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Abstract

With the fourth industrial revolution, different tools coming from Optimization,
Internet of Things, Data Science, and Artificial Intelligence techniques are applied
together to the production management. ' This'paper shows, with the information coming
from the sensors embedded in production lines, how Job-Shop rescheduling can benefit
from the integration of Optimization and Machine Learning approaches. With the fact that
manufacturing processes are stochastic, rescheduling decisions must be taken under
uncertainty. However, to,judge if it is worthy of rescheduling is a complex task, which is
often tackled on a greedy base. in practice. Rescheduling too frequently leads to possible
losses (mainly result from the time,spent in reorganization), while rescheduling too rarely
does not eradicate an increasing accumulation of delays. The problem is faced by
proposing an innovative' classification’ methodology based on optimization algorithms and
machine learning techmiques. ' Numerical simulations, inspired from a real world
application, prove the effectiveness of the proposed rescheduling policy.

Keywords: Industry 4.0; Flexible Job-Shop Scheduling; Rescheduling; Machine
Learning classification; Optimization algorithms.

1 Introduction

The fourth industrial revolution (I4.0) is inexorable. This new industrialization is improving
the work environment by bringing new business and technical opportunities. In particular, 14.0
enables decision makers to get real-time information from different components of plants and
creatés, the possibility for machines to communicate with each other. From this point of view,
14.0 can'beseen as the application of Internet of Things (IoT) in industrial production.

The availability of new sources of data enhances the understanding of processes as well as
its management (see Trstenjak and Cosic 2017). It is important to notice that the availability of
new. real-time information has already improved the management in other fields such as waste
collecting management (Fadda et al. 2018), synchromodal routing and logistics (Giusti et al.
2019), and opportunistic data gathering (Fadda, Perboli, and Tadei 2018). In the scheduling
field; the availability of data can trigger improvements on several aspects. The several most
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important ones are identified by McKinsey (2015), namely, reduction of dead times, reliability
strengthening, shortening of set-up times, waste reduction, reduction of warehouse costs, real-
time management of exceptions, and management of the fixing times. In this paper, it considers
the real-time management of exceptions and, in particular, it focuses on the problem of deciding
when it is worth rescheduling during the ongoing production.

Rescheduling problem represents an important branch of the‘scheduling literature (see,
e.g., Brucker 2010 and Gupta, Maravelias, and Wassick 2016). The need for rescheduling
comes from several factors, such as the accumulation of delays in processing, sudden arrival of
urgent orders, fault of machines, or absence of operators. In order to fully implement a
rescheduling process, it is necessary to define a rescheduling poliey;nwhich is a solution
method for generating a new schedule, compromising the possible achievement with the time
and effort to implement the changes. In a manufacturing plant, since the available time for
calculating a complex rescheduling plan is generally short, fast heuristics such as local search
fitin.

Given any optimization technique to generate a new schedule, the main problem remains in
choosing the optimal rescheduling time. This decision is actually easy to make if the company
is facing unexpected but urgent orders or machine fails, 1.e.;the’rescheduling procedure should
be run as soon as possible. More in general, within a manufacturing system, rescheduling is
necessary whenever unexpected events occur and the planned schedule becomes unfeasible. On
the contrary, without obviously serious disruptions,the production plan seems feasible (such as
when we consider the accumulation of processing time variations), then the potential problem
becomes rather tough to figure out. For example, different processing time variations in a set of
machines may either lead to small/or big change on the scheduling performance, and it is hard
to infer from the combinations of numerous,variables. For this reason, in this paper, it proposes
a machine learning (ML) approach which is able'to characterize a production system, and then
decide whether it needs to be rescheduled or not.

This article presents an/innovative rescheduling system inspired by the production system
of the company SIGIT S.p.A (Italy), within the industrial project named Plastic and Rubber 4.0
(P&R4.0)!. The project aims to be the Italian answer to 14.0 for companies in the plastic and
rubber processing field. In this work, weprovide the following contributions:

* we formalize a Flexible Job-Shop Scheduling problem with sequence-dependent setup
time and limited dual resources;

* we develop, imiplement, and test a heuristic approach which is able to find good schedules
in a reasonable amount of time;

* we propose the use of Machine Learning algorithms for deciding when to reschedule (i.e.,
when to use the heuristic), exploiting the information coming from technologies provided
in the 44.0 framework;

* we_demonstrate through processes simulation that the ML approach provide an
automated decision tool more effective when compared to commonly other used
rescheduling approaches.

The rest of the manuscript is organized as follows. In Section 2, it reviews the main literature
on scheduling and rescheduling, highlighting their relations with 14.0. Section 3 presents the
basie scheduling problem and shows its mathematical programming formulation. Moreover,
a hybrid heuristic approach is proposed, which combines Genetic Algorithm and Tabu Search
components, for finding good solutions in a reasonable amount of time. Section 4 describes the
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rescheduling problem and proposes an approach based on Machine Learning classification and
Optimization techniques, and Section 5 shows the results of simulated numerical experiments.
Finally, Section 6 draws conclusions and sketches future research lines.

2 Literature review

Scheduling is the process of assigning tasks to resources or allocation of resources to perform
tasks over a period of time. Although it is highly complex to characterize the problems which
are in vast variations, the research challenge is in general to obtain a,good solution within
a reasonable computational time. This work focuses on one of thesmost important scheduling
problems, namely, the Job-Shop Problem (JSP) (see Zhang 2017). The paper written by Brucker
(2010) is referred to readers for a deeper discussion on other scheduling problems.

As shown by Sellers (1996), there has been an intensive study on the approaches to JSP
including heuristic rules, classical optimization, and artificial intelligence (AI). And it is
pointed out by Purasevi¢ and Jakobovi¢ 2018 thatppriority rules and dispatching rules are
probably the mostly used heuristic rules embedded in metaheuristic methods for scheduling
problems. However, through the reviews, it issfound that many papers do not present a
mathematical model for the problems. Thus possible misunderstandings with respect to the
actual implementation may be generated. With.this concern, this paper first formalizes the
problem which is actually Flexible Job=Shop Scheduling problem with sequence-dependent
setup time and limited resources. The limited resources include both general purpose machines
and setup workers. The setup operation is usually operated by a worker, so only the presences
of both machine and worker can’ guarantee a possible configuration. However, with the fact
that the lack of availability on setup workers,is’a common phenomenon in factories, most
research does not consider the worker availability. For example, the paper Azzouz, Ennigrou,
and Ben Said (2017) introdueces the problem concerning both selection of the machine and
operation with sequence-dependent setups, without mentioning workers. Same limitation
occurs to the works of Gao et al. (2006)»and Roshanaei, Azab, and ElMaraghy (2013). On the
other hand, the paper Costas"Cappadonna, and Fichera (2013) considers workers as critical
resource but the production is single stage composed by a set of unrelated parallel machines,
which does not fit into our problem. Another research carried out by Gong et al. (2018)
proposes the solution.related to the flexibility of both workers and machines and the
precedence among operations, however, there is no constraint on setup. To our knowledge, this
problem has neither been formalized in the literature, nor heuristics have been proposed as
solutions, nor for/aescheduling. Consequently, one contribution of the present paper is from
filling in the blank.

