
bolt maintains two states: pre-snapshot state A and post-
snapshot state B. It merges tuples into the appropriate
state based on their source partition offsets, and calcu-
lates the downstream tuple based on a combination of
these two states. More formally, for a desired snapshot
clock C, if an incoming tuple originated from partition
p at offset o, then the tuple will be merged into state A
if o ≤ C[p]; otherwise, it is merged into B. The down-
stream output tuple will be calculated from A+B.

• When it is time to actually persist its state, the bolt forks a
thread to persist pre-snapshot state A. In the main thread,
it merges states A and B and merges new tuples into this
single state, reverting to the no-snapshot phase.

3.4.2 Low Water Mark
After the snapshot request is received and a bolt bifurcates its
state, it must wait till the pre-snapshot state is guaranteed to
no longer be affected by incoming tuples. To help determine
when this happens, bolts use another piece of information:
the low water mark (LWM).

A low water mark LWMk for a processor k is simply a
clock (see Section 3.3.1), where offset LWMk[p] for parti-
tion p is the lowest offset seen by any processor upstream to
k. It is calculated recursively (as shown in Figure 3), and in-
dicates the least amount of progress made for each partition
in the entire topology.

To help downstream bolts calculate their LWMs, pay-
loads carry a map of upstream processor names to their re-
spective LWMs, which is updated at each level.

The LWM is used in determining snapshot eligibility as
follows: a bolt may only persist its state when its LWM
equals the desired snapshot clock in every dimension. When
that happens, future tuples are guaranteed to originate from
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Figure 3: Calculating LWM for processors.

data Sink =
Sink { -- ...

, outputConsumer :: Consumer
PayloadTuple IO ()

, -- ...
}

Listing 3: Client interface for a sink

offsets greater than ones in the desired snapshot clock, and
thus the pre-snapshot state for a bolt will no longer change.

3.4.3 Saving and restoring snapshots
Bolts receive an instance of a SnapshotStore typeclass
with two functions: saveSnapshot and restoreSnapshot
. When a bolt is eligible to snapshot its state, it forks a thread
to perform the save. On boot-up, a bolt tries to restore its
state from the provided SnapshotStore. If there is nothing
saved, it starts from an empty state.

In the current Hailstorm implementation, we provide a
DirSnapshotStore instance that creates a snapshot in a
local directory. Ideally, one would want to provide other
instances: one that uses an SQL database, or one that uses
a distributed file system for greater fault tolerance.

3.5 Sinks
Sinks are at the bottom-most level of a topology. As the final
computation step, they serve the role of gateway to the real
world. Sinks often perform actions like printing to console
or writing to a database (they are the only processors in
the topology that are allowed to execute impure code). The
user action is provided by the client in the form of a Pipes
Consumer that accepts upstream tuples (see Listing 3).

There is no restriction to the type of computation per-
formed on incoming tuples; however, since no snapshots are
performed on sinks, non-idempotent operations may have
unexpected results.



3.6 Negotiator
The negotiator7 has full control over all the processors of a
Hailstorm topology. The negotiator shares two related roles:

1. Forcing bolts to snapshot with a valid clock

2. Recovering the state of the system if a processor becomes
unreachable

Upon registration, the negotiator creates a special ephemeral
node for the topology called the master state. The nego-
tiator transitions the master state through the deterministic
finite automaton shown in Figure 4. Each processor in the
topology creates a watcher for the master state, responding
quickly to transitions.

Negotiator 
Disconnected

Initialize Spouts
Rewind

Flowing 
(No 

snapshot)

Flowing 
(Next 

snapshot)

Spouts
Paused

Snapshots 
Completed

Negotiate
Snapshot

Clock
Gathered

Spouts Rewound

Negotiator
Started

Processors
registered

Figure 4: Master state machine for a topology. After ini-
tialization, the topology loops between flowing and making
snapshots indefinitely.

Initially, the topology begins in the NegotiatorDisconnected
state which is indicated by the absence of a master state

node in Zookeeper. When the negotiator boots up, it sets
the master state to Initialize and waits for all processors
to register under living processors (see Section 3.2). Once
the expected nodes have been created, the negotiator waits
for the bolts to load their snapshots from the snapshot store
(see Section 3.4.3). The bolts communicate their snapshot
clock their living processor nodes, and negotiator is then
able change the master state to SpoutsRewind. The spouts
rewind to the clock, and pause, writing their position into
their corresponding living processor nodes. Finally, the ne-
gotiator begins the main run loop.

Hailstorm’s run loop consists of the negotiator alternating
between snapshots and a grace period of data flow. When
data is flowing without a desired snapshot clock, the nego-
tiator sets the master state to Flowing Nothing and then
waits a configerable grace period. After the grace period ex-
pires, the negotiator sets the state to SpoutsPaused and
determines the next snapshot clock from the current spout
offsets. When complete, the negotiator sets the master state
to Flowing NextClock, which the bolts use to determine

7 See Negotiator.hs

their snapshot. After the bolt snapshots are complete, the ne-
gotiator returns to Flowing Nothing and loops.

