
HyperTalk: The Language for the Rest of Us

Kyle Wheeler

January 18, 2004

Contents

1 Introduction 1

2 History 1
2.1 The Birth 1
2.2 The Life 2
2.3 The Death 2
2.4 The Legend 2

3 Goals 2

4 Syntax Semantics 3
4.1 Implementation Notes 3
4.2 Objects 3
4.3 Messages 4
4.4 Handlers 4

5 Bibliography 4

A BNF 6
A.1 Scripts 6
A.2 Expressions 6
A.3 Ordinals and Positions 7
A.4 Chunks and Containers 7
A.5 Objects 7
A.6 Commands 8

A.6.1 Command Nonterminals 8
A.6.2 Commands 9
A.6.3 setCommand Syntax 11

A.7 Functions 11

Abstract

In 1976, Apple Computer, Inc. released the Apple I and
created the personal computing industry. In 1984, Ap-
ple released the first Macintosh computer, revolution-
izing the personal computing industry. In 1987, Apple
released HyperCard and HyperTalk, and tried to revolu-
tionize the personal computing industry again.

1 Introduction

There is, perhaps, no piece of software written by Ap-
ple Computer, Inc. more prone to generating extreme
emotions in its users than its operating system. Next
below that, however, is HyperCard. Designed and re-
leased in 1987 by Bill Atkinson [7], HyperCard was an
instant success. Leveraging the power and simplicity
of its scripting language, HyperTalk, designed by Bill
Atkinson and by Dan Winkler [1], HyperCard demys-
tified the art of creating software. The language has a
grammar and syntax similar to English, and as such ap-
pealed to computer hobbyists, teachers, and the uniniti-
ated alike. The commands HyperTalk uses are similar to
those used by the Macintosh Toolbox, the base-level API
of Apple’s Macintosh operating system, and the logical
structure is similar to Pascal and organized in an event-
driven manner [8].

2 History

2.1 The Birth

HyperTalk was born as the core scripting language of
the HyperCard application, developed by Bill Atkinson1

for Apple Computer, Inc. in 1987 under the condition
that it must be available for free on all Macs. Origi-
nally, the application was named “WildCard” (and the
language “WildTalk”, respectively), however, the name
was changed because of legal issues. Atkinson was in-
spired to explore new interface technologies by Xerox’s
Palo Alto Research Center and their SmallTalk language.

Quickly, the application and the language became
very popular. The language was easy to learn and drew
many people into programming computers for all sorts
of purposes, from basic animation, to automation, to cre-
ating large databases.

1Key developer of QuickDraw and MacPaint, an Apple Fellow, and
founder of GeneralMagic. Currently a high-resolution nature photog-
rapher.

1

2.2 The Life

Because Apple was under obligation to Bill Atkinson to
provide HyperCard for free, the company found it dif-
ficult to justify devoting employees to developing Hy-
perCard further. Regardless, HyperCard and HyperTalk
became very popular, spawning a bimonthly magazine
(HyperLink), and more than a few books. HyperCard
“stacks” began to be sold alongside more traditional Mac-
intosh programs in mail-order catalogs.

Eventually, in 1989, the internal political environ-
ment of Apple Computer changed under pressure from
Kevin Calhoun2 (a programmer at Apple), and Hyper-
Card and HyperTalk underwent a massive improvement
that resulted in HyperCard 2.0 (and a revised and more
consistent version of HyperTalk) which was released in
1990. Further improvements, like support for a color
interface, were announced as being under development.
Third-party vendors developed thousands of applications
based on HyperCard, and in addition, thousands of XCMDs
(external commands to extend HyperTalk to control ad-
ditional things or to provide certain functionality) “for
everything from HyperTalk compilers, to graphing sys-
tems, database access, internet connectivity and practi-
cally everything else” [7]. HyperCard was even used,
before the introduction of PowerPoint, as a general-pur-
pose presentation generator.

Shortly thereafter, however, Apple Computer reor-
ganized, and spun its software division off to create the
Claris company—outsourcing even the Macintosh Oper-
ating System. This was a disaster for the company. The
OS was returned to Apple, and HyperCard, after some
minor updates to fulfill promises of color support, was
apparently forgotten.

