
Accelerating Multimedia with
Enhanced Microprocessors

A minimalistic set of multimedia instructions introduced into PA-RISC microprocessors
implements SIMD-MIMD parallelism with insignificant changes to the underlying
microprocessor. Thus, a software video decoder attains MPEG video and audio decom-
pression and playback at real-time rates of 30 frames per second, on an entry-level
workstation. Our general-purpose parallel subword hxstructions can accelerate a variety of
multimedia programs.

Ruby 6. Lee

Hewlett-Packard
Eil

ultimedia is the integration of visu-
al, audio, textual, and sensory
information (see Figure 1). It is
basically information represented

in different ways by different media datatypes.
Multimedia information can facilitate more nat-
ural human-to-computer interactions, enhance
communication, shorten learning time, or lessen
misinterpretation. While computers have suc-
cessfully supported other media datatypes like
text, graphics, images, and audio, high-fidelity
video, as a datatype, remains challenging be-
cause it consumes enormous storage, bus, net-
work, and computation resources.

For video to be a viable datatype in today’s
computer, it must be compressed. In turn, “read-
ing” a video object requires decompressing and
displaying it in real time. Until recently, the high
computational complexity of high-fidelity video
decompression (such as MPEG video, the infor-
mal name of the Moving Pictures Experts Group’s
video compression and decompression standard)
required special-purpose chips or boards.

To significantly accelerate this step using soft-
ware, we introduced a small set of multimedia
instructions into a general-purpose PA-RISC
microprocessor, These instructions enable for the
first time an entry-level workstation to achieve
MPEG video decompression and playback at
real-time rates of 30 frames per second (fps>,
using a software video player. They do not

require a DSP (digital signal processor),
coprocessor, or special functional units. Rather,
we enhanced the existing microprocessor data
paths to enable parallel operations on subwords,
that is, data narrower in width than the width of
a word in the microprocessor.

Unlike special-purpose instructions designed
specifically for MPEG video decompression, our
parallel subword instructions perform general-
purpose operations like add, subtract, average,
and shift-and-add, in parallel. They accelerate
many types of programs (multimedia and oth-
ers) running in microprocessors, without the
need for additional hardware.

Multimedia processing with additional circuit-
ry on the microprocessor is sometimes referred to
as native signal processing (NSP) in contrast to
the use of special DSP chips, which are frequently
used to process media. Proposed here is a type
of NSP that is even more integrated into the
design of the microprocessor. Since it uses the
basic functional data paths of the microproces-
sor, we call it ISP (intrinsic signal processing).

The small set of PA-RISC multimedia instruc-
tions, together with synergistic software and hard-
ware optimizations, allowed us to achieve
real-time MPEG video decompression and play-
back @ly 19’93, lab; January 1994, product). No
other product or research project has successful-
ly accomplished real-time MPEG decoding by soft-
ware.’ (Recently, other software MPEG players

22 /EEE Micro 0272-1732/95/$04.00O1995lEEE

Visual information: Images Video
Graphics Animation

Audio information: Voice Music
Textual information: Keyboard Handwriting
Sensory information: Sensors Controllers

Figure 1. Spectrum of multimedia datatypes, from
forms to more complex forms on the right.

simpler

have reportedly run close to real-time rates. but they either
did not decode the full MPEG bitstream or required high-end
workstations, for example, the 275-MHz Alpha.)

The software approach
Studies indicated that users were accustomed to at least

TV and VCR video fidelity, so the lower fidelity video decom-
pression networks currently produced in software would not
be acceptable for many users. Instead, we chose to imple-
ment MPEG-1, which achieves the desired video fidelity at
the lowest bit rate among competing video compression
algorithms. We also set a goal of lo- to 15.fps video play-
back, since this is the rate at which motion begins to appear
smooth rather than jerky.

We felt that software, leveraging the basic hardware plat-
form, would facilitate the pervasiveness, flexibility, and low
cost of a new multimedia datatype like video. By software,
we mean programming in high-level languages like C, using
standard compiler and debugging support, and resorting to
low-level assembly code only for a few critical code kernels,
if necessary. First, we tried to improve the algorithms and tune
the software, resorting to hardware support only if necessary.

Rather than add special-purpose MPEG circuitry to the
microprocessor, we followed the same design principles used
in selecting instructions for the original PA-RISC architec-
ture.2~* This involved finding the most frequent operations,
breaking them down into simple primitives, and accelerat-
ing their execution. The result is that we have multimedia
instructions that are useful not only for accelerating MPEG
video decompression but also for many other computations.

Our achievement of real-time MPEG decompression
through software is a technology breakthrough in the sup-
port of high-fidelity video on desktops. That we could achieve
this breakthrough with such a minimal set of generally use-
ful instructions added to a microprocessor, the PA-7100LC,i-7
intended for entry-level desktops, is also interesting.

Multimedia benchmarks
In the past, designers optimized processor architecture

based on either technical or commercial programs. Since
multimedia information processing is likely to become
increasingly important, we realized the necessity of includ-

Figure 2. Execution time distribution of MPEG decoder
steps for an nfl.mpg video clip.

ing multimedia benchmarks in the design of processors.
Audio and 3D graphics computations are well served by the
single-precision floating-point instructions found in micro-
processors. We discuss MPEG video decompression (see box,
next page) as an example.

MPEG achieves roughly the video quality of today’s ana-
log TVs and VCRs, at around 1.5 Mbits per second. This stan-
dard uses Standard Interchange Format (SIF)-size frames of
352x240 pixels. MPEG compression takes an uncompressed
video stream and audio stream, and compresses them into
a stream of video and audio packets. MPEG playback reads
them from a CD-ROM, disk, or network; decompresses the
video (and audio) packets; displays the video on the com-
puter’s monitor; and plays back the audio on speakers or
headphones.

