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ABSTRACT 

There are thousands of network protocols in active use 
on the internet.   System administrators often need to 
extract information from particular fields in such 
protocols without having sufficient information or time 
to programatically parse the packets. We propose an 
active learning framework to perform this extraction in 
an unknown protocol, in which the user presents the 
system with a small number of labeled instances.  Our 
system then automatically generates an abundance of 
features and negative examples; we then use a boosting 
approach for feature selection and classifier 
combination.  The system then displays its results for 
the user to correct and/or add new examples and 
iterate.  In our preliminary experiments on DNS 
queries and responses, we achieve less than 0.1% 
generalization error using only a handful of labeled 
examples and thus a minimum of user effort.   This 
translates to perfect retrieval from 86% of unlabeled 
packets. 

KEYWORDS: network management, protocol 
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1. INTRODUCTION 

Machines communicate with each other through a wide 
variety of network protocols.  Indeed, there are a vast 
number of actual protocols that are in use at any given 
time.  This number is magnified by the variety of 
implementations and version of each protocol.  A quick 
survey in just five minutes of traffic for two buildings 
at Microsoft Research, there were more than 50 unique 
protocols.   This diversity of protocols creates a huge 
headache for the network or systems engineer.  For 
instance, if she’s only interested it knowing what 
filenames are being transported via a filesharing 
application, perhaps to check for illicit activity, she has 
to find the specification for that protocol and then write 
code to decode the packet according to the 
specification. If said specification does not exist, she is 
forced to reverse engineer the protocol.  While there 
are tools like Ethereal [4] that can understand many 
protocols, there are so many variations and 
subprotocols that it is difficult for such a tool to cover 
them all. Furthermore, extracting the field can be far 
from trivial: even relatively simple protocols have 
variable length fields, such as strings, which means the 

field of interest can be an arbitrary offset within the 
packet or TCP flow.  In this paper, we examine a UDP-
based protocol where each message is contained in a 
single packet, but our method applies to TCP flows as 
well. 

Our work addresses precisely this scenario.  Because 
network engineers often only want to extract a 
particular field from a protocol, a full decoding of the 
protocol is neither practical nor necessary.  We thus 
propose a method in which we attempt to directly 
target the field of interest by learning a classifier. 
There is an additional twist, though, to this scenario – 
the engineer wants to do as little labeling as possible, 
and is unlikely to be willing to label a large number of 
packets.  As a result, it is undesirable to use the typical 
supervised learning approach, i.e., batch learning a 
complex classifier on a fixed training set. 

To deal with these constraints, we propose an active 
learning framework.  The system works with as little or 
as much data as the user is willing to give, often 
beginning with only one labeled example.  Given a 
starting point of a dataset of packets from the protocol 
of interest and at least one packet with the field(s) of 
interest labeled, the system automatically generates 
negative examples, since all other subranges in that 
packet cannot be the field of interest.  It then proposes 
dozens of simple candidate features that are 
automatically generated based on the positive 
examples, each of which results in a simple classifier; 
we then use a boosting approach [6] to do both feature 
selection and classifier combination.  Upon 
convergence, the system returns a set of qualifying 
subranges based on the classifier it has learned.  The 
user then adds labels by either marking the false 
positives from that set or adding more positive 
examples, at which point the system learns a new 
classifier and brings back new results; these iterations 
continue until the user is satisfied or the system is 
unable to improve.   

This active learning and classifier combination 
approach is beneficial for three reasons.  First, it 
requires less effort from the user, since she only has to 
label as many examples as it takes to get the 
performance she desires.  Second, the complexity of the 
classifier scales with the number of labels.  If the user 
labels one example and one of the simple features is 



sufficient to consistently return the field, only that one 
feature will have significant weight.  On the other 
hand, if the problem is more complex, more features 
will be used in the final classifier.  In contrast, a 
classifier of fixed complexity typically requires a fixed 
amount of labeling to avoid overfitting.  Finally, if the 
network engineer speculates that new families of 
features that might be useful to a given task, she can 
add these to the bag without risking the error 
performance, even if the features are completely 
useless.  Indeed, the bag of possible features can keep 
growing risk-free over time as people add custom 
features or feature families, making new problems 
easier to solve.   

In the following sections, we describe the details of our 
approach to the field extraction problem and show our 
preliminary results.  While our efforts are not 
complete, and we currently have only implemented the 
first iteration of the active learning process, the results 
are promising, and imply that with additional iterations 
we can achieve near-perfect extraction on typical fields. 