2.3 The Death

HyperCard was finally rolled into Apple’s QuickTime
group (as it seemed to be multimedia-related), and be-
gan to be developed into a QuickTime development plat-
form under the direction of Kevin Calhoun. The re-
sult of this development, HyperCard 3.0, was presented
and distributed in 1996 at the annual Apple Word-Wide
Developer’s Conference as a beta and sneak-preview of
things to come. This version of HyperCard/HyperTalk
had an impressive array of new features, including in-
ternet connectivity, and the ability to be displayed in a
web browser or QuickTime viewer (somewhat similar to
Flash, by Macromedia). The new version was never re-
leased, and the lead-developer, Kevin Calhoun, left Ap-
ple in 2001 [7]. Without a champion in Apple, or appar-
ent support from Apple’s management, HyperCard and

2Calhoun left Apple in 2001 to form his own company, 4R Soft-
ware [20].

HyperTalk languished and became less popular. Hyper-
Card is still available for sale on Apple’s website, but
has not received an update since the mid-nineties.

2.4 The Legend

HyperCard clones, which also used the HyperTalk script-
ing language, were developed in the absence of Apple’s
commanding lead. These clones and descendants in-
cluded SuperCard (for the Macintosh)3, Toolbox (for Mi-
crosoft Windows)4, MetaCard (for Windows, Mac, and
Unix/X11)5, WinPlus (for Microsoft Windows), Hyper-
Sense (originally for NeXT), FreeCard (an open-source
clone), PLUS (for Mac, Windows, and OS/2)6, Hyper-
Studio (for Mac and Windows)7, LinkWay (for DOS)8,
and a cross-platform OracleCard from Oracle9. [7] The
ideas embodied in HyperTalk, and even much of the syn-
tax, was also used by Macromedia in their Director and
Authorware products as the Lingo scripting language.

While HyperCard was dead, HyperTalk maintained
popularity within the ranks of Apple’s engineering core.
In 1993, Apple engineers developed a mechanism stan-
dard called Apple’s Open Scripting Architecture, which
standardized a generic way for programs to respond to
script calls (“Apple Events”). This allowed the develop-
ment of a slightly modified HyperTalk language, called
AppleScript, that was generic enough to be a cross-ap-
plication OS-level scripting language (allowing programs
from many vendors to be controlled by and accept high-
level user commands from the operating system) [10].
The language and basic grammar was even translated
into other languages, including English, French, Japanese,
and Italian [6]—although the feature was dropped with
the introduction of Mac OS 8.5 on October 17, 1998
[11]. AppleScript itself lived on as an popular way to
manage work-flow and automate operating system tasks.

3 Goals

“HyperCard is a descendant of two ideas.
One was the give-away Rolodex program that I
wrote just to keep track of my own journal arti-
cles. The other was a research project I did on
what the new generation computer should [be]
. . . ”

—Bill Atkinson [3]

3by Silicon Beach Software, now SolutionsEtcetera[21]
4by Asymmetrix, now defunct
5now known as Runtime’s Revolution[4, 17]
6by Format Software in Germany, now defunct [15]
7by Roger Wagner Publishing [12]
8by Larry Kheriaty and eventually IBM [14]
9Later renamed “Oracle Media Objects”[18]

2

Algorithms aside, what probably first inspired both
HyperCard and HyperTalk is the so-called Macintosh
dream. As Atkinson says, “The Macintosh dream has
really been putting the power of the personal computer
into an individual person’s hands.” While the general
applications of the time were getting much easier to use
and didn’t require memorization of control-characters
and command sequences, Atkinson felt that the power
of program creation still lay outside the individual per-
son’s ken—that building useful and helpful programs
still required arcane knowledge of the computer’s in-
ternals or of some obtuse mathematical constructs. To
that end, HyperCard with HyperTalk was an attempt to
make programming accessible to anyone. As Atkinson
said, “The most exciting thing for me is when I see peo-
ple amazed and pleased at the newfound power they got
from a program—when they say, ‘Wow, I can do this!’. . .
It’s the original Macintosh dream of making the power
of personal computer accessible to individuals. Hyper-
Card is just unfolding another layer of Macintosh.” [3]

HyperCard and HyperTalk were particularly impor-
tant to people invested in “hypertext”, a concept that was
developed in Stanford in the 1960’s as a format for cre-
ative information grouping [19]. HyperCard was hailed
as a convenient demonstration of the power and utility
of linked and grouped information (and more accessible
to the common user than older hypertext projects like
the Xanadu project), and many of the first HyperCard
“stacks” were used for precisely that purpose.

4 Syntax Semantics

The basic design of HyperTalk is as a message-passing
language, generating and handling messages (or events)
between objects. How an object responds to messages
that are sent to it depends on the script attached to it.
With the advent of AppleScript and the Open Script-
ing Architecture, messages (Apple Events) can even be
passed to other applications (which are treated as remote
objects).

