Einstein's Summation Rule

• Repeated indices are summed over

I have made a great discovery in mathematics!

inner product

$$a \cdot b = a_i b_i = \sum_i a_i b_i$$

Frobenius inner product

$$\langle A, B \rangle_F = A_{ij} B_{ij} = \sum_j \sum_i A_{ij} B_{ij}$$

Let's Practice Einstein's Summation Rule

$$tr(A) = ?$$

$$(A^{T}B)_{ij} = ?$$

$$a_{ii}a_{jj} = ?$$

 $tr(A^T B) = ?$

$$\left(\vec{a}^T \vec{b} I\right)_{ij} = ?$$

$$a_{ii}a_{ii} = ?$$

Frobenius Inner Product $\langle A, B \rangle_F = A_{ij}B_{ij}$

$$A = \begin{bmatrix} \vec{a}_1, \vec{a}_2, \cdots, \vec{a}_n \end{bmatrix}$$

$$B = \begin{bmatrix} \vec{b}_1, \vec{b}_2, \cdots, \vec{b}_n \end{bmatrix}$$

$$\langle A, B \rangle_F = \sum_i \vec{a}_i^T \vec{b}_i$$

$$\langle RA, B \rangle_F = R_{ik} A_{kj} B_{ij} = \sum_i (R\vec{a}_i)^T \vec{b}_i$$

$$= A_{kj} (R^T B)_{kj} = \langle A, R^T B \rangle_F = \sum_i \vec{a}_i^T R \vec{b}_i$$

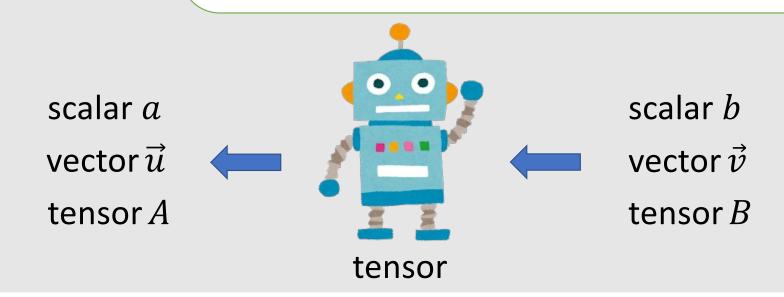
$$= R_{ik} (BA^T)_{ik} = \langle R, BA^T \rangle_F = \left\langle R, \sum_i \vec{b}_i \otimes \vec{a}_i \right\rangle_F$$

Tensor

What is Tensor?

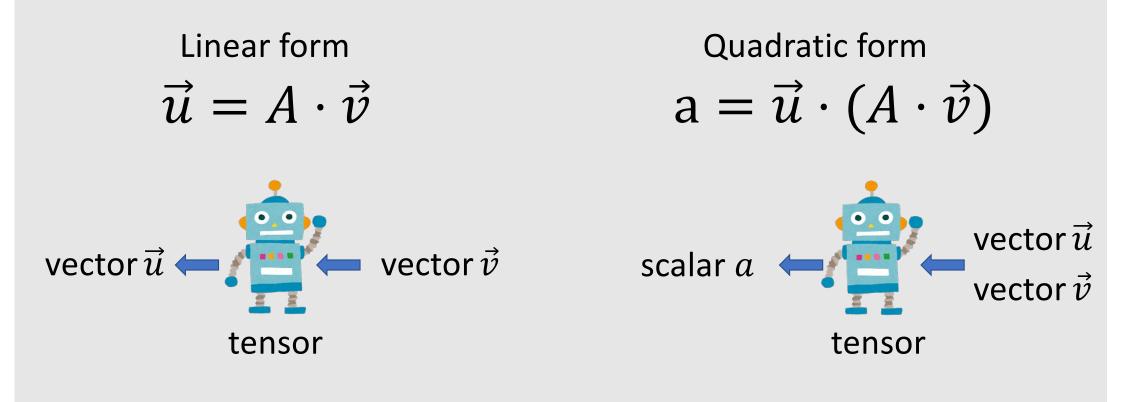
In mathematics, a tensor is an algebraic object that **describes a (multilinear) relationship** between sets of algebraic objects related to a vector space.

https://en.wikipedia.org/wiki/Tensor



Two ways to Understand 2nd-order Tensor

• Transformation by a tensor is give by the inner product



Outer Product (Tensor Product)

• Outer product makes a tensor from two vectors

$$\vec{a} \otimes \vec{b} \quad \Longrightarrow \quad (\vec{a} \otimes \vec{b}) \cdot \vec{u} = \vec{a} (\vec{b} \cdot \vec{u})$$

• Tensor product $\vec{e} \otimes \vec{e}$ (||e|| = 1) defines projection

check it out!

