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SUMMARY

The foundations of information theory are presented as an extension
of the theory of inverse probability. By postulating that information
is additive and taking suitable averages, all the essential definitions
of Shannon’s theory for discrete and continuous communication
" channels, with and without noise, are obtained. The theory is based
-~ on the idea that receiving a communication, or making an observation,

merely changes the relative probabilities of the various possible
. ‘messages. The whale process of reception can therefors be regarded
- @ a means of evaluating @ posteriori probabilities, and this Jeads to

the idea that the optimum receiver in any telecommunication problem
_<an always be specified, in principle, by inverse probability. The
- simplest instance is the correlation receiver for detecting very weak
Signals in the presence of noise, and its theory is briefly discussed

The paper concludes with an answer to possible criticisms of the use

~of inverse probability.

(1) INTRODUCTION

One of the fundamental concepts of physics is “uncertainty,”
ot only because of Heisenberg's principle, but because of
‘Tandom heat motion which gives rise to much of the noise in
.- Slectronic systems. Whenever it is necessary to work with com-
- Mumication signals which are not very large compared with a
background of noise, a study of uncertainty becomes important,
Ut in telecommunication, uncertainty plays an even more
fundamenta) part, for it can be argued that the whole obiject of a
" Communication systen is to remove uncertainty at the receiving
®0d. In fact, Shannon’s theory of communication! is based
'_emlrﬂly on the concept that information is the opposite of
;‘ﬂ%{tainty. Thus, in any communication system there is a
aoﬂﬂlct betweeq the engineer’s attempts to remove uncertainty
1d the opposing tendency of natural phenomena towards
Tandomness.
_th_he language of uncertainty is the theory of probability, of
Which the theory of information must be regarded as an extension.
. hen Boltzmann first related entropy to probability, he opened
.cgma Whple .ﬁeld of statistical mechanics and—unwittingly—of
Munication theory. This new application of an old idea
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crystallizes very precisely the intuitive notions of communication
engineers.

A history and bibliography of information theory has already
been published,2 and further historical remarks would here be
redundant. The object of the present paper is twofold. First,
it may serve as a detailed introduction to Shannon’s theory,!
although it will not deal at all with problems of coding. The
method of setting up a definition of information here differs
from Shannon’s, for it conforms more closely to the methods
used by Boltzmann. An attempt is also made to present the
foundations of the subject in a form which can at every stage
be applied equally well to problems involving discrete and con-
tinuous probability distributions. For the purpose of exposi-
tion, Shannon treats the discrete case first, but his procedure
introduces certain difficulties of subsequent generalization which
are avoided in the present paper.

In the second place, the authors wish to draw further attention
to the theory of inverse probability? and its practical applications.
Information theory emphasizes the significance of the relative
probabilities of possible “messages” before and after receiving
a communication. These Iast probabilities embody all the
information in the received communication, and may be com-
puted from it by using the theorem of inverse probability. In
prigciple, this computation can be carried out by the receiving
apparatus itself. and so we obfain the specification of an
optimum device for extracting all the available signal information
remaining in a waveform to which noise has been added. An
indication of how this theory may be applied to simple radar
and communication problems is given in the later Sections of the

paper.

(2) INVERSE PROBABILITY AND COMMUNICATION

When a communication is received, the state of knowledge of
the observer is obviously changed; thus, ways must first be con-
sidered of defining his state of knowledge. Now any com-
municable message represents a selection from a collection or
ensemble of possible messages which may either be discrete or
may merge contimiously one into another. In communication
theory, the meaning of the various possible messages does not
matter and the state of knowledge before reception may there-

fore be specified simply by saying that each message has a
3
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certain probability of occurrence. After reception, it is to be
hoped that one particular message will have been singled out
from the collection; in other words, its a priori probability will
have been changed into an a posteriori probability of unity.
But owing to distortion by random interference, the received
communication will not always indicate the transmitted message
with complete certainty, and the a posreriori probability will not
then be entirely concentrated on one message but will be dis-
tributed amongst several. In general, therefore, unit probability
is distributed amongst the messages in one way before receiving
the communication and in a different way afterwards. This is
the essence of communication theory. Intuitively, it may be
said that any increase in the probability of the trne message
represents a gain in information, but before we can be more
precise it is necessary to discuss the & priori and a posteriori
distributions themselves, and this leads immediately into the
subject of inverse probability.

