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1.1 Introduction

The primary visual cortex (V1) is the first cortical area to receive visual
information transmitted by ganglion cells of the retina via the lateral genic-
ulate nucleus (LGN) of the thalmus to the back of the brain (see figure 1.1).
A fundamental property of the functional architecture of V1 is an orderly
retinotopic mapping of the visual field onto the surface of cortex, with the
left and right halves of visual field mapped onto the right and left cortices
respectively. Except close to the fovea (centre of the visual field), this
map can be approximated by the complex logarithm (see figure 1.2). Let
rr = {rg,f0r} be a point in the visual field represented in polar coordi-
nates and let r = {x,y} be the corresponding point in the cortex given
in Cartesian coordinates. Under the retino-cortical map, r = {logrg,0r}.
Evidently, if we introduce the complex representation of rg, zz = rre®
then z = logzr = logrr + ilg = x + iy generates the complex cortical
representation. One of the interesting properties of the retino-cortical map
is that the action of rotations and dilatations in the visual field correspond
to translations in the x and y directions, respectively, in cortex.
Superimposed upon the retinotopic map are a number of additional
feature maps reflecting the fact that neurons respond preferentially to stim-
uli with particular features [38, 43, 55]. For example, most cortical cells
signal the local orientation of a contrast edge or bar—they are tuned to
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Figure 1.1. The visual pathway

a particular local orientation [33]. Cells also show a left/right eye prefer-
ence known as ocular dominance and some are also direction selective. The
latter is illustrated in figure 1.1 where the response of a cell to a moving
bar is shown. In recent years much information has accumulated about
the distribution of orientation selective cells in V1 [27]. In figure 1.3 is
given a typical arrangement of such cells, obtained via microelectrodes im-
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Figure 1.2. The retino-cortical map generated by the complex logarithm
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Figure 1.3. Orientation tuned cells in layers of V1 which is shown in
cross-section. Note the constancy of orientation preference at each cortical lo-
cation [electrode tracks 1 and 3], and the rotation of orientation preference as
cortical location changes [electrode track 2]. Redrawn from [27].

planted in Cat V1. The first panel shows how orientation preferences rotate
smoothly over the surface of V1, so that approximately every 300um the
same preference reappears, i.e. the distribution is 7—periodic in the orien-
tation preference angle. The second panel shows the receptive fields of the
cells, and how they change with V1 location. The third panel shows more
clearly the rotation of such fields with translation across V1.

A more complete picture of the two—dimensional distribution' of both
orientation preference and ocular dominance has been obtained using opti-
cal imaging techniques [5, 7, 6]. The basic experimental procedure involves
shining light directly on to the surface of the cortex. The degree of light
absorption within each patch of cortex depends on the local level of ac-
tivity. Thus, when an oriented image is presented across a large part of

1 The cortex is of course three-dimensional since it has non-zero thickness with a dis-
tinctive layered structure. However, one find that cells with similar feature preferences
tend to arrange themselves in vertical columns so that to a first approximation the lay-
ered structure of cortex can be ignored. For example, electrode track 1 in figure 1.3 is a
vertical penetration of cortex that passes through a single column of cells with the same
orientation preference and ocular dominance.
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the visual field, the regions of cortex that are particularly sensitive to that
stimulus will be differentiated. (An example of optical imaging data is
shown in figure 1.5). The basic topography revealed by these methods has
a number of characteristic features [43]: (i) Orientation preference changes
continuously as a function of cortical location except at singularities (or
pinwheels). (ii) There exist linear regions, approximately 800 x 800um?
in area (in macaque monkeys), bounded by singularities, within which iso-
orientation regions form parallel slabs. (iii) Iso-orientation slabs tend to
cross the borders of ocular dominance stripes at right angles. Singular-
ities tend to align with the centers of ocular dominance stripes. These
experimental findings suggest that there is an underlying periodicity in the
microstructure of V1 with a period of approximately 1mm (in cats and
primates). The fundamental domain of this periodic tiling of the cortical
plane is the hypercolumn [34, 38], which contains two sets of orientation
preferences ¢ € [0,7), one for each eye, organized around a set of four
singularities (see figure 1.4).

Figure 1.4. Iso—orientation contours in a hypercolumn. There are two ocular
dominance columns corresponding to left (L) and right (R) eye preference. Each
ocular dominance column contains two orientation singularities or pinwheels. A
dashed ring is drawn around one orientation singularity. Redrawn from [6]

Given the existence of a regularly repeating set of orientation and oc-
ular dominance maps, how does such a periodic structure manifest itself
anatomically? Two cortical circuits have been fairly well characterized.
There is a local circuit operating at sub-hypercolumn dimensions in which
cells make connections with most of their neighbors in a roughly isotropic
fashion [21]. The other circuit operates between hypercolumus, connecting
cells with similar functional properties separated by several millimetres of
cortical tissue. Optical imaging combined with labelling techniques has
generated considerable information concerning the pattern of connections
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Figure 1.5. Lateral Connections made by a cells in Tree Shrew V1. A radioactive
tracer is used to show the locations of all terminating axons from cells in a central
injection site, superimposed on an orientation map obtained by optical imaging.
(Patches with the same coarse-grained orientation preference are shown in the
same colour — this is purely for visualization purposes). The patchy distribution of
the lateral connections is clearly seen, linking regions of like orientation preference
along a particular visuotopic axis. The local axonal field, on the other hand, is
isotropic and connects all neurons within a neighbourhood (= 0.7 mm) of the
injection site. Redrawn from [9].

both within and between hypercolumns [5, 6, 40, 66, 9]. A particularly
striking result concerns the intrinsic lateral connections of V1. The axons
of these connections make terminal arbors only every 0.7 mm or so along
their tracks [47, 26], and they seem to connect mainly to cells with simi-
lar orientation preferences [40, 66, 9]. In addition, as shown in figure 1.5,
there is a pronounced anisotropy of the pattern of such connections: its long
axis runs parallel to a patch’s preferred orientation [26, 9]. Thus differing
iso-orientation patches connect to patches in neighbouring hypercolumns in
differing directions. Ongoing studies of feedback connections from points in
extrastriate areas back to area V1 [1], show that these connectional fields
are also distributed in highly regular geometric patterns, having a topo-
graphic spread of up to 13mm that is significantly larger than the spread
of intrinsic lateral connections. Stimulation of a hypercolumn via lateral
or feedback connections modulates rather than initiates spiking activity
[31, 57]. Thus this long-range connectivity is ideally structured to provide
local cortical processes with contextual information about the global nature
of stimuli. As a consequence the lateral connections have been invoked to
explain a wide variety of context-dependent visual processing phenomena
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(28, 24, 16].

From the perspective of nonlinear dynamics, there are two very distinct
questions one can ask about the large-scale structure of cortex: (i) how did
the feature maps and connectivity patterns first develop? (ii) what types
of spontaneous and stimulus-driven spatio-temporal dynamics arise in the
mature cortex? It appears that in both cases the Turing mechanism for
spontaneous pattern formation plays a crucial role.

1.2 The Turing mechanism and its role in cooperative
cortical dynamics

In 1952 Turing [58] introduced an important set of new ideas concern-
ing spontaneous pattern formation. The details are well known, but we
will restate them here by way of providing a context for the rest of this
chapter. Turing considered the development of animal coat markings as
a problem of pattern formation. He started by introducing the idea that
chemical markers in the skin comprise a system of diffusion—coupled chem-
ical reactions among substances called morphogens. Turing introduced the
following two—component reaction—diffusion system:

dc

o = fe) + DV?c (1.1)

where ¢ is a vector of morphogen concentrations, f is (in general) a non-
linear vector function representing the reaction kinetics and D is the (di-
agonal) matrix of positive diffusion coefficients. What Turing showed was
that there can exist two different reactions such that in the absence of dif-
fusion (D = 0), c tends to a linearly stable homogeneous state, and when
D # 0, Dy # D5, the homogeneous state becomes unstable and ¢ tends to
a spatially inhomogeneous state. This was the now famous diffusion driven
instability.

Wilson and Cowan introduced exactly the same mechanism in a neural
context [64, 65]. Here we briefly summarize their formulation. Let ag(r,t)
be the activity of excitatory neurons in a given volume element of a slab
of neural tissue located at r € R?, and az(r,t) the correspond activity of
inhibitory neurons. ap and a; can be interpreted as local spatio-temporal
averages of the membrane potentials or voltages of the relevant neural
populations. In case neuron activation rates are low they can be shown to
satisfy nonlinear evolution equations of the form:

T%ET(;J) = —ag(r,t) +T/ wpp(r|r’)oplap(r’,t)]dr’
R2

— 7'/ wgr(rlr)orlar(v',t)]dy’ + hg(r,t)
R2
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TW = —ar(rt) + 7—/R2 wrg(r|r)oglap(r’, t)]dr’
- T/R2 wrr(rl)orlar(v',t)]dy’ + hy(r,t) (1.2)

where wy, (r|r") = wi,(|r — r'|) gives the weight per unit volume of all
synapses to the [th population from neurons of the mth population a dis-
tance |r — r'| away, o and o are taken to be smooth output functions

1 1

)= e (13)
where 77 determines the slope or sensitivity of the input—output characteris-
tics of the population and « is a threshold, hg and h; are external stimuli,
and 7 is the membrane time constant.

Eqns. (1.2) can be rewritten in the more compact form:

7‘% = —al(r,t)—i—T Z /Rz wlm(|1‘—I‘/|)0[am(r',t)]dr’

m=E,I
+ hy(r, ) (1.4)

Note that w;g > 0 and w;r < 0. -
In the case of a constant external input, h;(r) = h;, there exists at
least one fixed point solution a;(r) = a; of equation (1.4), where

a =T Z Wim0 () + Ry (1.5)

m=F,I

and W, = fR2 Wy (r)dr. If hy is sufficiently small relative to the threshold
% then this fixed point is unique and stable. Under the change of coordi-
nates a; — a;—hy, it can be seen that the effect of h; is to shift the threshold
by the amount —h;. Thus there are two ways to increase the excitability
of the network and thus destabilize the fixed point: either by increasing
the external input h; or reducing the threshold k. The latter can occur
through the action of drugs on certain brain stem nuclei which, as we shall
see, provides a mechanism for generating geometric visual hallucinations
[22, 11, 12, 14].
The local stability of (ag,ar) is found by linearisation:
% =—b(r,t)+p Y /R Wi (|1 — /b (', t)dr’  (1.6)

m=FET

where b;(r,t) = a;(r,t) — a; and we have performed a rescaling of the local
weights 7o' (@;)wy, — pw, with g a measure of the degree of network
excitability. We have also rescaled t in units of the membrane time constant
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7. Assuming solutions of the form b;(r,t) = b;(r)e~** we are left with the
eigenvalue problem:

Abi(k) = —bi(k) + Y Wi ([kI*)bm (k) (1.7)

where b;(k) and Wy, (|k|?) are, respectively, the Fourier coefficients of b;(r)
and wy,, (r). This leads to the matrix dispersion relation for A as a function
of ¢ = |k| given by solutions of the characteristic equation

det([A+ 1] —pW(q)) =0 (1.8)

where W is the matrix of Fourier coefficients of the wy,,. One can ac-
tually simplify the formulation by reducing eqns. (1.4) to an equivalent
one—population model:

W) - et /R w(le = r')ofa(x’, £))dr’

+ h(r,t) (1.9)

T

from which we obtain the dispersion relation A = —1+uW(q) = A(q), with
W (q) the Fourier transform of w(r).

w(r)
@ W(a) (0)

F
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Figure 1.6. Neural basis of the Turing mechanism. (a) Mexican hat inter-
action function showing short-range excitation and long-range inhibition. (b)
Fourier transform W(q) of Mexican hat function. There exists a critical param-
eter . = W(ge)™" where W(q.) = [max,{W(q)}] such that for p. < u < oo the
homogeneous fixed point is unstable.