Definition Projection \mathcal{P} $\mathcal{P}(\mathcal{P}(x)) = \mathcal{P}$

Outer Product (Tensor Product)

• Transformation for vectors in the outer product

check it out!

$$(A\vec{a})\otimes(B\vec{b})=?$$

Definition

$$\vec{a} \otimes \vec{b}$$

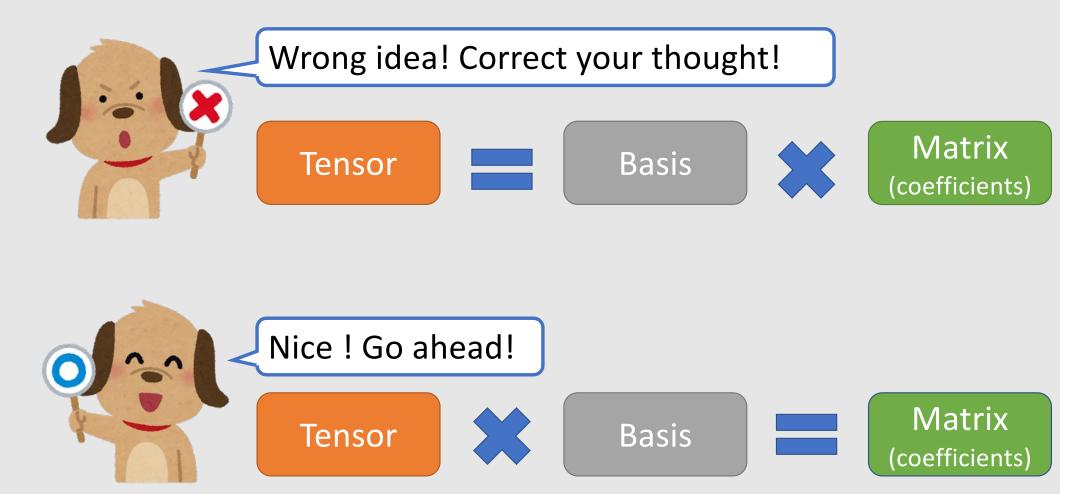
 $(\vec{a} \otimes \vec{b}) \cdot \vec{u} = \vec{a}(\vec{b} \cdot \vec{u})$

Tensor + Basis = Matrix

- Inner product with a basis vector gives a coefficient
 - This is true even if the basis is not orthonormal

$$v_i = \vec{v} \cdot \vec{e}_i$$
$$a_{ij} = \vec{e}_i \cdot (A \cdot \vec{e}_j)$$

Tensor & Matrix: Common Misunderstanding



Orthonormal Coordinates

• Tensor can be written with bases and coefficients

$$e_{i} \cdot e_{j} = \delta_{ij}$$

$$v_{i} = \vec{v} \cdot \vec{e}_{i}$$

$$\vec{v} = v_{i}\vec{e}_{i}$$

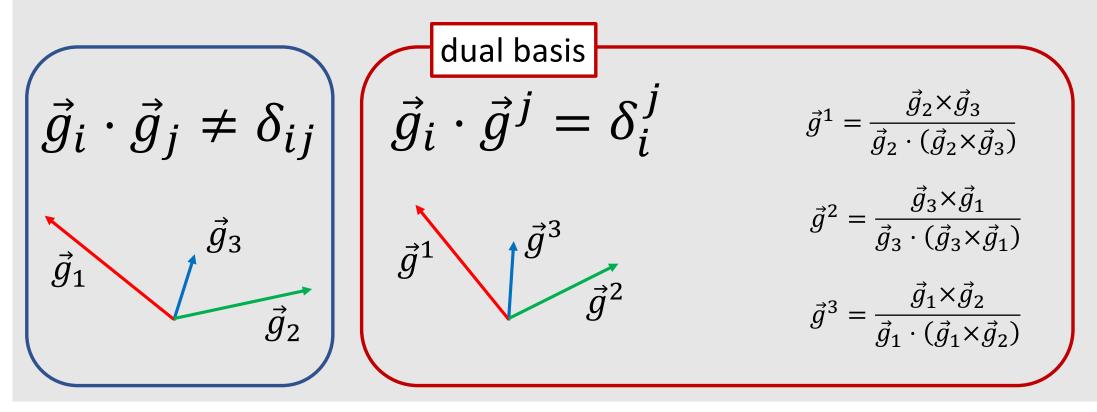
$$a_{ij} = \vec{e}_{i} \cdot (A \cdot \vec{e}_{j})$$