The topic of inverse probability is in scme respects a con-
troversial one. This is unfortunate, because if tends to cast
general suspicion on the theorem of inverse probability, which
is by itself entirely uncontroversial. Perbaps the best way in
which to describe this theorem is to take first a simple example,
which will make it self-evident. Suppose that a simple telegraph
system is used to convey one of two messages, “ves”’ or “no,”
and that these messages are represented by two different signals
indicated by a green and red lamp at the receiver. Suppose
further that, over a large number of occasions when a message is
communicated, random interference causes a  proportion of
what ought to be red indications to show green, and vice versa.
For the sake of generality, ihese proportions may be taken
to be different from each other, say two-fifths of the greens
becoming red and ocme-third of the reds becoming green.
Finally, suppose that the transmitted message is “yes” more often
than “no,” in the proporticn five to three. The whole of the
data can be represented schematicaily as shown in Table 1.

Table 1

Yes Yes
Red Red

No
Green

No
Red

No
Red

Yes Yes Yes
Green (Green Green

This Table is simply an enumeration of all the squally likely
possibilities, the top line being the transmitted message and the
second line the corresponding received indication. It enables
any required probabilities to be read off; for instance, the top
line alone displays the a priori probability distribution,

plyes) =%, pno) =3

However, if a green indication has appeared, we must select only
those possibilities shown as green in the second line. Of these,
three out of four correspond to yes and the @ posteriori proba-
bility of yes when green is received is therefore three-quarters.
This is, in fact, an application of inverse probability,

Formally, the general theorem is derived as follows. Let x
be the transmitted message and y the received indication. Then,
by the product law for probabilities, the joint probab111ty
p(x ) that a value of x and a value of y will occur together is

given by
p(x, ) = px)p(») = p(¥)p,(x) 1

where the conditional probability p.()) is the probatility of a
value of y given the value of x. These important relationships
may easily be verified from Table I1; thus when x is yes and y is
green, we have

F=Fx¥i=%x3

Of the five probabkilities in eqns. (1), two are of especial impor-
tance in communication theory, namely p(x), which is the

a priori probability of a message x, and py(x), which is the a
posteriori probablhty of x upon receiving y. At the receiver, all
values of x have in general to be considered, so p(x) and Px)
are often described as distributions of probability. Their sums
over x are, of course, equal to unity. The theorem of inverse
probability is simply an expression for the a posteriori distribution -
obtained from eqn. (1), namely

p,0) = PP Lo
70) |
The observer is presumed to know the a priori probabilities p(x) -
and to know the statistical properties of the interfering noise, |
specified by p,(¥), which represents a whole family of disiribu- .
tions. Upon receiving an indication y he can use eqn. (2) -
10 assess the relative probabilities that each message x was the
transmitted one. Since y will then be fixed, p(y) is a constant .
which may be evaluated by ensuring that (%) is normalized,
ie. that its sum over x is unity. Eqn. (2) may therefore b

written
= kp(x)p x(y) B )

where & is a constant independent of x. Statistically, pyfx) i
represents the relative frequency with which x is actua]ly trans- 5
mitted in a large number of communications which give the
same indication y at the receiver. For instance, when green is 4
indicated, 3

Pyl3)

pgreen(yes) =kx§gxi=4%k
pgrcen(no) =k x$xI=73k

The a posteriori distribution is normalized by putting & equal {o- .
2, and becomes e

Pereenlyes) =

%1 pg[eeﬂ(no) - %

which was obtained by inspection earlier. Similarly, when red

is indicated, the a posteriori distribution is

pzed(yes) = %’ pred(no) = %

It should be clear that in general there will be a different as
posteriori distribution for every different received indication. 3

In many problems, the various received indications will not’
be discrete and finite in number, but members of a continuous?
ensemble. This could easily happen if ¥ were a voltage at some
fixed instant of time. The theorem of inverse probability musts
then be interpreted in a slightly different way. If y is a member’
of a continuous ensemble, its probability distribution becomes
continuous distribution of probability density, p(y)dy being the§
probability of finding y in the interval (v, ¥ + &¥). However, 3
upon substituting such probabilities into eqn. (2), the dy's
cancel out and eqn. (3) thus remains valid when p(») is &
probability density, It is also valid if x is continuous, for then
dx cancels out also. The theorem of inverse probability ma
therefore be used in the form of egn. (3) whether x or »
both. are continuous variables, probability densities being used:
wherever they are appropriate.

It has been seen that each possible received indication givi
rise to its own a posteriori message probability distribution.
these distributions are averaged according to their probabili
of occurring, namely p(y), it is of interest to note that the a prio
distribution is regained. Thus integration {or summation) o
egn. (1) over y gives

J PP x)dy = J pp iy =plx) . . (¢

The left-hand side is the average @ posteriori distribution and the§
right-hand side is the @ priori distribution. JIn an abbreviate
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" described in more detail in Section 4.
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notation, the average over all values of some variable z is
denoted by Av_and eqn. (4) then becomes

Av,p(x) = p(x) N )]

In the example, it will be seen from Table 1 that the two recetved
indications, green and red, happen to occur equally often in the
total ensemble. Consequently an average, with equal weights,
of the two a posteriori distributions (3, ) and &, 1) vields the
a priori distribution (£, ).

