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This chapter contains those results about spectral sequences that we used earlier
in the book, incorporated into a brief background compendium of the very mini-
mum that anybody interested in algebraic topology needs to know about spectral
sequences. Introductory books on algebraic topology usually focus on the different
kinds of chain and cochain complexes that can be used to define ordinary homology
and cohomology. It is a well kept secret that the further one goes into the subject,
the less one uses such complexes for actual calculation. Rather, one starts with
a few spaces whose homology and cohomology groups can be computed by hand,
using explicit chain complexes. One then bootstraps up such calculations to the
vast array of currently known computations using a variety of spectral sequences.
McCleary’s book [3] is a good encyclopedic reference for the various spectral se-
quences in current use. Other introductions can be found in many texts in algebraic
topology and homological algebra [1, 4, 5]. However, the truth is that the only way
to master the use of spectral sequences is to work out many examples in detail.

All modules are over a commutative ring R, and understood to be graded,
whether or not the grading is mentioned explicitly or denoted. In general, we
leave the gradings implicit for readability. The preliminaries on tensor product and
Hom functors of Section ?? remain in force in this chapter.

1. Definitions

While spectral sequences arise with different patterns of gradings, the most com-
monly encountered homologically and cohomologically graded spectral sequences fit
into the patterns given in the following pair of definitions.

Definition 1.1. A homologically graded spectral sequence E = {Er} consists of a
sequence of Z-bigraded R modules Er = {Er

p,q}r≥1 together with differentials

dr : Er
p,q → Er

p−r,q+r−1

1
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such that Er+1 ∼= H∗(E
r). A morphism f : E → E′ of spectral sequences is a

family of morphisms of complexes f r : Er → E′r such that f r+1 is the morphism
H∗(f

r) induced by f r.

Definition 1.2. A cohomologically graded spectral sequence E = {Er} consists of
Z-bigraded R-modules Er = {Ep,q

r }r≥1 together with differentials

dr : Ep,q
r → Ep+r,q−r+1

r

such that Er+1
∼= H∗(Er). We can regrade Er homologically by setting Ep,q

r =
Er

−p,−q, so in principle the two grading conventions define the same concept.

Let E = {Er} be a spectral sequence. Let Z1, the cycles, be the kernel of d1 and
B1, the boundaries, be the image of d1. Then, under the identification of H∗(E

1)
with E2, d2 is a map

Z1/B1 → Z1/B1

Continuing this identification, Er is identified with Zr−1/Br−1 and the map

dr : Zr−1/Br−1 → Zr−1/Br−1

has kernel Zr/Br−1 and image Br/Br−1. These identifications give a sequence of
submodules

0 = B0 ⊂ B1 ⊂ . . . ⊂ Z2 ⊂ Z1 ⊂ Z0 = E1.

Define Z∞ = ∩∞
r=1Z

r, B∞ = ∪∞
r=1B

r, and E∞
p,q = Z∞

p,q/B∞
p,q, writing E∞ = {E∞

p,q}.
We say that E is a first quadrant spectral sequence if Er

p,q = 0 for p < 0 or
q < 0. In a first quadrant spectral sequence the terms {Er

p,0} are called the base
terms and the terms {Er

0,q} are called the fiber terms. Note that elements of Er
p,0

cannot be boundaries for r ≥ 2 since the differential

dr : Er
p+r,−r+1 −→ Er

p,0

has domain the 0 group. Thus

Er+1
p,0 = Ker(dr : Er

p,0 → Er
p−r,r−1)

and there is a sequence of monomorphisms

eB : E∞
p,0 = Ep+1

p,0 → Ep
p,0 → . . . → E3

p,0 → E2
p,0.

Similarly, for r ≥ 1, Er
0,q consists only of cycles and so there are epimorphisms

eF : E2
0,q → E3

0,q → . . . → Eq+2
0,q = E∞

0,q.

The maps eB and eF are called edge homomorphisms. From these maps we define
a “map” τ = e−1

F dpe−1
B : E2

p,0 → E2
0,p−1 as in the following diagram.

