A Simple Capacity Model of Massively Parallel Transaction Systems
Neil J. Gunther

Systems Technology Laboratory
Pyramid Technology Corporation
San Jose, California, 95134-1702

ngunther@pyramid.com

This paper examines the scalability of ‘‘shared-nothing’’ architectures as the future platforms of choice for large, scalable,
transaction processing systems. Capacity planners need some means of assessing throughput scaleup for these new
platforms. We present a simple, semi-empirical, capacity model which expresses the possible scaleup for both shared-
memory multiprocessors and massively parallel transaction systems based. A new concept, super-seriality, is introduced 10
to account for performance penalties due to the degree of shared data in commercial database workloads. Super-seriality has
the effect of inducing a premature maximum in the scaling curve beyond which it is counter-productive to add further
processors. This results in unexpected limitations in the scalability of ‘‘shared-nothing”™ architectures executing transaction
processing workloads. Scaleup predictions are presented for some existing transaction processing platforms.

1. INTRODUCTION

Massively parallel processors (MPP’s) are emerging as
commercially viable candidates for displacing
conventional mainframe computer systems in the realm of
large-scale data processing and transaction processing
tasks.

We present an analysis of transaction processing
scalability on MPP architectures with the objective of
providing the future capacity planner with a rational
means of assessing plausible sizing limitations during the
expected onslaught of promotional statements about
thousands of commodity processors offering thousands of
aggregate MIPS (Mega Instructions Per Second) in
computational horsepower.

To aid the reader, unfamiliar with the terminology that
typically accompanies this emerging technology, a brief
GLOSSARY section is included at the end of this paper.

David DeWitt and Jim Gray [DeWitt&Gray92] have
suggested that this re-emergence is coupled with the
widespread commercial success of relational database
management systems (RDBMS’s). Relational queries are
eminently suited to parallel execution on multiple data
streams. Many MPP architectures can be classified as
“‘shared-nothing’” [Stonebraker86] in that each of the
potentially hundreds or even thousands of processing
nodes possesses their own local memory and disk storage
devices. They therefore can operate quite independently
except for the occasional exchange of data across a high-

performance interconnection network.

MPP architectures were pioneered largely in the scientific
and research communities where the focus is on improving
the speedup of scientific codes via parallelizing compilers.
Commercial database applications were at first thought to
have only limited and specialized potential but are now
re-emerging as RDBMS vendors turn their attention
toward utilizing the wealth of commodity MIPS available
in MPP’s.

Shared-nothing architectures’ get their name by virtue of
minimizing the sharing of hardware resources leading to
the claim that these platforms can be scaled up to hundreds
and potentially thousands of processors (e.g., CM5, KSR1,
nCUBE, Teradata) This massiveness in computational
horsepower, in twrn, leads to claims and expectations of
near-linear scalability on transaction processing
workloads.

In a marketplace where such claims are likely to become
more vociferous, we attempt to sound a cautionary note:
near-linear scalability on multiprocessor systems should
not be heeded without reference to the amount of shared
data and code present in the workload. Shared data and
code abound in the currently available commercial

1. For a readable comparison of some commercial implementations see
[Gottlieb92).

1035

RDBMS products. This sharing is driven by the desire for:

o A general purpose programming model in high-level
database applications.

o Ease of production release and maintenance through
the use of shared data structures.

Since the degree of sharing in RDBMS architectures is
currently non-zero and is unlikely to improve in the near
future, we must live with the constraint that linear scaling
for transaction processing sysiems is as practically
unattainable as it has been for massively parallel scientific
workloads.

Broadly speaking, database transaction workloads exhibit
a higher degree of serialization than is the case for fine-
grain parallelism. As we have discussed elsewhere
(Gunther92], Symmetric Multi-Processor (SMP) systems
running workloads with a high degree of shared data can
exhibit measureable ‘‘roll-off"’ [Thakkar90], rather than
just saturation in performance. The question for the
capacity planner then becomes: ‘‘What degree of
sublinearity is acceptable for a given transaction system?"’

We present a capacity saleup model that accounts for the
increased amount of serialization due to the existence of
shared data. As we shall see, the proposed model exhibits
a maximum in the scaling curve; the onset of which can
occur long before the expected system saturation level!
Moreover, since the models we present here are nowhere
dependent on any assumptions about bus or interconnect
technologies, they already draw attention to software
inefficiencies.

