Time Integration

時間積分

System of Differential Equations

連立線形微分方程式

Tracing a Particle in a Velocity Field

• E.g., massless particle in a steady flow

System of 1st Order Differential Equations

- Moving a particle inside a vector field
 - Electrical engineering
 - Control theory
 - System biology

$$\frac{d\vec{x}}{dt} = f(\vec{x})$$

Lotka–Volterra equations (a.k.a predetors/preys equation)

$$\frac{dx}{dt} = \alpha x - \beta x y$$
$$\frac{dy}{dt} = \delta x y - \gamma y$$

Linear 1st Oder System of Diff. Eqn.

• What if $f(\vec{x})$ is linear?

$$\frac{d\vec{x}}{dt} = A\vec{x}$$

Solution of Differential Equations

1st order differential equation

$$\frac{dx}{dt} = ax$$
 solution $x(t) = e^{at}x(0)$

System of 1st order differential equations

$$\frac{d\vec{x}}{dt} = A\vec{x} \qquad \text{solution} \qquad \vec{x}(t) = e^{At}\vec{x}(0)$$

Matrix Exponential

 $\frac{d}{dt}(e^{At}) = ?$

• The Taylor expansion of the exponential function

$$e^{x} = 1 + \frac{1}{1!}x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \cdots$$

$$e^{At} = E + \frac{1}{1!}At + \frac{1}{2!}(At)^2 + \frac{1}{3!}(At)^3 + \cdots$$

check it out!

Geometrical Interpretation

• Let's go back to the definition of the exponential

$$e^{x} = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^{n} \quad \text{multi-variable} \quad e^{A} = \lim_{n \to \infty} \left(E + \frac{A}{n}\right)^{n}$$

For example, let A is a matrix o compute tangent in 2D
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
$$(E + A/n)^{\vec{y}}$$
$$(E + A/n)^{\vec{y}}$$

20

Wealth is Exponential

Compound interest is the 8th wonder of the world. He who understands it, earns it; he who doesn't, pays it. -Albert Einstein

r>g

(i.e, you can earn more from investment than working hard) Thomas Piketty, Capital in the Twenty-First Century

(Wikipedia)

Diagonalization and Matrix Exponential

eigen decomposition

 $Av_i = \lambda_i v_i \qquad \qquad A = V \Lambda V^{-1}$

$$e^{At} = E + \frac{1}{1!}At + \frac{1}{2!}(At)^2 + \frac{1}{3!}(At)^3 + \cdots$$

check it out!

System of 2nd Order Differential Equation

• 2nd order system can be transformed into a 1st order system

$$\frac{d^2 \vec{x}}{dt^2} - A \frac{d \vec{x}}{dt} - B \vec{x} = 0$$

$$\vec{v} = \frac{d \vec{x}}{dt}$$

$$\vec{v} = \frac{d \vec{x}}{dt}$$

$$\frac{d}{dt} \begin{pmatrix} \vec{v} \\ \vec{x} \end{pmatrix} = \begin{bmatrix} A & B \\ E & 0 \end{bmatrix} \begin{pmatrix} \vec{v} \\ \vec{x} \end{pmatrix}$$

Analyzing stability of this system requires Laplace transformation, which is beyond the scope of this lecture

Mechanics: Trajectory in Phase Space

Discrete Time Integration

Why Temporal Discretization?

- Dynamic system doesn't always have an analytical solution

- Computer cannot handle continuous value
 - Similar to "quantization" and "sampling" in audio processing

Time Integration for Temporal Discretization

• The interval is called "time step"

Recurrent formula
$$\vec{Y}_{i+1} = F(\vec{Y}_i)$$

Given equation of motion, what are the \vec{Y}_i and F()?

Approximating Gradient by Difference

$$\frac{dx}{dt} = F(x)$$

forward(explicit) Euler method

$$\frac{x_{i+1} - x_i}{dt} = F(\mathbf{x_i})$$

backward(implicit)
$$\frac{x_{i+1} - x_i}{dt} = F(x_{i+1})$$

Euler method

Complicated but Stable

Recurrence Relation from Backward Euler

$$\frac{x_{i+1} - x_i}{dt} = F(x_{i+1})$$
Taylor's expansion
$$\approx f(x_i) + \frac{dF}{dx}\Big|_{x_i} (x_{i+1} - x_i)$$

(write equation Here)

2nd-order Differential Eqn. by Backward Euler

Backward Euler method $\frac{ds}{dt} = \frac{s_{i+1} - s_i}{dt} = F(s_{i+1})$ plug in $s_i = \begin{pmatrix} \vec{v}_i \\ \vec{x}_i \end{pmatrix}$

(write equations here)

Simple Example: Particle Under Gravity

Karl Sim's Particle Dreams, 1988

https://www.karlsims.com/particle-dreams.html

https://www.youtube.com/watch?v=5QEp-oPaQto

Karl Sim's Another Awesome Work

K.Sims, "Evolved Virtual Creatures", Siggraph '94

https://www.karlsims.com/evolved-virtual-creatures.html

https://www.youtube.com/watch?v=RZtZia4ZkX8

Advanced Topics

- Runge-Kutta method
- Variational Implicit Euler Method
- Symplectic Integrator
- Lie group integrator

End

Time Integration

Recurrence formula from equation of motion

Time Integration: 1st-order Differential Eqn.

• Given \vec{x}_i , solve for \vec{x}_{i+1}

$$\frac{dx}{dt} = f(x) \quad \text{Integration} \quad x_{i+1} = x_i + \int_{t_i}^{t_{i+1}} f(x) \, dt$$

Time Integration: 1st-order Differential Eqn.

• Compute \vec{x}_{i+1} when \vec{x}_i is given

 $\frac{dx}{dt} = f(x) \text{ integration } x_{i+1} = x_i + \int_{t_i}^{t_{i+1}} f(x) dt$ $f(x_i) \quad f(x_{i+1}) \quad \text{Area here makes}$ $x_{i+1} - x_i$ f(x) is unknown and x is unknownHow the area is approximated

Time Integration: 1st-order Differential Eqn.

Runge-Kutta Method (4th order)

• Approximating are $a = x_{i+1} \cdot x_i$ with 4 different ways