0

��

E2
0,p−1

eF

��
0 // E∞

p,0
// Ep

p,0
dp

//

eB

��

Ep
0,p−1

��

// E∞
0,p−1

// 0

E2
p,0

τ

EE
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

0

This map is called the transgression. It is an additive relation [1, II.6] from a
submodule of E2

p,0 to a quotient module of E2
0,p−1.
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A cohomologically graded first quadrant spectral sequence E is also defined to
have Ep,q

r = 0 for p < 0 or q < 0. However, when regraded homologically it becomes
a third quadrant spectral sequence. Again, its base terms have q = 0 and its fiber
terms have p = 0. It has edge homomorphisms

eB : Ep,0
2 → Ep,0

3 → . . . → Ep,0
p → Ep,0

p+1 = Ep,0
∞

(which are epimorphisms) and

eF : E0,q
∞ = E0,q

q+2 −→ E0,q
q+1 −→ . . . −→ E0,q

3 → E0,q
2

(which are monomorphisms). Its transgression τ = e−1
B dpe

−1
F is induced by the

differential dp : E0,p−1
p → Ep,0

p . It is an additive relation from a submodule of

E0,p−1
2 to a quotient module of Ep,0

2 .

2. Exact Couples

Exact couples provide an especially useful and general source of spectral se-
quences. We first define them in general, with unspecified gradings. This leads
to the most elementary example, called the Bockstein spectral sequence. We then
describe the gradings that usually appear in practice.

Definition 2.1. Let D and E be modules. An exact couple C = 〈D, E; i, j, k〉 is a
diagram

D
i // D

j~~~~
~~

~~
~

E

k

``@@@@@@@

in which Ker j = Im i, Ker k = Im j, and Ker i = Im k.

If d = jk : E → E, then d ◦ d = jkjk = 0. Construct C ′ = 〈D′, E′; i′, j′, k′〉 by
letting

D′ = i(D) and E′ = H∗(E; d),

and, writing overlines to denote passage to homology classes,

i′ = i|i(D), j′(i(x)) = j(x) = j(x) + jk(E), and k′(ȳ) = k′(y + jk(E)) = k(y).

That is, i′ is a restriction of i and j′ and k′ are induced from j and k by passing to
homology on targets and sources. We easily check that j′ and k′ are well-defined
and the following result holds.

Lemma 2.2. C ′ is an exact couple.

Starting with C = C (1), we can iterate the construction to form

C
(r) = 〈Dr, Er, ir, jr, kr〉.

(The notation might be confusing since the maps ir, jr, and kr given by the con-
struction are not iterated composites). Then, with dr = jrkr, {Er} is a spectral
sequence. It can be graded differently than in the previous section since we have not
specified conditions on the grading of D and E. The Bockstein spectral sequence in
the proof of ?? comes from a particularly simple exact couple and is singly graded
rather than bigraded.
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Example 2.3. Let C be a torsion free chain complex over Z. From the short exact
sequence of groups

0 // Z
p // Z // Z/pZ // 0

we obtain a short exact sequence of chain complexes

0 // C // C // C ⊗ Z/pZ // 0 .

The induced long exact homology sequence is an exact couple

H∗(C) // H∗(C)

wwppppppppppp

H∗(C ⊗ Z/pZ)

ggNNNNNNNNNNN

.

The resulting spectral sequence is called the mod p Bockstein spectral sequence.
Here dr : Er

n → Er
n−1 for all r ≥ 1 and all n, and we have short exact sequences

0 // (pr−1Hn(C)) ⊗ Z/pZ // Er
n

// Tor(pr−1Hn−1(C), Z/pZ) // 0 .

When r = 1, this is the universal coefficient exact sequence for calculating Hn(C; Fp),
and we may view it as a higher universal coefficient exact sequence in general.

We can describe this spectral sequence in very elementary terms. Let Σn be the
functor on graded Abelian groups given by (ΣnA)q+n = Aq. For a cyclic Abelian
group π, we have a Z-free resolution C(π) given by Z in degree 0 if π = Z and
by copies of Z in degrees 0 and 1 with differential qs if π = Z/qs. Assume that
H∗(C) is of finite type and write Hn(C) as a direct sum of cyclic groups. For each
cyclic summand, choose a representative cycle x and, if π = Z/qs, a chain y such
that d(y) = qsx. For each cyclic summand π, these choices determine a chain map
ΣnC(π) −→ C. Summing over the cyclic summands and over n, we obtain a chain
complex C′ and a chain map C′ −→ C that induces an isomorphism on homology
and on Bockstein spectral sequences.