$$A = a_{ij}\vec{e}_{i} \otimes \vec{e}_{j}$$

check it out!

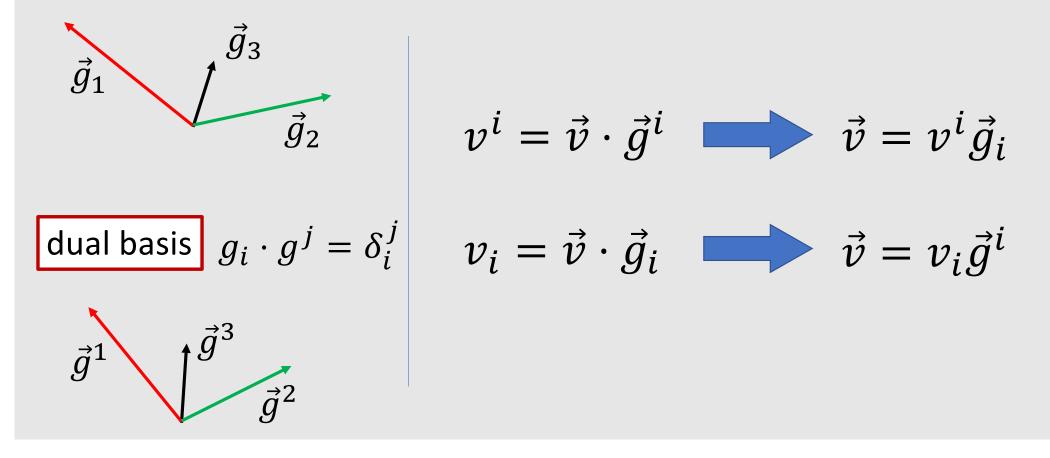
Curvilinear Coordinates

- Non-orthogonal and un-normalized bases
- Dual bases solve the problem



Curvilinear Coordinates

• Expression of a vector in curvilinear coordinates



Curvilinear Coordinates

• Expression of a tensor in curvilinear coordinates

$$\vec{g}_{1} \qquad \vec{g}_{3} \qquad a^{ij} = \vec{g}^{i} \cdot (A \cdot \vec{g}^{j}) \qquad A = a^{ij}\vec{g}_{i} \otimes \vec{g}_{j}$$

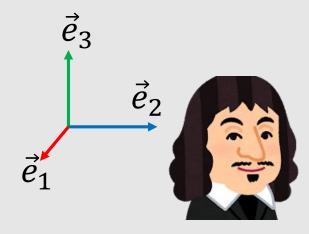
$$a_{ij} = \vec{g}_{i} \cdot (A \cdot \vec{g}_{j}) \qquad A = a_{ij}\vec{g}^{i} \otimes \vec{g}^{j}$$

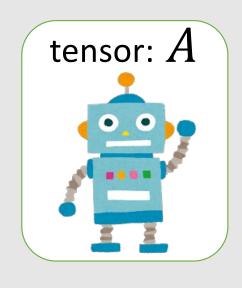
$$\vec{dual basis} \qquad g_{i} \cdot g^{j} = \delta^{j}_{i} \qquad a^{i}_{j} = \vec{g}^{i} \cdot (A \cdot \vec{g}_{i}) \qquad A = a^{i}_{j}\vec{g}_{i} \otimes \vec{g}^{j}$$

$$\vec{g}^{1} \qquad \vec{g}^{3} \qquad a^{j}_{i} = \vec{g}_{i} \cdot (A \cdot \vec{g}^{j}) \qquad A = a^{j}_{i}\vec{g}^{i} \otimes \vec{g}_{j}$$