In either case it is relatively straightforward to set up the conditions
under which the homogeneous state first loses its stability at = u. and at
a wave—vector with ¢ = g. # 0. In the case of equation (1.9) the condition
is that W (q) be bandpass. This can be achieved with the “Mexican Hat”
function (see figure 1.6):

w(lr)) = (CH)e /7 — (C2)e o (1.10)

o4 o_
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the Fourier transform of which is:

W(q) = %(Wf%ﬁf —q_emi00 0, (1.11)
Evidently W(0) = (1/2)(a+ — a—) and W(oco) = 0. It is simple to es-
tablish that A passes through zero at the critical value p. signalling the
growth of spatially periodic patterns with wavenumber g., where W(q.) =
max,{WW(g)}. Close to the bifurcation point these patterns can be repre-
sented as linear combinations of plane waves

b(r) = D (e + chemikn)

n

where the sum is over all wave vectors with |k, | = ¢. and n can be bounded
by restricting the solutions to doubly—periodic patterns in R2. Depending
on the boundary conditions various patterns of stripes or spots can be
obtained as solutions. Figure 1.7 shows, for example, a late stage in the
development of stripes [62]. Amplitude equations for the coefficients ¢,, can
then be obtained in the usual fashion to determine the linear stability of
the various solutions. This analysis of the Wilson—Cowan equations was
first carried out by Ermentrout and Cowan as part of their theory of visual
hallucinations [22], and is an exact parallel of Turing’s original analysis,
although he did not develop amplitude equations for the various solutions.

Figure 1.7. A late stage in the spontaneous formation of stripes of neural
activity. See text for details.

Essentially the same analysis can be applied to a variety of problems
concerning the neural development of the various feature maps and connec-
tivity patterns highlighted in § 1.1. Consider, for example, the development
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of topographic maps from eye to brain [61, 63]. Such maps develop by a
process which involves both genetic and epigenetic factors. Thus the actual
growth and decay of connections is epigenetic, involving synaptic plasticity.
However the final solution is constrained by genetic factors, which act, so
to speak, as boundary conditions. The key insight was provided by von
der Malsburg [60] who showed that pattern formation can occur in a de-
veloping neural network whose synaptic connectivity or weight matrix is
activity dependent and modifiable, provided some form of competition is
present. Thus Haiissler and von der Malsburg formulated the topographic
mapping problem (in the case of a one-dimensional cortex) as follows [30].
Let w,.s be the weight of connections from the retinal point r to the cortical
point s, and w the associated weight matrix. An evolution equation for w
embodying synaptic plasticity and competition can then be written as

dw

»r =aJ+pw-C(w)—w-B(aJ + pw-C(w)) (1.12)
where J is a matrix with all elements equal to unity, Crs(x) =3, c(r —
s — 8 )ams, and

Brs(x) = %(% Zxr’s + %Zxrs’)-

One can easily show that w = J is an unstable fixed point of eqn (1.12).
Linearising about this fixed point leads to the linear equation:

dv
T =av + C(v) — B(v) — B[C(v)] (1.13)
where v = w — J. Since B and C are linear operators, we can rewrite
eqn (1.13) in the form:

dv

T —v+7(I - B)[{+C)(v)] (1.14)
where the time constant 7 = (1 — a)~!. It is not too difficult to see that
the term (I — B)[(I + C)(v)] is equivalent to the action of an effective
convolution kernel of the form:

wlr) = ws () — w_(r)
so that eqn. (1.14) can be rewritten in the familiar form:

ov(r,t)

T = —v(r,t) + 7-/R2 w(r —r')v(r', t)dr’ (1.15)

where in this case r = {r, s} and v is a matrix. Once again there is a dis-
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Figure 1.8. Structure of the weight kernel w(r, s).

persion relation of the form A = —1+pW (k) = A(k), where k = {k, 1} and,
as in the previous examples, assuming appropriate boundary conditions—in
this case periodic—it is the Fourier transform W (k) that determines which
of the eigenmodes

j 21
E cp1et N (k:r+ls)7
kl

emerges at the critical wavenumber k. = {k.,l.}. Figure (1.8) shows the
form of w(r, s) in the r — s plane. It will be seen that it is similar to the
Mexican Hat except that the inhibitory surround is in the form of a cross.
This forces the eigenmodes that emerge from the Turing instability to be
diagonal in the r — s plane. If the wavenumber is selected so that only
one wave is present, this corresponds to an ordered retino—cortical map.
Figure 1.9 shows details of the emergence of the required mode.

Figure 1.9. Stages in the development of an ordered retinotopic map. A single
stripe develops in the r — s plane

A second example is to be found in models for the development of
ocular dominance maps [53]. Let ng(r,t) and ni(r,t) be, respectively,
the (normalized) right and left eye densities of synaptic connections to

11
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the visual cortex modelled as a two—dimensional sheet. Such densities are
presumed to evolve according to an evolution equation of the form:

0 t
Quilr,t) _ E / Wi (|r = ¢’ o [um (x', t)]dr’ (1.16)
ot R2
m=R,L
where u; = log 1flm such that o(w;) = n; and the coupling matrix w is

given by
+1 -1
wi =i (T} 1),

With the additional constraint ng +ny = 1, equation (1.16) reduces to the
one—dimensional form:

2t —o [ e xholunt,lar' = [ wlirhar. (1.7

which can be rewritten in terms of the variable ng(r,t) as:

Ong(r,t)

5t :nR(r,t)(l—nR(rat))

[2/R2 w(|r—r'|)nR(I",t)dr'—/R2 w(|r’|)dr’].  (1.18)

The fixed points of this equation are easily seen to be ngr(r) = 0,1 and
ng(r) = 1. The first two fixed points are stable, however the third fixed
point is unstable to small perturbations. Linearizing about this fixed point
we find the dispersion relation A = $W(|k|). Once again the Fourier trans-
form of the interaction kernel w(|r|) controls the emergence of the usual
eigenmodes, in this case plane waves of the form ™" in the cortical plane.
Note that the fixed point ng = ny = % corresponds to the fixed point
ugr = ur, = 0 which is a point of reflection symmetry for the function ofu].
It is this additional symmetry which results in the emergence of stripes
rather than spots or blobs when the fixed point destabilizes.

There are many other examples of the role of the Turing instability in
visual neuroscience such as the Marr—Poggio model of stereopsis [41] and
the Swindale model for the development of iso-orientation patches [54].
However, all of the neural models involve the same basic mechanism of
competition between excitation and inhibition (the Mexican hat form of
interaction, see figure 1.6), and most have some underlying symmetry that
plays a crucial role in the selection and stability of the resulting patterns.
In what follows, we shall develop these ideas further by considering in de-
tail our own recent work on spontaneous pattern formation in primary
visual cortex [11, 12, 14]. In this work we have investigated how correla-
tions between the pattern of patchy lateral connections and the underlying

orientation map within V1 (as highlighted in § 1.1) effect the large-scale



The Turing mechanism and its role in cooperative cortical dynamics

: k"
AT e ey B i \

s Lo AT e TR . ot
xR i
T I ‘... Sk r [t
R o -
YEHEESL i..2

bt

(1) (V)

Figure 1.10. Hallucinatory form constants. (a) funnel and (b) spiral images
seen following ingestion of LSD [redrawn from [50]], (c) honeycomb generated by
marihuana [redrawn from [17]], (d) cobweb petroglyph [redrawn from [44]].

dynamics of V1 idealized as a continuous two-dimensional sheet of interact-
ing hypercolumns [11, 12, 14]. We have shown that the patterns of lateral
connection are invariant under the so-called shift-twist action of the planar
Euclidean group E(2) acting on the product space R? x S!. By virtue of
the anisotropy of the lateral connections (see figure 1.5), this shift-twist
symmetry supports distinct scalar and pseudoscalar group representations
of E(2) [8], which characterize the type of cortical activity patterns that
arise through spontaneous symmetry breaking [11]. Following on from the
original work of Ermentrout and Cowan [22], we have used our continuum
model to develop a theory for the generation of geometric visual hallucina-
tions, based on the idea that some disturbance such as a drug or flickering
light can destabilize V1 inducing a spontaneous pattern of cortical activity
that reflects the underlying architecture of V1. These activity patterns
are seen as hallucinatory images in the visual field, whose spatial scale is
determined by the range of lateral connections and the cortical-retinotopic
map. Four examples of common hallucinatory images that are reproduced
by our model [11] are shown in figure 1.10. Note the contoured nature

13
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of the third and fourth images, which could not have been generated in
the original Ermentrout-Cowan model [22]. Our results suggest that the
circuits in V1 that are normally involved in the detection of oriented edges
and in the formation of contours, are also responsible for the generation of
simple hallucinations.

1.3 A continuum model of V1 and its intrinsic cir-
cuitry

Consider a local population of excitatory (E) and inhibitory (I) cells at
cortical position r € R? with orientation preference ¢. We characterize
the state of the population at time ¢t by the real-valued activity variable
a(r,¢,t) with I = E,I. Asin § 1.2, V1 is treated as an (unbounded) con-
tinuous two-dimensional sheet of nervous tissue with the additional sim-
plifying assumption that ¢ and r are independent variables — all possible
orientations are represented at every position. Hence, one interpretation
of our model would be that it is a continuum version of a lattice of hyper-
columns. An argument for the validity of this continuum model is to note
that the separation of two points in the visual field—visual acuity—(at a
given retinal eccentricity of r°), corresponds to hypercolumn spacing [34],
and so to each location in the visual field there corresponds a representation
in V1 of that location with finite resolution and all possible orientations.
Our large-scale model of V1 takes the form

aal( ¢7 )

5 = o)+ e (1.19)

/Rz/ wim (x, $lt', ¢')oa (7¢/7t)]%ddr'

which is a generalized version of the Wilson—-Cowan equations of nerve
tissue introduced in § 1.2, with ¢ measured in units of 7. The distribution
Wi (1, @|r’, @) represents the strength or weight of connections from the
iso-orientation patch ¢’ at cortical position r’ to the orientation patch ¢ at
position r.

Motivated by experimental observations concerning the intrinsic cir-
cuitry of V1 (see § 1.1), we decompose w in terms of local connections
from elements within the same hypercolumn, and patchy excitatory lateral
connections from elements in other hypercolumns:

Wim (1'7 ¢|I‘,7 (b/) = wloc(¢|¢/)5(r - I'/) + EWiat (1‘7 ¢|I‘/7 (b/)ém,Eﬂl
(1.20)

m=F,I

where € is a parameter that measures the weight of lateral relative to local
connections. Observations by [31] suggest that e is small and therefore
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that the lateral connections modulate rather than drive V1 activity. Note
that although the lateral connections are excitatory [47, 26], 20% of the
connections in layers IT and IIT of V1 end on inhibitory interneurons, so the
overall action of the lateral connections can become inhibitory, especially at
high levels of activity [31]. The relative strengths of the lateral inputs into
local excitatory and inhibitory populations are represented by the factors
Bi.