In applying inverse probability to a comtunication probiem,
the first major step is the evaluation of 2,(»), which expresses

* the statistical properties of the noise in their most relevant form.

This will often be more complicated than might appear from the
above account, for y will not always be a simple received indi-
cation such as red or green, nor even a voltage which can
assurne any value selected from a continuous range of ampli-
tudes. In general, ¥ will be a complete waveform, such as a
morse signal or a radar echo, plus noise. However, this does
not raise any conceptual difficolty, for it is possible to treat a
waveform as a sequence of voltage ordinates and to evaluate
. .} as a joint distribution in many variables, as

(3) INFORMATION THEORY
it is now widely known that information may be so defined
that a definite choice between two equally likely events repre-
sents one binary unit of information, and a choice between 7
equally likely events log, » binary units, or “bits.” Compylete

" certainty of the result is assumed in this definition, but fre--

quently the effect of a communication is merely to change the
relative probabilities of a number of events without singling

' . one out as being certain. It is therefore necessary to develop a

more general definition which will reduce to the simpler defini-
tion when there is no a posteriori uncertainty, This has been
done in a classic paper by Shannon.I

initial postulates, because actual quantities of information are
first considered rather than average quantities or mean rates.
However, Shannon’s definitions are readily deduced and some
of the principal results of his work are briefly mentioned.

- A start is made with the following pair of axioms concerning
the addition of information: )

-~ (a) If two communications representing the same message are sent,

and the observer regards his a posteriori probability after the first

f 3{:0mmuni_cation as the @ priori before the second, the total gain in
" mformation comcerning this message is equal to thesum of the

gains from each communication.

. {B) If two communications representing two independent messages

o Are sent, the total gain in information concerning them is the sum of

" the gains when each communication is considered separately.

From these two axioms, it is possible to develop the whole

~mathermnatical theory. Let us denote the message considered in
. the first axiom by x,.

Three probabilities for this message occur:
first its a priori probability P(x;), secondly its a posteriori proba-

- bility p,{x;} after the first communication and, thirdly, taking
“P%;) as the a priori probability for the second communication,
. 'We.may denote the final probability after the second communi-
;' “<ation by P.{x). Suppose now that after receiving y and z the

- Observer is completely certain that the ith message was sent, so

that p(x) = 1. Information has been gained because the
;~original uncertainty implied by p(x,) has been entirely removed,

and the total gain from y and z therefore depends only on p(x,).

. Simflarly, the gain from the second communication alone

depends only on p{x;). Consequently, the information gained
Tom the first communication depends only on pixy) and p(x;).
Us, when uncertainty remains after a given message x; has

The present treatment °
~is based on that of Shannon but differs in its approach and

been transmitted and received in the presence of noise, the
information is a function of the @ priori and a posteriori proba-
bilities of this message alone, and may be written in the form

T, pyfx)] B ()
The first axiom then states
Hp(xy), Py(I;‘)} + J[p,(x;), Px)] = Jp(x). pAx)] - (D)

It is shown in the Appendix that, to satisfy this identity, J must
be of the form )

Ip(x), py(x)] = j[plx)] —ilpfx)] . . ®

In order now to determine the functional form of 7, it is necessary
to use the second axiom. Here the two independent ‘TNESSages
may be denoted by x; and x,, and the corresponding received
indications again by y and z. Since the joint probability of two
independent events is the product of their separate probabilities,
the second axiom gives

J[PCGep(x)] — [, ()p.(x,)]
=jlpe)] -+ ilpx ] — ey )] — i) - - (9

From this identity it is shown in the Appendix that j(p) must be

of the form
¥py= Alogp+ B (10

where 4 and B are constants which may be chosen arbitrarily.
Thus from egns. (6), (8) and (10), the guantity of information
J may be written in the form

Py(xi)
J[plx), p )] = — Alog X

P(x;)

and in order to make an increase in the probability of the true
message represent positive information, 4 is made equal to — 1.
Finally, it is convenient to simplify the notation by writing 1y
instead of J, to indicate that it is the quantity of communicated
information when a given x is transmitted and a given v received.
Thus, with the help of egn. (1),

pix) o p(x, ¥)
plx) PPy

When the logarithmic base is 2, the unit of information is
called a “bit”; when it is e, it is called a “natural unit.” This
is the basic expression for a quantity of information which is
implicit in Shannon’s theory.