Coordinate Transformation

$$a_{ij} = \vec{e}_i \cdot (A \cdot \vec{e}_j)$$





$$a'_{ij} = \vec{e}'_i \cdot (A \cdot \vec{e}'_j)$$

$$\vec{e}'_3$$

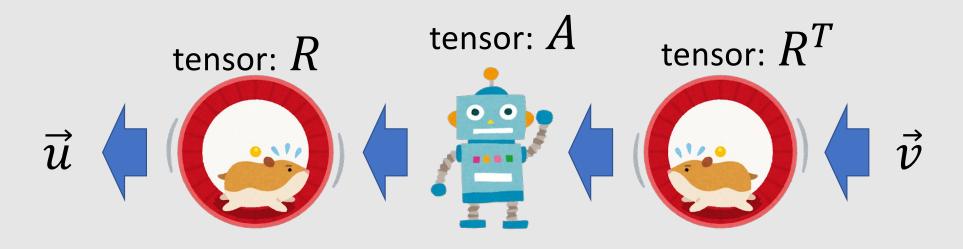
$$\vec{e}'_2$$

$$\vec{e}'_1$$

same tensor, different
(coefficient) matrix!

Rotation of a Tensor

• Un-rotating input and rotating output



 $\vec{u} = RAR^T \vec{v}$

Rotation of a Tensor

• Rotating bases while using the same coefficients

$$A = a_{ij}\vec{e}_i \otimes \vec{e}_j$$

rotation of basis
$$A' = a_{ij}(R\vec{e}_i) \otimes (R\vec{e}_j)$$
$$= a_{ij}R(\vec{e}_i \otimes \vec{e}_j)R^T$$
$$= R(a_{ij}\vec{e}_i \otimes \vec{e}_j)R^T$$
$$= RAR^T$$

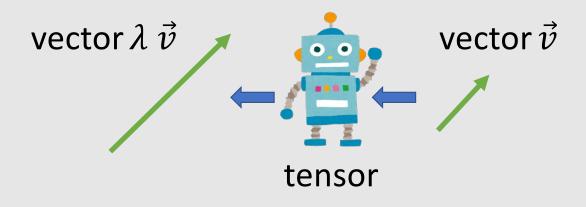
check it out!

Simple Elastic Potential Energy for Continuum

Eigenvalue of Symmetric Tensor

• Eigenvalue of tensor is defined without matrix & coordinate

Linear form $\lambda \vec{\nu} = A \cdot \vec{\nu}$



Eigenvalues and Frobenius Norm

from characteristic equation

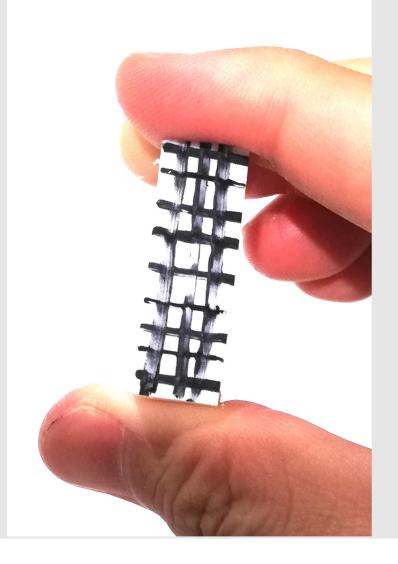
$$\operatorname{tr}(A) = \lambda_1 + \lambda_2 + \lambda_3$$

$$A^2 \vec{e} = \lambda^2 \vec{e}$$

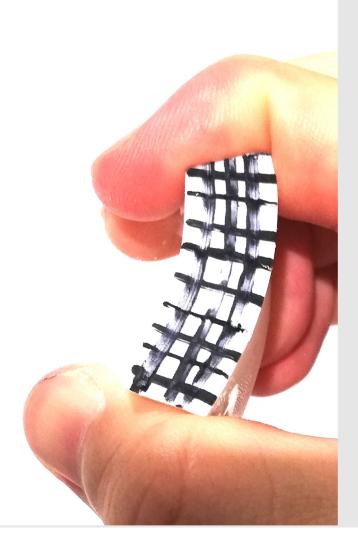
$$\operatorname{tr}(A^2) = \lambda_1^2 + \lambda_2^2 + \lambda_3^2$$