The Bockstein spectral sequences {Er} of the ΣnC(π) are trivial to compute.
When π = Z, Er

n = Z and Er
m = 0 for m 6= n for all r. When π = Z/qs for q 6= p,

Er
n = 0 for all n and r. When π = Z/ps, E1 = Es is Fp in degrees n and n + 1,

ds : Es
n+1 −→ Es

n is an isomorphism, and Er = 0 for r > s. Returning to C, we
see that E∞ ∼= (H∗(C)/TH∗(C))⊗Fp, where Tπ denotes the torsion subgroup of a
finitely generated Abelian group π. Moreover, there is one summand Z/ps in H∗(C)
for each summand Fp in the vector space dsEs. The higher universal coefficient
exact sequences are easy to see from this perspective.

We conclude that complete knowledge of the Bockstein spectral sequences of C
for all primes p allows a complete description of H∗(C) as a graded Abelian group.

The previous example shows that if X is a space whose homology is of finite
type and if one can compute H∗(X ; Q) and H∗(X ; Fp) together with the mod p
Bockstein spectral sequences for all primes p, then one can read off H∗(X ; Z). For
this reason, among others, algebraic topologists rarely concern themselves with
integral homology but rather focus on homology with field coefficients. This is one
explanation for the focus of this book on rationalization and completion at primes.
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This is just one particularly elementary example of an exact couple. More typi-
cally, D and E are Z-bigraded and, with homological grading, we have

deg i = (1,−1), deg j = (0, 0), and deg k = (−1, 0).

This implies that

deg ir = (1,−1), deg jr = (−(r − 1), r − 1), and deg kr = (−1, 0).

Since dr = jrkr, we then have

dr : Er
p,q → Er

p−r,q+r−1,

as in our original definition of a spectral sequence.

3. Filtered Complexes

Filtered chain complexes give rise to exact couples and therefore to spectral
sequences. This is one of the most basic sources of spectral sequences. The Serre
spectral sequence, which we describe in Section 5, could be obtained as an example,
although we shall construct it differently.

Let A be a Z-graded complex of modules. An (increasing) filtration of A is a
sequence of subcomplexes

. . . ⊂ Fp−1A ⊂ FpA ⊂ Fp+1A ⊂ . . .

of A. The associated graded complex E0A is the bigraded complex defined by

E0
p,qA = (FpA/Fp−1A)p+q,

with differential d0 induced by that of A. The homology H∗(A) is filtered by

FpH∗(A) = Im(H∗(FpA) → H∗(A)),

and thus E0H∗(A) is defined.
Let Ap,q = (FpA)p+q . The inclusion Fp−1A ⊂ FpA restricts to inclusions

i : Ap−1,q+1 → Ap,q and induces quotient maps j : Ap,q → E0
p,q. The short exact

sequence

(3.1) 0 // Fp−1A
i // FpA

j // E0
pA // 0

of chain complexes induces a long exact sequence

. . . // Hn(Fp−1A)
i∗ // Hn(FpA)

j∗ // Hn(E0
pA)

k∗ // Hn−1(Fp−1A) // . . .

Let D1
p,q = Hp+q(FpA) and E1

p,q = Hp+q(E
0
p). Then

〈D1, E1; i∗, j∗, k∗〉

is an exact couple. It gives rise to a spectral sequence {ErA}, which is functorial
on the category of filtered complexes.

Theorem 3.2. If A = ∪pFpA and for each n there exists s(n) such that Fs(n)An =

0, then E∞
p,qA = E0

p,qH∗(A).

The proof is tedious, but elementary. We give it in the last section of the chapter
for illustrative purposes. The conclusion of the theorem, E∞

p,qA
∼= E0

p,qH∗(A), is
often written

E2
p,qA ⇒ Hp+q(A),

and Er is said to converge to H∗(A).
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The filtration of A is said to be canonically bounded if F−1A = 0 and FnAn = An

for all n, and in this case Er certainly converges to H∗(A).
Dually, cohomology spectral sequences arise naturally from decreasing filtrations

of complexes. Regrading complexes cohomologically, so that the differentials are
maps δ : An −→ An+1, a decreasing filtration is a sequence

. . . ⊃ F pA ⊃ F p+1A ⊃ . . . .