In the context of 14.0, where potentially every piece of production data is accessible, new
opportunitiessforr the production planning are available. Nevertheless, the 14.0 approach
requires an IT infrastructure capable to cope with various data flows. The system dealing with
the problemyis called Cyber-Physical System (CPS), i.e. a system integrating embedded
computing technologies into the physical world (see Gunes et al. 2014). According to Lee,
Bagheri, and. Kao (2015), in order to transform today’s factories into 14.0 smart factories, CPS
is a.necessity for every 14.0 application. Cyber Physical Production System (CPPS) is a
manufacturing-centered version of a CPS, in Lee et al. (2018) the authors have implemented a
CPPS architecture framework collaborating with IoT, AI, simulations, manufacturing
execution._systems and advanced planning and scheduling systems in a real factory.
Optimization of production processes is a potential benefit of CPPS (Rudtsch et al. 2014). It is
important to underline the great influence of CPS and CPPS in the 4.0 framework, but we do
not discuss them in detail because they are out of the central topic.



In the literature, there are several applications concerning scheduling and rescheduling
optimization under the context of 14.0, one of the most important ones is Rossit, Tohmé, and
Frutos (2019). In the work, the authors introduce a new decision-making schema intended to
yield flexible and efficient production schedules on the fly, taking advantage of the features in
these new environments. Another interesting study is Larsen and Pranzo (2019). Based on a
classic JSP, the authors introduce a general rescheduling framework to address problems
aroused from the dynamic nature of production scheduling. The proposed solution is
composed by a solver that assumes deterministic and static data, ‘and by a controller dealing
with uncertainty that triggers off a new solution from the solver if the scheduling performance
drops down below a certain threshold. The work is similar to our appreach in the ideas of
capturing the dynamic properties of rescheduling, but wegare solving the problems under
different context. In their work, while the performance of decision maker controller is highly
dependent on the time when relevant information are obtainedy it does not mention the possible
integration with real time data collection techniques.

To the best of our knowledge, the two most important surveys about scheduling and
rescheduling in the context of 14.0 are Dolgui et al. (2019) and Zhang (2017). In Dolgui et al.
(2019), the authors present an 14.0 survey on the applications.of optimal control to scheduling
in production and supply chain by focusing onsthe deterministic mmaximum principle. They
have two main objectives. The first one is to derive major contributions, application areas,
limitations, as well as research and application recommendations for the future research. The
second one is to explain control models in terms of industrial engineering and production
management. To achieve these objectives, optimal control models, qualitative methods for
performance analysis and computational methods for optimal control are considered. Instead,
in Zhang (2017) the authors describe several optimization problems applied in 14.0. In the
survey, it emerges that one of the most importantand active research fields is the application of
distributed optimization algorithms. However, neither in Zhang (2017), in Dolgui et al. (2019)
nor in other similar papers, /the'problem of deciding the best moment in which to reschedule is
considered.

For this reason, in the rest of the sections we report the most important works in the context
of rescheduling. One of the first:work in the area is Bierwirth and Mattfeld (1999). In that
work, a general model for JSP|is described, and a Genetic Algorithm (GA) for solving the
problem is presented. This algorithm is tested in a dynamic environment under different
workload situations. /The authors test this technique for scheduling and rescheduling in a
non-deterministic enyironment. The main problem of this approach is that in the real field, GA
must run with different time limits for scheduling and rescheduling purposes thus reducing the
performance. The first work that presents definitions appropriately for most rescheduling
manufacturing systems and describes a framework for understanding rescheduling strategies,
policies, and methods is.Vieira, Herrmann, and Lin (2003). After that, more rescheduling
related papers appear. | The two most important and recent reviews in the context of
rescheduling are Narayanaswami and Rangaraj (2011) and Uhlmann and Frazzon (2018). The
first article presentsan extensive set of major railway rescheduling operations. Even though
different, algorithms are presented, most of them are problem specific and cannot be
generalized into the smart industry framework. Instead, focusing on solutions involving
integration among industries and real application cases, Uhlmann and Frazzon (2018) presents
a_ systematic./literature review to identify what have been studied about production
rescheduling process. It mainly addresses the choice of the rescheduling heuristic rather than
the decision of the reschedule timing. The lack is a common phenomenon in the rescheduling
literature ‘and it exists also in the small branch of the literature dealing with the machine
learning applications to rescheduling. For example, in the article Semrov et al. (2016), the
authors present an algorithm that uses Q-learning principles to change the schedule of the train



on a single track railway and in Palombarini, Barsce, and Martinez (2014) the authors develop
an artificial cognition control system for obtaining rescheduling knowledge in the form of
decision rules. No works, at least to our knowledge, face the problem to decide when to
reschedule in a direct way.

3 The mathematical model

The optimization problem being considered is the Flexible Job-Shep Scheduling problem with
sequence-dependent setup time and limited resources (FJSP). Based on traditional JSP, our FISP
introduces:

* the flexibility in selecting machines since there can be more than one machine capable of
same operations;

* the limited resources of setup workers;

* the sequence-dependent setup, which is under the control of both machine and setup
worker.

The key assumptions are listed as follows:

* no preemption is permitted for each, operation, operations among different jobs are
independent;

* one machine and one worker can only work on one operation at a time;
* all jobs, machines and workers are known in the beginning.

Due to the unavailability ofra mathematical programming formulation for the FJSP in the
literature, we propose it in the following. It is important to note that the model is extended to
the flexibility on the setup worker, which means there can be more than one worker to choose
for setup configurations, and the workers are assumed to have equivalent skills.

Let us consider the following sets:

o J=AL1,2,..., jmaghis the'set of jobs;
o T ={1,2,... tma} is the set of time steps;
o M ={1,2,..., Myt 18 the set of machines;

* O = {1,2,."Joma} is the set of all operations that must be done, each operation
belonging to a specific different job;

C ={142,...,6n4} is the set of all configurations of each machine;

e Cn € C is the subset of all the configurations that a machine m € M can take;

C,.C C isthe subset of configurations that a machine can take in order to process operation
0O

Since each job is a predefined set of operations with a fixed precedence relation, we define a
directed graph G = (O, & C O x O) that enforces the precedence relations of the operations
in the same job (see, e.g., Balas 1969). More precisely, an arc from operation o to operation o
means that operation o must be done before operation o.