Scripting in HyperTalk, unlike most programming
languages, is extremely easy for non-programmers to
understand because its syntax is so similar to English.
The common example of how readable HyperTalk is is
the phrase:

put the first word of the third line of field

’hello’ into field ’goodbye’

...which does exactly what it seems to. In order to
achieve this kind of readability and apparent simplic-
ity requires a lot of what is frequently termed “syntactic
sugar.” For example, numbers have many synonyms:1

and2 can be replaced withone andtwo or evenfirst

andsecond. For similar reasons, HyperTalk is untyped,
allowing code like this to work [13]:

ask "What number do you want to square?"

put it * it into field "Answer"

Also, many otherwise complex actions—such as di-
aling the modem, displaying a file-browser dialog box,
or getting information about the system the script is run-
ning on—is abbreviated, abstracted, and made available
to the script with simple statements. Because of this in-
credible built-in power and verbosity, the language and
the list of keywords in the language is quite vast.

4.1 Implementation Notes

In many ways, HyperTalk—particularly in the begin-
ning—depended heavily on the programming structure
of HyperCard. HyperCard is frequently referred to as
presenting itself like a stack of index cards. HyperCard
projects are called “stacks” of “cards” to encourage that
perception. Cards are containers for other objects like
buttons, pictures, and text fields. The most basic Hyper-
Talk scripts were used for defining transitions from card
to card, and were associated with particular objects, such
as a button or a card or a text field. A HyperTalk script or
function would be triggered by an event sent to that ob-
ject, such as amouseUp. As more and more events are
added to each object, much more active programming
can be accomplished. Actions are mostly accomplished
by sending events to other objects, all of which could
be named and numbered for easy reference. The com-
mands HyperTalk uses in addition to message passing
are similar to those used by the Macintosh Toolbox, the
base-level API of Apple’s Macintosh operating system,
however most common tasks (such as displaying dialog
boxes10) have been simplified.

The HyperTalk script is normally saved in plain text
form in the stack, although HyperCard 2.4 capable of
compiling it to a binary executable.

4.2 Objects

Officially, HyperCard supports five kinds of objects: but-
tons, fields, cards, backgrounds, and stacks—although
applications can behave as a sixth kind of object. The
distinction between buttons, fields, and backgrounds is
only in how they present themselves in the graphic user
interface—buttons as uneditable and clickable-looking
things, fields as text blocks or graphics, and backgrounds
as inert pictures; the HyperTalk capabilities of each and
which messages they can receive are roughly identical.
[10]

10For example:answer "This is displayed." with "Aha."

or ask "What is your name?"

3

4.3 Messages

Messages come in two flavors: system messages and
commands. System messages are defined by the envi-
ronment, and are generated in response to user actions
such as mouse clicks and key presses or environmen-
tal changes such as the time. Commands are arbitrar-
ily named messages that are defined by the HyperTalk
script-writer [10]. Messages are generally sent in the
following manner:

send 〈message〉 to 〈object〉

4.4 Handlers

There are two kinds of execution blocks, or handlers.
The first is a message handler, which is executed when-
ever the object the script is attached to receives a mes-
sage of the corresponding name. In the script, The other
kind of handler is the function handler [10]. Message
handlers are defined like so:

on 〈messageName〉

script statements
end 〈messageName〉

Function handlers are similar:

function 〈functionName〉

script statements
end 〈functionName〉

5 Bibliography

References

[1] HyperTalk from FOLDOC, December 2003.
http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?HyperTalk.

[2] Steve Collins. International HyperCard User
Group (iHUG). Web, December 2003.
http://www.ihug.org/index.html.

[3] Quick Connect. The Genius behind HyperCard:
Bill Atkinson. Known Users, November 1987.
http://www.savetz.com/ku/ku/quickgenius-
behindhypercardbill atkinsonthe november-
1987.html.

[4] MetaCard Corporation. MetaCard: Cross
Platform Multimedia Authoring and Application
Development, December 2003.
http://www.metacard.com/.

[5] Peter Flecks and Pantechnicon. HyperCard FAQ,
December 2003. http://pan.uqam.ca/cgi-
bin/usemod/wiki.pl?HyperCardFAQ.

[6] Wikimedia Foundation. AppleScript. In
Wikipedia: The Free Encyclopedia[9].
http://en2.wikipedia.org/wiki/AppleScript.

[7] Wikimedia Foundation. HyperCard. InWikipedia:
The Free Encyclopedia[9].
http://en2.wikipedia.org/wiki/HyperCard.

