© Гиричев Г.В., 1999

MOLECULAR STRUCTURE OF OXYGEN ACIDS

G. V. GIRICHEV

The features of molecular structure and chemical bond of $M_k X O_n$ (M = Li, Na, K, Rb, Cs; X = B, N, P, S, Cl) compounds are discussed.

Кратко рассмотрены особенности строения и химическая связь в солях кислородсодержащих кислот применительно к соединениям щелочных металлов.

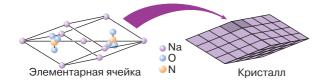
СТРУКТУРА МОЛЕКУЛ СОЛЕЙ КИСЛОРОДСОДЕРЖАЩИХ КИСЛОТ

Г. В. ГИРИЧЕВ

Ивановский государственный химико-технологический университет

ВВЕДЕНИЕ

Солями в химии называют вещества, которые могут быть получены взаимодействием кислот и оснований с выделением воды. Типичными представителями солей являются соединения, образованные однозарядными ионами щелочных металлов и кислотными остатками кислородсодержащих кислот. Изображаемые на уроках химии в средней школе структурные формулы молекул этих соединений правильно передают основную валентность атомов, составляющих молекулу, но, как правило, неверно отражают порядок соединения атомов и лишь отдаленно напоминают реальную структуру молекулы. Рассмотрим различные условия существования этого класса соединений и попытаемся очертить главные особенности строения их молекул в различных состояниях.


ВОДНЫЙ РАСТВОР

В водном растворе молекулы солей кислородсодержащих кислот, в состав которых входит атом щелочного металла, диссоциируют практически нацело, образуя положительные однозарядные ионы щелочного металла и отрицательно заряженные ионы кислотного остатка. Можно с уверенностью утверждать, что молекулы этих солей в водном растворе не существуют, а представлены лишь ионами, несущими на себе сольватную оболочку из нескольких слоев (так называемых координационных сфер) молекул воды.

КРИСТАЛЛИЧЕСКОЕ СОСТОЯНИЕ

При выпаривании водных растворов солей кислородсодержащих кислот образуются кристаллы, в составе которых также трудно увидеть индивидуальные молекулы. Скорее такой кристалл можно рассматривать как строго упорядоченную совокупность кислотных остатков, существующих в виде обособленных структурных групп, и ионов щелочного металла. На рис. 1 в качестве примера показана элементарная ячейка кристалла NaNO₃, которая отражает все особенности его строения, поскольку кристалл любых размеров может быть сложен, как из кирпичиков, путем многократного повторения этой ячейки.

IXUNUA

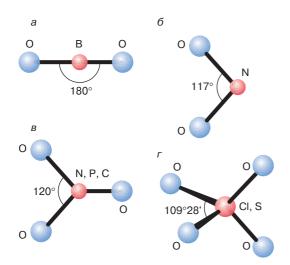


Рис. 1. Строение кристаллической решетки NaNO₃

Анализируя рис. 1, можно понять, что основой кристалла являются фрагменты NO_3^- , окруженные ионами натрия Na^+ , которые в равной мере принадлежат соседним фрагментам NO_3^- .

ГАЗОВАЯ ФАЗА

Прежде чем рассматривать структуру молекул, обратимся к строению ионов кислотных остатков, которые при определенных условиях могут наблюдаться в газовой фазе. Отметим, что каждый такой ион является свободным, то есть его структура не искажена взаимодействием с какими-либо другими частицами. На рис. 2 показано строение ионов кис-

Рис. 2. Геометрическое строение ионов кислотных остатков

лотных остатков некоторых одно- и двухосновных кислот, а в табл. 1 приведены их отдельные характеристики.

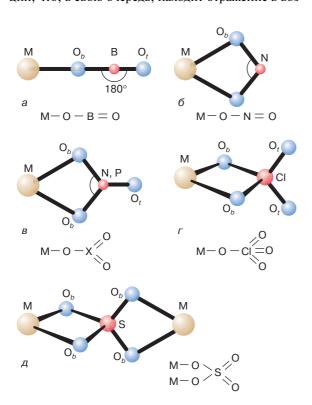
Во всех случаях, за исключением нитрит-иона, в котором степень окисления атома азота еще не достигает максимального значения и остается равной 3, реализуется конфигурация, отвечающая наиболее симметричному расположению ядер. Все связи (X-O) оказываются эквивалентными. На это указывает равенство межъядерных расстояний r(X-O). Так, например, в метаборат-ионе оба расстояния r(B-O) равны 1,26 Å, а в сульфат-ионе каждое из четырех расстояний составляет величину 1,48 Å.