Figure 2 shows the execution time spent in the six major
steps of the optimized MPEG decompression software run-
ning on an older PA-RISC processor without any multime-
dia enhancements. (This was a %)-MHz PA-RISC workstation,
the HP735, with 256 Kbytes each of instruction and data
cache). The distribution of execution time varies for differ-
ent video streams.

In most video clips we viewed, the IDCT step, even after
considerable optimization, still consumed the largest chunk
of execution time. For Figure 2’s nfl.mpg clip. this amount-
ed to 38.7 percent of the total execution time. This fraction
was often larger in other video clips. The next two largest
time consumers are the display step followed by motion
compensation. Fortunately, the two inherently serial steps,
decoding the MPEG headers and Huffman decoding, were
relatively insignificant in execution time.

The IDCT was a prime candidate for speedup with proces-
sor multimedia enhancements. It has a great deal of paral-
lelism that we could slice in many different ways, in its
processing of 8x8 blocks of pixels.

At 30 fps, with YCbCr color components, we can decom-

April 1995 23

MPEG compression and decompression
The MPEG-1 standard (called MPEG in this article)

describes two classes of frames: intracoded and non-intra-
coded.‘,* Intracoded frames, or I-frames, are compressed
by exploiting spatial redundancy within the frame itself. I-
frames do not depend on comparisons with other refer-
ence frames. They use JPEG (the Joint Photographic Experts
Group’s standard) style compression for still images.3

MPEG divides non-intracoded frames into P- and B-
frames. P-frames are predicted frames, based on compar-
isons with an earlier reference frame. By considering
temporal redundancy in addition to spatial redundancy,
MPEG allows P-frame encoding with fewer bits. B-frames
are bidirectionally predicted frames, using one backward
and one forward reference frame, A reference frame can
be an I- or a P-frame, but not a B-frame. By detecting
motion of blocks from both a frame that occurred earlier
and a frame that will be played back later in the video
sequence, we can encode B-frames in even fewer bits.

MPEG further divides each frame into macroblocks of
16X16 pixels for motion estimation in MPEG compression,
and motion compensation in MPEG decompression, A frame
with only I-blocks is an I-frame, whereas a P-frame has P-
or I-blocks, and a B-frame has B-, P-, or I-blocks, For each
P-block in the current frame, a motion vector identifies the
block in the reference frame that best matches it. Then a dis-
Crete cosine transform (DCT) encodes the differences
between the pixel values in the matching block in the ref-
erence frame and the current block in the current frame.

MPEG uses the YCbCr, rather than the RGB (red, green,

blue), color representation. Here, Y represents the lumi-
nance (or brightness) component, and Cb and Cr represent
the chrominance (or color) components. Because human
perception is more sensitive to luminance than to chromi-
nance, we can subsample the Cb and Cr components in
both the X and Y dimensions. This means that we have
one Cb value and one Cr value for every four Yvalues.
Hence, a 16x16 macroblock contains four 8x8 blocks of Y
and only one 8x8 block each of Cb and Cr. This is a reduc-
tion from the twelve 8x8 blocks (four for each of the three
color components), if the Cb and Cr were not subsampled.
The six 8x8 blocks in each 16x16 macroblock then under-
go transform coding.

Transform coding concentrates energy in the lower fre-
quencies. By dividing by the corresponding quantization
coefficient, the transformed data values are quantized. This
results in the discarding of some high-frequency values, or
lower frequency but low-energy values, since these become
zeros. Both transform coding and quantization enable fur-
ther compression by run-length encoding of zero values.

Finally, we can encode the nonzero coefficients of an
8x8 block used in the DCT via variable-length, entropy
encoding, as in Huffman coding. Entropy encoding
removes coding redundancy by assigning the code words
with the fewest number of bits to those coefficients that
occur most frequently.

MPEG decompression reverses the functional steps
taken for compression. Decompression (Figure A) involves
six basic steps.

sional IDCTs on the rows, followed by eight independent, 1D
pose each 8x8 IDCT into eight independent, one-dimen-

IDCTs on the columns. This implies sixteen 1D IDCTs per
8x8 block, or almost a million (30~1.5~1,320~16 = 950,400)
1D IDCTs per second.

Each lD, 8-point IDCT itself has room for parallel opera-
tions Hence, we can perform parallel operations within a
1D IDCT, across 1D IDCTs, across 2D 8x8 IDCTs of either
one-color component or multiple-color component blocks,
or even across frames. This indicated that parallel process-
ing of some sort could be extremely beneficial in improving
MPEG and other multimedia applications.

We chose to adhere to RISC design principles, rather than
PA-RISC enhancements

add complex, special-purpose instructions to the processor’s
instruction repertoire. This involved understanding the basic
operations in performance-critical portions of the code and
finding ways to speed them. For example, Figure 3 shows a
breakdown of the instructions executed in the IDCT step in
MPEG decompression.

Other popular video and image compression and decom-
pression standards also use the IDCT, and clearly benefit
from speeding up this step in the MPEG decoder. (The other
standards are the CCITT ~.261 for video teleconferencing;
MPEG-2 for higher fidelity, higher bandwidth compressed
video; and JPEG for image compression,)

Key observations about the multimedia benchmarks we
used in designing the PA-RISC are that

l a great deal of parallelism exists in MPEG and other
pixel-oriented algorithms;

l the data being operated on were small integers, nar-
rower than the existing integer data paths of micro-
processors; and

l the most common operations were add, subtract, and
simple forms of multiplication and division.

