Time Integration

時間積分

System of Differential Equations

連立線形微分方程式

Tracing a Particle in a Velocity Field

• E.g., massless particle in a steady flow

System of 1st Order Differential Equations

- Moving a particle inside a vector field
	- Electrical engineering
	- Control theory
	- System biology

$$
\frac{d\vec{x}}{dt} = f(\vec{x})
$$

Lotka–Volterra equations (a.k.a predetors/preys equation)

$$
\frac{dx}{dt} = \alpha x - \beta xy
$$

$$
\frac{dy}{dt} = \delta xy - \gamma y
$$

Linear 1st Oder System of Diff. Eqn.

• What if $f(\vec{x})$ is linear? $d\vec{x}$

$$
\frac{d\vec{x}}{dt} = A\vec{x}
$$

Solution of Differential Equations

1st order differential equation

$$
\frac{dx}{dt} = ax \qquad \qquad \text{solution} \qquad x(t) = e^{at}x(0)
$$

System of 1st order differential equations

$$
\frac{d\vec{x}}{dt} = A\vec{x}
$$
 solution $\vec{x}(t) = e^{At}\vec{x}(0)$

Matrix Exponential

 $\frac{d}{dt}(e^{At})=?$

• The Taylor expansion of the exponential function

$$
e^x = 1 + \frac{1}{1!}x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \dots
$$

$$
e^{At} = E + \frac{1}{1!}At + \frac{1}{2!}(At)^{2} + \frac{1}{3!}(At)^{3} + \cdots
$$

check it out!

Geometrical Interpretation

• Let's go back to the definition of the exponential

$$
e^{x} = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^{n}
$$

For example, let *A* is a matrix
to compute tangent in 2D

$$
A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}
$$

$$
A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}
$$

$$
A = \begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix}
$$

Wealth is Exponential

Compound interest is the 8th wonder of the world. He who understands it, earns it; he who doesn't, pays it. -Albert Einstein

r>g

(i.e, you can earn more from investment than working hard) Thomas Piketty, Capital in the Twenty-First Century

(Wikipedia)

Diagonalization and Matrix Exponential

eigen decomposition

 $Av_i = \lambda_i v_i$ $A = V \Lambda V^{-1}$

$$
e^{At} = E + \frac{1}{1!}At + \frac{1}{2!}(At)^{2} + \frac{1}{3!}(At)^{3} + \cdots
$$

check it out!

System of 2nd Order Differential Equation

• $2nd$ order system can be transformed into a $1st$ order system

$$
\frac{d^2\vec{x}}{dt^2} - A\frac{d\vec{x}}{dt} - B\vec{x} = 0
$$

$$
\vec{v} = \frac{d\vec{x}}{dt}
$$

$$
\frac{d}{dt}\left(\vec{v}\right) = \begin{bmatrix} A & B \\ E & 0 \end{bmatrix}\left(\vec{v}\right)
$$

Analyzing stability of this system requires Laplace transformation, which is beyond the scope of this lecture

Mechanics: Trajectory in Phase Space

Discrete Time Integration

Why Temporal Discretization?

•Dynamic system doesn't always have an analytical solution

- •Computer cannot handle continuous value
	- Similar to "quantization" and "sampling" in audio processing

Time Integration for Temporal Discretization

• The interval is called "time step"

$$
\overbrace{\vec{Y}_{i+1} = F(\vec{Y}_i)}
$$

Given equation of motion, what are the \vec{Y}_i and $F()$?

Approximating Gradient by Difference

$$
\frac{dx}{dt} = F(x)
$$

Euler method

$$
\begin{array}{ll}\n\text{forward}(\text{explicit}) & \frac{x_{i+1} - x_i}{dt} = F(x_i) \\
\text{Euler method} & \text{if } \frac{1}{2} \leq 1.5 \text{ and } \
$$

$$
\begin{aligned}\n\text{backward}(\text{implicit}) \frac{x_{i+1} - x_i}{dt} &= F(x_{i+1}) \\
\text{Euler method}\n\end{aligned}
$$

Complicated but Stable

Recurrence Relation from Backward Euler

$$
\frac{x_{i+1} - x_i}{dt} = F(x_{i+1}) \quad \text{Taylor's expansion}
$$
\n
$$
\cong f(x_i) + \frac{dF}{dx}\bigg|_{x_i} (x_{i+1} - x_i)
$$

2nd-order Differential Eqn. by Backward Euler

 \overline{ds} dt = $s_{i+1} - s_i$ dt $= F(s_{i+1})$ Backward Euler method plug in $s_i = ($ $\vec{v}_{\rm i}$ $\boldsymbol{\mathcal{X}}$ \vec{x} i

Simple Example: Particle Under Gravity

Karl Sim's Particle Dreams, 1988

https://www.karlsims.com/particle-dreams.html

https://www.youtube.com/watch?v=5QEp-oPaQto

Karl Sim's Another Awesome Work

K.Sims, "Evolved Virtual Creatures ", Siggraph '94

https://www.karlsims.com/evolved-virtual-creatures.html

https://www.youtube.com/watch?v=RZtZia4ZkX8

Advanced Topics

- Runge-Kutta method
- Variational Implicit Euler Method
- Symplectic Integrator
- Lie group integrator

End

Time Integration

Recurrence formula from equation of motion

Time Integration: 1st-order Differential Eqn.

• Given \vec{x}_i , solve for \vec{x}_{i+1}

$$
\frac{dx}{dt} = f(x) \qquad \text{Integration} \qquad x_{i+1} = x_i + \int_{t_i}^{t_{i+1}} f(x) \, dt
$$

Time Integration: 1st-order Differential Eqn.

• Compute \vec{x}_{i+1} when \vec{x}_i is given

 dx dt $= f(x)$ integration $x_{i+1} = x_i + 1$ t_i t_{i+1} integration $x_{i+1} = x_i +$ $\int f(x) dt$ t_i t_{i+1} $f(x_i)$ $f(x_{i+1})$ Area here makes $x_{i+1} - x_i$ $\mathbf{f}(x)$ is unknown and x is unknown How the area is approximated

Time Integration: 1st-order Differential Eqn.

Runge-Kutta Method (4th order)

• Approximating are $a = x_{i+1} - x_i$ with 4 different ways