2. SCALING MODELS

We study processor scalability from the point of view of
the execution of a workload that is scaled to the number of
available processors. [DeWitt&Gray92] refer to this as
“‘scaleup” rather than ‘‘speedup’” (See GLOSSARY
section).

2.1 PEFORMANCE METRICS

Transaction scaleup is ideal for MPP systems since each
transaction is a relatively small, independent, task that can
run on separate processors. It is for this reason that the
TPC council has chosen a special set of scaling rules for
database sizing as more processing power is applied to the
workload. The capacity metric used in this paper is the
throughput rate (R) measured in Transactions Per Second
(TPS) and the workload is equivalent to that found in the

TPC Benchmark B™ [Gray91].

We compare the TP3 rate achieved by N processors (Ry)
relative to that achieved by a single processor (R,). The
t;eansaction throughpaot scaleup is then given by the ratio:
N

R,

We assume that each processor is optimized for process
concurrency i.e., enough transaction generation processes
are present to utilize the available cycles on a processor
and yet not cause a higher than necessary context-switch
rate. Only one transaction generation process runs at a
time on a single CPU. In general, the processor will not be
doing any useful work if it must:

1. wait for a bus transfer from another processor or
memory.

2. wait for /O completion
3. serialize on an RDBMS lock or latch.

2.2 DUAL-PROCESSOR SCALEUP

Suppose a uniprocessor completes f, transactions in an
elapse time, T. Its throughput is then given by:

R1=—".

Doubling the workload, we would expect the uniprocessor
to complete 2, transactions in twice the time, i.e., 27.

Similarly, we would expect a dual processor (N = 2)
system to complete f, = 2¢, transactions in the same time
it takes the uniprocessor to complete fr; transactions.
Measurements on shared-memory multiprocessor systems
show, however, that 1’5 is generally less than 27, in time T.
In other words, the dual processor takes longer to
complete 2¢, transactions! The two processors are said to
“‘interfere’”” with one another’s ability to execute
independently.

Let us denote the additional elapse time as a fraction ¢ of
the uniprocessor time, i.e., ¢ T, where 0 <o < 1. Then, the
dual processor throughput is given by:

2,

R2= .
T+07T

Dual-processor scaleup can now be expressed as:

2 ‘
R,= R,,
2 {l+o !

where we have cancelled the common factors of T in the
quotient. What is the signifiance of this equation?

1036

Clearly, for any non-zero value of o, the throughput
capacity of the dual-processor system will be less than
twice that of uniprocessor system. Suppose, for example,
that 6 =0.03 then the scalability formula tells us that the
effective throughput of the dual-processor will only be
1.94 times that of the uniprocessor. Therefore, if the
uniprocessor is capable of 100 TPS, the dual-processor
will achieve only 194 TPS - not 200 TPS. This will be the
case if the two processors spend 3% of the elapse time
interfering with each other’s ability to generate
transactions. The parameter, G, is a measure of this
interference. But what is the nature of this interference?

In SMP transaction processing systems there are many
points of serial contention in both the hardware (e.g., the
memory bus), and the DBMS (e.g., critical code sections)
where one processor must wait for the other to complete
before it can continue to execute transactions. This time
spent contending for shared resources is the dominant
reason for dilating the dual-processor execution time. The
impact of this effect may not be cause for concern in a
dual-processor system but if the trend holds as more
processors are added to the system then cumulative effects
at the high-end (large-N) may have significant
consequences. Keep in mind that MPP hardware is often
technically capable of supporting many hundreds and even
thousands of processors. To determine the potential
impact, for large-N systems, we need to generalize the
dual-processor capacity equation.

2.3 GENERALIZED SCALEUP

Another way of looking at dual-processor scaleup is that it
tells us about the effective number of processors doing real
work i.e., actually executing transactions. Let us therefore
define a generalized capacity function, C(¥N) by analogy
with our discussion in section 2.2.

Rv=CN)R,.

At this point in our discussion, we do not know the form of
C (N) for an arbitrary number of processors. What we can
expect, however, is that the following assumptions hold:

1. C(1)=1, trivially.

2. The fraction of time, o, will remain constant but
scale as the number of processors increases
according o o(N)=o0 f(N) where f(N) is o be
determined.