We also define the following parameters:



o T is the setup time needed to change from configuration c to configuration ¢ on machine
m at time t¢;

e T, 1s the processing time for operation o done on machine m;
e [, is the number of set up workers available at time ?.
Let us consider the following decision variables:
* Chnae 18 the value of the total makespan for the set of jobs;
* (, is the completion time of operation o;

* Yom¢ 1S @ binary variable taking value 1 iff operation o/is processed on machine m at time
t

* S,m: 1S @ binary variable taking value 1 iff operation o starts to be processed on machine
m at time ¢;

* z¢ . 1s a binary variable taking value 1 iff machine m 1s in.configuration c at time ¢;

e w®, is a binary variable taking value 1 iff machine m changes from configuration ¢ to
configuration ¢ at time .

Then, a Mixed Integer Linear Programming formulation for the FJSP is as follows:

minimize C,,q, (D)
subject to:
Craz 2 Co, Yo € O 2)
Yo som=1, Vo€ O (3)
meM teT
Y Sd<1, Vme MVteT @)
0O
Zyomt - Tom Z Somits Vo € 07 VieT (5)
teT teT
Somt < Yyimirs VI € T VE € [t,t + Ty, Yo € O,Ym € M (6)
somt<ZZsomt, (0,0) € E,Ym e MVt €T 7
meM {=1
TomSomt < Z Zyomt, (0,0) € E,Ym e MVt €T (8)
meM {=1
Yz =1, VYmeMVteT ©)
ceC
zpr =0, Yee C\Cp,Vm e MVt €T (10)

ZZZw <Ly VteT (11)

meM ceC éeC

Somt < Y 2y VM E MVEE T Yo € O (12)
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Cy >t Yomt, YVoE O, Ym e MVt €T (13)

Somt + Yomt < 1, Yo,0€ O,0# 0,Ym e M,Vt €T (14)
L—w, > 20, — 20,4, Ve,ceCVme MVteT (15)
L—wi, > 20y — 2oy, Ve,0€ECVMEMYte T (16)

1 —w, > symi, Yo € O,Ve,é€C,Vm € MVt €T,V Etst + T2 (17)
Somt € {0,1}, Yo € O,Vm € M,Vt &T (18)

Yomt € {0,1}, Yoe O,Ym e M, VYt €T (19)

zor € {0,1}, Vme MVt € TNcel (20)

w, € {0,1}, Ve, € C,Vm € Myt € T. 1)

The objective function (1) aims at minimizing the makespamof the production. Constraints (2)
ensure the correctness of makespan value by defining it as the ' maximum of all the completion
times. Constraints (3) impose that each operation must be executed while (4) enforce that each
operation must start in only one time step on only one machine. Constraints (5) ensure that
each operation must last for the right amount of time. Moreover, ¢onstraint (6) enforces that an
operation can not be executed unless it starts. / The constraints (7) and (8) enforce the
precedence relation among the operations while constraints (9) enforce that each machine must
take a configuration. Constraints (10) avoid a machine to take a forbidden configuration.
Constraints (11) limit the number of configuration.changes that can be done in a certain time
step. Furthermore, constraints (12)—(17) add the links between the variables. In particular,
constraints (12) impose that an operationncannot start if the machine is not in the right
configuration, constraints (13) enforce that the completion time of one operation must be
greater than the maximum processing time of that operation, and constraints (14) impose that
if a machine is executing an operation, then no other operations can start during the processing
time. Constraints (15) and (16) define.the logic consistence on variables w and z. Constraints
(17) impose that if a machine is changing configuration, no operations can start during the
relative setup time. Finally,/Constraints (19)—(18) define the binarity of the variables.

3.1 A heuristic solution approach

Problem (1)—(21) becomes large, even for small-size instances. It has a number of variables
of the order of 2maOIMIT, IMIITIC] where | - | is the cardinality of the set. Thus, even for
relative small instances (e.g., for [M| = 7, |T| = 100, |T| = 30 and |C| = 3), exact solvers
are not able to solveithe problem in a reasonable amount of time. Since real applications needs
very efficient scheduling procedures not affecting the overall makespan, a heuristic approach is
proposed fof computing the initial scheduling.

In order to/find good solutions of model (1)—(21) in a reasonable amount of time, a hybrid
algorithm (HA)wissused. HA consists of Genetics Algorithm and Tabu Search as discussed
in Meeran,and Morshed (2012). Genetics Algorithm (GA) is a nature inspired evolutionary
algorithm. Tt simulates the biological solution to find the fitter offsprings by combining good
parent individuals (see Mitchell 1998). Through running repeatedly the generation process, a
best individual which means the one achieving the lowest make-span is returned. The local
searchralgorithm Tabu Search (TS) is a strategy good for exploiting the neighboring solution
(see Glover and Laguna 1997). It utilizes a memory structure called Tabu List to keep track of
the.moves done to find recently visited solutions, thus allowing the acceptance of non-improving
solutions to get out from local optima.




3.1.1 Workflow

The flow-char shown in Figure 1 describes in detail the HA procedure. It starts with the GA that
provides a set of initial solutions as population, and then GA selects solutions to do crossover
and mutation. On each of the newly combined solutions, TS performs a local search. Then GA
uses the TS improved solutions to continue with new evolution. This hybrid framework can
be converted into traditional GA by omitting the TS steps. Similarly, it.can be converted into
traditional TS by setting the population size to one and omitting the'genetic operators.

Generate Initial
Population

No

Terminate
Global Search?

Yes Evaluation

v

Selection l
l Return Best
Schedule
Crossover
Have Iterated Local Search
Mutation All Population?
Yes Find

Update the [, Better «

Solution Solution?

Figure l: Flow chart of the heuristic approach.

3.1.2 Encoding and decoding

In GA, to deseribe a solution (i.e., a chromosome), it is essential to ensure all chromosomes,
generated during the evolutionary process, guarantee feasibility. In the paper, it is demonstrated
both from encoding and decoding aspects.

To,encode an individual, job representation is chosen. A chromosome is a list of genes
[j1, j2-- < 3jo|l, each gene corresponding to the job number of which a specific operation o
belongs. More precisely, it means that the ith appearance of the job number ; stands for the ith
operation of job j.