Unfortunately, when a commumnication, rendered ambiguous
by random interference is received, the observer, not realizing
which is the true message, will be unable to express his gain of
information so simply. Furthermore, from the observer’s point
of view it would seem intujtive that the same received y should
always represent the same quantity of information, regardless
of the message actually transmitted. The only way, therefore,
to define the observer’s gain of information is to average I, ,
over all the situations in which y alone is fixed. Now it has
been shown in Section 2 that on these occasions the transmitted
messages x occur with relative frequencies given by p (x). Thus
the observer’s gain of information I, [, may be defined by averaging
Iy with py(x) as a weighting factor, giving

an

(12)

Ix’ = log

1, = Avl, = Ep,0) log 20 (13)

if the messages are-discrete.

Often, instead of being discrete as considered so far, the
messages form a continuum, e.g. ranges of aircraft or meter
readings. The probability distributions in x are then continuous
curves - of probability density, but the theory can without any
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interpretation, is obtained by first separating the logarithm in f.

difficulty be extended to cover this. If p(x) is a density distribu-
tion, p(x)8x is the probability that x lies between x and x + 8x.
When the range of x is split into cells of width 8x, the discrete
theory may be applied and then, by leiting 8x approach z£T0,

1, = J Pyx) log&’(—x-) dx (14

pix)

Tt should be noted that the gain of information given by
eqns, (13) or (14) is additive in the sense of axiom () but not
of axiom (a). This is because the observer’s gain of information
is an @ posteriori average, and averages after the first and second
communications are evaluated over different ensembles. As
might be expected, it can be shown that [, (unlike I, ) iS never
negative and is equal to zero only when the distributions p(x)
‘and p(x) are identical, i.e. when the communication leaves the
observer’s state of knowledge completely unchanged.

The formulae obtained above can be illustrated by applying
them fo the example given in Section 2. If “yes” is sent and

green received, the information communicated is given by
eqn. (12) and is

log Pyreentyes) — l0g plyes) = log 3 — log§ =log§

Similarly, if “no” is sent and green again received, the value of

I ,1s

108 Pyreen(10) — log p(no) = log & — log 3 = log%

This is negative because the probability of “no,” which was
actually sent, has diminished at the receiver as the result of the
communication. Neither of the above expressions is of much
value to the observer, however, for his only knowledge of what
was sent is the a posteriori distribution

pgfeen{yes) = %’ Pgreen(no) - %
His gain of information upon receiving green is therefore given by
Leen = #108% + 1logZ = 0-0510 bits
which is an example of eqn. (13). In exactly the same way, his
gain upon receiving red is

Leq — Llog % + tlog3 = 0-0466 bits

Both I, and J,,4 ate inevitably positive.

The quantities of information evaluated above apply to
particular received communications, but when the information-
handling capacity of a communication channel is required, the
important quantity is the mean information J, in which neither
x nor y is specified. This is the quantity used by Shannon,
and it is obtained by taking
each received communication, weighted accordiag to its prob-
ability of occurring. In the example, red and green happen o
occur equally often (see Table 1}, and therefore

F == 3(0-0510 + 0-0466) = 0-0488 bits

The general expression is obtained by applying the operator Av,
to eqn. (14), giving .

p,(x)
1= AV, = J- p(y)J p,x)log ;(;‘) dxdy (15)

Thi_s is the same as the average of [, , over all x and all ¥,
which from egn. (12) gives the symmetrical form

J = Av. L= p(x, y)
Vey Dy J. J plx, ¥) logpﬂ———{x)p (y)dxdy (16)

Yet another form of I, which is more directly physical in its

the average of the gains given by

INVERSE PROBABILITY IN TELECOMMUNICATION

eqn. {15) into two parts, thus

I= Avy'[ p.{x) log p(x)dx —J‘ J-p(y)py(x) log p(x)dxdy §

The integration with respect to y may be carried out by means

of egn. (4), whence

1= H) — Hix) (17
where Hx) = — Jp(x) log p(x)dx (s b

H(x)= — AvyJA p{x}logp ),(x)dx

Shannon describes H(x) as the
and eqn. (17) then states that the mean quantity of informatio

E 2

19 ]

entropy of the distribution p(x), 1

per cormunication is the difference between the a priori and o

posteriori entropies. From the symmetry of eqn. (1 6), it will be
seen that J may also be written in the reciprocal form

by interchanging x and y.
It is from this Iast expression that Shannon obtains his

Theorem 17—one of the most important results of communica-;
it states that the average quantity of?