The local weight distribution is taken to be homogeneous, that is,

wioc(P|¢) = W (o — ¢') (1.21)

for some m-periodic, even function W. It follows that an isolated hypercol-
umn (zero lateral interactions) has internal O(2) symmetry corresponding
to rotations and reflections within the ring. In order to incorporate the
anisotropic nature of the lateral connections, we further decompose w;q; as
(12]

Wiat (1, P’ ¢') = J(T_g(r —1"))0(¢ — ¢') (1.22)

where

/2 0o
J(r) = / p(n)/ g(s5)0(r — sey,)dsdn (1.23)

—7/2 —00

with e, = (cos(n),sin(n)), p(—n) = p(n) and T} the rotation matrix

T (x)_(cosqﬁ —sinqb)(z)
*\Vy ) \ sing coso y

Such a distribution links neurons with the same orientation and spatial
frequency label, with the function p(n) determining the degree of spatial
spread (anisotropy) in the pattern of connections relative to the direction of
their common orientation preference. The weighting function ¢(s) specifies
how the strength of interaction varies with the distance of separation. A
simplified schematic representation of the pattern of lateral connections is
illustrated for our coupled hypercolumn model in figure 1.11.

Substituting equations (1.20) and (1.22) back into equation (1.19)
leads to the evolution equation

W = —a(r,,t) + ;/Vvlm((b - ¢/)0[am(r',¢’,t)]diy (1.24)

™
/2 0o
+ Eﬂl [ /2 p(n) [ g(S)O’[CLE (I‘ + S€n+¢5 ¢’ t)]dnds + hl(ra ¢7 t)

If p(n) = 1/ for all n then the weight distribution is isotropic and the
system (1.24) is equivariant with respect to E(2)xO(2), where E(2) denotes
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Figure 1.11. Schematic diagram of a coupled hypercolumn model of V1. It
is assumed that there are isotropic local interactions within a hypercolumn,
and anisotropic lateral interactions between hypercolumns. The latter connect
iso-orientation patches located within some angular distance from the visuo-
topic axis parallel to their (common) orientation preference (as illustrated for
the shaded patches).

the Euclidean group of translations, rotations and reflections in the cortex,
and O(2) is the internal symmetry group of an isolated hypercolumn. It is
important to emphasize that cortical rotations are distinct from rotations
in the visual field (which correspond to vertical translations in cortex),
as well as from internal rotations with respect to orientation. When p(n)
is non-uniform, the resulting anisotropy breaks both cortical and internal
O(2) symmetries. However, full Euclidean symmetry, E(2) = R2+0(2), is
recovered by considering the combined Euclidean action on {r, ¢}, which
introduces a form of shift-twist symmetry in the plane [18, 11, 12, 67].
More specifically, the anisotropic weight distribution (1.22) is invariant
with respect to the following action of the Euclidean group:

s-(r,¢) = (r+s,¢) seR?
g' (I’,(ﬁ) = (Tgl‘,(ﬁ{—f) € est (125)
k- (r,¢) = (kr,—9)

where k is the reflection (z1,22) — (21, —z2). The corresponding group
action on a function a : R? x § — R is given by

v-a(P)=a(y"'-P) forall y € R*+0O(2) (1.26)
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and the invariance of wyq:(P|P’) is expressed as
v wlat(Plp/) = wlat('y_l : P|'7_1 : Pl) = wlat(Plpl)'

It can be seen that the rotation operation comprises a translation or shift
of the orientation preference label ¢ to ¢ + £, together with a rotation or
twist of the position vector r by the angle £. Such an operation provides
a novel way to generate the Euclidean group E(2) of rigid motions in the
plane. The fact that the weighting functions are invariant with respect to
this form of E(2) has important consequences for the global dynamics of
V1 in the presence of anisotropic lateral connections [11, 12].

1.4 Orientation tuning and O(2) symmetry

In the absence of lateral connections (¢ = 0) each hypercolumn is in-
dependently described by the so-called ring model of orientation tuning
(52, 3, 4, 42, 10], in which the internal structure of a hypercolumn is ide-
laized as a ring of orientation selective cells. That is, equation (1.19) re-
duces to

8al

E =—a + Z Wim * U(am) + Iy (127)
m=FE,I

where * indicates a convolution operation

2 PN i
Wafo)=[ W(o-¢)f(e)— (1.28)

—m/2 ™

Just as in § 1.2 the local stability of (ag,ar) is found by linearization
about the fixed points a; :

ob;

B = Wb (1.29)

where b(r, ¢, t) = a;(r, ,t) —a;. Equation (1.29) has solutions of the form
bi(r, ¢, t) = BieM [2(r)e*™? + Z(r)e 2] (1.30)

where z(r) is an arbitrary (complex) amplitude with complex conjugate
z(r), and A satisfies the eigenvalue equation

(1+A)B=uW(n)B (1.31)

Here Wlm (n) is the nth Fourier coefficient in the expansion of the 7-periodic
weights kernels Wi, (¢):

Wi (6) = Wi (0) + 2 i Wim(n) cos(2n¢), I,m=FE,I (1.32)
n=1
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It follows that
AE = 1+ W (1.33)
for integer n, where
11~ —
Wi =3 [WEE(n) + Wir(n) + z(n)] (1.34)

are the eigenvalues of the weight matrix with

S(n) = \/ [Wep(n) - Wir(n)]2 + AWer(n)Wrp(m)  (1.35)

The corresponding eigenvectors (up to an arbitrary normalization) are

~Wi(n)
B?l: B ( % {WEE(TL) - W[}(n) T E(n)} ) (1.36)

Equation (1.33) implies that, for sufficiently small i (low network excitabil-
ity), AX < 0 for all n and the homogeneous resting state is stable. However,
as p increases an instability can occur leading to the spontaneous formation
of an orientation tuning curve.

For the sake of illustration, suppose that the Fourier coefficients are
given by the Gaussians

Wi (1) = agme™"™ &im/2, (1.37)

with &, determining the range of the axonal fields of the excitatory and
inhibitory populations. We consider two particular cases.

+ +
Whn Wn.
Tuning Bulk mode
mode
n n
1 2 3 1 2 3 4 5 6

Figure 1.12. Spectrum W,! of local weight distribution with (a) a maximum at
n = 1 (tuning mode) and (b) a maximum at n = 0 (bulk mode).
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Case A If WEE(TL) = WIE(n) and Wn(n) = WEI(n) for all n, then
W, =0 and

W = appe ™ /2 _ o e E01/2 (1.38)

Suppose that ;7 > Egg and 0 < aj7 < agg. As we described in § 1.2 the
resulting combination of short range excitation and longer range inhibition
generates a Turing instability. Of particular relevance to orientation tuning
is the case where W, has a unique (positive) maximum at n = 1 (see
figure 1.12a). The homogeneous state then destabilizes at the critical point
p= . = 1/W;" due to excitation of the eigenmodes b(r, ¢,t) = Ba(r, ¢, t)
with B = (1,1)7 and

a(r, ¢,t) = 2(r)e*? +2(r)e”*? = |z(r)| cos(2[¢ — ¢*(r)])  (1.39)

with z(r) = |z(r)|e”2* ("), Since these modes have a single maximum
in the interval (—90°,90°), each hypercolumn supports an activity profile
consisting of a solitary peak centred about ¢*(r) = argz(r). It can be

1
0.8

firing
rae gg

04

0.2

orientation (deg)

Figure 1.13. Sharp orientation tuning curve in a single hypercolumn. Local
recurrent excitation and inhibition amplifies a weakly modulated input from the
LGN. Dotted line is the base-line output without orientation tuning.

shown that the saturating nonlinearities of the system stabilize the tun-
ing curves beyond the critical point p. [23, 10] — see also § 1.5.2. The
location of the peak ¢*(r) of the tuning curve at r is arbitrary in the
presence of constant inputs, reflecting the hidden O(2) symmetry of a hy-
percolumn. However, the inclusion of an additional small amplitude input
Ahy(r, @) ~ cos[2(¢ — P(r))] breaks this symmetry, and locks the location
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of the tuning curve at each point r to the orientation corresponding to the
peak of the local stimulus, that is, ¢*(r) = ®(r). As one moves further away
from the point of instability, the amplitude of the tuning curve increases
and sharpening occurs due to the nonlinear effects of the firing rate function
(1.3). This is illustrated in figure 1.13, where the input and output (nor-
malized) firing rate of the excitatory population of a single hypercolumn
are shown. Thus the local intracortical connections within a hypercolumn
serve both to amplify and sharpen a weakly oriented input signal from the
LGN [52, 4]. On the other hand, if the local level of inhibition is reduced
such that a;; < agg, then W,‘L“ is a monotonically decreasing function of
[n| (see figure 1.12b), and the homogeneous fixed point undergoes a bulk
instability resulting in broadening of the tuning curve. This is consistent
with experimental data demonstrating a loss of stable orientation tuning
in cats with blocking of intracortical inhibition [45]2.

Case B 1If 3(n) is pure imaginary, X(n) = i{2(n), then
VVni = aEEe—nzféE/Q — Oq]e_nzﬁl/2 + ZQ(’n) (140)

Assume, as in case A, that the difference of Gaussians has a maximum at
n = 1. Then an instability will occur at the critical point u. = 1/R(W;")
due to excitation of the oscillatory eigenmodes

b(r,¢,t) = {ZL(r)ei(Q"t_Q‘z’) + zR(r)ei(Q"t”d’)} B+cec  (1.41)

where Qp = p.Q(1) and B = B} . It is then possible for rotating tuning
curves to be generated spontaneously within a hypercolumn [4].

1.5 Amplitude equation for interacting hypercolumns

An isolated hypercolumn exhibits spontaneous O(2) symmetry breaking
leading to the formation of an orientation tuning curve. How is this pro-
cess modulated by anisotropic lateral interactions between hypercolumns?
In this section we use perturbation theory to derive a dynamical equation
for the complex amplitude z(r) for orientation tuning in the presence of lat-
eral interactions. We will then use this amplitude equation to show how the
lateral interactions induce correlations between z(r) at different points in

2 The idea that local cortical interactions play a role in orientation tuning is still con-
troversial. The classical model of Hubel and Wiesel [32] proposes a very different mech-
anism, in which both the orientation preference and tuning of a cell arise primarily from
the geometrical alignment of the receptive fields of the LGN neurons projecting to it.
This has also received recent experimental support [25]. On the other hand, intracellu-
lar measurements indicate that direct inputs from the LGN to neurons in layer 4 of V1
provide only a fraction of the total excitatory inputs relevant to orientation tuning [59]
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the cortex, leading to spatially periodic patterns of activity across V1 (see
§ 1.6). These patterns reproduce the commonly found types of geometric
visual hallucinations when mapped back into visual field coordinates under
the retino cortical map of figure 1.2 (see § 1.6.4). Our basic assumptions in
the derivation of the amplitude equation are as follows: (i) each hypercol-
umn is close to a bifurcation point signalling the onset of sharp orientation
tuning and (ii) the interactions between hypercolumns are weak.