Both the assignment of machines and the calculation of starting, ending time are done in
decoding phase. The available machines for each operation can be more than one, therefore
we use the modified greedy strategy to select only one randomly between the first and second
earliest available machines. There are usually a few setup workers, so we set the preference on
the first available setup worker. Afterwards, to calculate the starting and ending time of each
operation, the availability of both machine and setup worker is considered. The objective is
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to minimize the overall completion time, therefore the fitness is the value of makespan. The
smaller the fitness is, the better the solution is.

An example is provided in Figure 2. We assume that each machine is in configuration 4,
there is only one setup worker and we label the operations by jo, where 7 € J,0 € O. All
the machines and the worker are available from ¢ = 0. The directed graph in Figure 3 shows
the precedence relationships. X and Y are two dummy nodes deneting the source and sink,
respectively, so that for each job there exist a path going from X to Y. The set of directed arcs
states the ordered pairs of operations.

Job | Operation | Available Machines(pt) | Mold
11 Mi(3) M23) | 2 To
Configuration
Ji 12 M1(4) - 1 1 2 3
13 Ms@2) - 3 L - ! 05
2 0.5 0 0.5
5 21 M1(2)  M2(2) 1 From [ g ; .
22 Mz(2) - 3 4 0.5 1 0.5
Toy Instance - pt means processing time Toy Instance - time for setup configuration

Figure 2: Example of one scheduling problem.

Figure 3: Directed graph representation of one feasible chromosome.

Given the above instancesa chromosome is composed of five operations, and could be equal
to the list shown in Figure 4 (left side): In the middle, instead, we report a possible assignment
of machines to operations. In particular, for an operation o, the earliest starting time on each
machine is calculated based on the finish time of its predecessors and the available time of setup
worker. Finally, on the right side we update the graph already shown in Figure 3 by adding the
arcs modeling the operation precedence on the same machine (dotted lines).

T 2 2] [ve] W o ] (%)

Encoding: Chromosome O13
Decoding (black part means doing setup configuration) Updated digraph with machine related precedence

Figure 4: Encoding, decoding, and directed graph with machine precedence relationships.

3.1.3.. Genetic operators

The initial population is composed of a set of those chromosomes with randomness in operation
sequencé (for operations in directed arcs). For each solution, genetic operators - selection,
crossover and mutation come into place. To guarantee the feasibility, there is one check for
each solution and one correction when it is discovered infeasible.
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In each generation of the reproduction, selectors pick up individuals among the population
to generate offsprings and the survivals, in general, depending on the fitness values. In our
implementation, the tournament selector (selecting the best individual from random samples
with replacement) is used for selecting survivors and roulette wheel selector (selecting
according to the fitness proportion) is for selecting the individuals to create offsprings.

A general crossover operator of GA operates on two parents’ strings at a time and generates
offsprings by recombining both parent strings’ features. This operator needs to preserve job
sequence characteristics of the parent’s string in the next generation. In our application we use
two point crossover which randomly chooses two points in parents and swap the area between
the two points. The infeasible children are generated from time to time, theréfore each newborn
is checked and fixed if it is infeasible.

The left side of the Figure 5 shows one crossover example, which generates two feasible
children. On the right side, which is for the same problem shown in Figure 2, it shows one
example of infeasible solution to illustrate the way to fixinfeasibility.

Crossover Crossover
point 1 point 2
1 1 1 2 2 Parent1
2 1 2 1 1 Parent2 1 1 2 2 2
L‘Modify every encountered excessive
umber to the missing num till balanced

1 1 1 2 2

1 1 2 1 2 | child1
(2) Fix infeasible child

2 1 1 2 1 Child2

(1) Crossover

Figure S: Crossover and infeasibility handling.

To avoid spending much time in managing feasibility rather than exploring for better
solutions, a swapping mutation strategy is utilized. The approach is straightforward, randomly
taking two positions (in theésrecombined chromosome, then swapping genes on the two
positions to obtain new offspring. Since we use job number to represent genes, the newborns
are feasible on any.swap.

3.1.4 Tabu Search

On the TS gide, theymain components include move, neighborhood structure, tabu list and
aspiration criteria.

A neighborheod structure is a mapping from a solution to a set of neighbors (a neighbor is
a solution,with slight difference from the original one). In Van Laarhoven, Aarts, and Lenstra
(1992), the authors propose the first successful neighborhood structure for JSP. The structure is
constructed by reversing the order of two successive operations on the same machine. A move
is.the modification on a solution to get a neighbor. The reversing transition is a type of moves.
The swapping move strategy exchanging any two operations on different jobs is adopted in
this paper. With the intrinsic meaning of "tabu", forbidden, the tabu list is a memory structure
recording the recent moves to avoid the solution cycle. In the presented work, the positions
of the two operations in a move are recorded as an element in the tabu list. The list is cyclic
with a fixed capacity, which means the oldest element will be removed when a new element
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needs to be inserted but the full capacity is reached. As elaborated by Zipfel, Braune, and Bogl
(2010), TS excels at avoiding getting stuck in local optima with the usage of tabu list. However,
it is inevitable to consider more for balancing intensification (exploring best neighbors) and
diversification (disallowing the moves annotated as tabu) based on the length of tabu list. Itis a
common phenomenon that no fixed value is qualified for all problems.

While the advantage of tabu list is demonstrated, it exhibits theypossibility on forbidding
some solutions, which are discovered by applying the tabu move, being visited. To mitigate the
risk, we accept the widely used aspiration criteria: accepting a tabu move which creates better
solution than what is found so far.

If the system is allowed to run with more generations, it is likely tostransform into better
solutions especially for the difficult problems, however there should be a tradeoff between
running time of TS and that of GA in HA. The best solution found by TS is recorded and
encoded into a chromosome, then sent back to GA population:

4 Classification for rescheduling decisions

As stated above the decision of the time step to reschedule 15 very difficult. For this reason, we
develop a classification algorithm that given information related to the topology and the present
state of the production system, it returns the suggestion ifit is better to reschedule or not.

Such an approach is useful for severalteasons: first, the classifier needs short time to provide
the result of the computation, second, it requires a small amount of computation power, third,
since it will provide answer in a small amount of time, it can be run with high frequency and
hence it can be really responsive.’ Finally;by using the proposed methodology, it is possible to
know the characteristics of the plant that play heavily in deciding the necessity of a rescheduling.
Thus, it is possible to modify the plant in order to improve its robustness, reduce bottleneck and
etc.

Let us consider a set of scenarios © = {1,2,...,6,,,.}. In each scenario § € ©, the jobs
that the plant has to fulfill, the associated operations and the number of machine are changed.
In the following, we use the mnotation w(0)) = (uy, ..., ur) to indicate the schedules of the plant

in scenario 6 € ©. Given two different schedules () and v(#), if the production follows u(6)
in [0,¢] and v(€) in [t+ 1, 7], in order to indicate the concatenation of the two schedules, we use
the notation < u(6), v(8)s>;. Givena schedule «(f) and a scenario € ©, we call the operator
F(u, 8) the computed makespan.