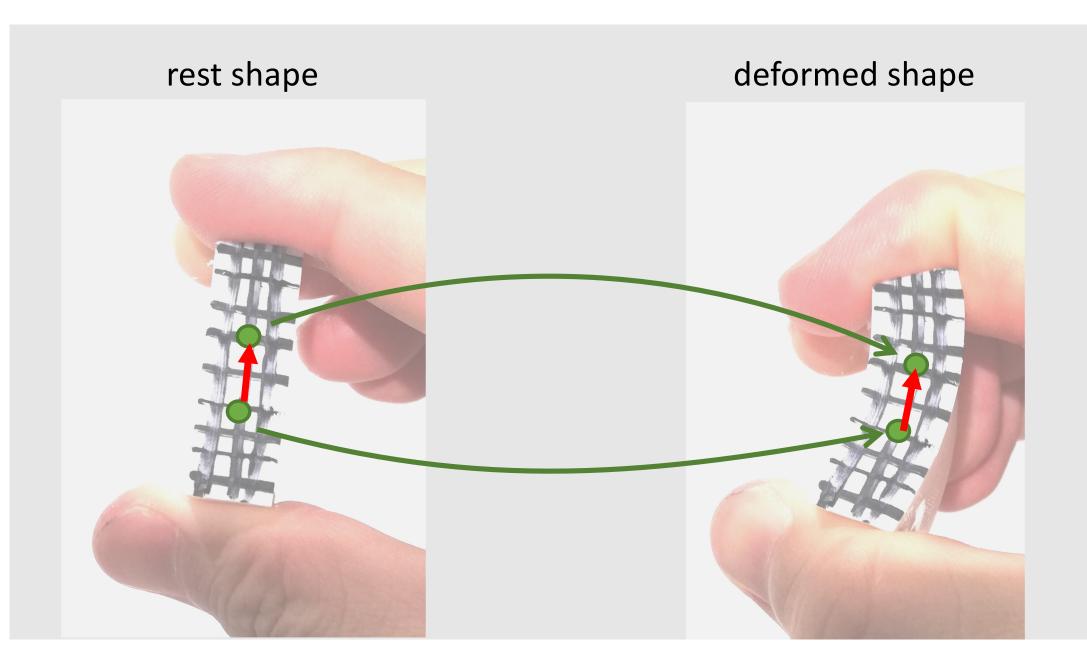
$$= \operatorname{tr}(A^T A) = \sum_{1 \le i,j \le 3} a_{ij}^2 = ||A||_F^2$$