information which can be conveyed in a time T and bandwidth’

tion theory. Briefly,

W, in the presence of white Gaussian noise of mean power N,
can approach but may never exceed :
P ) o
)

where P is the mean received signal power. Itisa theorem of:
great significance, for it shows how the capacity! of a com-
munication channel is fundamentally limited. Usually the noise
power increases in proportion to the pandwidth and it is possible
to write N = WN, where Ny is the mean noise power per unit;

— WTlog (1 +

Inmx

1y

bandwidth. The value of I,,, then increases with ¥, but only
to the limit :
lim I, = PTINy = Ef Ny natural units 22

W50

where E is the total received signal energy. Eqns. (21) and (22)
enable us, in principle, to meoasue the efficiency of any cont
munication system either in the presence oF absence of a band:
width limitation. It is, of course, extremely difficult ®
evaluate in this way the efficiency
veying, for instance, music from a studio to a radio listenet,
but such systems as pulse code modulation (P.C.M.), puit
position modulation (P.P.M.) and radar, are capable of com
paratively simple analysis. It hds been shown# that P.C.M. ang
PP.M. require about 8 db more DOWer than an ideal systerd
satisfying eqn. (21), whilst at its best the measurement of rang
by radar® comes very close to the ideal of eqn. (22).
One of the features of the above approach to the fundamen

(20)

of a complete system COD:g:

definitions of information theory is that all the formulae appl

equally well to discrete probabilities and to continuous distribu
fions of probability density, provided that sums are suitably
replaced by integrals. Fundamentally, this is because
logarithms involve only probabitity (density) ratios, which alw
remain dimensionless. Merely by postulating that informail®

is additive, it has been shown that information can be measu
as a logarithmic change of probability. i
of I,
supposes

in egn. (12) is of little direct value, however, for it P ¢
knowledge both of the transmitted message X and 4
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received indication y. When an observer has received a com-

munication, he is more interested in the average of I, , over all
the messages which from his point of view might have been
transmitted. The resulting quantity has been called the
observer’s gain of information and denoted by 7,. Finally, I
may be averaged over all values of y to give the average quantity
of information per communication, denoted by [, This can be
written in a variety of forms, one of which [eqn. (17)] is an
expression for reduction of entropy. The concept of entropy is
of course borrowed from thermodynamics, and in two recent
papers BrillouinS. 7 gives an interesting discussion of the identity,
apart from a factor of Boltzmann’s constant, between the notions
of information in communication theory and negative entropy
in physics. In this connection, egn. (22) is perhaps the most
significant result of Shannon’s theory.

{4) NOISE AND THE 4 POSTERIORI DISTRIBUTION

In order to apply any of the foregoing theory to a practical
problem, it i3 necessary to consider how the a posteriori distribu-
tion is constructed from the received communication y. It is
presumned that the a priori distribution pix} is known and the
a posteriori distribution p,(x) may then be obtained directly
from eqn. (3) once p, () has been evaluated. The conditional
probability p,(») describes the effect of noise on the system.
It represents the unpredictable nature of the received communi-
cation when the transmitted message is fixed. [If the received
communication is a waveform p(r), consisting of the sum of a
signal waveform u.(f), representing a message x, and a white
Gaussian noise waveform, the evaluation of p.(y) is fairly
straightforward and will now be described.

If u () is the waveform which would be received in the absence
of noise, the probability distribution for the resultant waveform
¥(#), when noise has been added, is of the form

7)) =Gy —u) (23)

where G(n) is the probability density for a noise waveform n(7).
A simple way of formulating G precisely is by means of waveform-
sampling analysis, which for the sake of completeness is here
briefly summarized.

Sampling analysis rests on a well-known mathematical
theorem! that if a function of time f{r) contains no frequencies
greater than W, then

A0 = fr2W)sinc C2We — ) (24)

¥
where sinc x is an abbreviation for the function (sin mx)fmx.
'I.'his function occurs so often in Fourier analysis and its applica-
Hons that it does seem to merit some notation of its own. Iis
mest important properties are that it is zero when x is a whole

.-Dumber but unity when x is zero, and that

J sincxdx =1

—o0

i l,r=u4
and J‘ sine (x — #) sinc (x — §)dx =

Fand s both being integers. The importance of the identity (24)
I8 that it enables a continuous function of time to be specified
Wiguely in terms of sample values at intervals 1/2W, where W
B an arbitrary frequency greater than any which occurs in the
fre‘?lllf:ncy spectrum of f{(7).