[8] Wikimedia Foundation. HyperTalk. InWikipedia:
The Free Encyclopedia[9].
http://en2.wikipedia.org/wiki/HyperTalk.

[9] Wikimedia Foundation.Wikipedia: The Free
Encyclopedia. Wikimedia Foundation, December
2003. http://en2.wikipedia.org/wiki/MainPage.

[10] Apple Computer Inc.HyperCard: Script
Language Guide. Apple Computer Inc., 20525
Mariani Avenue, Cupertino, CA, 2nd edition,
1993.

[11] Cobweb Publishing Inc. Apple Timeline,
1996-2000. Web, December 2003.
http://www.lowendmac.com/time/1996-00.shtml.

[12] Roger Wagner Publishing Inc. HyperStudio 4
Product Information, December 2003.
http://www.hyperstudio.com/hs4/index.html.

[13] Jeanne A. E. DeVoto (jaed@jaedworks.com).
HyperTalk BNF. Web, December 2003.
http://www.jaedworks.com/hypercard/scripts/hypertalk-
bnf.html.

[14] Christopher Keep, Tim McLaughlin, and Robin
Parmar. LinkWay. InThe Electronic Labyrinth
[16]. http://www.iath.virginia.edu/elab/elab.html.

[15] Christopher Keep, Tim McLaughlin, and Robin
Parmar. PLUS. InThe Electronic Labyrinth[16].
http://www.iath.virginia.edu/elab/hfl0024.html.

[16] Christopher Keep, Tim McLaughlin, and Robin
Parmar.The Electronic Labyrinth. University of
Washington, December 2003.
http://www.iath.virginia.edu/elab/elab.html.

[17] Rod McCall. Runtime Revolution - User-Centric
Software Development. Web, December 2003.
http://www.runrev.com/indexuk.html.

[18] Inc. Oracle. Oracle FAQ: Oracle Media Objects.
Web, December 2003.
http://www.orafaq.com/faqomo.htm.

[19] Brenton R. Schlender. New Software Beginning
to Unlock The Power of Personal Computers.
Wall Street Journal, (2):27, November 16 1987.
http://www.ihug.org/WSJ87.html.

4

[20] M.S.R.F. Schonewille. Re: [HyperCard] Kevin
Calhoun, June 2001.
http://groups.yahoo.com/group/HyperCard/message/6353.

[21] SolutionsEtcetera.com. SuperCard 4. Web,
December 2003. http://www.supercard.us/.

[22] Derrick Story. The Death of HyperCard? Web,
March 2001.
http://www.macdevcenter.com/pub/a/mac/2001/03/29/mac -
dev.html.

[23] Dan Winkler, Scot Kamins, and Jeanne DeVoto.
HyperTalk 2.2: The Book. Random House, 1994.

5

A BNF

The BNF description of the HyperTalk language was publishedin HyperTalk 2.2: The Book[23], and describes the
language thusly11, as cited by [13].

A.1 Scripts

〈script〉 = 〈script〉 〈handler〉 | 〈handler〉

〈handler〉 = 〈return〉 〈handler〉 | on 〈messageKey〉 〈return〉 〈stmntList〉 eol end〈messageKey〉 〈return〉

〈ifBlock〉 = if 〈logical〉 [〈return〉] then{〈singleThen〉 | 〈return〉 〈multiThen〉}

〈singleThen〉 = 〈stmnt〉 [[〈return〉] 〈elseBlock〉]

〈multiThen〉 = 〈stmntList〉 { end if | 〈elseBlock〉 }

〈elseBlock〉 = else{ 〈stmnt〉 | 〈return〉 〈stmntList〉 end if}

〈repeatBlock〉 = repeat [forever | 〈duration〉 | 〈count〉 | with 〈identifier〉 = 〈range〉] 〈return〉 〈stmntList〉 end
repeat

〈duration〉 = until 〈logical〉 | while 〈logical〉

〈count〉 = [〈for〉] 〈unsigned〉 [times]

〈range〉 = 〈integer〉 [down] to 〈integer〉

A.2 Expressions

〈expr〉 = 〈source〉 | - 〈expr〉 | not 〈expr〉 | 〈expr〉 〈op〉 〈expr〉 | (〈expr〉) | 〈chunk〉 〈expr〉 | there is{ a |
an | no} 〈expr〉

〈op〉 = + | - | * | / | & | && | ˆ | = | < | > | <> | 6= | <= | >= | ≤ | ≥ | and | or |
contains | div | mod | is | is not | is in | is not in | is within | is not within | is a[n] | is not
a[n]