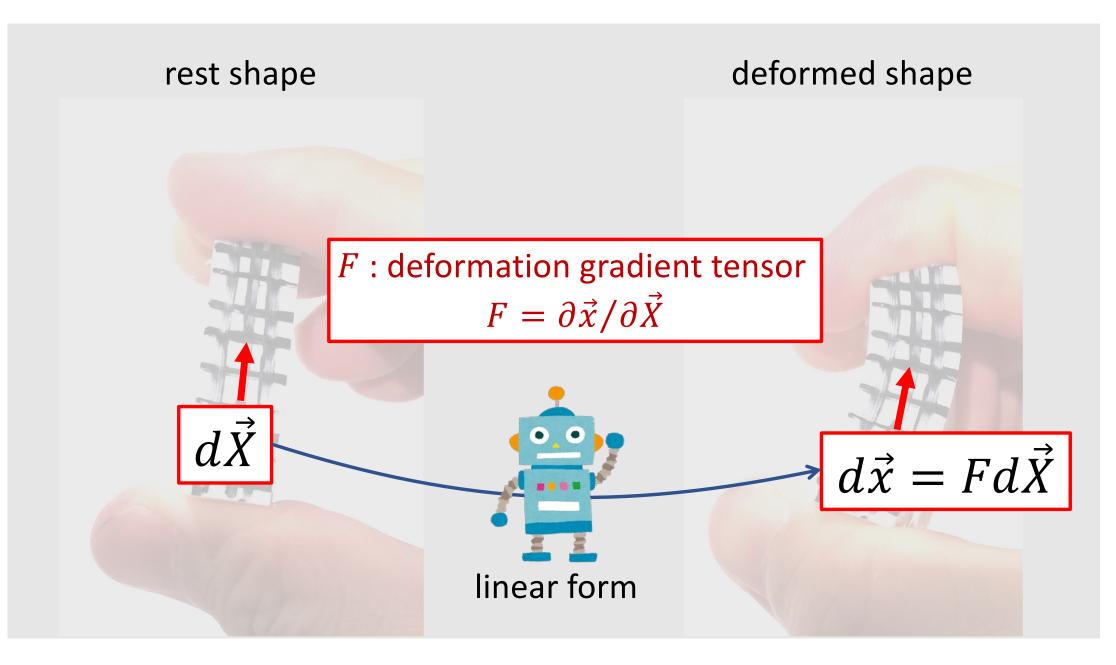
rest shape



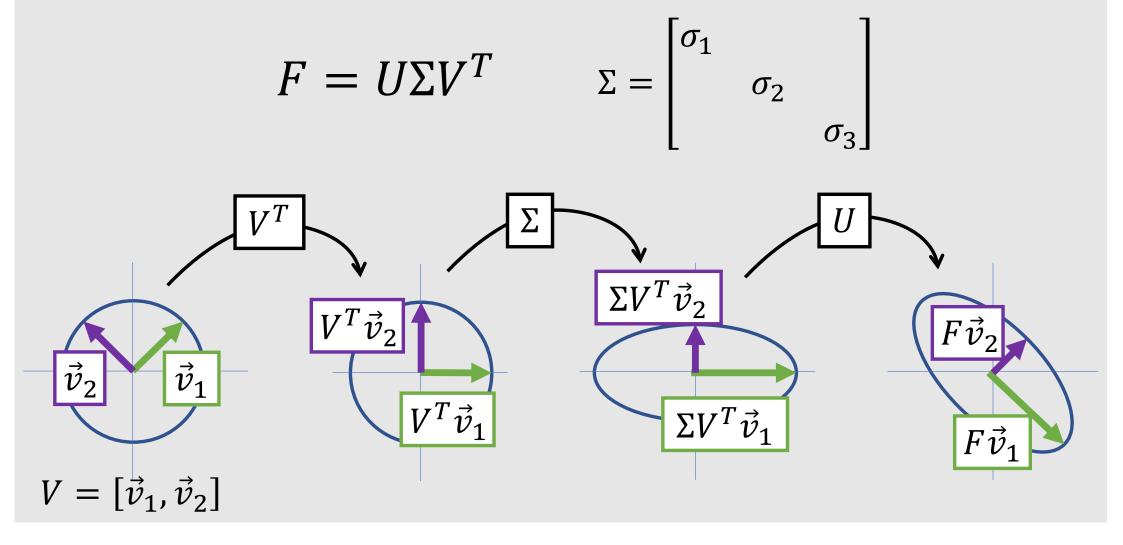
deformed shape







SVD of Deformation Gradient Tensor



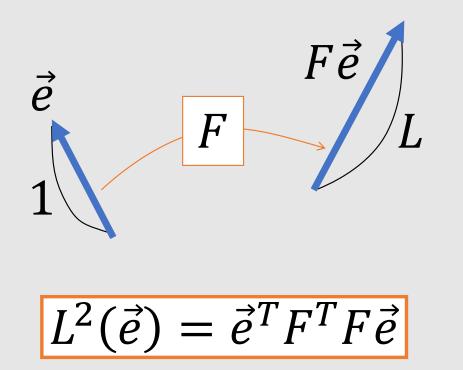
SVD of Deformation Gradient Tensor

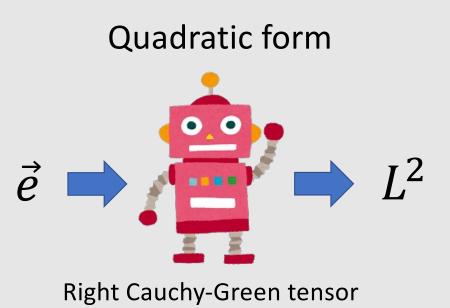
$$F = U\Sigma V^T \qquad \Sigma = \begin{bmatrix} \sigma_1 & & \\ & \sigma_2 & \\ & & \sigma_3 \end{bmatrix}$$

- Σ is the value we want for energy
- but SVD is costly
- How can we obtain Σ without SVD?

