Optimization with Constraints

Why Constraints?

- Solid deformation
 - Non penetration constraints

Credit: Damnsoft 09 @ Wikipedia

• Fluid

• incompressibility constraints: vortex

Credit: Astrobob @ Wikipedia

Not Minimum If Its Gradient is **not** Zero

Maybe Minimum if Gradient is Zero

• Find a candidate where the gradient is zero $\nabla W(\vec{x}) = 0$

Optimization with Constraint

• Find a point \vec{x} where the function $W(\vec{x})$ is minimized while satisfying $g(\vec{x}) = 0$

Three Approaches to Handle Constraints

• Degree of Freedom (DoF) elimination

- Optimization in the constraint space
- Find minimum in 🤇

• Penalty method

- Approximate constraint as energy
- Find minimum in
- Lagrange multiplier method
 - Chose gradient parallel to the constraint's gradient
 - Find extremum in

Degree of Freedom (DoF) Elimination

Degree of Freedom (DoF) Elimination

• Some DoF is fixed
$$\vec{x} = \{\vec{x}_{free}, \vec{x}_{fix}\}$$

walk only on the line to find the minimum

$$dW(\vec{x}_{free}, \vec{x}_{fix}) = 0$$

$$\nabla W \cdot \begin{pmatrix} d\vec{x}_{free} \\ d\vec{x}_{fix} \end{pmatrix} = 0$$
$$= 0$$

Newton Method for DoF Elimination

• Update, Gradient and Hessian for Free/Fix DoF

$$\nabla W = \begin{pmatrix} \nabla W_{free} \\ \nabla W_{fix} \end{pmatrix} \quad \nabla^2 W = \begin{bmatrix} \nabla^2 W_{free,free} & \nabla^2 W_{free,fix} \\ \nabla^2 W_{fix,free} & \nabla^2 W_{fix,fix} \end{bmatrix}$$

Del

• Update only $d\vec{x}_{free}$ (while $d\vec{x}_{fix} = 0$) to achieve $\nabla W_{free} = 0$

$$d\vec{x} = \begin{pmatrix} d\vec{x}_{free} \\ d\vec{x}_{fix} \end{pmatrix} = \begin{bmatrix} \nabla^2 W_{free,free} & \mathbf{0} \\ \mathbf{0} & I \end{bmatrix}^{-1} \begin{pmatrix} \nabla W_{free} \\ \mathbf{0} \end{pmatrix}$$

DoF Elimination for General Constraint

Parameterize solution $\vec{x}(\theta)$ such that constraints naturally satisfy

Minimize Parameterized Solution

Penalty Method (Soft Constraint) ペナルティー法

Deviation from Constraints is $g(\vec{x})$

 $\vec{\chi}$

 $g(\vec{x})$

Penalty Method: Constraint as Energy

• Adding additional energy to encourage constraint

minimize $W(\vec{x}) + \alpha g^2(\vec{x}) \rightarrow If \alpha$ is large, $g(\vec{x})$ becomes small $d\vec{x}$ can be all the direction dx $g(\vec{x})$ dxdx

Linear System for Penalty Method

 $\operatorname{argmin} W(\vec{x}) + \alpha g^2(\vec{x})$ $\vec{\chi}$

Minimize W + g with Newton's method:

$$d\vec{x} = -[\nabla^2 W + \alpha \nabla^2 g^2]^{-1} (\nabla W + \alpha \nabla g^2)$$
$$2\nabla g \cdot \nabla g + 2\nabla^2 g \quad 2g \nabla g$$

Lagrange Multiplier Method

ラグランジュ未定乗数法

Lagrange Multiplier Method

• At minimum point, two gradients ∇W , ∇g should be parallel

 $\nabla W \parallel \nabla g$ \downarrow \downarrow $\exists \lambda \neq 0 \ s.t. \ \nabla W = \lambda \nabla g$

je ne sais quoi!

Why Parallel at Constrained Minimum?

• If ∇W , ∇g are not parallel, smaller W(x) exists satisfying constraints

Find Saddle Point not Minima for LM Method

• We changed minimization problem to saddle point finding problem

Lin. System for Lagrange Multiplier Method

$$\begin{pmatrix} \nabla W(\vec{x}) - \lambda \nabla g(\vec{x}) \\ -g(\vec{x}) \end{pmatrix} = H(\vec{x}, \lambda) = 0$$

Newton-Raphson method
$$\begin{pmatrix} d\vec{x} \\ d\lambda \end{pmatrix} = -[\nabla H]^{-1}H$$
$$= -\begin{bmatrix} \nabla^2 W(\vec{x}) - \lambda \nabla^2 g(\vec{x}) & -\nabla g(\vec{x}) \\ -\nabla g(\vec{x}) & 0 \end{bmatrix} \begin{pmatrix} \nabla W(\vec{x}) - \lambda \nabla g(\vec{x}) \\ -g(\vec{x}) \end{pmatrix}$$

Let's Practice Lagrange Multiplier Method

Maximize f(x, y) = x + y where $g(x, y) = x^2 + y^2 - 1 = 0$

check it out!