Интересно проследить за величиной зарядов на атомах в свободных ионах кислотных остатков и этих же ионах в составе молекул солей. Очевидно, что атомов как таковых в ионах или молекулах не существует, так как образование химических связей приводит к нарушению сферически симметричного распределения электронных облаков атомов. В связи с этим возникает проблема, что называть атомом в молекуле и как поделить электронную плотность в пространстве между соседними атомами.

Существуют несколько подходов к такому разделению, позволяющих рассчитать эффективный заряд на атомах, составляющих молекулу или ион. При этом получаются заметно отличающиеся количественно, но совпадающие в качественном плане результаты. Не вдаваясь в детали этого вопроса, воспользуемся при дальнейшем рассмотрении материала эффективными зарядами на атомах, рассчитанными по методу Малликена. В табл. 1 наряду с величинами межъядерных расстояний r (X-O) приведены эффективные заряды на атомах в свободных ионах кислотных остатков. Во всех случаях центральный атом оказывается заряженным положительно, а атомы кислорода несут на себе отрицательный заряд.

Путем нагревания до температуры 200—1000°С можно добиться заметных скоростей испарения солей кислородсодержащих кислот. Характерно, что для щелочных металлов большая часть этих соединений переходит в газовую фазу без разложения и

Таблица 1. Величины межъядерных расстояний r(X-O) и эффективных зарядов на атомах q в ионах кислотных остатков некоторых кислородсодержащих кислот


Ион	r(X–O), Å	q(X), a.e.3.	q(O), a.e.3.	Обозначение на рис. 2	
ВО ₂ метаборат-ион	1,26	0,4	-0,7	а	
NO_2^- нитрит-ион	1,26	0,4	-0,7	б	
NO_3^- нитрат-ион	1,26	0,8	-0,6	в	
РО3 метафосфат-ион	1,49	0,8	-0,6	в	
CO_3^{2-} карбонат-ион	1,31	0,7	-0,9	в	
C1О ⁻ перхлорат-ион	1,49	1,4	-0,6	г	
SO_4^{2-} сульфат-ион	1,48	1,6	-0,9	г	

Примечание. 1 Å = $1 \cdot 10^{-10}$ м, 1 атомная единица заряда = $1,6021 \cdot 10^{-19}$ Кл.

практически единственной молекулярной формой в парах являются мономерные молекулы солей.

Рассмотрим структуру таких молекул, приняв во внимание, что из-за больших средних расстояний между молекулами в газовой фазе эта структура не искажена коллективным взаимодействием (рис. 3). Молекулы метаборатов щелочных металлов имеют линейное (или близкое к этому) строение (рис. 3, a). Их можно рассматривать как ион ВО₂, к которому присоединен ион щелочного металла. Действительно, как следует из табл. 2, эффективный заряд на Li положителен и близок к единице. Кислотный остаток ВО как в виде свободного иона, так и в составе молекулы имеет линейное строение. Однако присутствие рядом иона щелочного металла изменяет распределение зарядов на атомах кислотного остатка и приводит к неравноценности химических связей между атомом бора и атомами кислорода. Причем мостиковая связь $B-O_b$ (атом кислорода O_b , как мостик, соединяет атомы М и В) оказывается длиннее, чем концевая В=О,. Отметим, что структурные параметры кислотного остатка остаются практически неизменными в ряду от LiBO₂ к CsBO₂.

С ростом порядкового номера атома щелочного металла растет его эффективный размер, что проявляется в увеличении межъядерного расстояния r(M-O), а также уменьшается потенциал ионизации, что, в свою очередь, находит отражение в воз-

Рис. 3. Структура молекул солей кислородсодержащих кислот и их структурные формулы

растании эффективного заряда на атоме щелочного металла в молекуле. Картина, аналогичная той, которая наблюдается в метаборатах, характерна для перхлоратов, нитратов и метафосфатов. Отличие заключается лишь в том, что в молекулах этих соединений атом щелочного металла связан с кислотным остатком через два мостиковых атома O_h (рис. 3, θ , ε).

Длина мостиковых связей больше, чем концевых. Это связано со спецификой распределения электронной плотности на связях. Эту специфику можно отразить с помощью умозрительной схемы, рассматривая сближение иона щелочного металла M^{+} с ионом кислотного остатка XO_{n}^{-} . При уменьшении расстояния между ними ион М+ оказывает все большее поляризующее воздействие на электронное облако иона XO_n^- . В результате электронная плотность на фрагменте XO_n^- в значительной мере смещается (в том числе и из области между атомами Х и О_ь) в направлении иона М⁺. В то же время разница эффективных зарядов на атоме щелочного металла и фрагменте кислотного остатка сохраняется настолько большой, что их взаимодействие можно рассматривать как кулоновское, а связь между ними считать ионной. Последнее обстоятельство приводит к связыванию атома щелочного металла сразу с двумя атомами кислорода.