24 IEEE Micro

MPEG compression and decompression (continued)
l Headerdecode Provides video sequence pammeters

such as picture rate, bit rate. and image size. MPEG-compressed bitstream

l Hujjhzan &co&. Decodes variable-length codes into +
fixed-length numbers, which represent quantized Header decode
inverse DCT (IDCT) coefficients, scaling factors, and
motion vectors. This step includes run-length decod- Motion vectors +

ing of zeros. Huffman and run-length decode

l Inverse quantization. Multiplies coefficients by quan-
tizer coefficients to restore them to their original range. Scale

+

l ZDCT Changes each 8x8 block of IDCT coefficients to factor
Inverse quantization

convert the data from the frequency domain back to 7 +
the original spatial domain. This gives the actual pixel Motion
values for I-blocks, but only the differences for each compensation

I

pixel for I-‘- and B-blocks, for P- and B-

* Motion compensation. Adds the differences in the frames

IDCT step to the pixels in the reference block as deter-
Color conversion and display

mined by the motion vector, for P-blocks, and to the
average of the forward and backward reference Figure A. Steps in MPEG decoding.
blocks, for B-blocks.

l Disphy. Converts color from YCbCr coordinates to
RGB color coordinates, including upsampling Cb and
Cr values, and writing to the frame buffer for dis-
playing the decoded video.

References
1. ISOIIECJTCI CD 11172, Information Technology-Coding of

Moving Pictures and Associated Audio for DIgita/ Storage
Media up to 1.5 Mbits/s; Part 2: Coding of Moving Picture

information, lnternatlonal Standards Organizatlon/lnterna-
tional Electrotechnical Commission, Geneva, 1991.

2. D. LeGall, “MPEG-A Video Compression Standard for
Multimedia Applications,” Commun. ACM, Vol. 34, No. 4,
Apr. 1991, pp. 46-58.

3. CC/m Rec. T. 8 1 109 18-1, lnforma tion Technology: Digital
Compression and Coding of Continuous-Tone Still Images,
Comlte Consultatif International de Telephonlque et
Telegraphique, Geneva, July 2, 1992.

This suggested the possibility of partitioning existing func-
tional units, to execute parallel operations on multiple pairs
of subword data. By subword data, we mean data sizes less
than 32 bits in a 32-bit microprocessor and less than 64 bits
in a 64-bit microprocessor.

and the control processor is the normal instruction fetch and
dispatch unit. The parallel memory subsystems feeding the
data processors are the usual word fetch mechanism in a
standard microprocessor: from the single memory into gen-

SIMD parallelism. We decided to introduce SIMD
(single-instruction, multiple-data) parallelisms into the 2 35
microprocessor, without violating RISC design princi-
ples. SIMD represents a type of parallel computer in

5 <30
: E25

which a control processor dispatches a common instruc- zb
tion to multiple data processors, each of which performs 0) n 20

the instruction on its own pair of data items.
B 2 ‘; 15

Previous SIMD machines were very large, complex,
and expensive parallel supercomputers such as the Illiac

g.;10
a $ 3

IV, which provided each processor with its own mem- .E
ory subsystem. We have now brought these same SIMD 0 L

Add,
concepts into a single-chip, general-purpose micro- sub store br.
processor, where the parallel data items are subwords
packed into standard-size words. The data processors Figure 3. Instruction class frequencies in IDCT step for input file
are just partitions of existing or new functional units, nfl.mpg. There are 206 million instructions in the IDCT module.

April 1995 25

+
x3 x4

+ xl x2

Yl I Y2
v + v 7

Partitionable Partitionable
32-bit ALU 32-bit ALU

xl+yl x2+y2 x3-y3 x4-y4
i

Figure 4. SIMD-MIMD subword parallelism in the super-
scalar PA-7100LC.

era1 registers and functional units. The “SIMD instruction”
here is a standard, 32-bit RISC processor instruction. The
microprocessor required no other pipeline, register, or mem-
ory changes.

Useful subword sizes in a 64-bit-word computer are four
I6-bit halfwords, eight &bit bytes, or two 32-bit words. The
processor carries out parallel operations on these subwords
with a single SIMD-style, parallel subword instruction, using
a standard 64-bit functional unit like an ALU. Current 32-bit
integer functional units are also amenable to parallel I6-bit
or S-bit operations.

While many pixel-oriented data start out and end up as 8-
bit color components, their intermediate processing requires
precision greater than 8 bits. IDCT values are 12 bits, and
since applications such as medical imaging require I2-bit
pixels, the most useful subword size in many multimedia
applications appears to be I6 bits. While &bit parallel oper-
ations are useful for low-end video and graphics algorithms,
higher fidelity video algorithms like MPEG need I6-bit sub-
word precision.

SIMD-MIMD parallelism. In fact, superscalar PA-RISC
processors implement an even more sophisticated type of
parallelism, SIMD-MIMD. MIMD (multiple-instruction, multi-
ple-data) means that different operations may be performed
in parallel (by different data processors) on many pairs of
data. Many microprocessors today are superscalar, in that they
can execute more than one instruction per pipeline cycle.
Superscalar execution, coupled with parallel subword instruc-
tions, is a RISC-like embodiment of SIMD-MIMD parallelism.

Figure 4 shows this type of SIMD-MIMD parallelism imple-
mented in the superscalar PA-7100LC processor, which has
two 32-bit integer ALUs. For example, two different multi-
media instructio- r one multimedia instruction and a non-
multimedia instruction (a load instruction, for instance&can

26 IEEE Micro

execute in parallel. A SIMD-MIMD processor offers more
opportunities for parallel execution than if all the parallel
operations had to be identical, as in a SIMD-only machine.