If we rewrite A as a complex, An = A−n, and define FpA = F−pA, then our
construction of homology spectral sequences immediately gives a cohomology spec-
tral sequence {ErA}. With evident changes of notation, Theorem 3.2 takes the
following cohomological form.

Theorem 3.3. If A = ∪pF
pA and for each n there exists s(n) such that F s(n)An =

0, then Ep,q
∞ A = Ep,q

0 H∗(A).

A decreasing filtration is canonically bounded if F 0A = A and Fn+1An = 0 for
all n, and in this case Er certainly converges to H∗(A).

In practice, we often start with a homological filtered complex and dualize it to
obtain a cohomological one, setting A∗ = Hom(A, R) and filtering it by

F pA∗ = Hom(A/Fp−1A, R)

At least when R is a field, the resulting cohomology spectral sequence is dual to
the homology spectral sequence.

4. Products

A differential graded algebra (DGA) A over R is a graded algebra with a product
that is a map of chain complexes, so that the Leibnitz formula

d(xy) = d(x)y + (−1)degxxd(y)

is satisfied. When suitably filtered, A often gives rise to a spectral sequence of
DGA’s, meaning that each term Er is a DGA. It is no exaggeration to say that
the calculational utility of spectral sequences largely stems from such multiplicative
structure. We give a brief description of how such structure arises in this section.
We work more generally with exact couples rather than filtered chain complexes,
since our preferred construction of the Serre spectral sequence will largely avoid the
use of chains and cochains.

Let C1 = 〈D1, E1; i1, j1, k1〉, C2 = 〈D2, E2; i2, j2, k2〉, and C = 〈D, E, i, j, k〉 be
exact couples. A pairing

φ : E1 ⊗ E2 → E

is said to satisfy the condition µn if for any x ∈ E1, y ∈ E2, a ∈ D1 and b ∈ D2

such that k1(x) = in1 (a) and k2(y) = in2 (b) there exists c ∈ D such that

k(xy) = in(c)

and

j(c) = j1(a)y + (−1)deg xxj2(b).

We write the pairing by concatenation rather than using φ to minimize notation.
By convention, we set i01 = id and i02 = id. Then the only possible choices are
a = k1(x), b = k2(y), and c = k(xy), so that µ0 is the assertion that

jk(xy) = j1k1(x)y + (−1)deg xxj2k2(y).



A PRIMER ON SPECTRAL SEQUENCES 7

Since the differential on E is jk, and similarly for E1 and E2, µ0 is precisely the
assertion that φ is a map of chain complexes, and it then induces

φ′ : E′
1 ⊗ E′

2 −→ E′.

We say that φ satisfies the condition µ if φ satisfies µn for all n ≥ 0.

Proposition 4.1. Assume that φ satisfies µ0. Then φ satisfies µn if and only if
φ′ : E′

1 ⊗ E′
2 → E′ satisfies µn−1.

Proof. Suppose that φ satisfies µn. Let x′ ∈ E′
1, y′ ∈ E′

2, a′ ∈ D′
1, b′ ∈ D′

2 satisfy

k′
1(x

′) = i′
n−1
1 (a′) and k′

2(y
′) = i′

n−1
2 (b′). If x′ = x̄, y′ = ȳ, a′ = i1(a), and

b′ = i2(b), we find that

k1(x) = in1 (a) and k2(y) = in2 (b).

It follows that there exits c ∈ D such that

k(xy) = in(c) and j(c) = j1(a)y + (−1)deg xxj2(b).

Taking c′ = i(c), we find that

k′(xy) = k′(x̄ȳ) = i′n−1(c′)

and
j′(c′) = j′1(a

′)y′ + (−1)deg x′

x′j′2(b
′).

The converse is proven similarly. �

Corollary 4.2. If φ satisfies µ, then so does φ′, and therefore so do all successive

φr : Er
1 ⊗ Er

2 → Er,

r ≥ 1, where φr+1 is the composite

H∗(E
r
1) ⊗ H∗(E

r
2) → H∗(E

r
1 ⊗ Er

2) −→ H∗(E
r)

of the Künneth map and H∗(φ
r). Thus each φr is a map of chain complexes.