Аналогично можно представить строение молекул нитритов (рис. 3, δ) или перхлоратов (рис. 3, ϵ) щелочных металлов. В молекулах сульфатов с фрагментом кислотного остатка SO_4^{2-} связаны сразу два иона щелочного металла (рис. 3, δ). Поэтому все связи S-O эквивалентны, а фрагмент SO_4^{2-} имеет структуру практически правильного тетраэдра.

Изложенный материал позволяет заключить, что свободные молекулы рассматриваемых солей можно считать состоящими из жесткого фрагмента кислотного остатка и атома щелочного металла, связанного с ним посредством сильно полярной связи. Такой тип взаимодействия обусловливает высокую характеристичность связей M—O в разных солях, а также очень близкое сходство фрагмента кислотного остатка в каждом ряду метаборатов, нитратов, сульфатов и т.д. соответственно. Например, молекулах, в которых атом щелочного металла связан с кислотным остатком бидентатно (то есть через два мостиковых атома), межъядерное расстояние $r\left(M$ — O_b) принимает следующие значения:

$$r (\text{Li-O}_b) = 1.91 \pm 0.03 \text{ Å},$$

 $r (\text{Na-O}_b) = 2.15 \pm 0.05 \text{ Å},$
 $r (\text{K-O}_b) = 2.52 \pm 0.05 \text{ Å},$
 $r (\text{Cs-O}_b) = 2.80 \pm 0.03 \text{ Å},$
 $r (\text{Rb-O}_b) = 2.64 \pm 0.05 \text{ Å}$

Показанная неопределенность в величинах межьядерных расстояний, лежащая в пределах 0.02-0.05 Å, отражает, по-видимому, не столько

RNWNX

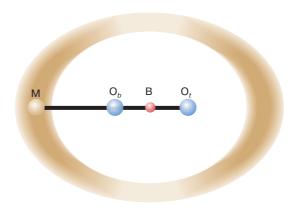
Таблица 2. Величины межъядерных расстояний r (Å), валентных углов (град.) и эффективных зарядов на атомах q (а.е.з.) в некоторых молекулах солей кислородсодержащих кислот

Молекула	r (M-O)	$r(X-O_b)$	$r(X-O_t)$	q(M)	q(X)	$q(O_b)$	$q(O_t)$
Метабораты							
LiBO ₂	1,66	1,29	1,23	0,85	0,5	-0,85	-0,5
NaBO ₂	2,14(3)	1,30(3)	1,20(3)				
KBO_2	2,32	1,28	1,24	0,95	0,4	-0,85	-0,5
$RbBO_2$	2,55(3)	1,29(2)	1,23(2)				
CsBO ₂	2,65(3)	1,29(2)	1,23(2)				
Нитриты							
LiNO ₂	1,89	1,23	_	0,75	0,35	-0,55	_
NaNO ₂	2,21	1,23	_	0,88	0,32	-0,6	_
KNO_2	2,58	1,27	_	0,9	0,2	-0,6	_
RbNO ₂	2,64(2)	1,25(1)	_				_
CsNO ₂	2,80(2)	1,25(1)	_				_
Нитраты							
LiNO ₃	1,93	1,31	1,21	0,8	0,5	-0,5	-0,2
NaNO ₃	2,2(1)	1,29(4)	1,21(4)				
KNO ₃	2,54(2)	1,30(1)	1,23(1)				
RbNO ₃	2,65(2)	1,25(1)					
CsNO ₃	2,80(2)	1,25(1)					
Метафосфаты							
LiPO ₃	1,96	1,51	1,45	0,75	1,0	-0,65	-0,46
NaPO ₃	2,20(3)	1,50(2)	1,46(2)				
KPO ₃	2,47(1)	1,48(1)	1,43(1)				
CsPO ₃	2,83(5)	1,50(2)	1,41(3)				
Сульфаты							
Li ₂ SO ₄	1,86	1,47	_	0,7	2,0	-0,85	_
Na ₂ SO ₄	2,20	1,47	_	0,75	2,0	-0,87	_
K ₂ SO ₄	2,52	1,47	_	0,8	2,0	-0,9	_
Cs ₂ SO ₄	2,80(3)	1,47(1)	_				_
Перхлораты							
LiClO ₄	2,05	1,51	1,46	0,8	1,2	-0,6	-0,4

Примечание. Курсивом выделены экспериментальные значения (в скобках приведена погрешность). Остальные значения рассчитаны теоретически.

различие величины $r(M-O_b)$ при переходе от одной молекулы к другой, сколько погрешность эксперимента, в котором были определены эти величины.

