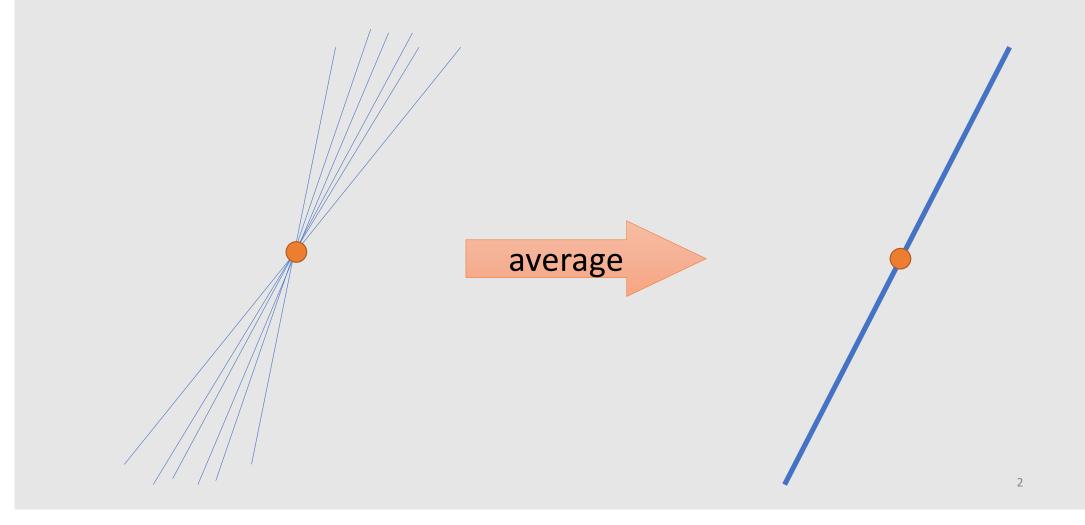
Principal Component Analysis (PCA)

主成分分析

Let's Average Orientations !

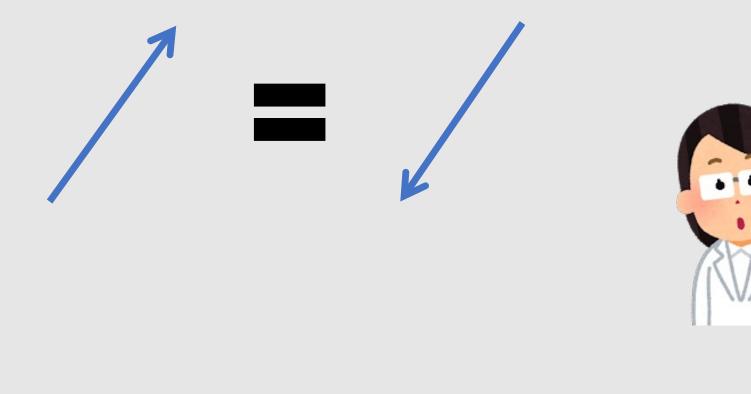


Averaging Vectors is not Straightforward

Naïve orientation representations may cancel out each other

Formulation of Add-able Orientation?

- What is the representation opposite direction is the same?
- Removing orientation information from a vector?



Matrix of Outer Product is the Solution

• Symmetric matrix from a vector

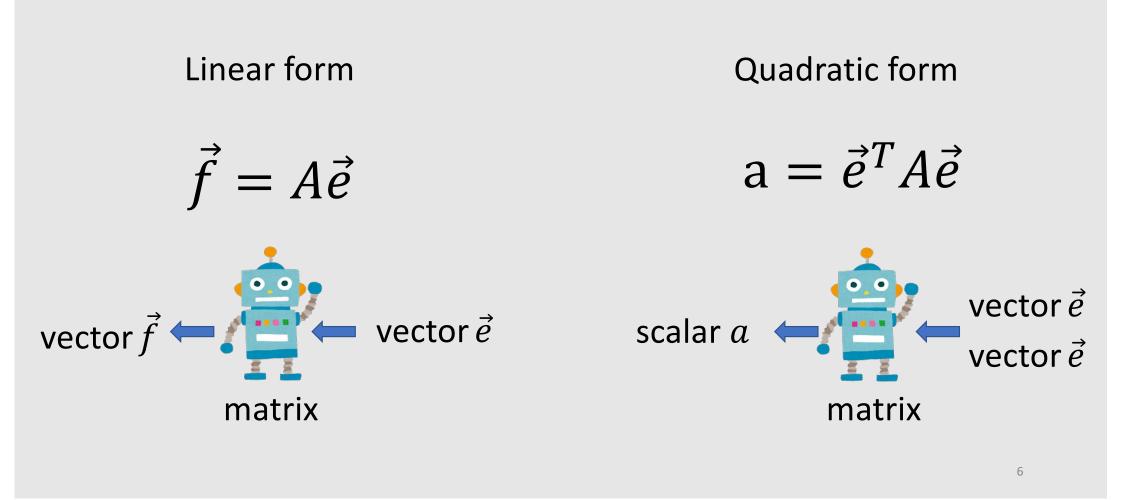
$$\vec{v} \otimes \vec{v} = \vec{v} \vec{v}^T = \begin{bmatrix} v_0 v_0 & v_0 v_1 & v_0 v_2 \\ v_1 v_0 & v_1 v_1 & v_1 v_2 \\ v_2 v_0 & v_2 v_1 & v_2 v_2 \end{bmatrix}$$