We chose the following actual operations for these paral-
lel subword, SIMD-style instructions to be implemented in
the PA-7100LC. They are based on the frequency with which
they occur in easily parallelizable computations, such as the
IDCT (see Figure 3). Table 1 summarizes these Multimedia
Extensions. For the 32-bit PA-7100LC processor, each multi-
media instruction involves two parallel subword operations
(n = 2). For 64-bit PA-RISC 2.0 processors, each instruction
involves four parallel, 16-bit operations (n = 4). PA-RISC 2.0
processors also have a larger set of multimedia instructions.

parallel addition and subtraction. In many multimedia
programs, the most frequent operations are simple additions
and subtractions, This is true, for example, in the IDCT, as illus-
trated in Figure 3, which shows the breakdown of the IDCT
program step, in terms of basic operation types. Since the data
being decompressed was 1Zbit signed integers, the program
did not use the entire 32-bit integer data path efficiently.

We decided to allow the ALU to be partitionable into I6-
bit chunks, so that two parallel 16-bit operations could exe-
cute in parallel, using the existing ALU with a minor
modification. This consisted of blocking the carry from the
low halfword to the high halfword, when parallel adds or
subtracts executed. In the 32-bit PA-71OOLC, each ALU can
now perform two parallel halfword adds (or subtracts) in the
same time it takes to perform a single 32-bit add, that is, a
single cycle. In 64-bit PA-RISC 2.0 processors,9 each ALU can
perform four I6-bit adds (or subtracts) in a single cycle. Since
most PA-RISC processors today have at least two ALUs, this
means that four I6-bit ALU operations can execute in a 32-
bit architecture like the PA-7100LC (see Figure 4 again), and
eight in a 64-bit architecture like the PA8000, in a single cycle.
This essentially increases by either four or eight times the
peak execution bandwidth for multimedia applications that
can use parallel I6-bit arithmetic, at negligible incremental
hardware cost.

Parallel multiplication primitives. We considered
including a 16-biotlb-bit multiplier, a sizable piece of cir-
cuitry, to complement the parallel 16-bit add and subtract
instructions. While other multimedia applications, such as
audio and modem code, use multiplication as frequently as
additions, this is not the case in many video algorithms.

In particular, we can multiply by constants effectively with
out requiring a full multiplier circuit. PA-RISC compilers suc-
cessfully do so as a series of shift and add instructions. The
PA-RISC architecture has always provided a shift-left-
and-add instruction that shifts one operand left by 1, 2, or 3
bits, before adding the other operand.z This was needed for
load and store instructions with indexed addressing by unit
sizes greater than bytes (that is, 16-bit halfwords, 32-bit
words, and 64-bit doublewords). The preshifter balanced the

Table 1. PA-RISC Multimedia Extensions 1.0.

Instruction Parallel operation

complementer used for subtraction on the other input
port to the ALU and hence did not add to the cycle
time of the processor.

For multimedia acceleration, we added parallel 16-
bit shift-left-and-add instructions, as well as parallel
16-bit shift-right-and-add instructions with the same
shift amounts of 1, 2, or 3 bits. The former provided
useful multiplication by integer constants, while the
latter was more useful for multiplication by fractional
constants.

Multiplication by fractional constants, either with no

HADD ra,rb,rt

HADD,ss ra,rb,rt

(with signed
saturation option)

tl=(al+bl)mod216; tn=(a2+b2)mod216

integer component, or only a very small integer com-
ponent, is common. Shifting a value xright by 1 bit is
equivalent to dividing it by 2, shifting it right by 2 bits
is equivalent to x/4, and shifting it right by 3 bits is
equivalent to x/8. So, by a small sequence of such
shift-right-and-add sequences, we could synthesize
multiplication of x by any fractional constant, with or
without a small integer part. Since the adder in the ALU
is already partitioned to allow parallel adds and sub-
tracts, the only incremental change required for imple-
menting the parallel shift-and-add instructions was
that of partitioning the preshifter input to the adder.
This again did not cause cycle time impact in the PA-
71OOLC.

Parallel averages. In several imaging and video
algorithms, including the motion compensation step
of MPEG decompression, we often need to find the
arithmetic average of two pixels. We observed that this
is merely an add followed by a right shift of one bit.
Since we already have parallel 16-bit add operations,
we quite easily performed parallel 16-bit averages as
well.

The beauty of an average instruction is that no over-

HADD,us ra,rb,rt

(with unsigned
saturation option)

HSUB ra,rb,rt

HSUB,ss ra,rb,rt

(with signed
saturation option)

HSUB,us ra,rb,rt

(with unsigned
saturation option)

tl=IF(al+b1)>(2’5-1)THEN(2’5-1)
ELSEIF(al+bl) 2 215THEN(-215)
ELSE(al+bl);
tn=IF(a2+b2)>(2’5-1)THEN(2’5-1)
ELSEIF(aZ+bZ) 5 2”THEN(-215)
ELSE(aZ+bZ)

tl=IF(al+b1)>(2’6-1)THEN(2’6-1)
ELSEIF(al+bl)<O THEN 0
ELSE(al+bl);
tn=IF(a2+b2)>(216-1)THEN(216-1)
ELSEIF(aZ+bZ)<O THEN 0
ELSE(aZ+bZ)

tl=(al-bl)mod2’6; tn=(a2-b2)mod216

tl=IF(al-b1)>(215-1)THEN(215-1)
ELSEIF(al-bl) I 215THEN(-215)
ELSE(al-bl);...
tn=lF(a2-b2)>(215-1)THEN(215-1)
ELSEIF(aZ-b2) 5 215THEN(-215)
ELSE(aZ-b2)

flow is possible. The carry generated from the add
operation shifts in on the left, as the most significant bit
of the result, at the same time that the least significant
bit of the sum shifts out on the right. However, rather
than just truncate the result by shifting out the least sig-
nificant bit on the right, we round the result, to pre-
serve accuracy in a sequence of cascaded averages.
This rounding function is a simple OR of the two least
significant bits of the sum before the right shift of one
bit. It performs a round-to-odd function applied to inte-
gers. (In the past, rounding functions were discussed
only for floating-point mantissas.)