The point is that it is usually quite easy to see explicitly that φ satisfies µ, and we
are entitled to conclude that the induced pairing of Er terms satisfies the Leibnitz
formula for each r ≥ 1.

Example 4.3. The cup product in the singular cochains C∗(X) gives rise to the
product

φ : H∗(X ; Fp) ⊗ H∗(X ; Fp) → H∗(X ; Fp).

Regarding H∗(X ; Fp) as the E1 term of the Bockstein spectral sequence of the
cochain complex C∗(X), we find that φ satisfies µ. Therefore each Er in the mod
p cohomology Bockstein spectral sequence of X is a DGA, and Er+1 = H∗(Er) as
an algebra.

Now let A, B, and C be filtered complexes. Filter A ⊗ B by

Fp(A ⊗ B) =
∑

i+j=p

FiA ⊗ FjB.

Suppose φ : A ⊗ B → C is a morphism of filtered complexes, so that

FpA · FqB ⊂ Fp+qC.

Then φ induces a morphism of spectral sequences

Er(A ⊗ B) → Er(C).
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Since ErA ⊗ ErB is a complex, we have a Künneth map

ErA ⊗ ErB → Er(A ⊗ B),

and its composite with H∗(φ) defines a pairing

ErA ⊗ ErB → ErC.

This is a morphism of complexes since an easy verification shows that

φ∗ : E1A ⊗ E1B → E1C

satisfies the condition µ. If R is a field, or more generally if our Künneth map is an
isomorphism, then {ErA⊗ErB} is a spectral sequence isomorphic to {Er(A⊗B)}
and the product is actually a morphism of spectral sequences. In general, however,
we are concluding the Leibnitz formula even when the Künneth map of Er terms
does not induce an isomorphism on homology.

If, further, each of of the filtered complexes A, B and C satisfies the hypothesis
of the convergence theorem, Theorem 3.2, then inspection of its proof shows that
the product

E∞A ⊗ E∞B → E∞C

agrees with the product

E0H∗(A) ⊗ E0H∗(B) −→ E0H∗(C)

induced by passage to quotients from the induced pairing

H∗(A) ⊗ H∗(B) → H∗(C).

5. The Serre spectral sequence

We give what we feel is perhaps the quickest construction of the Serre spectral
sequence, but, since we do not want to go into details of local coefficients, we
leave full verifications of its properties, in particular the identification of the E2

term, to the reader. In applications, the important thing is to understand what
the properties say. Their proofs generally play no role. In fact, this is true of
most spectral sequences in algebraic topology. It is usual to construct the Serre
spectral using the singular (or, in Serre’s original work, cubical) chains of all spaces
in sight. We give a more direct homotopical construction that has the advantage
that it generalizes effortlessly to a construction of the Serre spectral sequence in
generalized homology and cohomology theories.

For definiteness, we take R = Z here, and we fix an Abelian group π of coef-
ficients. We could just as well replace Z by any commutative ring R and π by
any R-module. Let p : E → B be a Serre fibration with fiber F and connected
base space B. It is usual to assume that F too is connected, but that is not really
necessary. Fixing a basepoint b ∈ B, we may take F = p−1(b), and that fixes an
inclusion i : F −→ E. Using [2, p. 48], we may as well replace p by a Hurewicz
fibration. This is convenient since it allows us to exploit a relationship between
cofibrations and fibrations that does not hold for Serre fibrations. Using [2, p. 75],
we may choose a based weak equivalence f from a CW complex with a single vertex
to B. Pulling back p along f , we may as well replace p by a Hurewicz fibration
whose base space is a CW complex B with a single vertex b. Having a CW base
space gives a geometric filtration with which to work, and having a single vertex
fixes a canonical basepoint and thus a canonical fiber.
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Give B its skeletal filtration, FpB = Bp, and define FpE = p−1(FpB). Observe
that F0E = F . By ??, the inclusions Fp−1E ⊂ FpE are cofibrations. They give
long exact sequences of pairs on homology with coefficients in any fixed Abelian
group π. We set

D1
p,q = Hp+q(FpE; π) and E1

p,q = Hp+q(FpE, Fp−1E; π),

and we may identify E1
p,q with H̃p+q(FpE/Fp−1E; π). The cited long exact se-

quences are given by maps

i1 : Hp+q(Fp−1E; π) −→ Hp+q(FpE; π)

and
j1 : Hp+q(FpE; π) −→ Hp+q(FpE, Fp−1E; π)

induced by the inclusions i : Fp−1E ⊂ FpE and j : (FpE, ∅) ⊂ (FpE, Fp−1E) and
by connecting homomorphisms

k1 : Hp+q(FpE, Fp−1E; π) −→ Hp+q−1(Fp−1E; π).