• The opposite vector gives the same matrix

$$(-\vec{v})\otimes(-\vec{v})=\vec{v}\otimes\vec{v}$$

5

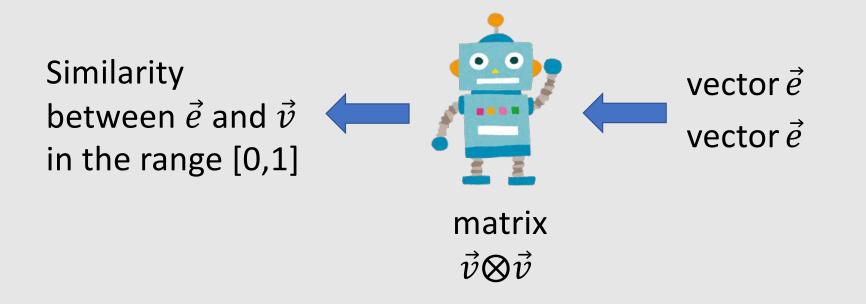
Linear Form & Quadratic Form



Interpretation of Quadratic Form

• Represent how much input vector \vec{e} is parallel to the vector \vec{v}

$$\vec{e}^T A \vec{e} = \vec{e}^T (\vec{v} \otimes \vec{v}) \vec{e} = (\vec{e}^T \vec{v}) (\vec{v}^T \vec{e}) = (\vec{e}^T \vec{v})^2$$



What is Variance?

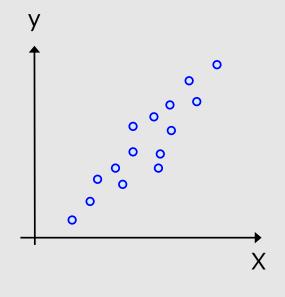
• Variance means deviation from the mean

$$\operatorname{Var}(x) = \sum_{i=1}^{n} \frac{(x_i - \bar{x})^2}{n}$$

8

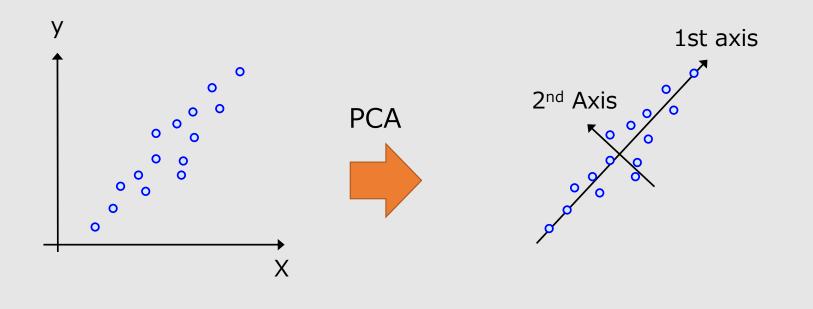
How Should We Choose Axis?

• Finding the axis with highest variance -> PCA!



What is PCA?

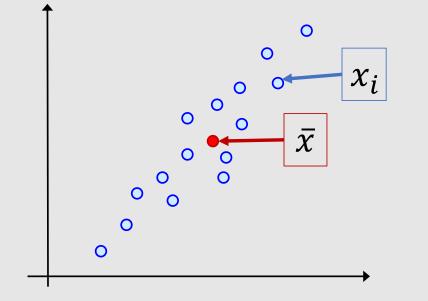
- Low-dimensional approximation of hi-dimensional data
- Find directions of large variance (the magnitude of distribution)



PCA Step 1: Averaging Points

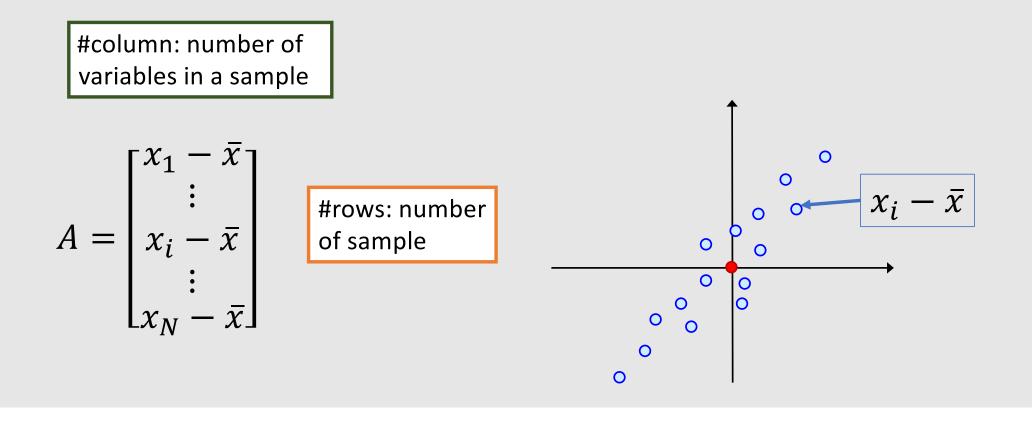
• Adding up the multivariate value x_i and divide with #samples