HAVE ra,rb,rt

HSHLADD ra,k,rb,rt

HSHRADD ra,k,rb,rt

tl=IF(al-bl)>(216-1)THEN(216-1)
ELSEIF(a-bl)cO THEN 0
ELSE(al-bl);
tn=lF(a2-b2)>(216-1)THEN(2’6-1)
ELSEIF(aZ-bZ)<O THEN 0
ELSE(aZ-b2)

tl=(al+bl)/2; tn=(a2+b2)/2
with round-to-odd

tl=(al<<k)+bl; __. tn=(a2<<k)+b2
(for k=l, 2, or 3), with signed saturation

tl=(al>>k)+bl; tn=(a2>>k)+b2
(for k=l, 2, or 3). with signed saturation

al and a2 are 16.bit data packed into the 32.bit register ra;
register rb contains bl and b2; rt contains tl and tn. n=2 for 32-
bit data paths and n=4 for 64.bit data paths.

The advantage of this simple rounding function is
that the net difference between the true averages and
the rounded averages is zero, if the results are uni-
formly distributed over the result range. From an imple-
mentation perspective, this rounding causes no additional and the time the carry bit out of the sum is generated.
delay, since there is at least one gate’s delay between the Average parallel overflows. Unlike the parallel average
time the two least significant bits of the sum are generated instructions, the parallel add, subtract, and shift-and-add

April 1995 27

instructions can all generate overflows. A 64-bit architecture
has four 16-bit results with four possible overflows. We have
at least five options for handling these overflows:

l ignore them,
l trap on any overflow,
l save an overflow flag if at least one overflow occurred,
l save all four overflow flags, and
l clip the result to the desired range.

Ignoring the trap is known as performing “modular arith-
metic,” or “wrap-around arithmetic.” We implement this
option as the default parallel subword add or subtract option.
However, in certain situations we need to know that an over-
flow has occurred or incorrect data would propagate with-
out any indication of an error.

Trapping on any overflow is fine, except that it requires
two versions of each instruction: one that traps on overflow
and one that does not. Many times modular arithmetic is
desired, and trapping is the incorrect action.

Saving one or multiple overflow flags is an extra state that
adds to the cost of the implementation. The program then
checks that the overflow flag or flags are set and handles the
overflows, if necessary.

The last alternative, clipping to the desired result range, is sat-
uration arithmetic. In most video and graphics algorithms, this
clipping occurs in implementations that use mechanisms for
trapping on overflow or checking that an overflow flag is set.

A result is said to have a positive over-ow if it is larger than
the largest value in the defined range of the result. It has a
negative overflow if it is smaller than the smallest value in
the defined range of the result. If a saturation option accom-
panies the parallel add or subtract instruction, the result is
clipped to the maximum value in its defined range if posi-
tive overflow occurs, and to the minimum value in its defined
range if negative overflow occurs.

We have two saturation options: signed and unsigned.
With the signed saturation option, both operands and the
result have signed, 16-bit numbers in the range (-215, 2’j-1).
The result of an add operation with signed saturation could
have a positive overflow only if both operands are positive,
in which case the result would be clipped to a maximum
value of 21i-1. It could have a negative overflow only if both
operands are negative, in which case the result will be
clipped to a minimum value of -2’j.

The second type of saturation supported is more unusual.
Unsigned saturation corresponds directly to that of signed sat-
uration when both operands and the result are unsigned, 16-
bit numbers from 0 to 2l”-l. While such a definition of
unsigned saturation may be useful for parallel, 8-bit arithmetic,
we could not find many uses for it in parallel, 16-bit arith-
metic, where most often at least one of the operands is signed.
Moreover, such a definition of unsigned saturation does not

28 IEEE Micro

allow the clipping of negative numbers to zero, which is high-
ly desirable in many applications, as described later.

Our definition of unsigned saturation allows operations
with mixed signed and unsigned numbers, and saturation of
a signed number to an unsigned number: One operand is
an unsigned 16-bit number from 0 to 216-1. The other
operand is a signed 16-bit number from -2’j to L’j-1. The
result is an unsigned 16-bit number from 0 to 2l”-1.

Saturation arithmetic further speeds up the processing of
multimedia data. About five instructions must be used to check
for positive and negative overflows and perform the desired
clipping of one result. When saturation arithmetic is used, each
multimedia instruction in the PA-71OOI.C generates two &bit
clipped results and replaces 10 ordinary PA-RISC instructions.
Each multimedia instruction in 64-bit PA-RISC 2.0 processors
generates four parallel, 16-bit results, replacing around 20
instructions when saturation arithmetic is used.

Uses of saturation arithmetic. Saturation arithmetic is
useful when dealing with pixel values, which often repre-
sent hues or color intensities. It is undesirable to perform
the normal modular arithmetic in which overflows wrap
around from the largest value to the smallest value and vice
versa. For example, in E&bit pixels, if 0 represents black and
255 represents white, a result of 256 should not change a
white pixel into a black one, as would occur with modular
arithmetic. In saturation arithmetic, a result of 256 would be
clipped to 255. In 16-bit arithmetic, an unsigned 8.8 fixed-
point number, with 8 bits of pixel value and 8 fractional bits
may represent a pixel. We can then add some signed num-
ber to it and still clip the result to an unsigned 8.8 number,
using our definition of unsigned saturation.

The two saturation options also allow efficient clipping to
arbitrary maximum and minimum values in the defined range
of the result. We first figure the difference between the new
maximum (or minimum) value and the maximum (or mini-
mum) defined values to which the result saturates. To clip to
a new maximum value, xmax, we need two instructions:
First, add this difference to the result, then subtract this same
difference. If the result is less than xmax, these two opera-
tions cancel each other out. However, if the result is greater
than xmax, the first instruction causes saturation to occur,
and the second instruction brings this saturated maximum
value down to the new maximum value, xmax (Figure 5a).