To apply this analysis, it is necessary to assume that all the

-Waveforms under consideration have been passed through a

t.OW-Dass filter with a frequency response which is uniform up
© W and zero for all higher frequencies. If W is chosen suffi-

-and eventually disappears from the analysis.

ciently large, the signal will be unaffected and no loss of
generality results. The filter is simply a mathematical artifice
for it will be seen Iater that the precise value of W is immaterial
It does, however,
permit the use of sampling values both for signal and noise
waveforms. Consider first a white Gaussian noise waveform
n(r); at the output of the filter each sampling vaine n(#/2W), or
more briefly n,, has by definition the probability distribution

) o exp (— nY2N) @9

where N is the mean square value of n(?), or the mean noise
power. It can be shown that these noise samples are statistically
independent, provided that the noise spectrum extends uniformly
over all frequencies up to ¥, and hence the joint probability
distribution for a whole set of samples is the product of each
separate distribution. Since the samples determine the wave-
form, this product gives the probability density for the waveform

itself. Thus
Giry oc exp (— T nZ2N) (26)

By squaring the fundamental identity (24), integrating over time,
and using the properties of sinc x, the sum in the exponent can
be expressed as an integral and then

G(n) oC exp |:— ]\1[— n%t)dt] 27

Here N, is the mean noise power per unit bandwidth, which has
the dimensions of energy and is the fundamental noise parameter.

The a posteriori distribution for the message x cai now be
written in an explicit form. From egns. (3), (23) and (27)

Dylx} = kp(x) exp [ - T\If J‘ - ux)zdtJ €28)

i
is obtained as the fundamental probability equation for all
reception problems in which interference is caused solely by the
addition of white Gaussian noise to the signal waveform. The
constant & is chosen so as to normalize p,(x); the integral in the
exponent is a definite one, carried over the whole time for which
the communication lasts. It will be seen immediately that, apart
from the a priori weighting factor, the most probable message is
the one whose waveform u.(r} has the least r.m.s. departure
from the received waveform y(7), a result which is certainly
intuitive.

(5) THE CORRELATION RECEIVER

It might appear that the mathematical processes so far
described are useful only for the purpose of calculating the
information content of any given communication, but the proba-
hility equation (28) has & much wider significance. In principle,
it shows how to design an optimum receiver for extracting all
the available information from the mixture of signal and noise
at the receiver input. The concept upon which this statement
rests should now be obvious, for p,(x) is itself the available
information. AHN that can be reasonably demanded of a
receiver is that it shall enable an observer to gauge the relative
probabilities that each possible message is the true one. If the
receiver actually computes these probabilities, no further
problem of interpreting the received waveform remains. Viewed
in this way, egn. (28} specifies mathematically the ideal receiver.

The consequences of this statement will now be examined.
Suppose that the integral which occurs in the exponent is

expanded thus:

J‘ ¥2ADdt — ZJ.y(:)ux(t)dt + J. uX(dt
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Upon reception, 2 is fixed and therefore independent of x,
which can be regarded as the message under test. The first
integral is thus a constant multiplying factor in P,(x) and can be
absorbed into k. Jn many problems, though by no means all,
the integral of #% will also be independent of x, because the
various message waveforms all have the same energy. If so,
this term also can be struck out. Egn. (28) then becomes

Pyx) = kp(x) exp [2q(x)] Ny (29)

where (30}

g(x) = Jy(r)ux(t)dt
To start with, g must be formed by multiplying the received
waveform y(r) by each of the possible message waveforms in
turn, and integrating with respect to time. This is the heart of
eqn. (29) and is an evaluation of the correlation between y and
#,. The function g(x) will tend to be greatest when u#.(r) is the
waveform corresponding to the message actually transmitted.
The operation of forming g from y is usually an irreversible one,
and is in a sense the key operation, because irreversible processes
in general destroy information, whilst this particular one does
not. It merely destroys some unwanted information about the
noise component of y(z).

If all that is finally required is 1o determine the most probabie
message, and if the a priori probabilities of the messages are all
equal, it is not necessary 1o evaluate anything more than gix).
The rest of egn, (29) is merely an amplitude distortion of
g(x} and, since the distortion is monotonic, the value of x which
makes p,(x) a maximun is the value which makes g(x) a maxi-
mumm. Nevertheless, the factor 2{N, and the exponential are

interesting. The factor 2/N, scales g(x) in such a way that,
when the noise is small, the exponential function vastly exag-
gerates the variations of g(x)} with x. This is precisely what
would be expecied, for when the noise is small there ought to
be little doubt as to which is the true message, and p,(x) ought
therefore to show a pronounced maximum representing a high
degrec of certainty. In the opposite extreme, if the noise is so
large that it swamps the signal completely, it will be found that
the factor 2/N, makes the exponent very small compared with
unity. Thus 2,(x} simply reproduces p(x), and egn. (14) shows
that there is no gain of information. It will be seen that the
division between these two extremes of behaviour does not oceur
when the mean signal power P is roughly equal to the noise
power N, but when the total signal encrgy E is comparable with
the noise power per unit bandwidth Ny. In fact P might be
very much smaller than N, and herein lies the great virtue of a

correlation receiver. 'The effect is also seen directly from -
eqn. (22), where it is the vaiue of EfN, which determines the
maximum quantity of information in an ideal system, However,
it should not be thought that correlation is anything more than
what is commonly called an integration technique.