2. RELATED WORK 

There has been a variety of work on analyzing and 
parsing network protocols with varying degrees of 
automation.  The work of Borisov et al. [3], GAPAL, is 
a general framework in which network protocols can be 
specified and parsed via hand-written grammars.  This 
allows for precise recovery of all protocol elements, but 
requires significant manual effort to precisely describe 
the entire protocol.   On the other hand, there have 
been fully automatic approaches like the RolePlayer 
system [2], in which the authors automatically modeled 
the server responses for various protocols to fool 
attackers into attempting to exploit vulnerabilities. In a 
similar vein is the work of Ma et  al. [5], which 
attempts to classify packet streams into protocols based 
on learned Markov models.  While these more 
automatic methods are able effectively to fool attackers 
and identify protocols, the models they learn are not 
sufficiently specific to extract arbitrary fields, leading 
us to our current work. 

From the machine learning perspective, we draw our 
inspiration from the work of Tieu and Viola [1], in 
which the authors developed a system for image 
retrieval based on a small number of example images.  
For each query, they proposed a wide variety of 
features and used boosting to do classifier combination 
and feature selection.  We take a similar approach to 
the field extraction problem, adapting the features to 
the space of network packets.   

On the application side, our contribution has been to 
approach the field extraction problem directly – instead 
of trying to model the network protocols, we treat the 
problem as one of detecting special structures within 
unstructured data as in the Tieu and Viola work.  On 

the learning side, we have not only applied the feature 
selection and combination approach to a new domain, 
but we have also incorporated it into an active learning 
framework, thus minimizing the amount of effort that 
the user must expend in order to achieve a sufficiently 
accurate classifier. 

3. ACTIVE LEARNING FRAMEWORK 

In the most general sense, active learning scenarios are 
those in which the learner can query the user for labels 
or additional examples which will guide it towards a 
better solution.  This paradigm is particularly valuable 
in situations such as ours where it is difficult or time-
consuming for the user to label a large dataset prior to 
beginning the learning.   The learner can do the best 
with the data it has available and then demonstrate its 
performance to the user.  If the performance is not 
satisfactory, the system can ask the user to mark its 
mistakes or add more examples and thus improve its 
performance.  In this section, we describe the 
particulars of our active learning framework for field 
extraction. 

The user supplies the system with a small number of 
packets, possibly just one, within which she has 
specified the field of interest by means of an offset and 
a field length. In addition, she supplies a dataset of 
packets that are from the protocol of interest.   This 
requires little user effort: simply specifying a 
server/port allows the system to cull the relevant data 
from the network.  

The system then proposes a large set of features for the 
classification problem (see section 3.1 for details) and 
creates a decision stump for every feature. The decision 
stump is a very simple classifier – if the feature is 
Boolean, the decision stump is the feature itself; if the 
feature is real valued, the decision stump is a simple 
classifier that provides a mapping from ℜ to {0,1}, 
e.g., a two class Gaussian model as in [1]. 

The system also generates a large number of negative 
examples. This is a relatively easy task given that there 
is only one correct answer per packet, so all other 
offset/length pairs are guaranteed to be negative 
examples.  In fact, there are too many to be able to use 
them all.  However, in addition to examples drawn 
randomly from this set, we make sure to include some 
examples that draw particularly sharp contrast with the 
positive examples.  Specifically, we can take the correct 
offset of a labeled packet but use an incorrect length, 
and similarly an incorrect offset but choose a length 
such that it terminates at the same location as the true 
field.   These “almost correct” negative examples 
prevent the system from overfitting to characteristics of 
a small number of labeled examples.  For example, if 
byte[0] of the field is always 255, the system may 
propose that this feature is enough to determine the 
field, regardless of the length – simply because it has 



seen no negative examples where  this feature is true 
and yet the field is not correctly extracted. 

At this point, we begin the feature selection and 
combination process.  In a typical boosting scenario, 
we would train the same classifier (e.g., a simple 
hyperplane) over and over again, reweighting the 
individual data points and learned classifiers on each 
iteration as in [6].  In our case, as in [1], we have a 
large number of classifiers to choose from, each based 
on a very simple feature.  At each boosting step, we 
thus choose the best of these features/classifiers, i.e., 
the classifier that will most improve our classification 
accuracy on the weighted data.  We then weight the 
resulting classifier as in standard AdaBoost [6].  This 
process thus performs both feature selection (by 
choosing the best classifier at each step) and feature 
combination (via the weighted combination from 
boosting).  Due to the relative bias in the number of 
positive vs. negative examples, we scale the weight of 
the data points relative to the number of examples in 
each class. 

The system then classifies all possible candidate 
packets and fields therein using the learned classifier, 
and returns the instances that are classified as correct 
fields. Note that this is an expensive operation – there 
are O(N2) possible fields  in a packet of length N: all 
offsets and all lengths for each offset. For instance, 
identifying the field of interest from 10000 packets of 
average length 100 would involve 5*107 classifications.  
We will discuss more efficient methods in Section 5. 

The user then can then provide feedback on the 
extracted fields in two ways – she can provide negative 
examples (by identifying some of the extracted fields as 
wrong) or provide more positive examples if the recall 
rate is perceived to be too low. These active learning 
steps are repeated until the user receives satisfactory 
results.  