For each scenario 60 € ©, we define the processing time variations
011(0), -, 0mp Q) - - 0pdf), - - -, Ojaqy7 (@). The interpretation of 0,,,,(6) is the following:
given an operation o that 'on machine m lasts for 7,,, if scenario # occurs, it lasts
Tom(1 4 6,,:(0)). These variations can be positive (under-estimation of processing time) with
70% possibility, negative (over-estimation of processing time) with 30% possibility. It is worth
noting that the random variables §,,,(6) are independent from machine to machine, from time
step to time step, and they are independent from the scheduling (see Li, Shyu, and Adiga
1993). Furthermore, we assume that their expected value is zero. Please notice that this is not a
restrictive_ hypothesis because if the decision maker knows that on average some process is
longer than 1ts expectation, then its expectation is updated.

In order.to compute the data set to train classifier, for each scenario ¢ we compute the actual
schedule u(0) i.e. the schedule that the plant is supposed to follow by means of the heuristic
described. in Section 3.1. Then, for each time step ¢ of scenario # we run the rescheduling
procedure to get a new schedule u(6|t). The new schedule is computed by using the heuristic
propoesed in Section 3.1, with current schedule () as starting solution, over the following
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optimization model:
minimize AC,q; + (1 — A) Nyar (22)

subject to (2)—(21). In the modified objective function (22), ) is the relative importance between
the original C,,,, and the /; norm of the difference between the solution of the actual schedule
and the rescheduled solution (/V,,,). The latter term is useful in order to limit the number of
changes of the scheduling that do not improve the make-span.

Given schedule u(6|t), threshold b, if

F(<u(@),u(0|t) >, 0) < (1 —0b)F(u(h),6), (23)

then it is better to reschedule (label 1) and u(6) is updated withr=s,u(6);u(0]t) >, otherwise
no (label 0). We consider a threshold of 5% of make-span decrements in Eq. (23) in order to
take into account for the time spent in re-organizing the production and to avoid rescheduling if
only a little improvement can be achieved. Notice that, the threshold:€an be adjusted according
to the actual requirement of each production manager/ Under:same conditions, the higher the
threshold is, the less frequently being rescheduled. So for the productions which are difficult to
reschedule often, a higher threshold can be set accordingly:

By using the aforementioned procedure, we getsa set of plant states, one for each couple
(t,0) € T x ©, and for each of them we associate it with the label (reschedule or do not
reschedule). From the dataset, we extract, for each state, a set of features taking into account
the information about the processing time,variations (PTV), the planned scheduling and the
plant information (including the available resources for each operation, customer orders to be
produced in the schedule and etc).

It is worth noting that all the simulations are assumed to have equal time horizon 7. This
is not a restrictive hypothesis since we can always/consider 7 as the ending time of the longest
simulation.

Following the approach ef Fadda et al. (2019), we do not consider automatic feature
extraction. Instead, we exploited the experience of the involved company SIGIT to define the
following set of features:

* t: the time step of the/simulation,
* aset of features which are operation dependent:

- OPT, remaining processing time at time step ¢ of operation o,
— PTV, processing time variation at time step ¢ of the operation o,

— p, ratio of the available machines able to perform the operation o at time ?.

Except for the first feature, all the remaining ones depend on the operation o. Since considering
all operationssmay lead to over-fitting (the number of operations is greater than the number of
scenarios), with'the ratio defined as an indicator, only the operations with the high ratios which
mean the operations/with more flexibility in changing machines are considered. We call the
number of considered operations O P_Num. The performance of the classifiers with respect to
OP_Num will be analyzed in the section 5. When O P_Num is 2, the considered feature set
will be {t, OPT 0, PTV _0, Ratio_0, OPT_1, PTV _1,

Ratio_1}:

After getting the aforementioned features, the resulting dataset is divided into training
dataset (70%) and test dataset (30%). For data mining, there is no unique classification
algorithm which is best for all types of data. Thus, we consider three commonly used
techniques: random forest classifier which belongs to decision tree induction methods,
multilayer perceptrons from neural networks and support vector machines (Kesavaraj and
Sukumaran 2013):
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1. Random Forest Classifier (RFC): a combination of decision tree classifiers and the
ensemble of trees voting for the most popular class (Breiman 1999). RFC is easy to
parametrize, not sensitive to over-fitting and it provides ancillary information like
variable importance (Horning et al. 2010). However, a large size of data set can lead to
high memory consumption (Santur, Karakose, and Akin 2016).

2. Support Vector Machine (SVM): input vectors are mapped to high dimensional feature
space and a linear decision surface is constructed in the spacé (Cortes and Vapnik 1995).
It does not require any parameter tuning since it can find good parameter settings
automatically (Joachims 1998). And it delivers a uniquewsolution because the
optimization problem is convex. However the featurénof non-parametric brings
convenience, it lacks the transparency of results (Auria and Moro 2008).

3. Multilayer Perceptrons (MLP): a type of neural network, which simulates human brains
(Pal and Mitra 1992). It is a system of interconnécted meurons, or nodes representing a
nonlinear mapping between an input vector and an output vector. The algorithm works
well for simple problems, but for difficult problems, several iterations are needed for the
training convergence (see Singhal and Wu 1989). Tt shows one benefit that no need of
the prior assumptions about distribution of training data nor the decision regarding the
relative importance of input measurements. While the costs‘spent in deciding the number
of layers and the number of nodes.in those layets is not trivial and there is no single
method for doing it (see Gardner and Dorling 1998).

We do not use more advanced techniques like deep learning, convolution neural network, etc.
because in this work, our goal is to provideireally simple techniques (we postpone the study
of those techniques in future work). Moreover, we do not use data clustering techniques (such
as the one used in Cuzzocrea et al. 2019) because in this setting they perform really poorly.
Finally, we consider those techniques because they provide the user insights with respect to the
features considered.

Additionally, as pointed out by Larson (1931) in the early 30s, using same data for training
algorithm and evaluating performance leads to overoptimistic result. For selecting the validation
model. we choose Cross-Validation (CV) technique which overcomes over fitting (see Arlot,
Celisse et al. 2010).

5 Numerical Experiments

In this Section, we present the instance generation procedure and then discuss the experimental
results carried out. The:approach has been developed during the project P&R4.0.