〈source〉 = 〈literal〉 | 〈constant〉 | 〈simpleContainer〉 | [〈adjective〉] 〈function〉 | [〈adjective〉] 〈property〉 of
{〈object〉 | 〈window〉 | 〈menuItem〉 of 〈menu〉 | 〈chunk〉 〈field〉 }

〈literal 〉 = “quoted string” | unquotedToken

〈constant〉 = down | empty | false | formFeed | lineFeed | pi | quote | space | tab | true | up |
zero | one | two | three | four | five | six | seven | eight | nine | ten

〈adjective〉 = long | short | abbrev | abbr | abbreviated

〈window〉 = [the] { card | pattern | tool | scroll} window | 〈messageBox〉

〈menuItem〉 = 〈ordinal〉 menuItem | menuItem〈expr〉

〈menu〉 = 〈ordinal〉 menu | menu〈expr〉

〈function〉 = the〈theFunc〉 | [the] 〈theFunc〉 of 〈oneFuncArg〉 | 〈identifier〉 (〈funcArgs〉)

11There may be some omissions due to the breadth of the language.

6

〈theFunc〉 = abs | annuity | atan | average | charToNum | clickChunk | clickH | clickLine | clickLoc
| clickText | clickV | cmdKey | commandKey | compound | cos | date | diskSpace | exp |
exp1 | exp2 | foundChunk | foundField | foundLine | foundText | heapSpace| length | ln | ln1
| log2 | max | menus | min | mouse | mouseClick | mouseH | mouseLoc | mouseV | number
| numToChar | offset | optionKey | param | paramCount | params | programs | random | result
| round | screenRect| seconds | selectedButton| selectedChunk| selectedField| selectedLine |
selectedLoc | selectedText| shiftKey | sin | sound | sqrt | stacks | stackSpace| sum |
systemVersion| tan | target | ticks | time | tool | trunc | value | windows

〈property〉 = address | autoHilite | autoSelectautoTab| blindTyping | botRight | bottom | bottomRight
| brush | cantAbort | cantDelete | cantModify | cantPeek | centered | checkMark | cmdChar |
commandChar| cursor | debugger | dialingTime | dialingVolume | dontSearch| dontWrap |
dragSpeed| editBkgnd | enabled | environment | family | filled | fixedLineHeight | freeSize |
grid | height | highlight | highlite | hilight | hilite | icon | id | itemDelimiter | language | left
| lineSize | loc | location | lockErrorDialogs | lockMessages| lockRecent | lockScreen |
lockText | longWindowTitles | markChar | marked | menuMessage| menuMsg | messageWatcher
| multiple | multipleLines | multiSpace | name | numberFormat| owner | partNumber | pattern |
polySides | powerKeys | printMargins | printTextAlign | printTextFont | printTextHeight |
printTextSize | printTextStyle | rect | rectangle | reportTemplates| right | script | scriptEditor |
scriptingLanguage| scriptTextFont | scriptTextSize | scroll | sharedHilite | sharedText | showLines
| showName | showPict | size | stacksInUse| style | suspended| textAlign | textArrows |
textFont | textHeight | textSize | textStyle | titleWidth | top | topLeft | traceDelay | userLevel |
userModify | variableWatcher| version | visible | wideMargins | width | zoomed

A.3 Ordinals and Positions

〈ordinal〉 = [the] { last | mid | middle | any | first | second | third | fourth | fifth | sixth | seventh
| eigth | ninth | tenth}

〈position〉 = this | [the] prev | [the] next

A.4 Chunks and Containers

〈simpleContainer〉 = 〈variable〉 | 〈part〉 | 〈menu〉 | 〈messageBox〉 | [the] selection

〈container〉 = 〈chunk〉 〈simpleContainer〉 | 〈simpleContainer〉

〈messageBox〉 = [the] msg [box | window]

〈chunk〉 = [{〈ordinal〉 char | char〈expr〉 [to 〈expr〉]} of] [{〈ordinal〉 word | word 〈expr〉 [to 〈expr〉]} of]
[{〈ordinal〉 item | item 〈expr〉 [to 〈expr〉]} of] [{〈ordinal〉 line | line 〈expr〉 [to 〈expr〉]} of]

A.5 Objects

〈object〉 = 12 HyperCard | me | [the] target | 〈button〉 | 〈field〉 | 〈card〉 | 〈bkgnd〉 | 〈stack〉

〈button〉 = {button id〈unsignedFactor〉 | button〈factor〉 | 〈ordinal〉 button} [of 〈card〉]

〈field〉 = {field id 〈unsignedFactor〉 | field 〈factor〉 | 〈ordinal〉 field} [of 〈card〉]