1.5.1 Cubic amplitude equation: stationary case

Let us perform a Taylor expansion of equation (1.24) with b;(r, ¢,t) =
al(ra ¢7 t) - dl

O _ — b+ Z Wi * [thm + Ymb2, + v b2, +...] + Al
at =, m mom

+€/Blwlato([5E+MbE+...]) (1.42)

where Ah; = h; — hy and p = o'(ag), v = o (a)/2, v, = 0"(@;)/6. The
convolution operation * is defined by equation (1.28)) and

/2

w0 f)r.6) = [

s /_OO p(n)g(s)f(r + se,t g, d)dsdn  (1.43)

for an arbitrary function f(r, ¢) and w;,; given by equation (1.22). Suppose
that the system is e-close to the point of marginal stability of the homoge-
neous fixed point associated with excitation of the modes e*2*®. That is,
take 1 = pi. +eAp where p. = 1/W;", see equation (1.33). Substitute into
equation (1.42) the perturbation expansion

b = /20D 4 ep(2) 4 3/2p(3) 4 (1.44)

Finally, introduce a slow time-scale 7 = et and collect terms with equal

powers of e. This leads to a hierarchy of equations of the form (up to
O(e%/%))

[£bM] =0 (1.45)
(Lb®?)], = o (1.46)
= Z ’Ylem * [@9]2 + ﬁla—Ewlat ol
m=FIT
Lb®)], = oY (1.47)
ot

Y Wi A + P + 29 b6
m=FE,IT

or

+ preBiwiat © bg) + Ahy
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with the linear operator £ defined according to

[Lbly =b = pe > Wi # by (1.48)
m=F,I

We have also assumed that the modulatory external input is O(¢3/2) and
rescaled Ah; — £3/2Al;

The first equation in the hierarchy, equation (1.45), has solutions of
the form

bW (r,¢,7) = (2(r,7)e*® +Z(r,7) e **) B (1.49)

with B = Bf defined in equation (1.36). We obtain a dynamical equation
for the complex amplitude z(r,7) by deriving solvability conditions for
the higher order equations. We proceed by taking the inner product of
equations (1.46) and (1.47) with the dual eigenmode b(¢) = e?*B where

~ Wie(1)
B= 1.50
QTR (150
so that _ _ _
[L£TD]; = b — pe Z Wt * by, =0
m=FI
The inner product of any two vector-valued functions of ¢ is defined as

() = [ me@)oso) + moo(0) %

(1.51)
With respect to this inner product, the linear operator £ satisfies (b|£b) =
(LTb|b) = 0 for any b. Since £b® = v we obtain a hierarchy of
solvability conditions <E|v(?’)> =0forp=2,3,....

It can be shown from equations (1.43), (1.46) and (1.49) that the first
solvability condition is identically satisfied (provided that the system is
bifurcating from a uniform state). The solvability condition (b[v®) = 0
generates a cubic amplitude equation for z(r, 7). As a further simplification
we set v, = 0, since this does not alter the basic structure of the amplitude
equation. Using equations (1.43), (1.47) and (1.49) we then find that (after
rescaling 7)

ang,T) =2, 7)(Ap = Al(r, 7)) + /(x) (1.52)
+ 5/; Wiqe © [2(r,7) + E(I‘,T)G_M(b] %
where
10 = 3 B [ e am(r )% (15

I=E,I
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and

’Bg ~ 3 ~
p= ke BB, A=-= By B} (1.54)
5B 2, 55,27,
Equation (1.52) is our reduced model of weakly interacting hypercolumns.
It describes the effects of anisotropic lateral connections and modulatory
inputs from the LGN on the dynamics of the (complex) amplitude z(r, 7).
The latter determines the response properties of the orientation tuning
curve associated with the hypercolumn at cortical position r. The cou-
pling parameter ( is a linear combination of the relative strengths of the
lateral connections innervating excitatory neurons and those innervating in-
hibitory neurons with D, D; determined by the local weight distribution.
Since D > 0 and D; < 0, we see that the effective interactions between
hypercolumns have both an excitatory and an inhibitory component.

1.5.2 Orientation tuning revisited

In the absence of lateral interactions, equation (1.52) reduces to

0z(r,T)
or

For the nonlinear output function (1.3), we find that A > 0. Hence, if
f(r) = 0 then there exist (marginally) stable time-independent solutions
of the form z(r) = \/Au/Ae™**(") where ¢(r) is an arbitrary phase that
determines the location of the peak of the tuning curve at position r. Now
consider the effects of a weakly biased input from the LGN h;(r, ¢, 7) =
C(r) cos(2[¢p—wr]). This represents a slowly rotating stimulus with angular
velocity w and contrast C(r) = O(¢*/?). Equation (1.53) implies that
f(r) = C(r)e”2™7. Writing z = ve 2{(?T%7) we obtain from (1.55) the
pair of equations

= 2(r,7)(Ap = Alz(r, 7)[?) + f(x) (1.55)

O = v — pre + Av?) + Ccos(2¢)
~ C
o= —w-— 5 sin(2¢) (1.56)

Thus, provided that w is sufficiently small, equation (1.56) will have stable
fixed point solution {v*(r), ¢*(r)} in which the peak of the tuning curve is
entrained to the signal. That is, writing b (r, $) = Ba(r, ¢),

a(r, ¢) = v*(r) cos(2[¢p — wr — ¢*(r)]) (1.57)

with ¢*(r) = 0 when w = 0.
It is also possible to repeat our bifurcation analysis in the case where
each hypercolumn undergoes a bulk instability. This occurs, for example,
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when the spectrum of local connections is as in figure 1.12b. The amplitude
equation (1.52) now takes the form

8a((91; ) _ a(r, 7)(Ap — Aa(r,7)?) + fo(r) + 5/; Wiqt © a(r, T)er_(b
(1.58)

with a real and fj the ¢-averaged LGN input. It follows that, in the absence
of lateral interactions, each hypercolumn bifurcates to a ¢-independent
state whose amplitude a(r) is a root of the cubic

a(r)(Ap — Aa(r)?) + fo(r) =0 (1.59)

1.5.3 Cubic amplitude equation: oscillatory case

In our derivation of the amplitude equation (1.52) we assumed that the local
cortical circuit generates a stationary orientation tuning curve. However, as
shown in § 1.4, it is possible for a time-periodic tuning curve to occur when
I(W;H) # 0. Taylor expanding (1.24) as before leads to the hierarchy of
equations (1.45)—(1.47) except that the linear operator £L — £, = L+40/0t.
The lowest order solution (1.49) now takes the form

bW (r, ¢, t,7) = |21 (r, 7)e P29 4 2p(r, T)emo”%)} B + c.c(1.60)

where 2, and zg represent the complex amplitudes for anti-clockwise (L)
and clockwise (R) rotating waves (around the ring of a single hypercolumn),
and Q¢ = p.3(X(1)). Introduce the generalized inner product

9

s

T/2 pm
(ulv) = Jim = / / [5(6, o (d,t) + (b, )or(6,)]

T—oo T —T/2
(1.61)

and the dual vectors EL = Bel@0t-20) L, = Bel0!+2¢)  Using the
fact that (bp|L:b) = (bg|Ltb) = 0 for arbitrary b we obtain the pair of
solvability conditions (by|v(®)) = (bg|v(®)) = 0 for cach p > 2.

As in the the stationary case, the p = 2 solvability conditions are
identically satisfied. The p = 3 solvability conditions then generate cubic
amplitude equations for zy,, zr of the form

Ozr(r,T)

57 = (1+iQ0)zr (v, 7)(Ap — Alzp(r,7)|> = 24|25 (r, 7)|?)

+ B/ﬁ Wigt © [zL(r, T) + zR(rJ)e“ﬂ % (1.62)
0

s
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and
0zr(r,7) . 9 5
— 5 = (1+1iQ0)zr(r, 7)(Ap — Alzg(r,7)|* — 2A|zL(r, 7)|7)
+ 5/ Wiat © [2R(r,T) + 21 (r, T)e 4] % (1.63)
0
where
do
fi(r) = lim / / i(Q0t£2¢) BiAhy(r,é,t)—dt
:l:( T4>oo T T/2 lgf ! l( ) i
(1.64)

Note that the amplitudes only couple to time-dependent inputs from the
LGN.

1.6 Cortical pattern formation and E(2) symmetry

We now use the amplitude equations derived in § 1.5 to investigate how
O(2) symmetry breaking within a hypercolumn is modified by the presence
of anisotropic lateral interactions, and show how it leads to the formation
of spatially periodic activity patterns across the cortex that break the un-
derlying E(2) symmetry. We begin by considering the case of stationary
patterns. Oscillatory patterns will be considered in § 1.6.5.

1.6.1 Linear stability analysis

Since we are focusing on spontaneous pattern formation, we shall assume
that there are no inputs from the LGN, f(r) = 0. Equation (1.52) then
has the trivial solution z = 0. Linearizing about this solution gives
0z(r,T) d¢
or 0

(1.65)

=Ap z2(r,7) + ,6’/07r Wiat © [2(r,7) + Z(r,7)e”*?]

If we ignore boundary effects by treating V1 as an unbounded two dimen-
sional sheet, then equation (1.65) has two classes of solution, z1, of the
form

(I‘, 7_) >\+~r —2ip [ eik r + Ee—zk r] (166)
z_(r,7) = ~Te2ip [ceik'r + Ee_ik'r} (1.67)

where k = g(cos(¢),sin(p)) and ¢ is an arbitrary complex amplitude. Sub-
stitution into equation (1.65) and using equation (1.43) leads to the eigen-
value equation

A =Ap+p3 / [ / g(s5)e' 155D gs| (1 + xe ) dé (1.68)
0 —00 ™
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where
w/2 ,
X= / p(n)e™*"dn (1.69)
—m/2
Using an expansion in terms of Bessel functions
i@ cos(®) — Z (=)™ T, (x)e™™? (1.70)

the eigenvalue equation reduces to the more compact form

A = Ap+ BG(q) (1.71)

with
G+(q) = Golq) £ xG2(q) (1.72)

and
Gul) = (-1 [ " () an (g5)ds (1.73)

Before using equation (1.71) to determine how the lateral interactions
modify the condition for marginal stability, we need to specify the form
of the weight distribution g(s). From experimental data based on tracer
injections it appears that the patchy lateral connections extend several mm
on either side of a hypercolumn and the field of axon terminals within a
patch tends to diminish in size the further away it is from the injection
site [47, 26, 66, 40]. The total extent of the connections depends on the
particular species under study. In our continuum model we assume that

g(s) = e~ (5750?28 g5 — g (1.74)

where ¢ determines the range and sg the minimum distance of the (non-
local) lateral connections. Recall that there is growing experimental evi-
dence to suggest that lateral connections tend to have an inhibitory effect
in the presence of high contrast visual stimuli but an excitatory effect at low
contrasts [28]. It is possible that during the experience of hallucinations
there are sufficient levels of activity within V1 for the inhibitory effects
of the lateral connections to predominate. Many subjects who have taken
LSD and similar hallucinogens report seeing bright white light at the centre
of the visual field which then explodes into a hallucinatory image in about
3 sec, corresponding to a propagation velocity in V1 of about 2.5 cm per
sec. suggestive of slowly moving epileptiform activity [50]. In light of this,
we assume that 3 < 0 during the experience of a visual hallucination.