3. Any general capacity function should contain dual-

processor scaling, C(2) =

, as a special case.
1+0 pec

With these constraints in mind, we write a general
capacity function for an arbitrary number of physical
processors (N) as:

N _

1+ o f(N)

where f () is an undetermined function of the number of
physical processors, in the system. It should be clear by
now that no matter what choice is made for f(N), the
scaleup will be nonlinear and in general it will be sublinear
for non-zero values of 6. Furthermore, it is reasonable to
expect that the contributions to the time dilation are
piece-wise additive. We therefore assume, for simplicity,
that f (N) is polynomial in N.

Elsewhere [Gunther92], we have considered two important
forms for f(N) in an attempt to model SMP transaction
processing performance. We summarize those results here.

2.4 OPTIMISTIC CAPACITY MODEL

In this model, f (N) = (N — 1), is linear in N. Hereafter, we
shall refer to this form as the Optimistic model’>. The
explicit form of C(N) for this model is:

N
l1+oW -1

This Optimistic model produces scaleup in which C(N) is
monotonically increasing for all values of N and
asymptotically approaches saturation at o™}, As we will
demonstrate in the next section, this model is too
optimistic in its prediction of multiprocessor throughput
capacity. There are other effects contributing to the
execution time-dilation which are not accounted for in the
Optimistic model.

2.5 SUPER-SERIAL MODEL

In this model, f (N) = (N — 1)+ A N(N — 1), is quadratic in
N and 0<A<1 is another independent parameter.
Hereafter, we shall refer to this form as the Super-Serial
model. The explicit form of C(N) is:
N

I1+o(N-1)+cANWN-1)

This model has been found to provide a broader match
with measured data, in part, because it approaches zero

C(N)=

CN)=

C(N)=

2. The functional form of C(N) is identical to that found in Amdahl’s
law [Amdahl67} for parallel speedup of a fixed, single task. The
reader is cautioned against taking the analogy too far since our models
are for multi-user scaleup.

1037

asymptotically as N™' (Fig. 1). Moreover, the Super-
Serial model contains the Optimistic model in the special
case of A=0. Both of these polynomial forms are
expressed in terms of (N — 1) so as to satisfy the first of the
assumptions above i.e., C(1)=1 when f(l)=1.

Dividing C(N) by N, we can re-express the denominator
as:

1 N-1
N +0[N +O0AMN-1)
This form reveals a convincing physical interpretation for
the various contributions to C(N). We may think of each
term as representing, respectively, one of the Three C’s:
concurrency, contention and coherency. The first term
represents the degree of concurrency available in the code.
The second term represents contention for shared
resources. The third term is more obscure but we have
argued in [Gunther92] that it can be identified with
additional latency due to some fraction, A, of processor
activity invalidating shared, writeable, data.

We call this latter effect super seriality to emphasize its
connection with the existence of serial contention
(seriality) and the extension of its effects. Note that this
statement is captured by virtue of the super-serial term
vanishing when ¢ =0.

Figure 1 depicts the general characteristic of C(N) for N
ranging from 1 to 100. o is held constant while A ranges
from zero (Optimistic Model) to a nominal 0.1. Note the
gradual appearance of a broad maximum in the curve for
#=0.01 and furthermore, how it both narrows and moves
toward the origin as A increases. The most significant
difference between the two models is the presence of a
maximum in the Super-Serial scaling curve at the critical
value:

N.=Y(1-XM/Ac

For a fixed value of o, the position of the maximum is
determined by the value of A according to:

1. N, — o as A — 0; (Optimistic model limit)
2. N.oOasAiA—-1

Compare this with the simpler asymptotic behavior of the
Optimistic model in Fig. 1.

In the remainder of the paper, we validate the Super-Serial
model against measured SMP data and extrapolate the
results to MPP performance.

3. NUMERICAL RESULTS

First, we turn to the validation and application of our
general capacity function in the context of transaction
processing workloads. The only comprehensive data,
available to us, is for the TPC Benchmark B™ workloads
[Gray91]. Although TPC-B is not typical of all transaction
processing workloads, it does provide a common baseline
by which to make certain scaling comparisons. It is
sufficient for our discussion of sharing latencies because
there are common functional parts of the RDBMS that
must be exercised by all the benchmark transactions.