3.1. Feature Generation 

The learner’s feature proposal process for field 
extraction is completely agnostic to the actual protocol.  
The proposed features can take a number of forms. The 
simplest of these is the case where each feature 
corresponds to whether or not a byte relative to the 
field location takes on a particular value.  However, the 
naïve method of proposing these features is prohibitive, 
since that would involve proposing a separate feature 
for each byte taking on each value in the range 
{0…255}.  Instead, we use the positive examples as a 
guide to propose these single byte features in the 
following manner.   We first align the positive 
examples along the start of the field (see Figure 1).   

We then use this alignment to propose features 
corresponding to each byte value within some window 
(+/-10 in our case) around the beginning of the field. 
For example, in Figure 1, we would propose features 

such as “byte[offset-1] == 0”, “byte[offset-2] == 2”, 
“byte[offset-2] == 7”, byte[offset+1] == 48” and so 
on, where offset (a variable)  is the starting position of 
the field for the given packet.   We then do the same 
for the end of the field.  In our preliminary evaluation 
on the DNS protocol, we found that these simple 
features performed very well. 

 
Figure 1: Aligning the positive examples along the beginning of the 
demarcated field in order to propose features.  Note offset and 
length are both variables and are different  for different packets. 

In addition to these single byte equality features, there 
are a number of other features that can be proposed. 
We plan to explore this in the context of more complex 
protocols.  

4. EXPERIMENTAL SETUP AND RESULTS 

This section describes the preliminary evaluation of our 
system on extracting fields from the DNS protocol, 
using traces collected from a gateway router at a 
building on the Microsoft Redmond campus. This 
NetMon trace was collected over 5 minutes while 
traffic was flowing at 95% capacity on a 100Mbps link. 
We extracted all the DNS traffic (Port 53). We 
separated the DNS queries and responses and focused 
on determining if our system could reliably extract the 
domain name from DNS queries, and the returned IP 
address from the DNS responses.  

DNS is a relatively simple protocol, but we argue that 
being able to extract these in a completely protocol 
agnostic fashion makes a compelling proof of concept 
for our active learning and classification system for the 
following reasons. The domain name in the DNS query 
is an example of a variable length field in a binary 
protocol, which makes it an interesting case, since a 
classifier has to somehow find the bounds of the field. 
In the case of the IP address in the DNS response, there 
can be multiple responses following the variable length 
query (the query is repeated in the response).  

We chose to use just the simple byte-equality features 
based on lining up the positive examples (Section 3.1) 
for our classification. To evaluate of the classification 
algorithm, we created a test data set of both DNS 
queries and responses – each consisting of packets with 
the query and response IP fields marked out. We used 
Ethereal’s parsing of the packets to label our test data.  

4.1 Performance vs. Number of Training Examples 

The first evaluation we made was to understand the 
effect of the number of positive and negative examples 



on the accuracy of the classifier. This was measured by 
training the boosting algorithm on varying numbers of 
positive and negative examples, and testing them on a 
test set of 1,000 positive examples (a subrange 
corresponding to a field) and 1,000 negative examples 
(a subrange not corresponding to a field) from DNS 
queries. Figure 2 shows the percentage error of the 
classifier vs. the number of positive examples, averaged 
over 20 sets of 200 randomly selected negative 
examples. The plot shows the error rates on the 
positive and negative instances.  In this experiment, the 
error drops to zero after labeling less than ten 
examples, which implies minimal effort from the user. 
We observed similar performance on the DNS 
responses.  We also observed that the algorithm was 
not particularly sensitive to the number of random 
negative training examples, and that very similar 
curves were obtained on the testing set. 

Classifier Evaluation 
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Fig. 2: Generalization Error for Boosting vs. number of positive 
examples on extracting DNS queries.  The positive and negative 
test sets are the same size (1,000 of each). 

4.2 Features Identified by the Classifier 

Our next evaluation was to see which features were 
identified as important by the classifier, and we aimed 
to use our knowledge of the DNS protocol to evaluate 
whether the features with high weight made sense. For 
this evaluation, we ran the classifier on a set of 10 
positive examples and 10 sets of 1,000 randomly 
generated negative examples, and made a list of the 
selected features and their average weight. Table 1 
shows the top 6 features with the highest weight.  

FEATURE WEIGHT 
byte[offset+length+5] == 1 4.52919 
byte[offset – 7] == 1 3.304362 
byte[offset+length-8] == 116 3.213337 
byte[offset – 10] == 1 3.184982 
byte[offset+7] == 73 1.851104 
byte[offset + 26] == 67 1.483588 

Table 1: Top 6 Most important features for identifying the DNS 
query 

For instance, the above table indicates that the most 
important feature is that five bytes after the candidate 
field, the byte value is ‘1’ and that seven bytes before 
the offset, the byte value is ‘1.’ In reality, the DNS 
query always starts after the header, (which has a ‘1’ 
seven bytes before the start of the query field), and the 
first ‘0’ indicates the end of the query. However, 
several bytes after the final delimiting ‘0’ are constant, 
and thus were effective in finding the end of the query, 
explaining the high weight for the first feature.  