In figure 1.14(a) we plot G+ (q) as a function of ¢ for the given weight
distribution (1.74) and the spread function p(n) = §(n) for which x = 1.
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Figure 1.14. (a) Plot of functions G_(q) (solid line) and G+(q) (dashed line)
in the case x = 1 (strong anisotropy) and g(s) defined by (1.74) for £ = 1 and
so = 1. The critical wavenumber for spontaneous pattern formation is ¢—. The
marginally stable eigenmodes are odd functions of ¢. (b) Same as (a) except that
X = sindno/4no with lateral spread of width 1o = m/3. The marginally stable
eigenmodes are now even functions of ¢.

It can be seen that G4(g) has a unique minimum at ¢ = g+ # 0 and
G_(g-) < G4+(gy). Since S < 0 it follows that the homogeneous state
z(r,7) = 0 becomes marginally stable at the modified critical point p, =
te —eBG_(q-). The corresponding marginally stable modes are given by
combining equations (1.49) and (1.67) for A\_ = 0. Writing b(!)(r, ¢) =
a(r, »)B we have

N

a(r,¢) = Z cne™®n T sin(¢ — @) + c.c. (1.75)

n=1

where k,, = ¢g_(cos ¢n, sin ¢,,) and ¢, is a complex amplitude. These modes
will be recognized as linear combinations of plane waves modulated by odd
(phase-shifted) m-periodic functions sin[2(¢ — ¢y, )]. The infinite degeneracy
arising from rotation invariance means that all modes lying on the circle
|k| = ¢— become marginally stable at the critical point. However, this can
be reduced to a finite set of modes by restricting solutions to be doubly
periodic functions as explained in § 1.6.2.

The solutions (1.75) are precisely the lowest-order odd eigenfunctions
derived using the perturbation methods of [11].3 It is also possible for even
(+) eigenmodes to destabilize first when there is a sufficient spread in the

3 Note that in [11] we used a different perturbation scheme in which the strength of
lateral connections ¢ and the distance from the bifurcation point p — p. were taken
to be two independent parameters. The linearized equations were first solved using a
perturbation expansion in the coupling. Amplitude equations for the linear modes were
then derived by carrying out a Poincare-Linstedt expansion with respect to p— pc. This
approach is particularly suitable for studying the role of symmetries in the spontaneous
formation of cortical activity patterns underlying visual hallucinations.
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distribution of lateral connections about the visuotopic axis as shown in
figure 1.11. More specifically, if we take p(n) = ©(|n| — no) /210, then
sin(4
Cla) = Gola) + T2 g ) (1.76)
Tlo
such that G4 (¢+) < G_(¢—) when no > /4, which is illustrated in figure
1.14(b). It follows that the homogeneous state now becomes marginally
stable at the critical point p. = p. — ¢8G4+ (¢4) due to excitation of the
even modes given by equations (1.49) and (1.66) for A, = 0:

N
a(r,d) =Y cne™n T cos(¢ — pp) + c.c. (1.77)
n=1

where ky, = g1 (cos(¢y),sin(en)).

A third class of solution can occur when each hypercolumn undergoes a
bulk instability, as described by the amplitude equation (1.58). Repeating
the above linear analysis, we find that there are now only even eigenmodes,
which are ¢-independent (to leading order), and take the form

N
a(r) = [ene™ T 4 e ] (1.78)

n=1

The corresponding eigenvalue equation is
A=Ap+ Go(q) (1.79)

with Go(q) defined in equation (1.73). Thus |k,| = qo where ¢o is the
minimum of Go(q).

It follows from our analysis that there are three classes of eigenmode
that can bifurcate from the resting state. These are represented, respec-
tively, by linear combinations of one of the three classes of roll pattern
shown in figure 1.15. The m = 0 roll corresponds to modes of the form
(1.78), and consists of alternating regions of high and low cortical activity
in which individual hypercolumns do not amplify any particular orienta-
tion: the resulting patterns are said to be mon-contoured. The m = 1
rolls correspond to the odd and even oriented modes of equations (1.75)
and (1.77). These are constructed using a winner-take-all rule in which
only the orientation with maximal response is shown at each point in the
cortex (after some coarse-graining). The resulting patterns are said to be
contoured. The particular class that is selected depends on the detailed
structure of the local and lateral weights. The m = 0 type will be selected
when the local inhibition within a hypercolumn is sufficiently weak, whereas
the m = 1 type will occur when there is strong local inhibition, with the
degree of anisotropy in the lateral connections determining whether the
patterns are even or odd.
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Figure 1.15. Three classes of rolls found in cortical pattern formation

1.6.2 Doubly-periodic planforms

Rotation symmetry implies that the space of marginally stable modes is
infinite-dimensional. That is, all plane-waves with wavevectors k lying on
the critical circle |k| = ¢. are allowed, with ¢. = ¢_ for odd modes and
gc = g+ for even modes. (For concreteness, we focus on the contoured
eigenmodes). However, translation symmetry means that we can restrict
the space of solutions to that of doubly periodic functions corresponding
to regular tilings of the plane. The associated space of marginally stable
eigenmodes is then finite-dimensional. A finite set of specific functions
can then be identified as candidate planforms in the sense that they ap-
proximate time-independent solutions of equation (1.24) sufficiently close
to the critical point where the homogeneous state loses stability. These
planforms consist of finite linear combinations of one of the three types of
stripe pattern shown in figure 1.15.

Table 1.1. Generators for the planar lattices and their dual lattices.
Lattice £, Lo £, £
Square (1,0) 0,1 | @o)  (0,1)

Hexagonal (17 %) (07 %) (170) %(_17\/5)

Rhombic | (1,—cotn) (0,cscn) | (1,0) (cosm,sinn)

—~~

Let £ be a planar lattice; that is, choose two linearly independent
vectors £1 and €5 and let

L ={2rm1€y + 27mals : my, Mo € Z}.
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Note that £ is a subgroup of the group of planar translations. A function
f:— R is doubly periodic with respect to L if

f($+£,¢) :f(l',(b)

for every £ € L. Let 6 be the angle between the two basis vectors £; and
£>. We can then distinguish three types of lattice according to the value
of 6: square lattice (§ = 7/2), rhombic lattice (0 < 6 < 7/2, 0 # 7/3) and
hexagonal (0 = 7/3). After rotation, the generators of the planar lattices
are given in table 1.1. Also shown are the generators of the dual lattice
Satisfying ZZEJ = (Si,j with |21| =1.

D4 D2

Figure 1.16. Holohedries of the plane

Imposing double periodicity means that the original Euclidean sym-
metry group is restricted to the symmetry group 'y of the lattice £. In
particular, there are only a finite number of shift-twists and reflections to
consider for each lattice (modulo an arbitrary rotation of the whole plane),
which correspond to the so-called holohedries of the plane, see figure 1.16.
Consequently the corresponding space of marginally stable modes is now
finite-dimensional—we can only rotate eigenfunctions through a finite set
of angles (for example, multiples of 7/2 for the square lattice and multiples
of m/3 for the hexagonal lattice). The marginally stable modes for each of
the lattices are given in table 1.2.

Table 1.2. Eigenmodes corresponding to shortest dual wave vectors k; = gc¥;.
Here u(¢) = cos(2¢) for even modes and u(¢) = sin(2¢) for odd modes.

Lattice a(r, @)

Square c1u(@)e™ T + cou(p — Z)e™2 7 + c.c.
Hexagonal | ciu(¢)e™™ + cou(o - 2%)6“‘2‘” + czu(¢ + 2%)eii(kﬁk?)'r + c.c.
Rhombic c1u(P)e™™ 4 cou(p — n)e™ 2T + c.c.
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1.6.3 Selection and stability of patterns

It remains to determine the amplitudes ¢,, of the doubly-periodic solutions
that bifurcate from the homogeneous state (see table 1.2). We proceed
by applying the perturbation method of § 1.5.1 to the amplitude equation
(1.52). First, introduce a small parameter ¢ determining the distance from
the point of marginal stability according to Ay — Ap, = &2 with Ap, =
—0G_(q-) (Ape = =BG+ (g4)) if odd (even) modes are marginally stable.
Note that the parameter ¢ is independent of the coupling parameter e.
Also introduce a second slow time-scale 7 = £27. Next substitute the series
expansion

z(r,7) = fz(l)(r, )+ 522(2)(1‘, 7)+ §3z(3) (r,7)+... (1.80)

into equation (1.52) and collect terms with equal powers of £. This gener-
ates a hierarchy of equations of the form (up to O(£%))

Mz =0 (1.81)
Mz =0 (1.82)
dz(M
B3 ,D|1 2] _
M:® = 2 [1 AlzW)| ] = (1.83)
where for any complex function z

" _ —aig] 9
Mz=—-Ap.z—pf Wigt O [z + zZe ] — (1.84)

0 o

The first equation in the hierarchy has solutions of the form
N
200, 7) =T ) e 2n [en(7)e™ "+ p(f)e ™ "] (1.85)
n=1

where I = 1 for even (+) modes and I' = ¢ for odd (—) modes (see equations
(1.66) and (1.67)). Here N = 2 for the square or rhombic lattice and N = 3
for the hexagonal lattice. Also k,, = qCZn forn =1,2 and k3 = —k; — ko.
A dynamical equation for the amplitudes ¢, (7) can then be obtained as a
solvability condition for the third-order equation (1.83). Define the inner
product of two arbitrary doubly-periodic functions f(r) and g(r) by

(flg) = / F(r)g(r)dr (1.86)

where A is a fundamental domain of the periodically tiled plane (whose
area is normalized to unity). Taking the inner product of the left-hand
side of equation (1.83) with £, (r) = e’» leads to the following solvability
condition

(fnle?¥n Mz £ T2e=2n M23)) = 0 (1.87)
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The factor I'? = 41 ensures that the appropriate marginal stability con-
dition Ay = 0 is satisfied by equation (1.71). Finally, we substitute for
Mz3) using the right-hand side of equation (1.83) to obtain an amplitude
equation for c¢,, which turns out to be identical for both odd and even
solutions:

de,
= 1) -2 e - el | (189)
pFn
where
v(p) = [24 cos(4p)]A (1.89)

We consider solutions of these amplitude equations for each of the basic
lattices.

Square or rhombic lattice First, consider planforms corresponding to a
bimodal structure of the square or rhombic type (N = 2). That is, take
ki = ¢.(1,0) and ko = g.(cos(8), sin(f)), with § = /2 for the square lattice
and 0 < 0 < /2, 0 # /3 for a rhombic lattice. The amplitudes evolve
according to a pair of equations of the form

d61

7 = & [1=7(0)e1]* = 29(0) 2] (1.90)
((116: = c2 [1L = (0)|eaf* = 29(6)]ea]?] (1.91)

Since v(0) > 0, three types of steady state are possible.

(i) The homogeneous state: ¢; = ¢ = 0.
(i) Rolls: ¢; = 1/1/7(0)e™¥1,ca =0 or ¢; = 0,2 = \/1/7(0)e¥=.
(iii) Squares or rhombics: ¢, = 1/1/[v(0) + 2y(0)]e®¥», n = 1,2.

for arbitrary phases 1, %s. A standard linear stability analysis shows that
if 2y(0) > ~(0) then rolls are stable whereas the square or rhombic patterns
are unstable. The opposite holds if 2v(0) < v(0). Note that here stability
is defined with respect to perturbations with the same lattice structure.
Using equation (1.89) we deduce that in the case of a rhombic lattice of
angle 0 # w/2, rolls are stable if cos(46) > —1/2 whereas §-rhombics are
stable if cos(40) < —1/2, that is, if 7/6 < 6 < 7/3; rolls are stable and
square patterns unstable on a square lattice.