Table 1.
Shared-Memory Multiprocessor Scalability
Pararneters: o = 0.029, A =0.05
Measured TPS Predicted TPS
Sample Percent Super Optimistic
CPUs TPS Sublinear | Serial Error Model Error
1 - 77.8 718
2 150.0 3.7 1509 0.6 1513 0.9
3 - 218.9 220.7
4 282.0 9.4 281.9 0 286.4 16
5 - 339.8 348.7
6 395.0 15.4 3928 -0.6 407.8 32
7 - 441.0 464.0
8 496.0 20.4 4847 23 517.4 43
9 - 523.9 568.4
10 - 559.0 617.0
11 - 590.3 663.4
12 627.0 329 617.9 -1.5 707.8 129
13 - 642.2 750.2
14 671.0 384 663.5 -1.1 790.9 179
15 - 681.9 829.9
16 - 697.7 867.3
17 - 711.2 903.2
18 704.0 49.3 722.6 26 937.7 33.2
19 - 732.0 9709
20 - 739.6 1002.9
21 - 745.7 1033.6
2 - 750.4 1063.3
23 - 753.8 10919
4 - 756.0 1119.6
25 N/A 757.2 1146.2
2% " 7575 11720
27 " 757.0 1196.9
28 " 755.7 12210
29 " 753.8 1244.4
30 " 751.4 1267.0

To analyze the data®, we developed a fitting program

3. The measured data samples in Tables 1 and 2 come from a variety of
sources and therefore do not provide the complete set that otherwise
would be desirable far our modelling discussion. Negative error
values indicate under estimation by the model.

1038

called, gcomp, o assist in determining appropriate values
of ¢ and A from sampled, low-end throughput data. The
solid curves in Figures 2 and 3 were generated in this way.
The program uses a standard linear least-squares fit
[Press88] to the power series expansion:

CN)=N+oNN-1)- a2 N(N-1)?
+A(N-DN2 = O(NY

It turns out that near N,, the maximum in C(N) can be
predicted quite accurately from just the first two terms.
This is a reasonable approximation because for N < N, the
scaling curve is well-approximated by an inverse parabolic
function, while for N > N, the curve is dominated by the
coherency term carried with the factor A.

Table 2.
Massively Parallel Scalability
Parameters: o = 0.028, i =0.023
Measured TPS Predicted TPS
Sample Percent Super Optimistic
CPUs TPS Sublinear | Semal Error Model Error
1 243 0.0 243 0 243 0
2 43 8.8 48.5 95 48.5 9.5
3 - 725 725
4 80.5 17.2 963 196 96.4 19.8
5 - 120.0 120.2
6 - 143.5 143.8
7 - 166.9 167.3
8 157.8 18.8 1900 204 190.7 20.8
9 - 2130 214.0
10 - 2358 237.1
64 1073.0 31.0 1086.1 1.2 13239 234
120 N/A 1301.3 2192.4
121 " 1301.6 2206.1
122 " 1301.9 219.7
123 " 1302.0 22333
124 " 1302.2 2246.8
128 " 1302.2 2260.2
126 " 1302.2 2273.6
127 - 1302.1 2286.9
128 " 1301.9 2300.2
129 " 1301.6 23134
130 " 1301.3 2326.6

3.1 MULTIPROCESSOR SYSTEM

Table 1 compares measured and predicted transaction
throughput, Ry, for each of the models discussed. The
column labelled Sample TPS shows measured
performance data taken from a Pyramid MIServer™

running ORACLE 7™ with a workload equivalent to the
TPC-B™ benchmark. These data are accurate to about
+3%. The next column is the degree of sublinearity
(relative to a single CPU) expressed as a percentage.

Our approach assumes that single or dual processor
measurements are generally more accurate than those
taken on systems configured with a large number of CPUs.
In the current MlIServer™ ES-Series product line, a
maximum of 24 R3000A processors are available. Up to 6
of these processors are usually dedicated to handling
OLTP network traffic and RDBMS logging processes.
Therefore, only 18 processors were available for executing
database transactions. The Super-Serial model predicts a
capacity roll-off around N, = 26; just beyond the number
of CPU’'s that can be physically slotted into the ES
backplane. Altough this might be viewed as a Marketing
win, it is unfortunate for the purposes of validating C(N)
beyond the maximum.