〈part〉 = 〈button〉 | 〈field〉 | {part id〈unsignedFactor〉 | part〈factor〉 | 〈ordinal〉 part} [of 〈card〉]

〈card〉 = recent card | back | forth | card id〈unsigned〉 | card〈expr〉 | card〈endLine〉 | 〈ordinal〉 card |
〈position〉 card} [of 〈bkgnd〉] | 〈ordinal〉 marked card | 〈position〉 marked card | marked card〈expr〉

〈bkgnd〉 = bkgnd id〈unsigned〉 | bkgnd〈expr〉 | bkgnd〈endLine〉 | 〈ordinal〉 bkgnd | 〈position〉 bkgnd

〈stack〉 = this stack | stack〈expr〉 | stack〈endLine〉

12Note: “card field 1” is a field and “card (field 1)” is a card.

7

A.6 Commands

A.6.1 Command Nonterminals

〈dateItems〉 = 〈unsigned〉, 〈unsigned〉, 〈unsigned〉, 〈unsigned〉, 〈unsigned〉, 〈unsigned〉, 〈unsigned〉

〈date〉 = 〈unsigned〉 | 〈dateItems〉 〈humanDate〉 [〈humanTime〉] | 〈humanTime〉 [〈humanDate〉]

〈dateFormat〉 = [〈adjective〉] {seconds | dateItems | date | time}

〈dayOfWeek〉 = Sunday | Sun | Monday | Mon | Tuesday | Tue | Wednesday| Wed | Thursday |
Thu | Friday | Fri | Saturday | Sat

〈dest〉 = { 〈card〉 | 〈bkgnd〉 } [of 〈stack〉] | 〈stack〉 | { 〈card〉 | 〈bkgnd〉 } of [〈stack〉] 〈exprOrLine〉

〈duration〉 = until 〈logical〉 | while 〈logical〉

〈humanDate〉 = [〈dayOfWeek〉 ,] 〈month〉 〈unsigned〉 , 〈unsigned〉 | 〈unsignedFactor〉 {/ | -} 〈unsignedFactor〉
{/ | -} 〈unsignedFactor〉

〈humanTime〉 = 〈unsigned〉 : 〈unsigned〉 [: 〈unsigned〉] [am | pm]

〈month〉 = January | Jan | February | Feb | March | Mar | April | Apr | May | June | Jun | July
| Jul | August | Aug | September| Sep | October | Oct | November | Nov | December | Dec

〈point〉 = {〈integer〉 , 〈integer〉}

〈preposition〉 = before | after | into

〈rect〉 = {〈integer〉 , 〈integer〉 , 〈integer〉 , 〈integer〉}

〈springKeys〉 = 〈springKeys〉 , 〈springKey〉 | 〈springKey〉

〈springKey〉 = shiftKey | optionKey | commandKey

〈style〉 = transparent| opaque | rectangle | roundrect | shadow | checkBox | radioButton | scrolling |
oval | popup

〈textAlign〉 = right | left | center

〈textStyleList〉 = 〈textStyleList〉 〈textStyle〉 | 〈textStyle〉

〈textStyle〉 = plain | bold | italic | underline | outline | shadow | condense| extend | group

〈visEffect〉 = 〈visKind〉 [[very] {slow | slowly | fast}] [to 〈visSrc〉]

〈visKind〉 = barn door{open | close} | cut | plain | dissolve | venetian blinds | checkerboard| iris
{open | close} | scroll{left | right | up | down} | wipe{left | right | up | down} | zoom
{open | out | close | in } | shrink to{top | bottom | center} | stretch from{top | bottom |
center} | push{left | right | up | down}

〈visSrc〉 = card | black | white | gray | inverse

〈window〉 = {card | pattern | tool | scroll | fatBits} window | 〈messageBox〉

8

A.6.2 Commands

add 〈arith〉 to 〈container〉

answer 〈expr〉 [with 〈factor〉 [or 〈factor〉 [or 〈factor〉]]] | file 〈expr〉 [of type 〈factor〉 [or 〈factor〉 [or 〈factor〉]]]
| program〈expr〉 of type〈factor〉

arrowkey left | right | up | down

ask { password | file } 〈expr〉 [with 〈expr〉 | 〈line〉]

beep [〈unsigned〉]

choose tool 〈unsigned〉 | { browse | button | field | select | lasso | pencil | brush | eraser | line |
spray [can] | rect | round rect | bucket | oval | curve | text | reg poly | poly } tool

click at 〈point〉 [with 〈springKeys〉]