It would appear that in practice, correlation methods can be
applied only to the very simplest systems. It has been tacitly

assumed that the various message waveforms u (t) are precisely i

known before reception, but radiocommunication is usually
complicated by the fact that the time-origin of the signal is not :
known in advance. The theory then becomes more complicated, .
because the waveform corresponding to a message x has to be B
written in the form u,(f — 7), where + is an unknown and
irrelevant time-delay. The @ posteriori distribution then becomes .
an integral over all possible time-delays, thus :

2

px) = kJ p(x, 7) exp [ NoJ- W (r — T)dt:l dr

This expression means that the received waveform must first be
cross-correlated with all the possible message waveforms at all ;
possible times, and in all but the simplest systems this would lead &
to an impossible degree of practical complication. ;
An interesting variation occurs in radiolocation, however,
where the message (target range) is represented by the time-delay 2
itself and the waveform is otherwise fixed. It is assumed for
simplicity here that there is only one target and that the echo %
from it is of known sirength, independent of range. The a
posteriori distribution for the time-delay is then given by

Py{(7) = kp(7) exp [7\27 | Hone — 'r)dt]-

another paper,® the integral has the form of the output from a °
linear filter. The input is the received waveform ¥{#) and the |
tmpulsive response is u(— 7}, the time-reverse of the transmitted
waveform. Such a filter, in effect, cross-correlates ¥ and u at
the radio frequency, which indeed is what a conventional receiver
does, a pulse at a time. The need for detection is not apparent
from egn. (32), because in theory it is unnecessary when deter-
mining the range of a stationary target; it only destroys the fine-
structure range information obtainable from the carrier.
further implications of eqn. (32) have been discussed more fully
elsewhere™ & and need not be pursued here.

In order to illustrate equ. (32) when the waveforms are all at

{a)

TN YR

4\__/\ (d)

Fig. 1.-—An experiment in pulse Jocation,

(a) Signal. .
(P} Signal plus noise.
(c) A posieriori probability distribution, guessed.

(@) A posteviori distribution, calculated by inverse probability.




low frequency, a simple experiment has been carried out.
“ Fig. 1(a) represents a signal waveform, and a numerical message
« is supposed to be encoded by making the time-deiay  of this
waveform equal to x, Fig. 1(5) illustrates a typical waveform
y which might result after the addition of noise, filtered through
an arbitrary band W as described earlier. After having been
told that the pulse should be considered a priori to lie anywhere
within the trace with equal probability, an observer was asked to
assess, purely by inspection, the a posteriori probability distribu-
tion for its position. He was shown the shape and amplitude
of the pulse, but kept in ignorance of its true position. His
subjective curve is shown in Fig. 1(c), while the theoretical
curve calculated from eqn. (32) is shown in Fig. 1(d). If the
signalfnoise ratio in Fig. 1(b) were increased, Fig. 1{d) would
approach a delta function. An ideal receiver would convert

Fig. (b} into Fig. 1(d) electronically, and so indicate the.

relative probabilities of all possible messages without the need
for guesswork.