We use a similar pair of instructions to clip to a new min-
imum value (Figure 5b). In fact, to clip to both new maxi-
mum and new minimum values, we need only three
instructions, rather than four (Figure 5~1, since we can com-
bine two subtract operations into one. Furthermore, if the
new minimum value is zero (that is, clipping to an unsigned
number), we need only two instructions (Figure 5d), since
we can use the unsigned saturation option in the second
instruction to clip to zero.

If xmax is greater than or equal to 21i-1 and xmin is zero

: .: i

(that is, clipping a signed I6-hit nuin-
her to an unsigned I6-bit number),
we need just one instruction, with
unsigned saturation (Figure ie). This
adds zero to the value in Rx with
unsigned saturation. causing nega
tive results to he clipped to zero.

Performance
Table 2 summarizes the key imple-

mentation parameters (processor
used. frequency, and cache sizes),
and performance metrics (integer and
floating-point SPFCmarks based on
the SPEC92 benchmark suites) of sev-
eral of the workstations mentioned
here. The rows are sorted according
to the PA-RISC processor used and its
frequency (second column). The PA-
7IOOLC processor is leveraged from
the PA-7100 design, for lower cost
products. In addition to the multime-
dia instructions described earlier, the
PA-7100LC processor also integrates
controllers for memory, cache, and
I/O.“,- Referring to the workstation
rather than just the processor is
important since the entire workstation
system design contributes to the over-
all performance, not just the proces-
sor design.

a) Clip to a maximum result value, xmax, less than (2j5-1):
HADD,ss Rx, Fly, Rx; Ry contains [(2’5-1) - xmax], clip Rx results to (2j5-1) at

high end
HSUB,ss Rx, Ry, Rx; Rx results are at most xmax at high end, unchanged at

low end (clipped to -215)

b) Clip to a minimum result value, xmin, greater than -2Y
HSUB,ss Rx, Ry, Rx; Ry contains (215-xmin), clip Rx results to -21~ at low end
HADD,ss Rx, Ry, Rx; Rx results are at least xmin at low end, unchanged at

high end [clipped to (2’Sl)]

c) Clip to a new maximum and minimum value, so that the result is in the range
(xmin, xmax):

HADD,ss Rx, Ry, Rx; Ry contains [(2j5-1) - xmax], clip Rx results to (2T5-1) at
high end

HSUB,ss Rx, Rz, Rx; Rz contains [(215-1) - xmax + (215-xmin)], results are
clipped to -2’5 at low end

HADD,ss Rx, Rw, Rx; Rw contains (2’“xmin). results are at most xmax at high
end and at least xmin at low end.

d) Clip a signed l&bit integer to an unsigned integer in the range (0, xmax),
where xmax less than (2’5-1):

HADD,ss Rx, Ry, Rx; Ry contains the value [(2’“1) - xmax], clip Rx results to
(2’5-1)

HSUB,us Rx, Ry, Rx; Rx results are at most xmax at high end, and clipped to 0
at low end

e) Clip a signed Is-bit integer to an unsigned integer in the range (0, xmax),
where xmax is greater than or equal to (215-1):

HADD,us Rx, RO, Rx;

Figure 5. Using saturation for clipping to arbitrary maximum and minimum values.

Path length reduction. The performance of an applica-
tion is inversely proportional to its execution time. which is
a product of path length, average cycles executed per instruc-
tion (CPI), and the cycle time of the processor:

Performance =
1

path length x CPI x cycle time

Table 2. Implementation and performance characteristics of the referenced workstations,
using abbreviated names; for example, HP 9000 Model 720 appears as HP720.*

Processor Multimedia- External I/D Integer Floating-point Mo./yr.
Workstation (MHz) enhanced cachesizes(Kbytes) SPECmark SPECmark introduced

HP720 PA-7000(50) No 1281,256D 38.5 66.1 319 1

HP715/50,HP725/50 PA-7100(50) No 641.64D 35.3 66.8 3/93

HP735 PA-7100(99) No 2561,256D 109.1 167.9 1 l/92
HP712160 PA-71OOLC(60) Yes 321,32D 58.1 84.9 II94
HP712180 PA-71OOLC(80) Yes 1281,128D 84.3 122.3 1 I94

HP715/100, HP725/100 PA-7100LC(100) Yes 1281,128D 99.6 137.0 5194

*Some HP71 j models use the nonmukimedid-enhanced PA-7100 and others use the multimedia-enhanced PA-7100LC. The
HP725 models have the same performance as the equivalent HP715 models, except that they have more I/O sbts.

April 1995 29

Figure 6. Maximum MPEG video decode performance for
input file cats.mpg (352x240 pixels, encoded at 30 fps) on
different workstations.

It is well recognized that reducing the cycle time, or equiv-
alently, increasing the MHz rate of the processor, increases
its performance. RISC processors have also emphasized the
importance of reducing the CPI for improved performance.
It is not as well recognized that we can get significance per-
formance boost by merely reducing the number of instruc-
tions that need to execute, that is, reducing the path length
of the program.

From the very beginning of the PA-RISC architectural
design, we strove to incorporate path length reduction fea-
tures into the architecture,*m4 without violating the principles
of RISC design. We now add parallel subword arithmetic
instructions, SIMD-style, for the acceleration of multimedia
programs, again following the same design principles. By
performing more operations in a single instruction, without
adding undue complexity to the pipeline, we can significantly
reduce the path length of the program (for example, MPEG
decompression) without increasing the CPI or cycle time. This
in turn, improves the performance of the software program.