Hexagonal lattice Next consider planforms on a hexagonal lattice with
N =3, 01 =0, po =27/3, p3 = —27/3. The cubic amplitude equations
take the form
de,
dr

= e [L=1O)leal? = 292n/3) (easa? + eas2)] (1.92)
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Table 1.3. Even and odd planforms for hexagonal lattice
Even Planform | (c1,c2,¢3) | Odd Planform | (c1,c2,c3)

0-hexagon (1,1,1) hexagon (1,1,1)
m-hexagon (1,1,-1) triangle (i,i,1)
roll (1,0,0) roll (1,0,0)

patchwork quilt (0,1,1)

where n = 1,2,3mod3. Unfortunately, equation (1.92) is not sufficient to
determine the selection and stability of the steady-state solutions bifurcat-
ing from the homogeneous state. One has to carry out an unfolding of the
amplitude equation that includes higher-order terms (quartic and quintic)
in z,Z. One could calculate this explicitly by carrying out a double ex-
pansion in the parameters € and &, which is equivalent to the perturbation
approach used by [11]. In addition to generating higher-order terms, one
finds that there is an O(e) contribution to the coefficients () such that
2v(27/3) — v(0) = O(e) and, in the case of even planforms, an O(e) con-
tribution to the right-hand side of equation (1.92) of the form 1é,_1¢,+1.

w

Figure 1.17. Bifurcation diagram showing the variation of the amplitude C
with the parameter p for patterns on a hexagonal lattice. Solid and dashed
curves indicate stable and unstable solutions respectively. (a) Even patterns:
Stable hexagonal patterns are the first to appear (subcritically) beyond the bi-
furcation point. Subsequently the stable hexagonal branch exchanges stability
with an unstable branch of roll patterns due to a secondary bifurcation that gen-
erates rectangular patterns RA. Higher—order terms in the amplitude equation
are needed to determine its stability. (b) Odd patterns: Either hexagons (H)
or triangles (T) are stable (depending on higher—order terms in the amplitude
equation) whereas patchwork quilts (PQ) and rolls (R) are unstable. Secondary
bifurcations (not shown) may arise from higher—order terms.
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Considerable information about the bifurcating solutions can be ob-
tained using group theoretic methods. First, one can use an important
result from bifurcation theory in the presence of symmetries, namely, the
equivariant branching lemma [29]:when a symmetric dynamical system goes
unstable, new solutions emerge that (generically) have symmetries corre-
sponding to the axial subgroups of the underlying symmetry group. A
subgroup X is axial if the dimension of the space of solutions that are fixed
by ¥ is equal to one. Thus one can classify the bifurcating solutions by
finding the axial subgroups of the symmetry group of the lattice (up to
conjugacy). This has been carried out elsewhere for the particular shift-
twist action of the Euclidean group described at the end of § 1.3 [11, 12].
The results are listed in table 1.3.

It can be seen that major differences emerge between the even and odd
cases. Second, symmetry arguments can be used to determine the general

(1) Q)

() (V)

Figure 1.18. V1 planforms. (I) Non-contoured roll (II) Non-contoured hexagon
(III) Even contoured hexagon (IV) Even contoured square
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form of higher-order contributions to the amplitude equation (1.92) and
this leads to the bifurcation diagrams shown in figure 1.17 [11, 12]. It
turns out that stability depends crucially on the sign of the O(e) coeffi-
cient 2v(27/3) — v(0), which is assumed to be positive in figure 1.17. The
subcritical nature of the bifurcation to hexagonal patterns in the case of
even patterns is a consequence of an additional quadratic term appearing
on the right-hand side of (1.92).

1.6.4 From cortical patterns to geometric visual hallucinations

We have now identified the stable planforms that are generated as primary
bifurcations from a homogeneous, low activity state of the continuum model
(1.24). These planforms consist of certain linear combinations of the roll
patterns shown in figure 1.15 and can thus be classified into non-contoured
(m = 0) and contoured (m = 1 even or odd) patterns. Given a particular
activity state in cortex, we can infer what the corresponding image in visual

(V)

Figure 1.19. Visual field images of V1 planforms shown in figure 1.18
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coordinates is like by applying the inverse of the retino-cortical map shown
in figure 1.2. (In the case of contoured patterns, one actually has to specify
the associated tangent map as detailed in [11]). Some examples of stable
V1 planforms are presented in figure 1.18 and the associated visual images
are presented in figure 1.19. It will be seen that the two non-contoured
planforms correspond to the type (I) and (IT) Kluver form constants, as
originally proposed by Ermentrout and Cowan [22], whereas the two con-
toured planforms reproduce the type (III) and (IV) form constants (see
figure 1.10).

1.6.5 Oscillating patterns

It is also possible for the cortical model to spontaneously form oscillating
patterns. This will occur if, in the absence of any lateral connections, each
hypercolumn undergoes a Hopf bifurcation to a time—periodic tuning curve
along the lines described in § 1.5.3. (It is not possible for the lateral con-
nections to induce oscillations when the individual hypercolumns exhibit
stationary tuning curves. This is a consequence of the fact that the lateral
connections are modulatory and originate only from excitatory neurons).
Linearizing equations (1.62) and (1.63) about the zero state zr = 2z, = 0
(assuming zero inputs from the LGN) gives

92LT) ALt + i) 21 (r,7)
or
B 1ip) 99
+ 7 Wiat © [zL(r, T)+ zr(r,7)e } — (1.93)
0
Qom0 T) _ A (1 + i620)2n(r, 7)
or
" _1i¢7 99
+5 Wigt O [ZR(I‘/I') +zp(r,7)e ] - (1.94)
0
Equation (1.93) and (1.94) have solutions of the form
20 (r,7) = ue’ Pk T  p(r, 7) = ver e Ziveiker (1.95)

where k = g(cos(), sin(¢)) and A is determined by the eigenvalue equation

: Golg)  xGa(q) ) < u )
A—Ap(l+i)] (1) = ¢ 1.96
[ ﬂ( +1 0)] ( v ) ﬂ( XG2((]) GO(Q) v ( )
with G, (q) given by equation (1.73). Equation (1.96) has solutions of the
form

Ar = Au(1+iQ) + 8GL(q), v==u (1.97)
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for G+(q) defined by equation (1.72).

Hence, as in the case of stationary patterns, either odd or even time-
periodic patterns will bifurcate from the homogeneous state depending on
the degree of spread in the lateral connections. Close to the bifurcation
point these patterns are approximated by the eigenfunctions of the linear
theory according to

N
a(r,¢,t) = cos(2[¢ — ¢n)) [Cnei(mk"'”) + d ettt kn ) 4 C-C}
n=1

(1.98)

with k,, = ¢4 (cos ¢, sin ¢,,) for even solutions and

N
a(r,o,t) = Z sin(2[¢ — vn)]) [cnei(m“‘"'r) + d et knr) e
n=1

(1.99)

with k,, = ¢_(cos ¢y, sin ¢,,) for odd solutions, and where Q = Qo (14+ecAp).
These should be compared with the corresponding solutions (1.75) and
(1.77) of the stationary case. An immediate consequence of our analysis is
that the oscillating patterns form standing waves within a single hypercol-
umn, that is, with respect to the orientation label ¢. However, it is possible
for travelling waves to propagate across V1 if there exist solutions for which
Cn #0,d, =0o0r ¢, =0,d, # 0. In order to investigate this possibility,
we carry out a perturbation analysis of equations 1.62 and (1.63) along the
lines of § 1.6.3 (after the restriction to doubly periodic solutions).

First, introduce a second slow time variable 7 = ¢27 where £2 =
Ap — Ap. and take zp g = 2 r(r,7,7). Next, substitute into equations
(1.62) and (1.63) the series expansions

apr = e + 822 + 630 4 (1.100)

and collect terms with equal powers of £. This generates a hierarchy of
equations of the form (up to O(£?))

[MTZQ’)} =0, {MTZ([))} =0 (1.101)

for p=1,2 and

P (1)
(M2 = (102! [1—- 422 - 242 12] - gi 1.102)

. 32(1)
[M7z<3>]R = (1+i90)24) [1 - AP - 241:0F] - “(1.103)
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where for any z = (zr, 2gr)

0 T e
Mrz], = S5 — (1+4iQ0) Apiezr, — ﬁ/ Wiqt © [z + zre 7] do
or 0 ™
(1.104)
0] 4 o d
Mez], = =5 — (14 i90) Aoz — 5/ Wiat © [2r + 21,6 *] a
or 0 71'
(1.105)
The first equation in the hierarchy has solutions of the form
ZS)(I‘ 7A_ — 16Q~r Z eQu,oﬂ zk T d ( ) —1kn.r} (1.106)

(1)( 7_ _ usﬂrzef%«p" n zk r_|_d ( ) 71kn.r} (1107)

where I' = 1 for even modes and I' = —1 for odd modes (see equations (1.95)
and (1.97)), and 6Q = QpApu.. As in the stationary case we restrict our-
selves to doubly periodic solutions with N = 2 for the square or rhombic lat-
tice and N = 3 for the hexagonal lattice. A dynamical equation for the com-
plex amplitudes ¢, (7) and d,,(7) can be obtained as a solvability condition
for the third-order equations (1.102) and (1.103). Define the inner product
of two arbitrary doubly periodic vectors f(r,7) = (fr(r,7), fr(r,7)) and

g(r,7) = (g91(r,7),gr(r,7)) by

T/2
(flg) = lim —/ /[fL(r,T)gL(r,T)+fR(r,T)gR(r,T)]drdT

T/2 JA
(1.108)

where A is a fundamental domain of the periodically tiled plane (whose area
is normalized to unity). Taking the inner product of the left-hand side
of equation (1.83) with the vectors f,(r,7) = enTei007 (e2ien [e=2ivn)
and g, (r,7) = e Kn 107 (g2in T'e=2i%n) leads to the following pair of
solvability conditions

£, M23) =0, (g, M,2®) =0, (1.109)

Finally, we substitute for M,z®) using equations (1.102) and (1.103) to
obtain amplitude equations for ¢, and d,, (which at this level of approxi-
mation are the same for odd and even solutions):

de,
dr

= —4(1+iQ0)dn Y ¥(n — ©p)cpdy + (1 + i0)cn (1.110)
p#n
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x| 1= 27(0)(leal® +20dnl*) =4~ ¥(n — wp)(cpl* + [d[*)
pFEN
ddy, )
e (1+1i90) an’y — pp)cpdy + (1 +1iQ0)dy, (1.111)
p#N
x| 1= 27(0)(Idnl* +2lenl®) =4 ¥(n — wp)(Icpl* + [d %)
pF#n

with y(¢) given by equation (1.89).