5.1 Instances generation

The problem instances have been generated by using a general method to build all the sets,
operators andyparameters described in section 3. In particular, in all the section, we use it in
ordef to,model the plant of the company SIGIT. The plant consists of two product lines, one for
molded rubber’and the other one for plastic items. In the paper, only rubber line is considered.
The line consists of 16 machines, all the jobs are composed by successive operations, i.e., there
are no tworoperations of the same job that can be executed in parallel. Furthermore, just one
worker is'capable of doing the setup operation. Thus, each new setup operation required by a
given operation needs to wait for completing setup of the previous one.

The empirical distribution of the PTV used is shown in Figure 6. As readers can notice,
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Figure 6: PTV distribution

the maximum increment of processing time variation is.20% of the planned time while the
maximum reduction is the 15%.

In the training phase we consider 23 scenarios. For each of them, the number of operations
are simulated from 2 to 41, with processing time ‘variedfrom 3 to 25 hours and available
machine quantity from 1 to 14.

5.2 Implementation details

As described in Section 3.1, the first/schedule is obtained by using a hybrid heuristic consisting
of GA and TS. The GA part is built.on the open source programming library Jenetics (see
Wilhelmstotter 2016), while the TS part has been implemented based on the open source
programming library OpenTS (see Robert 2019).By calibrating the parameters, the population
size is set 200 for both GA only and HA. For the operators crossover and mutator, in HA, a
two-point crossover with probability 0.86 and a swap mutator with possibility 0.3 are used; in
GA only, two-point crossover with'0.76, swap mutator with 0.115 are adopted. And the tabu
length is calibrated into 30 for TS only apptroach, and 20 for HA approach. For each individual
in HA, TS is set to iterate 50‘times. as a stopping criterion to explore better solutions.

The machine learning procedure has been implemented by using the package scikit-learn
(Pedregosa et al. 2011) in pythen 3.6. The machine used for the numerical experiments is
equipped with an Intel(R), Core(TM) 15 CPU@2.3GHz, 8 GB RAM and running macOS
v10.14.3. The MILP solver used’in the numerical experiment is GUROBI Optimizer v8.1.0
(build v8.1.0rcl).

5.3 Results and discussion

The proposed approach 1s composed by several parts, therefore the experiments are divided into
three parts.. In/subsection 5.3.1, it compares the performance of the heuristics implemented
for solving (1)-(21),4n subsection, 5.3.2 the characteristics of the classification problem being
defined are analyzed and next, in subsection 5.3.3, the performance of the proposed approach
compared with a periodic rescheduling is elaborated, proving its effectiveness.

5.3.1 Heuristic Performance

To test the efficacy of the method, the authors compare the percentage gaps of heuristics against
the solutions provided by exact solver Gurobi (ES). The results are shown in Table 1, which
includes'two types of gap comparisons: the differences of makespans under same running time
and the distinctions of heuristic makespans from the best achievable values of ES. Up to a
certain extent, longer computation time results in better performance. To test the performance
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with a wide computational time range, several time intervals are considered under the fact that
running time is increased by the difficulty level of the problem. The first column shows the time
ranges in seconds for running the instances. The second and third column provides the number
of machines and of operations considered, respectively. Note that same machine number and
operation number may represent different instances because of other varied feature values may
exist (for example, the duration of each operation, the precedence andeetc.). The next 3 columns:
GA_gap, TS_gap, HA_gap respectively show their gaps (%) with' the selutions supplied by
ES for same instance under equivalent running time. Then best_T" presents the running time
in seconds for getting the best objective value by ES. Correspondingly G A_bgap, T'S_bgap,
H A_bgap separately show the differences of GA, TS and HA with same running time indicated
in column best_T'. Note that n.a. means not available, which appears when ES is not able to
provide a solution for an instance under the corresponding computation time.

T(s) |IM|]|O||GA_gap |TS_gap HA_gap best_T(s)| GA_bgap | TS_bgap HA_bgap
31 10 n.a. n.a. n.a. n.a. n.a. n.a. n.a.

5| 10 -6.12| -6.12 -6.12 4002 2.22 2.22 2.22

[20, 40) 5| 10 n.a. n.a. n.a. 4265 8.00 8.00 8.57

5| 10 n.a. n.a. n.as 3905 1.00 1.00 1.49

3] 5| -10.11| -10.11| -1041 3769 1.27 1.27 1.27

4] 20 -8.7|  -8.70 -87 3656 0.00 0.00 0.00

2| 30 -3.85| -3.85 -3.85 3769 0.00 0.00 0.00

(40, 220) 4| 30 n.a. n.a. n.a. 3324 2.00 2.00 2.56

4] 30| -46.94| 446.94| [-46.94 3989 0.00 0.00 0.00

4| 30| -20.41|/-2245| /-22.45 2765 8.33 5.56 5.56

6| 30 n.a. n.a. n.a. 4324 5.00 5.00 5.26

6| 30| -26.32| -26.32| -26.32 2965 0.00 0.00 0.00

[220, 400) 6| 30 5.56 5.56 5.56 4297 11.76 11.76 11.76
4| 35| :34.69| -34.69| -34.69 2987 6.67 6.67 6.67

4| 30 n.a. n.a. n.a. 2658 3.00 3.00 0.00

4| 40 n.a. n.a. n.a. 3456 0.00 0.00 0.00

6| 40| -48.59).-48.98| -48.98 3406 4.17 4.17 4.17

[400, 2200) 6| 50 n.a. n.a. n.a. n.a. n.a. n.a. n.a.
6| 50 n.a. n.a. n.a. n.a. n.a. n.a. n.a.

6| 60 n.a. n.a. n.a. n.a. n.a. n.a. n.a.

AVG -20.06}, -20.26| -20.06 3.51 3.17 3.10
STD 17.76| 17.77 17.76 3.57 3.36 3.48

Table 1: Comparing GA, TS and HA with ES

When running with same time, the recurrent appearance of negative values and n.a. in
columns GA_gap, T'S_gap, H A_gap indicates all the three heuristics have significantly better
performance,than ES. The statistics in the last two rows AV G and ST'D strengthen the belief
in theyheuristics effectiveness.

With much bigger running time enabled in ES only, it gets improved results in most
instances.  For heuristics, keeping the running time shown in the first column, their
performance is surpassed by Gurobi with small differences. It is observed that HA stays a bit
beforehand ‘comparing to other 2 heuristics. However, due to the limitation of ES, the
makespans of the instances tested in Table 1 fall into the range from 17-120 time units. To
compare 1n greater scales, the instances with longer operation durations (20-50 time units),
bigger makespans (190-330 time units) are tested. In real and dynamic production, fast enough
to get a feasible schedule is important, so the time values 20s, 40s, 95s is chosen for comparing
the performance. Since exact solver is not able to provide solutions, HA is used as a
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benchmark to calculate the gaps(%), as shown in Table 2. The bigger the gap is, the bigger the
makespan got from either GA or TS.