close file 〈exprOrLine〉 | printing | application〈exprOrLine〉 | 〈window〉

commandKeyDown 〈expr〉

controlkey 〈unsigned〉

convert { 〈container〉 | 〈date〉} [from 〈dateFormat〉 [and〈dateFormat〉]] to 〈dateFormat〉 [and〈dateFormat〉]

copy template〈expr〉 to 〈stack〉

create stack〈expr〉 [with 〈bkgnd〉] [in [a] new window] | menu〈expr〉

debug hintBits | pureQuickDraw{ true | false} | checkPoint | maxmem | sound{ on | off }

delete 〈chunk〉 〈simpleContainer〉 | [〈menuItemExpr〉 { of | from }] 〈menuExpr〉 〈part〉

dial 〈expr〉 [with modem | with [modem]〈expr〉]

disable [〈menuItem〉 of] 〈menu〉 | 〈button〉

divide 〈container〉 by 〈float〉

domenu 〈exprOrLine〉 | 〈expr〉 [, 〈expr〉] [without dialog]

drag from 〈point〉 to 〈point〉 [with 〈springKeys〉]

edit [the] script of〈object〉

enable [〈menuItem〉 of] 〈menu〉 | 〈button〉

enterInField

enterKey

export paint to file〈expr〉

find [whole | string | words | word | chars | normal] [international]〈expr〉 [in 〈field〉] [〈ofOnly〉
marked cards] functionkey〈unsigned〉

get 〈expr〉 | [the] 〈property〉 [of { 〈window〉 | 〈object〉 | [〈menuItem〉 of] 〈menu〉 | 〈chunk〉 〈field〉 }]

go [to] {{〈ordinal〉 | 〈position〉} 〈endLine〉 | 〈dest〉} [in [a] new window] [without dialog]

help

hide menuBar | picture of〈object〉 | { card | bkgnd} picture | 〈window〉 | 〈part〉

9

import paint from file〈expr〉

keyDown 〈expr〉

lock screen | messages| error dialogs | recent

mark all cards | 〈card〉 | cards where〈expr〉 | cards by finding [whole| string | words | word | chars |
normal] [international]〈expr〉 [in 〈field〉]

multiply 〈container〉 by 〈arith〉

open [report] printing [with dialog] | file 〈exprOrLine〉 | 〈expr〉 [with 〈exprOrLine〉] | 〈exprOrLine〉

play stop | 〈expr〉 [[tempo〈unsigned〉] 〈exprOrLine〉]

pop card [〈preposition〉 〈container〉]

print 〈expr〉 with 〈exprOrLine〉 | 〈unsigned〉 cards | all cards | marked cards| 〈card〉 | 〈field〉 | 〈expr〉

push 〈dest〉

put 〈expr〉 [〈preposition〉 [〈container〉 | [〈menuItem〉 of] 〈menu〉 [with menuMessage[s]〈expr〉]]

read from file 〈expr〉 {until 〈expr〉 | for 〈unsigned〉}

reply 〈expr〉 [with keyword〈expr〉] error 〈expr〉

request 〈expr〉 { of | from } 〈expr〉 { ae | appleEvent} { class | ID | sender | returnID | data [{ of |
with } keyword〈expr〉] }

reset paint | menubar | printing

returnInField

returnKey

save { [this] stack | stack〈expr〉 } as [stack]〈expr〉

select [before | after] text of | 〈chunk〉 〈field〉 | 〈message〉 | 〈part〉 | 〈emptyExpr〉

set 13 [the] 〈property〉 [〈ofOnly〉 {〈window〉 | 〈object〉 | 〈menuItem〉 of 〈menu〉 | 〈chunk〉 〈field〉}] to
〈propVal〉

show menuBar | picture of〈object〉 | { card | bkgnd} picture | { 〈window〉 | 〈part〉 } [at 〈point〉] | [all
| marked | 〈unsigned〉] cards

sort { [cards of]{ this stack | 〈bkgnd〉 } | marked cards} [ascending | descending] [text| numeric |
international | dateTime] by〈expr〉 [{ lines | items} of] 〈container〉 by 〈expr〉

start using〈stack〉

stop using〈stack〉

subtract 〈arith〉 from 〈container〉

tabKey

type 〈expr〉 [with 〈springKeys〉]

unlock screen [with [visual [effect]]〈visEffect〉] | error dialogs | recent | messages

unmark all cards | 〈card〉 | cards where〈expr〉 | cards by finding [whole| string | words | word | chars
| normal] [international]〈expr〉 [in 〈field〉]

13See notes onset.