The analysis of the amplitude equations (1.110) and (1.111) is con-
siderably more involved than for the corresponding stationary problem.
We discuss only the square lattice here (N = 2) with k; = ¢.(1,0) and
ks = ¢.(0, 1), The four complex amplitudes (c1, ¢, d1,d2) evolve according
to the set of equations of the form

de , -

d%l = (14iQ0) (c1 [1 = 6(er|* +2|d1 ) — 26(Jea|* + |da|?)] — 2kd:cads)
(1.112)

de ) _

& = (1+iQ) (e2 [1 = wlleal® + 2daf?) — 26(ler] + | da]*)] — 2mdc1d)
(1.113)

ddy . 2 2 2 2 =

e (14 iQ0) (d1 [1 — K(ler]* 4 2]d1 ) — 26(|c2]? + |d2|*)] — 2kE1c2d2)
(1.114)

dd2 . 2 2 2 2 7.

d7A' = (1 + ’LQ()) (dg []. — Ii(|02‘ + 2|d2| ) — 2/€(|Cl| —+ |d1‘ )] — 2/€d201d1)

(1.115)

where kK = 6A. These equations have the same structure as the cubic
equations obtained for the standard Euclidean group action using group
theoretic methods [51]. An identical set of equations has been obtained for
oscillatory activity patterns in the Ermentrout-Cowan model [56]. It can
be shown that there exist five possible classes of solution that can bifurcate
from the homogeneous state. We list examples from each class:

(i) Travelling rolls (TR): ¢; # 0,co = dy = da = 0 with |¢1]? = 1/k.
(ii) Travelling squares (TS): ¢; = ¢ # 0,d; = dy = 0 with |e1|?> = 1/3k
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(iii) Standing rolls (SR): ¢; = dy, co = do = 0 with |¢1|?2 = 1/3k
(iv) Standing squares (SS): ¢; = di = ca = dp with |¢1]? = 1/9k
(v) Alternating rolls (AR): ¢; = —ica = dy = —idy with |c1]? = 1/5k

Up to arbitrary phase-shifts the corresponding planforms are

(TR) a(r,¢,t) = |c1|u(¢) cos( + gex)

(TS) a(r,¢,t) = |c1] [u(@) cos(Qt + qex) + u(dp — 7/2) cos(QUt + q.y)]
(SR) a(r,¢,t) = |c1|u(@) cos(Qt) cos(gex)

(58) a(r,d,t) = |e1| cos(Qt) [u(e) cos(qex) + u(d — m/2) cos(qey)]

(AR) a(r,¢,t) = [e1| [cos(Qt)u(e) cos(gex) + sin(Qt)u(p — 7/2) cos(qey)]

(In contrast to the more general case considered by [51], our particular
system does not support standing cross-roll solutions of the form c¢; =
dl,CQ = d2 with ‘Cl| # ‘CQD.

Linear stability analysis shows that (to cubic order) the TR solution
is stable, the AR solution is marginally stable and the other solutions are
unstable [51, 56]. In order to resolve the degeneracy of the AR solution
one would need to carry out a double expansion in the parameters £, ¢ and
include higher order terms in the amplitude equation. The situation is
even more complicated in the case of the hexagonal lattice where such a
double expansion is expected to yield additional contributions to equations
(1.110) and (1.111). As in the stationary case, group theoretic methods
can be used to determine generic aspects of the bifurcating solutions. First
note that as with other Hopf bifurcation problems the amplitude equations
have an extra phase-shift symmetry in time that was not in the original
problem. This takes the form ¢ : (c,,,d,) — (e¥¢c,,e¥d,) forn=1,..., N
with ¢ € S!. Thus the full spatio-temporal symmetry is I'z x S! for a
given lattice £. One can then appeal to the equivariant Hopf theorem [29]
which guarantees the existence of primary bifurcating branches that have
symmetries corresponding to the isotropy subgroups of I'y x S! with two-
dimensional fixed point subspaces. (In the case of a square lattice this
generates the five solutions listed above). The isotropy subgroups for the
standard Euclidean group action have been calculated elsewhere [46, 51,
20]. As in the stationary bifurcation problem, the isotropy subgroups of
the shift-twist action may differ in a non-trivial way. This particular issue
will be explored elsewhere.

1.7 Spatial frequency tuning and SO(3) symmetry

One of the simplifications of our large-scale cortical model has been to
treat V1 as a continuum of interacting hypercolumns in which the internal
structure of each hypercolumn is idealized as a ring of orientation selective
cells. This reduction can be motivated in part by the fact that there exists
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a physical ring of orientation domains around each pinwheel, as illustrated
by the circle in figure 1.4. However, even if one restricts attention to the
single eye case, there still exist two pinwheels per ocular dominance column.
Moroever, the ring model does not take into account the fact that within
each pinwheel region there is a broad distribution of orientation preferences
so that the average orientation selectivity is weak. A fuller treatment of the
two-dimensional structure of a hypercolumn can be carried out by incorpo-
rating another internal degree of freedom within the hypercolumn, which
reflects the fact that cortical cells are also selective to the spatial frequency
of a stimulus. (In the case of a grating stimulus, this would correspond to
the inverse of the wavelength of the grating). Indeed, recent optical imag-
ing data suggests that the two pinwheels per hypercolumn are associated
with high and low spatial frequencies respectively [7, 36, 37]. Recently, we
have proposed a generalization of the ring model that takes into account
this structure by incorporating a second internal degree of freedom corre-
sponding to (log) spatial frequency preference [15]. Here we show how this
new model can be used to extend our theory of cortical pattern formation
to include both orientation and spatial frequency preferences.

1.7.1 The spherical model of a hypercolumn

Each hypercolumn (when restricted to a single ocular dominance column)
is now represented by a sphere with the two orientation singularities iden-
tified as the north and south poles respectively (see figure 1.20). Following
recent optical imaging results [7, 36, 37], the singularities are assumed to
correspond to the two extremes of (log) spatial frequency within the hy-
percolumn. In terms of spherical polar coordinates (r,0,¢) with r = 1,
0 € [0,7) and ¢ € [0,27), we thus define the orientation preference ¢ and
(log) spatial frequency v according to

0
V = Vmin + ; [Vm,am - Vmin] 5 Qb = S0/2 (1116)

Note that we consider v = log p rather than spatial frequency p as a cortical
label. This is motivated by the observation that dilatations in visual field
coordinates correspond to horizontal translations in cortex (see § 1.1). Us-
ing certain scaling arguments it can then be shown that all hypercolumns
have approximately the same bandwidth in v even though there is broad-
ening with respect to lower spatial frequencies as one moves towards the
periphery of the visual field [15].

It is important to emphasize that the sphere describes the network
topology of the local weight distribution expressed in terms of the internal
labels for orientation and spatial frequency. It is not, therefore, expected to
match the actual spatial arrangement of cells within a hypercolumn. Given
this spherical topology, the natural internal symmetry of a hypercolumn is
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spatial frequency
v

Vmax

Figure 1.20. Spherical model of orientation and spatial frequency tuning

now SO(3) rather than O(2). In particular, the local weight distribution
is assumed to be SO(3) invariant. Imposing such a symmetry is not just a
mathematical convenience, but actually reflects the anatomical observation
that the pattern of local interactions within a hypercolumn depends on
cortical separation rather than feature separation [19]. When the weight
distribution is expressed in terms of cortical co-ordinates, this naturally
leads to Euclidean symmetry. However, we are describing the interactions
in terms of cortical labels for orientation and spatial frequency. Hence, the
natural measure of spatial separation is now in terms of geodesics or great
circles on the sphere, and the group that preserves geodesic separation is
SO(3).

Having introduced the spherical model of a single hypercolumn, it is
straightforward to write down a generalization of our large-scale cortical
model given by equation (1.19):

Oa(r, P,t)

pn = —alr, P,t) +/w(P|P’)a[a(r,P',t)]dP’ (1.117)

+e / wiat(r, Plr’, Pola(r’, P, t)]dr'dP’ + h(r, P,t)

where we have introduced the compact notation P = {6, ¢} and dP =
sin @dfdp. (For ease of notation, we consider here a one-population model
by identifying the states ap = ay. Note that such a state arose previously
in case A of § 1.4). In equation (1.117), w(P|P’) denotes the distribution
of local connections within a hypercolumn, whereas wiq(r, P|r’, P') de-
notes the distribution of horizontal connections between the hypercolumns
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at r and r’. In the following we focus on the spontaneous dynamical be-
haviour of the model by fixing h(r, P,t) = hg such that a(r, P,t) = ag is a
homogeneous fixed point solution of equation (1.117).

An SO(3) invariant local weight distribution can be constructed in
terms of spherical harmonics [15]:

w0, ) =pd Wu Y VO, )Y (0, 9) (1.118)
n=0

m=—n

with W, real. The functions Y;7*(6, ) constitute the angular part of the so-
lutions of Laplace’s equation in three dimensions, and thus form a complete
orthonormal set. The orthogonality relation is

27 T
/ / Vi (0, 0) Y2 (0, ) Sin 0d0dp = 8,y e (1.119)
0 0

The spherical harmonics are given explicitly by

Y™ (0, ) = P (cos §)e"™? (1.120)

n

Pri(cos) = (—1)™ | 2"4: ! %Py(cose) (1.121)

for n > 0 and —n < m < n, where P/*(cosf) is an associated Legendre
function. The lowest order spherical harmonics are listed below
1

Y90, ¢) = Vi (1.122)

Y20, ) = icose, Yf(@,go)::ﬁ/%sin@eiw (1.123)

with

™

In figure 1.21 we show a contour plot of the SO(3) invariant weight dis-
tribution for the particular case Wy =1, W7 = 3, and W,, = 0 for n > 2.
The contour plot represents the distribution joining neurons with the same
spatial frequency (same latitude on the sphere). It can be seen that away
from the pinwheels (poles of the sphere), cells with similar orientation ex-
cite each other whereas those with dissimilar orientation inhibit each other.
This is the standard interaction assumption of the ring model (see § 1.4).
On the other hand, around the pinwheels, all orientations uniformly ex-
cite, which is consistent with the experimental observation that local in-
teractions depend on cortical separation [19]. That is, although the cells
around a pinwheel can differ greatly in their orientation preference, they
are physically close together within the hypercolumn.

How does the anisotropy in the lateral connections manifest itself when
spatial frequency is taken into account, so that the internal symmetry is
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Figure 1.21. Plot of w(f, ¢|0’, ¢') given by the SO(3) invariant weight distribu-
tion (1.118) with Wy =1, Wi = 3 and W,, = 0 for n > 2. Since w only depends
on the difference ¢ — ¢’, we set ¢’ = 0 and plot w as a function of § and ¢ for
0" =6.