Due to this limitation, we have validated our capacity
models against alternative data available for the Sequent
Symmetry™ which has been measured for different cache
protocols namely, ‘‘write-through’> and ‘‘copy-back’’
[Thakkar90]. Both protocols refer to main memory
transfers across the shared memory bus. The former
protocol updates main memory (across the memory bus)
on every update while the latter only does so on a read. In
particular, our capacity function C (N) accounts accurately
for the maximum in the write-through data with ¢ =(.03
and A = 0.15. The copy-back data is fitted t0 6 =0.01 and
A =0.02. The data in Figure 2 show an excellent fit to the
Super-Serial model. Furthermore, since these data do nor
belong to a database workload, they lend support to the
idea that super-seriality occurs in the presence of any
shared, writcable data and therefore exists as a quite
general phenomenon.

We have just indicated that hardware attributes such as
cache protocols and bus bandwidth can play a significant
role on determining system scalability. In general,
however, for a hardware platform with fixed protocols,
and bus characteristics the values of ¢ and A will
thereafter be determined by software attributes as reflected
in: resident set size, cache footprint, lock management
policies, contention for internal buffers and length of
critical sections.

3.2 MASSIVELY PARALLEL SYSTEM
Table 2 presents data for the nCUBE2™ running
ORACLE 6.2 with the TPC-B workload. The low-end

data are informal and supplied by Oracle Corporation and
probably responsible for error magnitudes that are higher

1039

than for the SMP case. The implication is that these were
inferior TPS values that could have been improved on with
additional tuning effort. The 64-node measurement is a
bona fide TPC disclosed result {[Oracle91]. The
projections beyond 64 nodes were obtained using gcomp
to calculate C (N).

Figure 3 shows the SMP and MPP data (from Tables 1 and
2) together with capacity projections given by C(N). The
reader is encouraged to cover up the right-hand side of the
figure and note how the initial perception of *‘linearity”’
must be mentally readjusted as the cover is removed and
the roll-off appears around N, = 125 processors for the
nCUBE2. The reader should observe in Figure 3 that
although o is approximately the same for SMP and MPP,
A for the MPP is about half the SMP value which gives
rise to a broader scaling curve and higher N..

We note, in passing, that the aggregate MIPS in the MPP
case is around 500 while the more recent SMP platform
has around 650 aggregate MIPS available on one third as
many processors. This is a consequence of the creeping
commodity MIPS envelope between two architectures that
have only a year between their respective release dates. It
is also noteworthy that the nCUBE result is still the only
TPC measurement on an MPP architecture after more than
two years; yet another signal of the complexites involved
in running database workloads on MPP’s.

4. CONCLUSIONS

We have presented a simple analytic model for capacity
scaleup on SMP and MPP multiprocessor transaction
systems. The notion of super-seriality seems 1o provide a
simplified account of performance roll-off and has been
demonstrated to have some reliable predictive power.
Clearly, such naive assumptions as we have used could be
further refined to produce a more sophisticated model (see
Appendix) but this was not our purpose here.

Performance roll-off is a symptom of super-seriality. This
effect can arise, for example, when a processor is
primarily serialized spinning on a lock to access shared
data and is further serialized after obtaining the lock by the
need to fetch cache lines (across the memory bus) that
have been invalidated by the preceding action of other
processors on that data. In SMP’s, super-seriality is a
latency effect due to the presence of a memory hierarchy
e.g., local caches and global shared memory. It is similar
in character, but different in time-scale, to the performance
roll-off caused by virtual-memory paging (‘‘thrashing’’)

when the number of user-processes competing for finite
main memory increases beyond the multi-programming
level. At that point, additional latency is incurred because
the current pages in memory must be replaced by pages
that are in auxiliary memory - typically a siower disk. This
effect has been modelled as a load-dependent central-
server queueing network which has computable transient
behaviour [Gunther89] and Appendix (this paper). In fact,
due to the presence of a performance optimum in both
cases, the throughput curves for the virtual memory model
show a remarkable, qualitative, similarity to the super-
serial scaling curves presented here.

To illustrate the notion of super-seriality, we drew upon an
example which referred to shared data accesses. A similar
effect is also present in instruction caches. Although
instructions are read-only, serial contention for critical
sections in the DBMS (e.g., manipulating an LRU list)
may induce instruction fetching into the local cache - at a
lower miss-rate than for shared data.