10

visual [effect] 〈visEffect〉

wait 〈duration〉 | 〈count〉 [ticks | tick | seconds | second | sec]

write 〈expr〉 to file 〈exprOrLine〉

A.6.3 set Command Syntax

〈style〉 = transparent| opaque | rectangle | roundrect | shadow | checkBox | radioButton | scrolling |
oval | popup

〈textAlign〉 = right | left | center

〈textStyleList〉 = 〈textStyleList〉 〈textStyle〉 | 〈textStyle〉

〈textStyle〉 = plain | bold | italic | underline | outline | shadow | condense| extend | group

〈propVal〉 = 〈exprOrLine〉 | 〈integer〉 | 〈unsigned〉 | 〈logical〉 | 〈point〉 | 〈rect〉 | 〈style〉 | 〈textAlign〉 |
〈textStyleList〉

exprOrLine commandChar, cursor, debugger, environment, itemDelimiter, language, markChar, menuMessage,
messageWatcher, name, numberFormat, owner, printTextFont, reportTemplates, script, scriptEditor,
scriptingLanguage, scriptTextFont, stacksInUse, textFont, variableWatcher, version

integer top, bottom, left, right, width, height

unsigned brush, dialingTime, dialingVolume, dragSpeed, family, freeSize, icon, ID, lineSize, multiSpace,
partNumber, pattern, polySides, printTextHeight, printTextSize, scriptTextSize, scroll, size, textHeight,
textSize, titleWidth, traceDelay, userLevel

logical autoHilite, autoSelect, autoTab, blindTyping, cantAbort, cantDelete, cantModify, cantPeek, centered,
checkMark, dontSearch, dontWrap, editBkgnd, enabled, filled, fixedLineHeight, grid, hilite, lockErrorDialogs,
lockMessages, lockRecent, lockScreen, lockText, longWindowTitles, marked, multiple, multipleLines,
powerKeys, sharedHilite, sharedText, showLines, showName, showPict, suspended, textArrows, userModify,
visible, wideMargins, zoomed

point loc, topLeft, botRight, bottomRight, scroll (of window)

rect rect, printMargins

style style

textAlign textAlign, printTextAlign

textStyleList printTextStyle, textStyle

A.7 Functions

Note: 〈funcArth〉, 〈funcFloat〉, 〈funcExpr〉, and〈funcUnsigned〉 all take expressions where they’re called with
parentheses, but factors otherwise.

abs 〈funcArith〉

annuity 〈float〉 , 〈float〉

atan 〈funcFloat〉

average 〈arithList〉

charToNum 〈funcExpr〉

clickChunk

11

clickH

clickLine

clickLoc

clickText

clickV

cmdKey

commandKey

compound 〈float〉 , 〈float〉

cos 〈funcFloat〉

date

diskSpace

exp 〈funcFloat〉

exp1 〈funcFloat〉

exp2 〈funcFloat〉

foundChunk

foundField

foundLine

foundText

heapSpace

length 〈funcExpr〉

ln 〈funcFloat〉

ln1 〈funcFloat〉

ln2 〈funcFloat〉

max 〈arithList〉

menus

min 〈arithList〉

mouse

mouseClick

mouseH

mouseLoc

mouseV

number cards [in〈bkgnd〉] | bkgnds | [card | bkgnd]{ buttons | fields | parts} | { chars | words |
items | lines} in 〈funcExpr〉 | 〈object〉 | menus | menuItems{ in | of } 〈menu〉 | marked cards|
windows

12

numToChar 〈funcUnsigned〉

offset 〈string〉 , 〈string〉

optionKey

param 〈funcUnsigned〉

paramCount

params

random 〈funcUnsigned〉

result

round 〈funcFloat〉

screenRect

seconds

selectedButton [card | bkgnd] family〈funcUnsigned〉

selectedChunk

selectedField

selectedLine

selectedLoc

selectedText

shiftKey

sin 〈funcFloat〉

sound

sqrt 〈funcFloat〉

stacks

stackSpace

sum 〈arithList〉

systemVersion

tan 〈funcFloat〉

target

ticks

time

tool

trunc 〈funcFloat〉

value 〈funcExpr〉

windows

13

	Introduction
	History
	The Birth
	The Life
	The Death
	The Legend

	Goals
	Syntax Semantics
	Implementation Notes
	Objects
	Messages
	Handlers

	Bibliography
	BNF
	Scripts
	Expressions
	Ordinals and Positions
	Chunks and Containers
	Objects
	Commands
	Command Nonterminals
	Commands
	set Command Syntax

	Functions