Отметим, что фрагмент кислотного остатка в соответствующих солях хотя и сходен по геометрическим параметрам, но все же претерпевает небольшие изменения вслед за изменением эффективных размеров атома щелочного металла. Проследим это на молекулах сульфатов щелочных металлов. Небольшой по размерам ион Li^+ , близко подходя к иону SO_4^{2-} , за счет кулоновского взаимодействия притягивает атомы O_b , имеющие эффективный отрицательный заряд. При этом угол O_b – S – O_b уменьшается от тетраэдрического значения $\mathrm{109}^\circ28'$, присущего свободному иону SO_4^{2-} , до величины $\mathrm{104}^\circ$. С увели-


чением размера иона щелочного металла этот эффект ослабевает. Поэтому в ряду от Li_2SO_4 к Cs_2SO_4 угол O_b —S— O_b постепенно увеличивается от величины 104° , отвечающей слегка вытянутому тетраэдрическому фрагменту SO_4^{2-} , до значения $109^\circ28'$, соответствующего структуре правильного тетраэдра.

Особенности внутримолекулярного движения. Колебания атомов в молекулах солей кислородсодержащих кислот имеют специфический характер. В подавляющем большинстве других молекул атомы при колебаниях испытывают небольшие (по сравнению с величинами межъядерных расстояний) смещения от положения равновесия. Это движение может быть хорошо описано в рамках представлений о малых гармонических колебаниях.

Применительно к молекулам солей кислородсодержащих кислот, имеющих в своем составе атом щелочного металла, приближение малых гармонических колебаний может правильно описать лишь колебания кислотного остатка. В отношении к деформациям кислотный остаток обладает высокой жесткостью, даже при небольшом изменении величин межъядерных расстояний или углов потенциальная энергия его резко возрастает. Поэтому составляющие кислотный остаток атомы совершают колебания с небольшой амплитудой. Совсем поиному движется атом щелочного металла: при молекулярных колебаниях он способен смещаться относительно положения равновесия на гораздо большие расстояния, чем атомы жесткого кислотного остатка. С ростом температуры амплитуда колебаний увеличивается (за счет возбуждения молекулы на более высокие колебательные уровни) и атом металла может приобрести способность двигаться вокруг кислотного остатка. При этом движении электронное облако валентных электронов на кислотном остатке следует за атомом щелочного металла, как приливная волна отслеживает движение Луны. В качестве примера рассмотрим наиболее простой случай метаборатов щелочных металлов. На рис. 4 показана упрощенная форма поверхности потенциальной энергии для движения атома щелочного металла в молекуле MBO_2 вокруг фрагмента BO_2^- . Как видно, эта поверхность имеет форму оврага с наибольшей глубиной при линейном расположении всех атомов (энергетически наиболее выгодное взаимное положение атома металла относительно кислотного остатка). При смещении от минимума в сторону дна оврага энергия медленно повышается, достигая максимума на перпендикуляре, восстановленном к оси симметрии кислотного остатка на атоме бора (энергетически наименее выгодное взаимное расположение атомов). Кулоновское отталкивание атомов щелочного металла и бора, несущих эффективный положительный заряд, приводит к тому, что линейный фрагмент ВО2 изгибается, и в этой точке потенциальной поверхности молекула МВО₂ имеет циклическое строение, подобное изображенному на рис. 3, δ .

ЗАКЛЮЧЕНИЕ

Особенности строения рассмотренных молекул характерны и для других молекул солей кислородных кислот, содержащих атом щелочного металла,

Рис. 4. Характер поверхности потенциальной энергии, по которой движется атом металла в молекулах метаборатов щелочных металлов

таких, как хроматы, молибдаты, вольфраматы, перренаты.

Нежесткость молекул проявляется прежде всего в невозможности дать удовлетворительное описание наблюдаемых в эксперименте величин, отражающих внутримолекулярные движения, с помощью теории малых гармонических колебаний. Учитывая возрастание амплитуд колебаний атомов в молекулах с увеличением температуры, следует отметить, что нежесткость молекулы определяется не только характером химических связей, но и условиями, в которых эта молекула исследуется.

Правильные представления о структуре и ядерной динамике молекул играют большую роль в современной экспериментальной и теоретической химии, поскольку они являются основой для расчета свойств веществ в разных агрегатных состояниях и для создания теоретических моделей, описывающих как химические превращения, так и стереохимию молекул соединений в различных условиях.

* * *

Георгий Васильевич Гиричев, доктор химических наук, профессор, член-корреспондент Российской академии естественных наук, зав. кафедрой физики Ивановского государственного химико-технологического университета. Область научных интересов – структура, ядерная динамика, энергетика молекул, колебательная спектроскопия, техника физического эксперимента. Автор более 200 научных работ.