For example, in the IDCT routine, the multimedia-
enhanced HP712 has a much shorter path length than the
HP735. We reduced the number of instructions required for
adds, subtracts, shift_and-adds, loads, and branches (the first
four columns in the earlier Figure 3). We also reduced the
add, subtract, and shift_and-add instructions by parallel sub-
word arithmetic operations. We reduced the load and con-
ditional branch operations, since a word load instruction
now brings in multiple parallel pieces of subword data.
Reduced conditional branches result from the reduced num-
ber of loop iterations. Figure 3’s fifth column (SMU) refers to
shift, extract, and deposit instructions which another func-
tional unit, the shift-merge unit, executes. Multimedia instruc-
tions accelerating SMU instructions allow parallel data
alignment and rearrangement to be performed on the data
packed into registers. All PA-RISC 2.0 processors, including

30 IEEE Micro

the PA8000, implement these instructions.9
These reductions result in a PA-7100LC-based workstation

(with multimedia instructions) requiring only 138.5 million
instructions for all the IDCT executions. A PA-7100-based
workstation (without multimedia instructions) requires 206.5
million instructions.iO Overall, the MPEG decoder required
only 340.8 million instructions running on the PA-7100LC
processor with multimedia instructions, whereas it required
539.7 million instructions on a PA-7100 processor. This result-
ed in the 60-MHz HP71 2 being faster in the MPEG decoding
of the same video clip than the %-MHz HP735-even though
the latter has eight times the cache size-and a 65 percent
faster processor clock rate. Using SPEC92 performance rat-
ings, we would have expected the HP712160 to display only
about half the performance of the HP735 (Table 2).

Relative MPEG video decompression performance.
Figure 6 shows the performance for the MPEG-1 software
decompression of the video clip, cats.mpg. The multimedia-
enhanced PA-7100LC-based workstations outperform the
older PA-7100-based workstations. For example, the high-
end HP735 running at 99 MHz, achieves 18.7 fps, while the
multimedia-enhanced, entry-level HP712 workstations pro-
duce 26 fps at 60 MHz, and 33.1 fps at 80 MHz.

These are frame decompression rates for MPEG video only
(no audio) with no constraints on how fast the decoding may
proceed. In other words, the rate at which the MPEG stream
had been compressed does not constrain the decoding rate.
Although the video clip used was MPEG compressed at 30
fps, the 80-MHz HP712 can decode it faster than 30 fps, in
unconstrained mode.

In the actual video player in our MPower 2.0 multimedia
user interface, the encoded rate synchronizes (or constrains)
the playback rate. It skips frames if the decoder cannot keep
up with the real-time (encoded) rate, resulting in a lower
effective frame rate, since skipped frames are not counted.
On the other hand, task switching or waiting occurs if the
decoder is too fast, so that the playback rate is at most the
encoded rate, as can be seen in Figure 7.

MPEG video with MPEG audio software performance.
Figure 7 shows the performance of MPEG video with MPEG
audio at different audio fidelity levels when we also used
software running on the general-purpose PA-RISC processor
to decompress MPEG audio. In this figure, video decom-
pression, audio decompression, system layers, the video
player itself, and MPower 2.0 are all running in software.

The leftmost column in each set represents the highest
fidelity audio: stereo with no decimation, that is, every audio
sample (44.1-kHz, linear, 16-bit stereo audio, for CD-quality
music) comes as a pair of left and right channel values, and
every sample is used.

The middle column in each set represents average-grade
audio. Mono means that every audio sample is a single value
(channel) rather than a pair of values. Half decimation means

that one out of every two audio samples is used. The right-
most column in each set occurs when audio decoding is
bypassed: The MPEG system layer still decodes the headers
of audio packets but discards them.

The reason the rightmost column is slightly lower than the
unconstrained video-only numbers in Figure 6 is that the
playback is synchronized to the encoded rate. The player
synchronizes each frame to play back at 33-millisecond inter-
vals, if the video stream was encoded at 30 fps-as is usual
in US television programs. For movies, the MPEG video
stream is encoded at 24 fps, which then defines the real-time
rate for MPEG playback.

MPEG audio is relatively complex compared to the com-
putational needs of simpler audio standards. Software
decompression of MPEG audio (and all the other software
product overhead) degrades performance in terms of decod-
ed frames per second. Yet, even when the highest fidelity
stereo audio is used, a low-end, GO-MHz PA-RISC HP712
achieves a rate above 15 fps, an 80-MHz HP712 achieves
24.2 fps, and a loo-MHz HP715 achieves 27.4 fps. With fur-
ther enhancements of audio decoding and audio-video syn-
chronization, we should do even better.

Performance improvements in other applications.
Figure 8 shows four sample real-time applications coded
with and without multimedia instructions. The speedup in
frame rates using multimedia instructions is in the range of
1.9 to 2.7. This illustrates that the general-purpose multime-
dia enhancements introduced into the PA-RISC processors
and systems extend beyond enhancing MPEG-1 video
decompression to other multimedia applications.

THE PERFORMANCE OF OUR small set of multimedia
instructions is remarkable, since it
enabled a low-cost workstation, the
HP712, to achieve real-time MPEG
video playback with software on a
microprocessor. In fact, more multime-
dia instructions and complex structures
on the processor chip would not nec-
essarily improve software MPEG
decompression. For example, a corn-
plex multimedia instruction that exe-
cutes a subtract, absolute value, and
accumulate of parallel subwords would
not accelerate MPEG decompression,
since this is useful only for motion esti-
mation in some video-compression
algorithms and not useful in video
decompression. (4

Without With
multimedia multimedia W

Without
multimedia

With
multimedia

We can view the set of multimedia
enhancements present in the PA-71OOLC,
as described here, as the basic core of

Figure 8. Performance of PA-RISC multimedia instructions for different applica-
tions: using the HP712 at 60 Hz (a) and at 80 Hz (b).

subword SIMD instructions making up a minimal set useful for
accelerating multimedia programs. All these instructions are
used in performing parallel operations in a basic adder circuit.
The &-bit PA-RISC 2.0 architecture implemented by the PA8000
incorporates a superset of multimedia instructions, which
would support all the instructions described here and more.’