The run loop can be interrupted by an unreachable pro-
cessor. When a processor becomes unresponsible, their
Zookeeper connection terminates and their corresponding
ephemeral node is removed from the living processors di-
rectory. The negotiator is asynchronously notified through
a watcher, and then sets the master state to Initialize.
As part of this transition, the negotiator removes the living
processor nodes for all processors in the topology. Each pro-
cessor reads this as a signal to restart, so that the topology
can restart in a clean state. Thus the Initialize master
state is identical to that of the negotiator’s initial start.

4. Example Topology
In light of the technical details of Section 3, we return to the
sample topology of Figure 1. The topology uses Hailstorm
to calulate trending hashtags in real-time from Twitter 8. In
a non-distributed setting, the computation would typically
use the unix sort and uniq commands. Hailstorm enables
the same principles to scale to datasets far beyond a single
computer’s memory.

On the producer side, we enqueue messages into Kafka
using a Python script. The script samples hashtags from the
Twitter’s web API and then enqueues them into Kafka as
UTF-8 bytestrings .

As data streams into Kafka, Hailstorm streams data out.
The spouts take the UTF-8 bytestrings, convert them into
Haskell character lists and send them to the next layer of
count bolts. Our hashing function, the native Haskell string
hash, forces a 1:1 mapping betweem hashtag and bolt in-
stance. For example, #love, would always be mapped to
count-0.

The count bolts aggregate individual hashtag occurrences
into a running sum. This running sum is stored as a hash map
0 default value, making each addition a monoidal operation.
Hashtags are received, aggregated, and emitted with the run-
ning count. For example, count-0 could receive (#love,1)
and emit (#love, 101) to the next layer of topn bolts.

Each topn bolt keeps track of the local top n trending
hashtags that have been sent to it. The computation uti-
lizes the Haskell PSQueue library [11], implementing a pure
keyed priority queue. Each hashtag is added to the queue,
which is then trimmed to the top n entries. The entire queue
is sent to the next (and final) layer for processing.

In the sample topology, the sink receives the local top
n queues and merges them to compute the global top n
hashtags. Finally, the top n tags are emitted to the console.
The action occurs in the IO Monad and could be modified to
update a database or website as appropriate.

8 See Sample/WordCountSample.hs



5. Implementation Details
5.1 Running Processors
Each of the processors in the topology (spouts, bolts and
sinks) can be run independently, as long as they are uniquely
identifiable (such as through unique port numbers). The
HailstormCLI.hs sample executable included with the
library allows such behavior, with processors runnable on
different threads, cores, or machines.

5.2 Network Processing
Hailstorm utilizes the Haskell Pipes [8] library in place of
Lazy I/O. Within a processor, the next layer is modeled as
a Pool consumer9 that keeps a connection pool of down-
stream processor sockets. The Pool consumer waits for a
Hailstorm Payload, hashes it, and then sends it via a net-
work socket Handle. Handles themselves are lazily created
and maintained within a connection pool. In our initial im-
plementation, messages are serialized using Haskell’s Show
method; we intend to migrate to a more efficient protocol in
upcoming versions.

Bolt and spout layers listen for incoming connections and
process their messages. After initialization, they instanti-
ate a mailbox using the Pipes-Concurrency [9] library and
fork a listener thread10. The listener thread accepts upstream
connections and forks handlers that push incoming tuples
into the mailbox. The main processor thread creates a Pipes
pipeline that consumes messages from the mailbox, pro-
cesses them in a pipes and then sends output to a consumer
(Pool for bolts, IO for sinks).

6. Next Steps
Our Hailstorm implementation is functionally complete, but
could use some polishing before a public release.

Currently, the only the HardcodedTopology data type
conforms to the the Topology type-class. Accordingly, a
user of Hailstorm has to program the network port and ad-
dress for each processor into the Hailstorm binary itself. A
modification to Hailstorm would register each the network
address in the Zookeeper processor registry. The modifica-
tion would allow processors to be resumed on different ma-
chines then they started on.

In that direction, we would like to structure the frame-
work closer to a Hadoop cluster wherein developers up-
load jobs to Hailstorm. We envision developers “upload-
ing” their processors into Zookeeper, with Hailstorm execut-
ing the specification. The framework would utilize a pack-
age like hint [10] to provide dynamic code execution from
Zookeeper.

9 See Processor/Pool.hs
10 See Processor/Downstream.hs

7. Conclusion
This paper introduces Hailstorm, a Storm-like distributed
stream processing framework for Haskell. By restricting our
class of computation to commutative monoids and by ex-
ploiting Haskell’s purity, the system guarantees exactly-once
processing of messages without performance loss. Hailstorm
maintains these guarantees even in the face of machine fail-
ures and an unreliable network. We look forward to devel-
oping it further.
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