CS 144 Section
GDB Tutorial



What is gdb?

Portable debugger, runs on many UNIX-like systems.
Works for a lot of programming languages like C, C++, Fortran etc.

Allows tracing execution of programs, monitoring of functions and
variables

User can also alter execution, call functions, change values of
variables explicitly.

Lot less painful to debug errors like segmentation faults using gdb.



Prerequisites

Make sure to compile program with “-g” flag.
gcc -g <source file> -0 <output file>

(don't worry about this for your labs, your makefile includes this flag during
compilation.)

Linux should core dump on segmentation faults. Set
ulimit -c unlimited

Will get a “Segmentation fault (Core dumped)” message; creates a core
file probably with the name core.pid

Can analyze core file to determine cause of errors.



Start gdb

Start debugger with program executable as argument
gdb executable

To analyze core,
gab {executable} {core-file}

Use the run command to start execution of program, you can pass
arguments too

(gdb) run argt,arg2..
To restart a program running in gdb, use
(gdb) kill

and use the run command again.



Bugs?

 If buggy program, gdb presents useful information; code file, line
number, and the call that caused the error.

« To find root of issue, need to step through code until you stumble
upon the error.

» Useful set of commands with gdb ..
(gdb) help

- neat description of all gdb commands.



Useful commands

. (gdb) bt

- backtrace; prints stack trace, will help know where exactly your
program segfaulted.

« (Can move to specific stack frames and inspect local variables,
passed arguments.

eg. (gdb) frame 2
(gdb) info locals
(gdb) info args



More commands...

« Set breakpoints to stop program at designated points
- at a specified file-line pair,
(gdb) b sample.c:35
- at a specific function,
(gdb) b func_name
 Program will pause every-time it reaches a breakpoint when running
and prompt you for another command.

» Set watchpoints on variables; program pauses whenever variable is
modified

(gdb) watch var_name



Stepping through code

Type the run command again once you have set breakpoints.
Can proceed onto next breakpoint by typing

(gdb) c

- continue

Can step into functions

(gdb) s

- step,; executing 'just’ the next line, also jumps into functions.
(gdb) n

- next; similar to step but doesn't show execution of every line of a
function.



Printing values

« Can print values of variables, memory addresses of pointers, fields of
structs eftc.

(gdb) p name
(gdb) p (*emp).name
(gdb) p list->next->next

« Lot more tricks — call, finish,where, delete, setting conditional breakpoints
etc. - try help for more useful commands or online manuals

http://www.cs.cmu.edu/~gilpin/tutorial/

http://www.unknownroad.com/rtfm/gdbtut/gdbtoc.html


http://www.cs.cmu.edu/~gilpin/tutorial/
http://www.unknownroad.com/rtfm/gdbtut/gdbtoc.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