Our capacity model is a simple semi-empirical model that
relies on low-end throughput measurements to determine
the two parameters ¢ and A. We have successfully
developed a numerical fitting program to assist in this
process. Even with these limitations, the current model:

1. Directs our attention to the quantitative significance
of resource sharing in both SMP and MPP
architectures.

2. Requires only two parameters which ultimately can
be modelled explicitly (see Appendix).

3. Alerts capacity planners to the potential for an
intrinsic maximum in the scaleup function due to
super-seriality.

4. Places the onus on the RDBMS vendors to achieve
the promise of shared-nothing architectues.

These are areas of further research.

5. APPENDIX: QUEUEING NETWORK
MODEL

In this appendix, we outline a derivation of our semi-
empirical model based in the theory of queueing network
models. We employ the notatation found in [QSP84].

The importance of this more theoretical approach is that it
demonstrates the reasonable degree of approximation
contained the semi-empirical formula and it shows how it

1040

is possible to determine the two parameters, ¢ and A from
fundamentally measurable quantities.

A more detailed discussion would fall well outside the
scope of this paper and therefore will be presented
elsewhere.

Commencing with the Response Time law [QSP84] for
throughput X,

=N
RN =%-2,

we can write our capacity scaleup function (after some
tedious algebraic manipulations) as:

N
CN)= (A)
14 N1 2Dy

N Z+D

where (J, is the average queue-length at node k (e.g., the
system bus or a memory module) and D, is the service
demand at that node. Z is the mean time spent executing
at each of the N processor (delay) nodes and D is the total
service demand across all queueing nodes. The
summation in the denominator is over all k queueing
nodes.

5.1 OPTIMISTIC MODEL

For a standard queueing network described by this
equation, the only quantity that depends on N is g;. All
other quantities are constant. Furthermore, one can show
that only the ‘‘bottleneck’’ node (the one with the largest
service demand) has a queue that grows with N. It turns
out that this growth is always linear in N i.e., @, =N in
what we call the ‘‘heavy-traffic’’ (large-N) regime. Let us
suppose for this discussion that the bottleneck device is the
memory with a constant service demand, D,,,,,.

Substituting all this into the above equation, gives:
N

1+(N- D —2= |
*)[Z+Dm

C(N)= (B)

Note that this equation is identical in form to the
Optimistic model with

— Dm
°=Z+ Dopem
System capacity will therefore saturate at
Z+D,,,.

——B—mm—,aSN—)OO.

Compare with the top curve in Fig 1.

5.2 SUPER-SERIAL MODEL

The corresponding derivation of the Super-Serial model
hinges off the existence of a queueing node at which the
service demand is no longer constant but rather depends
on the system load - the number of active processors (N).
In this way we incorporate the super-seriality effect
presented in this paper.

If we call the super-serial service demand, D,,, and
assume for the moment that its growth is linear in N (but
less dramatic than the queue growth at the botteneck
device in a standard queueing network, we will pick up a
term going like (N —1)N which is quadratic in the
denominator of C(N). This is a consequence of the
crossover in the growth of queue lengths from bottleneck
queueing to queueing at the super-serial device.

6. REFERENCES

[Amdahl67] G. Amdahl, ‘‘Validity of the Single-
processor Approach to Achieving Large-scale
Computer Capabilities,”” Proc. AFIPS Conf., 483-
85, Apr 1967.

[DeWitt91] D.J. DeWitt, ‘‘The Wisconsin Benchmark:
Past, Present, and Future,”’ in [Gray91].

[DeWitt&Gray92] DJ. DeWitt and J. Gray, ‘‘Parallel
Database Systems: The Future of High Performance
Database Processing,”” Univ. Wisconsin-Madison,
CS Technical Report #1079, 1992.

[Gottlieb92] “‘Architectures for Parallel
Supercomputing,”” Transcript by Allen Gottlieb,
NYU, New York, 1992, Available via ftp:
cs.nyu.edu:pub/tech-reports.

[Gray91] The Benchmark Handbook for Database and
Transaction Processing Systems, ed. J. Gray,
Morgan Kaufmann, San Mateo, CA, 1991.