Gram Matrix **F**^T**F** Stands for Length Change

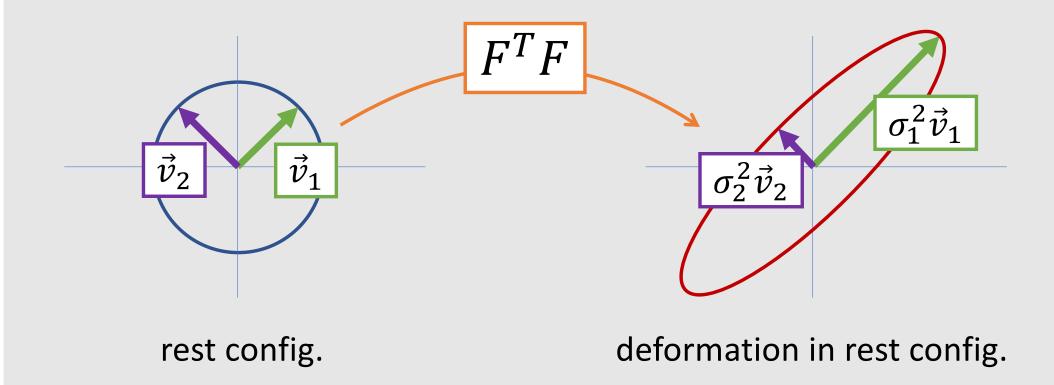
• $C = F^T F$: right Cauchy-Green tensor



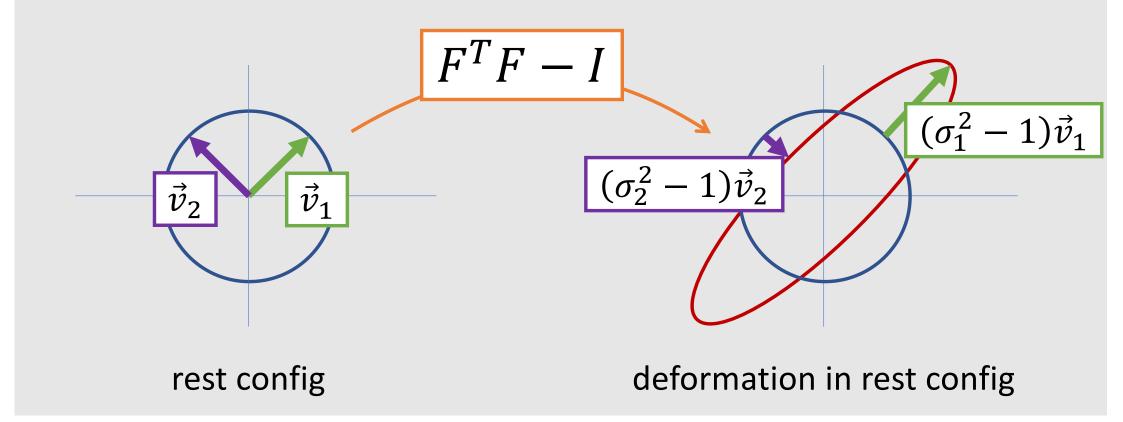


Eigenvalue: Right Cauchy Green Tensor F^TF

- Right Cauchy Green tensor is symmetric $F^T F = V \Sigma^2 V^T$
- Eigenvalues of $F^T F$ is squared of singular values : $\sigma_1^2, \sigma_2^2, \sigma_3^2$



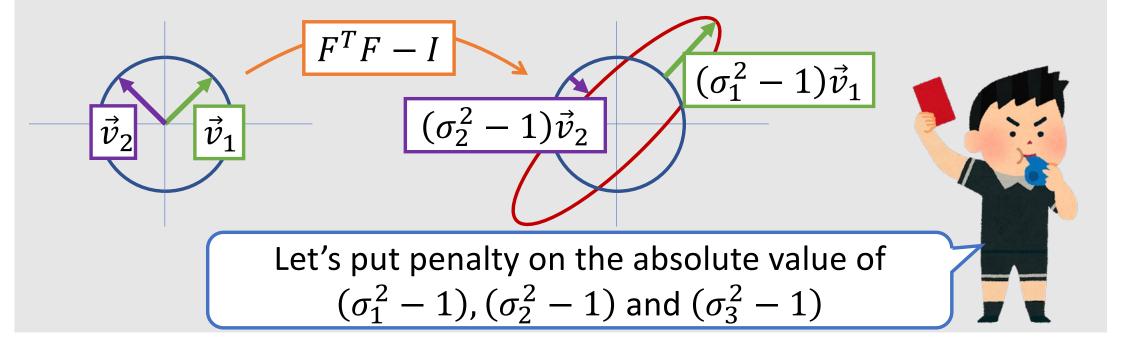
Eigenvalue: Green Lagrange Tensor $F^T F - I$