{6) CONCLUSION AND DISCUSSION
It has been shown that of all probability distributions which
may be used to describe the statistical behaviour of telecom-
munication systems, two are of special significance. They are
the distributions of probability amongst the various possible
“messages” before and after receiving a communication.
Reception may be treated as an event which changes the relative
probabilities of the messages, and information theory provides a
numerical measure of this change. These concepts lead naturally
to the somewhat novel idea that the whole physical process of
reception is simply a means of evaluating, or at least of making
evident, the a posteriori message probabilities. Hence the
formula for the a posteriori distribution is in itself the specification
of an optimum receiver. Rather sirangely, the theory of inverse
probability seerns to have been little used in the analysis of signal
- and noise problems before the advent of information theory, yet
it represents very closely not only the electronic mechanism
of reception but also the human mechanism, as is well illustrated
by the example shown in Fig. 1.
It will have been observed that in all the expressions for a
" Posteriori probability, the a priori distribution appears as a
. Wweighting factor, This is a fundamental feature of inverse
probability and it may give rise to difficulty. In statistics, it fre-
" ‘quently happens when an attempt is made to decide between a
Tumber of hypotheses (the messages) in the light of some new
data (the communication) that there is no obvious way to weight
: thfi hypotheses a priori. Although this difficulty would scarcely
arse in communication systems, it will often occur in observa-
tional systems such as radar, where, in circamstances quite
different from any which have previously been encountered, it
Tight be necessary to ascribe an a priori probability distribution
10 the range of a target. If there are no statistics on which to
Jase an a priori distribution, how can it be defined at all? Here
It may sometimes be tempting to postulate some non-committal
function3 stmply as “a formal way of expressing ignorance.”
Owever, this is at best a somewhat arbitrary procedure, and the
Objection to it is well expressed by Bartlett? who writes, “This
Substitution of a simple function for a prior probability, which,
it could be evaluated at all, would certainly need all the data
to be enunciated, gives the posterior probability in an exact
fOI‘_m which is highly misleading. Moreover, the formula, in
mg to make our final inference about a parameter [the message ]
f;’f us and give us the exact probftbility _of every possible value,
compelled to mix the information which can be got out of a
Sample [the communication] with what ether knowledge or
Dotions we may have.,” Bartlett here makes two different
Points and jt is the second one which calls particularly for an
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answer. It is necessary to distinguish the two ways in which
inverse probability is used in the present paper. First, it is used
as a step in the process of measuring a gain of information in
the Shannon sense. Now, although the gain is brought about
by the communication itself, its magnitude is found to depend
on the a priori distribution. Unless an a priori distribution can
be formulated it is impossible to determine the extent to which
the communication merely duplicates existing knowledge. This
does not, of course, justify the use of purely subjective a priori
distributions in Shannon’s theory, which is based on the fre-
quency definition of probability, but it does justify the use of a
priori probabilities whenever prior statistics are available.
Secondly, it is suggested in this paper that inverse probability
provides a method of specifying the ideal receiver. However it
is possible to gualify this statement. An ideal receiver need not
complete the computation of the a posferiori distribution so long
as it is readily obtained from the output. Thus the troublesome
a priori factor might well be omitted from the receiver specifica-
tion when it is doubtful and in practice supplied by the observer
subjectively.

It may well be asked why it should be necessary for an ideal
receiver to compute the a posteriori probabilities of every possible
message rather than select the one which 1s most probable, since
this is usually all that will be required in practice. Indeed, many
commuication systemns would be vastly complicated if a (possibly
multi-dimensional) a posteriori distribution were sought at the
receiving end, but it is not always necessary to interpret the
theory so literally. The a posteriori distribution can, if desired,
be regarded simply as a means of determining the most probable
message. A receiver can thus be designed to give as its output
the value of x which makes p,(x) a maximum. But sometimes
there are objections to this procedure. First, the force of
Bartlett’s criticism is much enhanced, because the a priori
distribution is used in an irreversible manner. Secondiy, the
reliability of the communication ceases to be cvident to the
observer. And, finally, it may happen in some problems such
as radar that further signals concerning the same message will
become available after an interim observation. The interim a
posteriori distribution is then required as the a priori distribution
for the further communication. It has been shown elsewhered
that this is precisely what happens when pulse-to-pulse summation
is performed in a radar system., Premature selection of the
optimum message makes it impossible to combine several
communications in this way, and destroys useful information

irretrievably.
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(9) APPENDIX. The form of J[p(x;), py(x;)]

The fanction J]p(x;), pix;)] may be written more simply
J{€, ), a function .of the two variables & and ». Then the
identity (7) states that

K, By + JB, y) = Ja, y)

where «, 8 and y are particular values of the variables £ and 7.
It is assumed that J(£, ) is differentiable with respect to £.
Then, by considering an increase of « to « - 8« in eqn. (33),

762, =[]

Since this identity is true for all values of B and y, DIE, miRé
is independent of 7. Integration with respect to & therefore

yields
TEM=i+ktp . . . . (34

(33

where j(£) is independent of m and k(n) is independent of £,
But on substituting from eqn. {34) into egn. (33), :

B =— KB
JE, m) = J(€) — i)
Eqn. (9) may now be written in the form
Haf) — iyd) = o) + i) — jly) — J6) L
Keeping v and § constant, i
HoeB) = jle) + j(B) + constant (36} ;

If j(£) is again assumed io be differentiable, considering a small t
change of « in egn. (36) gives f

4@ r@_@]
ﬁ[?f—](xa)ﬁ Ld§ )

Putting « equal to unity, g

[6%{;?:‘(5) ;g

where 4 is a constant equal to j(1).
identity, _

&) = Af¢
J€)=Alogé + B

where 4 and B are arbitrary constants, which is the required:
result quoted in egn. (10).

and hence

et |

Since eqn. (37) is an

and hence (38)