[Gunther89] N.. Gunther, ‘‘Path Integral Methods for
Computer Performance Analysis,”” Information
Processing 1etters, v32, #1, 7-13, 1989.

[Gunther92] N.J. Gunther, ‘‘Assessing Transaction
Processing Scalability in Shared Memory
Multiprocessors,”” Pyramid Performance Notebook,
Nov 1992.

1041

[Oracle91] TPC Benchmark B Full Disclosure Report
Jor the nCube 2 Scalar Supercomputer Model
nCDB-1000 Using ORACLE V6.2, Oracle Corp.,
1991.

[Press88] W.H. Press, B.P. Flannery, S.A. Teukolsky,
and W.T. Vetterling. Numerical Recipes in C,
Cambridge University Press, 1988.

[QSP84] (Quantitative Systems Performance: Computer
System Analysis Using Queueing Network Models,
E.D. Lasowska, J. Zahorjan, G.S. Graham and
K.C.Sevcik, Prentice-Hall, New Jersey, 1984.

[Stonebraker86] M. Stonebraker, ‘‘The Case for Shared
Nothing,”” Database Engineering, vol. 9, no. 1,
1986.

[Thakkar90] S.S. Thakker, ‘‘Performance of Symmetry
Multiprocessor ~ Systems,”” in Cache and
Interconnect Architectures in Multiprocessors, eds.
MDubios and S.S. Thakker, Kluwer Academic,
1990.

7. GLOSSARY

For the reader’s convenience we provide a brief glossary
of terms and acronyms used throughout this paper.

e C(N): Scaleup capacity function.
e CPU: Central Processing Unit - increasingly, a
commercial microprocessor.

e A: Super-seriality parameter with range [0, 1].
Associated with second-order coherency latency.
Responsible for the premature maximum in the scaleup
function C(N).

o Latch: Short-duration lock used intermally by the
RDBMS.

» Lock: Long-duration synchronization mechanism
used on shared data structures.

o MIPS: Mega (106)Instructions Per Second.
+« MPP: Massively Parallel Processor.

+ N: Number of processors (CPU) in an SMP or the
number of processing nodes in an MPP.

o Node: MPP CPU.
e OLTP: On-Line Transaction Processing.

+ RDBMS: Relational Database Management System.

e Scaleup: Ability of a greater number of processing
nodes 10 accommodate a proportionaly greater
workload in a fixzd amount of time.

e Shared-nothing: Architecmre which minimizes
sharing of hardware resources. Typical of MPP’s.

o 0: Serality parameter with range [0, 1]. Associated
with serialized contention latency.

e SMP: Single-bus shared-memory Multi-Processor.

o Speedup: Reduction in elapsed time obtained by
executing a fixed-size workload on a greater number of
processing nodes.

+ TPC: Transaction Provcessing Performance Council.

MlServer is a registered trademark of Pyramid
Technology Corporation. nCUBE2 is a trademark of
nCUBE Corporation. ORACLE 6.2 and 7 are trademarks
of Oracle Corporation. Symmetry is a trademark of
Sequent Computers Corporation. TPC Benchmark is a
trademark of the Transaction Processing Performance
Council.

1042

20 —
15 T ——
CcmN)

10— T
,-/ \
\
\
S - %
s ——————

0 1] | i

0 20 40 60 80 100

Processors (N)

Figure 1. Characteristic C(N) curves for the super-serial model with ¢ held constant and A ranging from 0.00
(top curve), to 0.10 (bottom curve).

25
204 0O copy-back
s write-through
15 4
Scaleup

10 —
5— ‘r"—._h.‘.
0 |] | it 1 1 | | I T . | | 1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Processors (N)

Figure 2. Architectural impacts on scaleup. Measured scaleup (squares) for different cache policies for a
non-OLTP application with a significant degree of shared data. Solid curves correspond to Super-Serial C(N)
for these data.

1043

1400

/__-———-——-——

1200 -

Hypercube MPP
1000 —
800 —
TPS

600 |
400 Single-bus SMP T

200 —

0] |] I 1 1 1 1 1 | | I
0 10 20 30 40 50 60 70 80 9 100 110 120 130

Processors (N)

Figure 3. Comparison of predicted throughput capacity based on IZ(N) for the super-serial model (solid
curves) with measured data (squares) for both SMP (from Table 1) and MPP (from Table 2) architectures.

1044