Making Energy from Eigenvalue

• Energy for isotropic material

$$W(F) = \|F^T F - I\|_F^2 = (\sigma_1^2 - 1)^2 + (\sigma_2^2 - 1)^2 + (\sigma_3^2 - 1)^2$$



How can We Formulate Elastic Energy?

Strategy A: Elastic energy W is a function of eigenvalues of Green-Lagrange strain $E = F^T F - I$

$$W = \|\vec{F}^T F - I\|_F^2, \quad \text{where } F = \partial \vec{x} / \partial \vec{X}$$

cancel rotation
$$cancel translation$$

Strategy B: Elastic energy W is a sum of square distances after cancelling rotation and translation

$$W = \min_{R,\vec{t}} \sum_{i} \omega_i \left\| R\vec{X}_i + \vec{t} - \vec{x}_i \right\|^2$$

31

Hard to choose!

Making Energy from Eigenvalue

• Energy for isotropic material

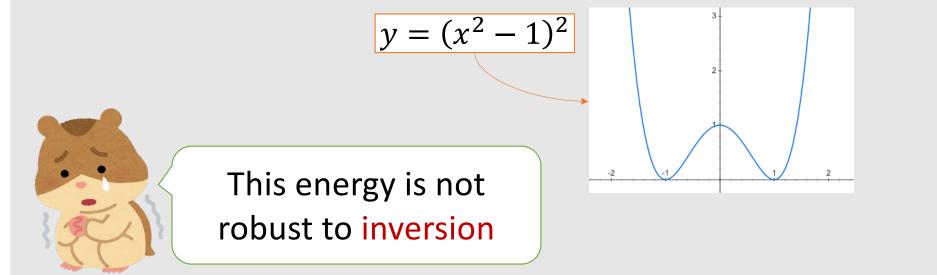
$$W(F) = \|F^T F - I\|_F^2 = (\sigma_1^2 - 1)^2 + (\sigma_2^2 - 1)^2 + (\sigma_3^2 - 1)^2$$

This energy doesn't have costly SVD and eigen decomposition easy to compute gradient & hessian!

Making Energy from Eigenvalue

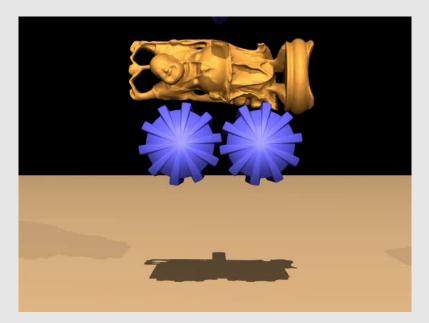
$$W(F) = \|F^T F - I\|_F^2 = (\sigma_1^2 - 1)^2 + (\sigma_2^2 - 1)^2 + (\sigma_3^2 - 1)^2$$

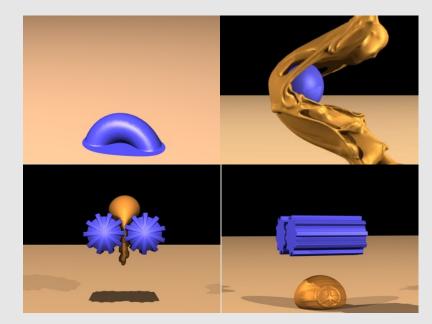
Wait... W(F) = 0 is not always no deformation. What about mirror reflection $\sigma_i = -1$?



Invertible FEM [Irving et al. 2004]

• Elastic potential energy based on singular values of F that are σ_i , not on the eigen values of $F^T F$ that are σ_i^2





G. Irving, J. Teran, and R. Fedkiw. 2004. Invertible finite elements for robust simulation of large deformation. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation (SCA '04)