Vector Differentiation

Review of Differentiation Rules: Multiple

Review of Differentiation Rules: Composite

Two Ways to Understand Vector

• Dot product define linear relationship between input & output

Differential of a Scalar Function w.r.t. Vector

• Inner product with $d\vec{p}$ gives difference dW

Since $d\vec{p}$ and dW change linearly, $\partial W(\vec{p})/\partial \vec{p}$ should be a vector

Differential of a Scalar Function w.r.t. Vector

• The differential can be written as

$$\frac{\partial W(\vec{p})}{\partial \vec{p}} = \frac{\partial W}{\partial p_1} \vec{e}_1 + \frac{\partial W}{\partial p_2} \vec{e}_2 + \frac{\partial W}{\partial p_3} \vec{e}_3$$

check it out!

Let's Practice Differentiation!

$$W(\vec{p}) = \vec{a} \cdot \vec{p}$$

$$W(\vec{p}) = |\vec{p}|^2$$

$$W(\vec{p}) = \frac{1}{|\vec{p}|}$$

Scalar Triple Product (スカラー三重積)

Volume of parallelepiped

 $W = \vec{a} \cdot (\vec{b} \times \vec{c})$

Scalar Triple Product and Determinant

Scalar triple product is related to the volume change ratio

Differential of Scalar Triple Product

$$W(\vec{p}) = \vec{b} \cdot (\vec{a} \times \vec{p})$$

 ∂W

 $\partial \vec{p}$

=?

check it out!

Differentiation of Vector w.r.t. Vector

• Inner product with $d ec{p}$ gives difference $d ec{F}$

$$d\vec{F} = \frac{\partial \vec{F}(\vec{p})}{\partial \vec{p}} \cdot d\vec{p}$$

Since $d\vec{F}$ and $d\vec{p}$ change linearly, $\partial \vec{F}(\vec{p})/\partial \vec{p}$ should be a matrix

Differentiation of Vector w.r.t. Vector

• Inner product with $d\vec{p}$ gives difference $d\vec{F}$

$$\begin{aligned} \frac{\partial \vec{F}}{\partial \vec{p}} &= \frac{\partial F_1}{\partial p_1} \vec{e}_1 \otimes \vec{e}_1 + \frac{\partial F_1}{\partial p_2} \vec{e}_1 \otimes \vec{e}_2 + \frac{\partial F_2}{\partial p_1} \vec{e}_2 \otimes \vec{e}_1 \cdots \\ &= \sum_i \sum_j \frac{\partial F_i}{\partial p_j} \vec{e}_i \otimes \vec{e}_j \end{aligned}$$

Let's Practice Differentiation!

$$\vec{F} = A \cdot \vec{p}$$
$$\vec{F} = \vec{p}$$
$$\vec{F} = (\vec{a} \cdot \vec{p})\vec{b}$$
$$\vec{F} = \vec{p}/||\vec{p}||$$

check it out!

Differentiation w.r.t Vectors

Transform the equation into a polynomial

$$W(\vec{\omega}) = \cdots$$

= \cdots
= $a + \vec{b}^T \vec{\omega} + \vec{\omega}^T C \vec{\omega} + \cdots$
Gradient: $\frac{\partial W}{\partial \vec{\omega}} = \vec{b}$
Hessian: $\frac{\partial^2 W}{\partial \vec{\omega}} = C^T + C$

d

14