$$\bar{x} = \frac{1}{N} \sum_{i=0}^{N} x_i$$



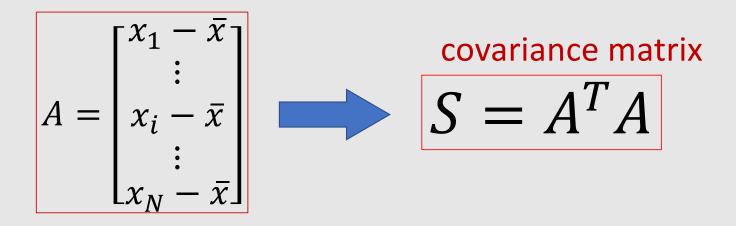
PCA Step 2 : Computing Difference

• Matrix A: deviation from average



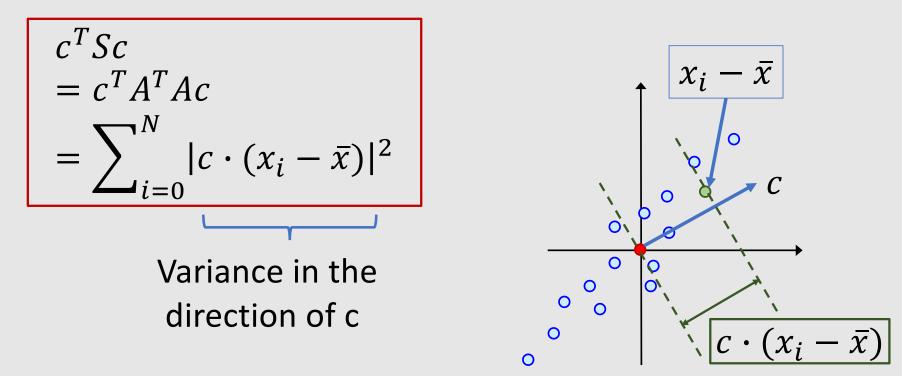
PCA Step 3 : What is Covariance Matrix?

- *A^TA* is called covariance matrix
- Covariance is positive (semi-)definite



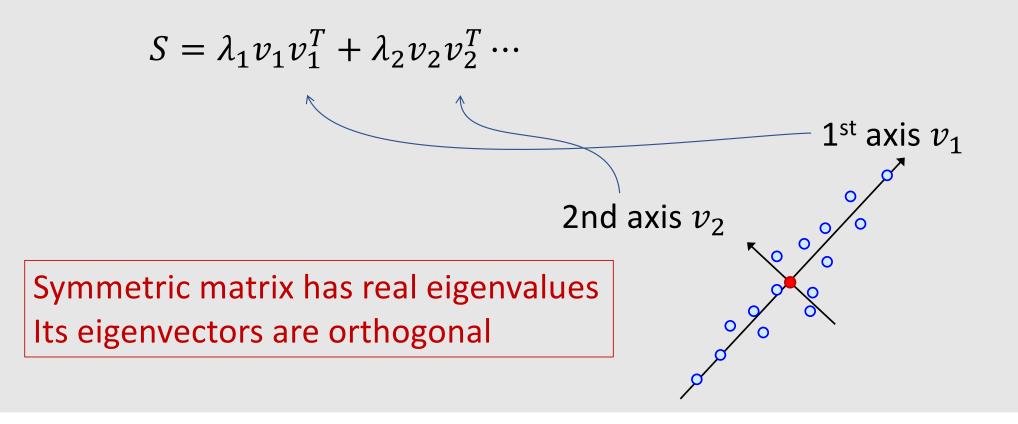
What is the Covariance Matrix?

- Variance in higher dimension
- Given direction c, the variance in that direction is $c^T S c$



PCA Step 4 : Eigen Value Decomposition

• Find the axis with large variance by eigen decomposition



Power Method for Maximum Eigenvalues

• Iteration quickly converges into maximum eigen vector

1.
$$v^{i+1} = Av^i$$

2. $v^{i+1} = v^{i+1} / ||v^{i+1}||$

• Rayleigh Quotient gives maximum eigenvalue

$$\lambda^i = \frac{(v^i \cdot Av^i)}{(v^i \cdot v^i)}$$