SO(3) rather than O(2)? The first point to make is that, unlike O(2),
SO(3) does not have a faithful representation in R2. Nevertheless, it is
possible to generalize equation (1.22) so that the weights are invariant
with respect to the action of R?+0(2) = E(2) on {r,0,¢}. That is, we
consider a lateral weight distribution of the form

1

sin 0’

wlat(rv P|r/7PI) = EJ(T—LP/2(I‘ - I'/))

50— 05 —¢')  (1.124)

with J(r) defined by equation (1.23) and ¢ < 0 (inhibitory lateral inter-
actions). Such a distribution links neurons with the same orientation and
spatial frequency label, with the function p(n) again determining the degree
of spatial spread (anisotropy) in the pattern of connections relative to the
direction of their common orientation preference. An elegant feature of the
spherical model is that it naturally incorporates the fact that, at the popu-
lation level, there is less selectivity for orientation near pinwheels. In other
words, any solution a(r, 6, ) expanded in terms of spherical harmonics is
independent of ¢ at § = 0, 7. This constrains the allowed structure of the
spread function p(n), in the sense that the horizontal weight distribution
(1.124) has to be isotropic at the pinwheels. This follows from equations
(1.124) and (1.23), which show that

/ Wiar(x, Pt PYa(x’, P')dP"
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00 /2
~ [ o) [ vt st Pands (1125)
—00 —m/2
It is clear that the right-hand of this equation will be independent of ¢ at
0 = 0,7 if and only if p(n) = 1/7 at the pinwheels. In order to incorpo-
rate the known anisotropy away from the pinwheels, we conclude that the
spread function has to be 6-dependent, p = p(n|6). An example of a spread
function that smoothly interpolates between isotropic connections at the
pinwheels (high and low spatial frequencies) and strong anisotropy in the
linear zones (intermediate spatial frequencies) with degree of spread g is

cos? 6 1

p(n|6) = +5,-O00 — |nl) sin” § (1.126)
Mo

The anisotropic weight distribution (1.124) is invariant under the following
action of R2+0(2) = E(2) on {r,0, p}:

s-(r,0,0) = (r+s,0,0) s€R?
£ (r,0,9) = (Ter,0,p+6) &€ (1.127)
K- (r7 97 QO) = (/‘1}1‘7 97 _QD)

where k is the reflection (z1,z2) — (z1, —x2).

1.7.2 Cortical patterns and spatial frequency tuning

A theory of spontaneous pattern formation in the coupled spherical model
(1.117) can be developed along similar lines to that of the coupled ring
model (1.24). Now each isolated hypercolumn generates a tuning surface
for orientation and spatial frequency through spontaneous SO(3) symmetry
breaking. The peak of this surface can be locked to a weakly biased stimulus
from the LGN. Moreover, lateral interactions induce correlations between
the tuning surfaces across the cortex leading to spatially periodic patterns
of activity, which are consistent with the hallucinatory images presented
in § 1.6.4. Rather than presenting the full nonlinear analysis here, we
restrict ourselves to studying the linear eigenmodes that are excited when
a homogeneous fixed point of the network becomes unstable.

First, we linearize equation (1.117) about the fixed point solution
a(r,0,¢,t) = ag. Setting a(r,0,p,t) = ag + e Mu(f, p)e’™® T generates the
eigenvalue equation

M(P) = —u(P) + i / w(P|P'Yu(P')dP' + (T, 2k)u(P)  (1.128)

where J(k) is the Fourier transform of J(r) and k = g(cos(,sin(). Ex-
panding u(0, ¢) in terms of spherical harmonics

u(f, ) = Z Z e M AL Y (0, 0) (1.129)

neZ m=—n
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leads to the matrix eigenvalue equation

n

[)\ +1-— MW Apm =€ Z Z Jnm n m’ An/m’ (1130)

n'€Zm'=—n’

with

27

X l /,, o p(nl0) /OWQ(S)COS(SCICOS[@/Q+n])dnd5 sin 0dfdep

We have included an additional phase-factor e ~¥™¢ in equation (1.129) that
simplifies the matrix equation (1.130) by eliminating any dependence on
the direction ¢ of the wavevector k. Such a phase factor is equivalent to
shifting ¢, since e =Y, (0, p) = Y, (0, ¢ — ().

The matrix elements Jynm nm(¢) are evaluated by substituting the
explicit expression (1.120) for the spherical harmonics into equation (1.131):

Jnm,n’m’(q) = 27er—m/ (q)an,n’m’ (1132)

where G,,(q) satisfies equation (1.73) and

™ , /2 . ’
Covmonm :/ P (cos 0P, (cos ) [/ p(n]@)eim—m )”dnl sin 6d6
0

—7/2
(1.133)

For the spread function (1.126) we have

Comnim: = / P, (cos G)P}Z}/ (cos0) (1.134)
0

sin[2(m — m/)no]

X {&nm, cos® 0 + sin? 9] sin 6d6

2(m —m’)no

In the absence of lateral interactions (¢ = 0), each hypercolumn can
exhibit orientation and spatial frequency tuning through spontaneous sym-
metry breaking of SO(3). This is a generalization of the O(2) symmetry
breaking mechanism underlying orientation tuning in the ring model (see
§ 1.4). The orthogonality relation (1 119) shows that the eigenmodes are
spherical harmonics with A = A, = —1 + uW,, for u(0,¢) = Y,*(0, v),
—n < m < n. Since X is k—mdependent the full solution for the eigen-
modes can be written in the form

a(r,0,0) — ag = co(r)Y,)(0,0) + Y [en(®)Y,"(0,0) + En ()6, 0)]

(1.135)
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with the coefficients ¢,,(r) arbitrary modulo the normalization condition

> lem(@)? =B (1.136)
m=0

where B is fixed. This normalization condition reflects the fact that the
associated amplitude equations for the coefficients ¢, (r) are SO(3) equiv-
ariant [15].

Suppose that Wi > W, for all n # 1. The fixed point a = ag then
destabilizes at a critical value of the coupling u. = 1/W; due to excitation
of the first-order spherical harmonics. Sufficiently close to the bifurcation
point, the resulting activity profile can be written as

a(r,0,¢) = ag + co(r) + Z em(r) fm (6, 0) (1.137)
m=0,+

for real coefficients co(r), cx(r) with 37, _; 4 cm (r)? = B and

fo(0,¢) =cosb, fi(0,p)=sinbcosp, [f_(0,p)=sinfsinp (1.138)

Equation (1.137) represents a tuning surface for orientation and spatial fre-
quency preferences for the hypercolumn at cortical position r, which con-
sists of a solitary peak whose location is determined by the values of the
coefficients (co(r),cy(r),c—(r)). Such a solution spontaneously breaks the
underlying SO(3) symmetry. However, full spherical symmetry is recov-
ered by noting that rotation of the solution corresponds to an orthogonal
transformation of the coefficients cg,cy. Thus the action of SO(3) is to
shift the location of the peak of the activity profile on the sphere, that
is, to change the particular orientation and spatial frequency selected by
the tuning surface. (This hidden SO(3) symmetry is explicitly broken by
external stimuli, along similar lines to § 1.5.2).

The tuning surface generated by our spherical model has the impor-
tant property that it is not separable with respect to orientation and spa-
tial frequency — the activity profile cannot be written in the form u(6, p) =
©(0)®(p). Consequently, selectivity for orientation varies with spatial fre-
quency. If ¢ = 0 then the activity profile is peaked at the pinwheel
associated with high (cp > 0) or low (cg < 0) spatial frequencies, and
there is no selection for orientation. On the other hand, if ¢y = 0 then the
activity profile is peaked at intermediate spatial frequencies and there is
strong selection for orientation. It is important to emphasize that the tun-
ing surface represents the activity profile of a population of cells within a
hypercolumn, rather than the tuning properties of an individual cell. Thus
the absence of orientation selectivity at pinwheels is an aggregate property
of the population. Indeed, it has been found experimentally that individ-
ual cells around pinwheels are orientation selective, but there is a broad
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distribution of orientation preferences within the pinwheel region so that
the average response of the population is not orientation selective.

In order to solve the eigenvalue equation (1.130) for non-zero €, we ex-
ploit the experimental observation that the lateral connections are weak
relative to the local connections, and carry out a perturbation expan-
sion in the small parameter €. We show that there is a ¢—dependent
splitting of the degenerate eigenvalue A; that also separates out the first-
order spherical harmonics. Denoting the characteristic size of such a split-
ting by 6\ = O(e), we impose the condition that A <« pAW, where
AW = min{W; —W,,, m # 1}. This ensures that the perturbation does not
excite states associated with other eigenvalues of the unperturbed problem,
and we can then restrict ourselves to calculating perturbative corrections
to the degenerate eigenvalue \; and its associated eigenfunctions. Thus,
introduce the perturbation expansions

A= —1+pW +eX® 420 (1.139)
Apm = cmbn1 + AN 4242 (1.140)

and substitute these into the eigenvalue equation (1.130). We then system-
atically solve the resulting hierarchy of equations to successive orders in ¢,
taking into account the fact that the unperturbed problem is degenerate.
Here we will only describe the lowest order corrections.

Setting n = 1 in equation (1.130) yields the O(e) equations

1
Z jm,m’(q)cm’ = A(l)cm

mm/'=—1

where Jom (q) = Jim,1m(q). Using equations (1.126), (1.132) and (1.134),
we find that

Go(q) 0 0 co o
0 Go(q) 4xGa(q)/5 1 VN
0 4xG2(q)/5  Gola) 4 e

(1.141)

where x is given by equation (1.69). Equation (1.141) has solutions of the
form

AW =2 (g) = Golg) (1.142)

with eigenmode ¢y = 1,c4 = 0 and

4
AD = 2P (q) = Golg) + =XG2(q) (1.143)
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with eigenmodes ¢y = 0,¢c_1 = +c3.

As a concrete example, suppose that g(s) is given by equation (1.74)
and y = sindng/4ne. Plotting G,,(q) for m = 0,2 establishes that when
there is sufficiently strong anisotropy in the linear zones (ng < 7/4)

min{A(¢)} < min{A{" (@)} < min{A (q)} (1.144)

and the marginally stables modes are of the form
a(r,0,¢) = Z bie™ i T sin @ sin(p — ¢;) (1.145)
where k; = ¢.(cos(;,sin(;) and g. is the wavenumber that minimizes

A(_l)(q). On the other hand, when there is weaker anisotropy within the
linear zones (ny > m/4)

min{A{(¢)} < min{Ag" ()} < min{A" (q)} (1.146)
and the marginally stables modes are now of the form

a(r,0,¢) = Z bie™ i T sin 6 cos(p — ;) (1.147)

In both cases, these are states in which each hypercolumn has a tuning
surface that peaks at intermediate frequencies. This regime is the one
relevant to contour formation, and thus we recover the basic contoured
patterns presented in § 1.6.4.

1.8 Future directions

There are many directions in which this work can be expanded. For ex-
ample, it is now clear that many different features are mapped onto the
visual cortex and beyond in addition to retinal position, orientation and
spatial frequency. Thus ocularity, directional motion, binocular disparity,
and colour seem to be mapped [39, 35, 6, 48, 36]. It therefore remains to
work out the symmetry groups associated with these features and thence to
apply the mathematical machinery we have introduced above to compute
the patterns which arise via spontaneous symmetry breaking.

There is also the fact that the neuron model used to formulate equa-
tions (1.4) is extremely simplified. It is nothing more than a low—pass RC
filter followed by a sigmoidal current—voltage characteristic. One can easily
make this model more complex and realistic by adding recovery variables
in the style of the Fitzhugh-Nagumo equations [64], or one can simplify it
still further by using the well-known integrate—and—fire model [10]. Inter-
estingly, in either case the dynamics is richer, and a variety of oscillatory
phenomena are immediately apparent.
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However the most interesting new direction is to study, not sponta-
neous but driven pattern formation in neural networks of the type we have
introduced. This amounts to studying the effects of external stimuli on
such networks. In our case this means studying the effects of visual stim-
uli. Depending on the order of magnitude of such stimuli, various effects
are possible. Thus external stimuli of order O(1) couple to the fixed points
of equation (1.4), stimuli of order O(e!/?) couple to the linearized equa-
tions (1.6), and O(e%/2) stimuli couple directly to amplitude equations such
as those of equation (1.52) and effectively unfold any bifurcation [10, 13].
The various effects produced by these and related stimuli remain to be
studied in detail.
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