Since the performance of general-purpose microproces-
sors continues to improve with each new generation, we can
leverage these improvements for multimedia computations.
PA-RISC processors have roughly doubled performance
every 18 to 24 months. This approach also allows us to focus
hardware design efforts on improving the performance of
the general-purpose processor and system without having

2 30

;25

2 20
& 15
e
2 10

5

0
HP71 2160 HP712/80 HP715/100

Figure 7. MPEG video with MPEG audio software perfor-
mance. All three workstations use the multimedia-
enhanced PA-7100LC processor.

0 MPEG video 0 Zoom 512x512

q Convolve 512x512 n H.261 video

April 1995 31

to replicate performance efforts in each special-purpose sub-
system, such as the graphics or video subsystem.

These multimedia instructions are generally useful for
graphics, image, audio, and modem computations, or any
computations that can benefit from parallel operations on a
large number of integers with precision less than 16 bits.

The PA-RISC multimedia enhancements are yet another
evolutionary step in introducing sophisticated, high-perfor-
mance computer design techniques into the ordinary micro-
processor. The SIMD-MIMD parallelism embedded into a
superscalar microprocessor does not violate RISC design
principles. As mentioned earlier, we used the same RISC prin-
ciples as in the original PA-RISC design:* 1) speeding up the
most frequent operations (this time, in a multimedia work
load), and 2) streamlining their implementation in a simple,
pipelined processor.

We continue to believe in the concept that it is better to
implement simple operations in a single cycle, using these
to build many different complex functions, than to imple-
ment complex instructions that have limited usefulness.
Specifically, we resisted putting in complex multicycle
instructions, that were MPEG specific. Rather, we added sim-
ple, generic operations, like add, subtract, average, and
shift-and-add, which have essentially unlimited usefulness
in many multimedia and other applications.

Since we made only minor modifications to the two exist-
ing integer ALUs, the cost of these instructions is insignificant,
amounting to less than 0.2 percent of the silicon area in the
PA-7100LC processor chip.jm’ These multimedia instructions,
together with other software and system optimizations,
enabled our entry-level workstations to support the lowest
cost MPEG video player, since no special-purpose chip or
board was required.

We plan to expand multimedia work loads to include high-
er level multimedia programs such as conferencing, editing,
encryption, and recognition. Second-generation multimedia
instructions will be part of the PA-RISC 2.0 architecture. These
future developments will continue to use synergistic soft-
ware and hardware optimizations to deliver cost-effective
multimedia acceleration. C

Acknowledgments
I thank all members of my interdivisional Multimedia

Architecture team; the PA-RISC Extensions team, especially
Michael Mahon; and the PA-7100LC team, especially Joel
Lamb, Mark Forsyth, and Charlie Kohlhardt.

References
1. K. Patel, B. Smith, and L. Rowe, “Performance of a Software

MPEG Video Decoder,” froc. First ACM /nt’/ Conf. Multimedia,
Assoc. Computing Machinery, N.Y., 1993, pp. 75-82.

32 IEEE Micro

2. R. Lee, “Precision Architecture,” Computer, Vol. 22, No. 1, Jan.
1989, pp. 78-91.

3. R. Lee, M. Mahon, and D. Morris, “Pathlength Reduction Features
in the PA-RISC Architecture,” Proc. Compcon, IEEE Computer
Society Press, Los Alamitos, Calif., 1992, pp. 129-l 35.

4. L. McMahan and R. Lee, “Pathlengths of SPEC Benchmarks for
PA-RISC, MIPS, and SPARC,” Proc. Compcon, CS Press, 1993,
pp. 481-490.

5. P. Knebel et al., “HP’s PA-7100LC: A Low-Cost Superscalar PA-
RISC Processor,” Proc. Compcon, CS Press, 1993, pp. 441-447.

6. S. Undy et al., “A VLSI Chip Set for Graphics and Multimedia
Workstations,” /fEEMicro, Vol. 14, No. 2, Apr. 1994, pp. 10-22.

7. L. Gwennap, “New PA-RISC Processor Decodes MPEG Video,”
Microprocessor Repor?, Vol. 8, No. 1, Jan. 24, 1994, pp. 16-17.

8. M. Flynn, “Very High-Speed Computing Systems,” Proc. IEEE,
Vol. 54, No. 12, Dec. 1966.

9. D. Hunt, “Advanced Performance Features of the 64-Bit
PA8000,” Proc. Compcon, CS Press, 1995.

10. R. Lee, “Real-Time MPEG Video via Software Decompression on
a PA-RISC Processor,” Proc. Compcon, CS Press, 1995.

Ruby B. Lee serves as chief architect of
the cross-functional multimedia archi-
tecture team and processor architect of
the PA-RISC Extensions team at Hewlett-
Packard. She is also a consulting associ-
ate professor of electrical engineering at
Stanford University and co-leader of the

joint HP-Intel architecture team.
Lee holds a BA from Cornell University, and an MS in com-

puter science and a PhD in electrical engineering from
Stanford University. She holds eight patents in processor
architecture, pipeline design, cache hints, branch optimiza-
tions, and multimedia. She is a member of the IEEE, ACM, Phi
Beta Kappa, and Alpha Lambda Delta.

Address questions concerning this special issue to the
author at Computer Systems Architecture, Hewlett-Packard,
19410 Homestead Road, MS43UG, Cupertino, CA 95014;
rblee@nsa.hp.com.

Reader Interest Survey
Indicate your interest in this article by circling the appropriate
number on the Reader Service Card.

LOW 156 Medium 157 High 158