To understand why the final delimiting ‘0’ was not a 
highly weighted feature, we constructed a histogram of 
the various byte values in DNS queries.  This showed a 
disproportionate number of ‘0’s. Therefore, with a 
relatively high probability, our randomly chosen 
negative examples contained instances where the byte 
after the candidate field was a ‘0’, thereby lowering the 
weight of that feature during classification training. 
This does not particularly hurt us for the DNS 
queries/responses case, but for more complex protocols, 
it could be important to find the exact features that 
delimit the field of interest.  

4.3. False Positives 

The third evaluation was to understand the extent of 
false positives while actually searching through a set of 
given packets for the field of interest. To do this, we 
chose a set of 100 packets with the DNS query field. 
We then generated every possible candidate field (i.e. 
every possible combination of offset and length) for 
each of these packets, and using a learned classifier, 
classified each of these candidate fields. We then 
counted the number of packets for which the classifier 
correctly extracted (and only extracted) the query field.  
The evaluation was done for either two or four positive 
examples, and then repeated over 20 sets of 200 
randomly selected negative examples. This establishes 
the extent to which the search for the field of interest 
among all the candidate packets is likely to yield false 
positives. Table 2 summarizes this result. 

NUM. 
POSITIVE 
TRAINING 
INSTANCES 

AVG. NUM. 
PACKETS 
CORRECTLY 
MARKED 

MAX.. NUM. 
PACKETS 
CORRECTLY 
MARKED 

MIN.  NUM. 
PACKETS 
CORRECTLY 
MARKED 

2 70 95 42 

4 86 100 68 

Table 2: Extent of False Positives: Packets with exactly one query 
field found during exhaustive enumeration of fields 

We observed over multiple runs of the classification 
algorithm that there is a high degree of variance in the 
number of packets that are marked correctly. This is 
owing to the fact that the random set of negative 
training examples may not contain examples of the 
type that resolve the ambiguity that is reflected in these 
misclassifications. This underlines the promise of the 
active learning framework; we can rectify this by 



adding the misclassified fields as negative examples for 
the next active learning iteration. However, we may 
have to ascribe a greater weight to the user-labeled 
negative examples relative to the randomly generated 
negative examples, since otherwise these specific 
examples will not generate enough of a penalty for 
misclassification during training, and therefore be 
effectively ignored. In fact, we can iteratively increase 
the weights until the classifier either gets these 
examples correct or can no longer improve its 
performance.  This is an extension to the classification 
algorithm that we have not fully implemented, and 
leave this for future work.   

5. DISCUSSIONS AND FUTURE WORK 

We have shown that our initial implementation of an 
active learning system for field identification is able to 
achieve reasonable success; it is still an open question 
as to how well it will generalize to other protocols.  As 
we described above, though, it seems clear that by 
making better use of our negative examples, we can 
drive the errors down to still lower levels. 

In our future work, we first want to evaluate more 
explicitly the advantages of active learning over batch 
labeling, as is traditional in supervised learning 
scenarios.  We can do this by measuring performance 
against the number of examples a user has to label in 
rounds of active learning, as compared to the same 
number of (randomly selected) examples labeled as a 
batch.  Furthermore, we would like to investigate how 
we can optimially choose which labels the system 
presents to the user for labeling, given that those that 
are the most ambigious (i.e., closest to the decision 
boundary) are the most likely to need user feedback. 

We would also like to extend our system in a number of 
other directions.  First, we would like to implement the 
“feature cascade” used in [1] to efficiently filter the 
input with successive passes of the component features 
instead of enumerating all possible subpackets as we 
described in Section 3.   Second, we would like to 
model the cost to the user of labeling negative 
examples vs. adding more data, allowing us to optimize 
in terms of user effort as well as classifier performance.  
Finally, we would like to explore how to generalize our 
work as a means of automatically extracting the 
structure of a protocol – if we can learn extractors for a 
number of tokens in a protocol, it is likely we can build 
models for how these tokens relate to each other. 

From an applications perspective, we would also like to 
explore the range of possible tasks for which our 
methods could be helpful.  For instance, one may want 
to extract the filenames of files sent over the network to 
enforce company policies, debug distributed systems 
problems related to particular field values, track the 
content of traffic to particular servers to understand 
their usage for management purposes, or identify 

whether applications with known vulnerabilities are 
being used on the network. We are optimistic that our 
methods could be helpful in many such scenarios. 
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