M| | |O] | T(s) | GA_gap | TS_gap
3 6 20 0.21 0.00
40 0.00 0.00
95 0.00 0.00
6 14 |20 2.48 0.00
40 1.65 0.00
95 1.92 0.00
6 23 | 20 1.48 029
40 1.00 0.04
95 0.57 -0.12
6 34 |20 5.66 2.77
40 5.98 2.82
95 3.25 1.19
AVG 2.02 0:58
STD 1:95 1.09

Table 2: Comparisons among GA, TS and HA

With most frequent appearance 0f non negative values shown in Table 2, HA demonstrates
its good performance. HA outperforms both GA and TS, which is contributed by its mixture
strategy in exploration and exploitation. *As a result, HA is chosen for getting the initial
schedule. TS achieves similar results compared to HA with a bit worsen quality. With the
feature of neighbor exploration which means more discovery of similar solutions, and its
satisfying quality, TS is chosen for rescheduling to get a better but are alike to initial one to
avoid many production changes.

5.3.2 Classification Analysis

In this section, the performance of the proposed approach is analyzed from the results of
different classification algerithms. As for performance estimator, the area under the receiver
operating characteristic curve (AUC) is adopted due to the fact that it exhibits a set of more
desirable properties comparing to overall accuracy (see Bradley 1997 and Wald and Bestwick
2014). The value 0f AUC ranges from 0.5 (useless test) to 1 (perfectly discriminated test). The
higher the value is, the better the classifier is at distinguishing between the two classes.

The first test compares/the performance of SVM, RFC and MLP with different amount of
operations related information. OP_Nwm indicates the number of operations collected. The
outcome is averaged by taking results from 10 different random seeds (different seed leads to
the different REC and MLP fitting behavior, which likely causes different scores). In Figure 7,
it presents the average AUC values and standard deviations for a set of O P_Nwum ranging from
1 to 10. When OF_Nwum is 1, besides the time step, only the features of the operation with the
highest.ratio will be considered as discussed in section 4.

As readers.can notice, RFC stays far ahead. For SVM, firstly AUC score grows but declines
afterreaching O P_Num 8. Instead, for MLP, the score keeps decreasing with some exceptions
in the ' middle. As for RFC, its AUC values keep improving as O P_Num increases. Thus, the
best AUC score 0.81 is achieved by the RFC considering operations with 10 highest ratios. For
this reason, in the following subsection RFC and this setting are considered.
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Figure 7: AUC values for different operation numbers.

5.3.3 Rescheduling Performance

This subsection compares the proposed approach™ (ML) with the different periodical
rescheduling actions. The work flow of the rescheduling based on ML is pseudo-coded in
Algorithm 1. As competitor, we/consider rescheduling actions at every time interval (P-1),
every 2 time intervals (P-2), every 4 time,intervals (P-4), every 7 time intervals (P-7), and
every 10 time intervals (P-10).

Algorithm 1 Rescheduling procedure

1: for 0 < 110 6,,,, do

2: for t < 1tot,,,, do
3: for m < 1 to mj,,,, do
4: for o < 1t00,,,, do
5: if o is in processby m then
6: Tom = T‘om(1 + 5mt(9));
7 end if
8: end for
9: collect feature values;
10: send.to ML classifier to get prediction;
11: if prediction is 1 then
12: reschedule;
13: end if
14: end for
15: end for
16: end for

It is worth noting that due to their simplicity in rescheduling rules, the procedure to
reschedule at fixed time intervals is often used in practice. Especially, according to our
knowledge, several companies with 3 work shifts per day are tend to reschedule every 8 hours
(i.e. at the beginning of each work shift). When 14.0 is not applied, with this policy, company
gives to workers the mansions at the beginning of the shift and the workers stick with the plan
until the end of their shift. In contrast, with 14.0 some companies provide workers wearable
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devices which creates the possibility to communicate in a fast and effective way. Thus offering
the potential to have real-time information to update the work without paying a real cost for
reorganizing. For this reason, it is not considered to add a penalty when a rescheduling is
considered.

The same oscillation values are added to the same scenario when recording the results of
ML and periodical ones. Given the time interval of 7" = 2 time unitsiand 6,,,, = 9, the periodic
approach with 1, 2, 4, 7 and 10 rescheduling time intervals and the ML rescheduling policies
presented in Section 4 are tested. By implementing the procedures presented in Algorithm 1,
the statistics at each time interval are collected till scheduling reaches.the value of the originally
planned makespan. For example, if a schedule is estimated to complete'in/100 time units, the
production will be simulated with 100 time units as time horizon.

Table 3 displays the statistics on the different approaches. Column Approach shows the
rescheduling policy, column N presents the rescheduling times, and ¢olumn avg7'] indicates
the average makespan improvement (i.e., how much produetion time is saved by averaging the
improvements of all the rescheduling occurrences), and the last column, std7'/, presents the
standard deviation of the makespan improvements. More precisely, let us define n(6) as the
times in which a rescheduling is performed in scenario ¢. Then, the total rescheduling number
is defined as

0777.(1:1:

N=) n@)yo c®. (24)
6=1

Moreover, the total makespan improyvement 7'/ is defined as

N
TL=)"1, (25)
r=1

where [, is the makespan improvement achieved at each rescheduling occurrence.

As shown in the table, with the highest rescheduling frequency, P-1 gets a significantly small
average makespan value. To notice with the assumption 1 time unit is 1 hour, this technique is
equivalent to reschedule every 2 hours; thus it is not suitable to adopt in the real field (many
operations can last longer than 2 hours). ‘On the contrary, P-10 only reschedules 19 times. And
it gets a highest average makespan improvement (18.63%). In fact, rescheduling less frequently
creates a more extensive growing.space than rescheduling with high frequency. Comparing
ML and P-4, ML reschédules. much less but it gets remarkably bigger makespan improvements.
When considering ML and P-7, P=7 shows a small advantage in average value but with a bigger
standard deviation.

Approach | N | avgTI | stdT'1
ML 33 | 1352 | 7.60
P-1 235 | 2.92 3.95
P-2 115 | 4.87 5.58
P-4 56 | 7.73 8.65
P-7 31 | 13.55 | 10.54
P-10 19 | 18.63 | 14.32

Table 3: Comparison in makespan improvements

We point out that, despite of the usage of modern technologies, the less rescheduling the
better because any communication can fail for various reasons (workers might miss messages,
misundetstand, lose time for understanding the message, and etc.).

The environment where the algorithm runs is dynamic. The ability to handle unexpected
events plays an important role in stabilizing the production. Thinking about one example:
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when new but urgent orders arrive, how to mitigate the disruptions to the ongoing schedule,
which means guaranteeing maximally to deliver in time? It is essential to adopt a
representative performance indicator - the makespan of the final time step (representing the
effective ending of the planned scheduling, which shows how far the disturbed ones are from
what have been expected).

We now investigate the differences in terms of makespan between,the different approaches.
For scenario 6 € O, Cy is defined as the normalized remaining makespan (percéntage value) at
the last time step and D is the makespan difference with the ML approach, which is calculated
in Eq. (26).

Dy=Cy—C)"" Vo €0 (26)
Then for all the scenarios, T'D is defined as the aggregated differences as in Eq. (27)

emaz
TD=Y Dy VolcoO (27)
0=1
With the aforementioned methods on each scenario, both.the average makespan difference
(%) - avg T'D and the standard deviation (%) - std T'D are calculated. The results are shown in
Table 4.

Approach | avgT D" stdT D
P-1 1.56 57.01
P-2 42.63 97.32
P-4 24.44 70.82
P-7 1.33 36.21
P-10 21.44 63.66

Table 4: Difference in final makespan

As shown in Table 4, the figures are all positive indicating all periodical solutions have
bigger remaining makespans, than those of ML approach. Therefore periodical ones mostly
finish the schedules later than ML. P-1 and P-7 reach on average, the closest makespan values
to ML. However, as stated before, P-1 is not a good approach in practice because its frequent
rescheduling leads to unstable production and it is potentially wasting resources. The standard
deviations are big because the’tested instances are quite diversified in terms of operation
quantity, machine/quantity and processing time.

It can be found that although P-4 reschedules more frequently than P-10, it does not present
advantage in reducing makespan values. Hence it is inferred more rescheduling is not certainly
necessary in/every scenario. Among all of them, P-7 is most competitive with ML approach.

Finally, we'investigate the differences in terms of makespan not just at the end of time
horizon but also_during all the time interval. Thus, we collect and compare the normalized
makespan difference [%] at each time step. Thus, we compute the difference by considering
ML as the benchmark as the previous Table 4.

Similar to the calculation of Dy, the difference is that each time step is counted in current
case. Givenyscenario ¢ € O and a set of time steps 7, My is defined as the normalized
remaining makespan (percentage) at the time step ¢ € 7, Dy is the makespan difference by
comparingeach approach with the ML approach at same time step ¢, which is calculated in Eq.

(28):

Dy=Cpy—CMEYo cOteT (28)
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calculation methods and the results are listed in Table 5.

Approach | avgMTD | stdMT D[%])
P-1 14.08 42.44
P-2 13.69 52.45
P-4 8.61 38.85
pP-7 17.36 65.96
P-10 8.99 40.35

Then for all the time steps, MT'D is defined as the aggregated differences:

(29)

After calculating T'D*, the averages and standard deviations, follow the conventional

Table 5: Difference in the makespan at each time step

Table 5 shows all the periodical approaches have.greater makespans than ML, which proves
the efficacy of ML in the ongoing production. /Among periodical methods, P-4 stands out as
having the smallest differences both in average and standard deviation.

Comparing the tables 3, 4 and 5, among periodical solutions, although P-7 shows a biggest
makespan gap during the production (in Table 5), it does indicate a good tradeoff in rescheduling
frequency and makespan controlling. In general; P-4 behaves fairly in all the aspects, which
can be the underlying fact that it is commonly used in the factories. Considering the proposed
approach - ML and periodical ones, it 1S clear to see while ML reschedules in a moderate
number, it gets satisfying outcomes not only in saving overall production time, but also in the
rescheduling effectiveness, which avoids wasting resources in managing machine and worker
changes.

Further analysis is conducted on 2 seenarios. Figure 8 shows the makespan trend on the two
scenarios. Table 6 shows the corresponding rescheduling times.

120 — ML P-1 P2 — P-4 - P7 — P-10

110

60
55

Makespan (%)

Makespan (%)

30 27.5

0
0 3 7 1014 18 21 25 29 32 36 40 43 47 51 54 58 62 65 69 73 76 80 84 87 91 95 98102 0 5 11 17 23 29 35 40 46 52 58 64 70 76 81 87 93 99 105
TimeStep (%) TimeStep (%)

Figure 8: Comparison in makespan trend (left: instancel, right: instance2)

Instance | ML | P-1 | P-2 | P-4 | P-7 | P-10
1 2 28 14 |7 4 2
2 0 18 |9 4 2 1

Table 6: Rescheduling times in each scenario
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To note that, both values of time steps and makespans are normalized by the actual
makespans and presented in percentage terms.

On the left plot, ML suggests rescheduling twice at around time steps 25 and 65. In
general, all the lines are shaking greatly from time step 18 to 69, which may result from the
random oscillations added to the schedule. ML outperforms all others except for P-7 by the
low makespan at time step 98.

On the right one, P-7, P-10 and ML overlap each other into one blue line. With no any
rescheduling, ML gets equivalently best result in makespan. It can be inferred that for some
schedules, even there are some disturbances, rescheduling is redundant.

It is necessary to point out that ML approach is adaptable to environmental settings in
accordance with its performance, and the parameters including the rescheduling boundary
proposed by operational manager.

In addition to that, the planning problem is NP—hard, therefore adequate time to run
metaheuristic algorithms is needed. In the continuous manufacturing process, the production
status is changing with respect to the passing of time. WithPML approach, a rescheduling
decision can be made within seconds, and only if the positive decision is made, the actual
rescheduling approach will be searched. Not only for the adaptability ML approach owns, but
also for the time it saves, ML shows its potential/in making better rescheduling decisions.

6 Conclusions and Further/Research

In this paper, we have proposed a new way for dealing with rescheduling under the context of
14.0. This work represents the first approach to use machine learning and operations research
together in the scheduling field. By means of some ‘computational experiments we prove the
efficiency and the effectivenessiof these techniques in the real field. The main outcome is the
definition of a first set of features that led.to a good classifier and the general methodology.
Furthermore, another important value for this problem is the formalization of the Flexible Job-
Shop Scheduling problem with sequence-dependent setup time and limited resources and the
definition of a good heuristic for obtaining qualified solutions.

Future study of this, topic will consider more sophisticated machine learning algorithms
(such as the one used in computer vision), as well as the definition of an enlarged set of features
including deeper information related to the bottleneck of the scheduling as well as the property
of the graph GG. Finally, the work has proved that it is possible, for a machine learning technique,
to learn the performance of a heuristic. This general aspect opens several new research lines
about the effectiveness of this approach in other settings.
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