We have an exact couple and therefore a spectral sequence. Let C∗(B) denote
the cellular chains of the CW complex B. Filter H∗(E; π) by the images of the
H∗(FpE; π).

Theorem 5.1 (Homology Serre spectral sequence). There is a first quadrant ho-
mological spectral sequence {Er, dr}, with

E1
p,q

∼= Cp(B; Hq(F ; π)) and E2
p,q

∼= Hp(B; Hq(F ; π))

that converges to H∗(E; π). It is natural with respect to maps

D
g //

q

��

E

p

��
A

f
// B

of fibrations. Assuming that F is connected, the composite

Hp(E; π) = FpHp(E; π) −→ FpHp(E; π)/Fp−1Hp(E; π) = E∞
p,0

eB−→ E2
p,0 = Hp(B; π)

is the map induced by p : E → B. The composite

Hq(F ; π) = H0(B; Hq(F ; π)) = E2
0,q

eF→ E∞
0,q = F0Hq(E; π) ⊂ Hq(E; π)

is the map induced by i : F ⊂ E. The transgression τ : Hp(B; π) → Hp−1(F ; π) is
the inverse additive relation to the suspension σ∗ : Hp−1(F ; π) −→ Hp(B; π).

Sketch proof. Consider the set of p-cells

e : (Dp, Sp−1) −→ (Bp, Bp−1).

When we pull the fibration p back along e, we obtain a trivial fibration since Dp

is contractible. That is, p−1(Dp) ≃ Dp × F . Implicitly, since F = p−1(b) is fixed,
we are using a path from b to a basepoint in Dp when specifying this equivalence,
and it is here that the local coefficient systems Hq(F ) enter into the picture. These
groups depend on the action of π1(B, b) on F . We prefer not to go into the details
of this since, in most of the usual applications, π1(B, b) acts trivially on F and
Hq(F ) is just the ordinary homology group Hq(F ), so that

E2
p,q = Hp(B; Hq(F )).
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For p = 0, the local coefficients have no effect and we may use ordinary homology,
as we have done when describing the fiber edge homomorphism.

Of course, FpB/Fp−1B is the wedge over the maps e of the spheres Dp/Sp−1 ∼=
Sp. We conclude that FpE/Fp−1E is homotopy equivalent to the wedge over e of
copies of Sp ∧ F+. Therefore, as an Abelian group, Hp+q(FpE, Fp−1E; π) is the
direct sum over e of copies of Hq(F ). This group can be identified with Cp(B) ⊗
Hq(F ). Using the precise description of cellular chains in terms of cofiber sequences
given in [2, pp 96-97], we can compare the cofiber sequences of the filtration of E
with those of the filtration of B to check that E1

∗,q is isomorphic as a chain complex
to C∗(B; Hq(F )). This is straightforward when π1(B) acts trivially on F , and only
requires more definitional details in general. The identification of E2 follows. We
shall return to the proof of convergence in Section 5. The naturality is clear. The
statements about the edge homomorphisms can be seen by applying naturality to
the maps of fibrations

F

p

��

i // E

p

��

p // B

=

��
{b} // B

= // B.

The additive relation σ∗ : Hp−1(F ; π) −→ Hp(B; π), p ≥ 1, admits several equiva-
lent descriptions. The most convenient one here is in terms of the following diagram.

Hp(E; π)
j∗ // Hp(E, F ; π)

∂ //

p∗

��

Hp−1(F ; π)

σ∗

wwooooooooooo

i∗ // Hp−1(E; π)

Hp(B, b; π)

The additive relation σ∗ is defined on Ker i∗ and takes values in Cokerp∗j∗. If
i∗(x) = 0, there exists y such that ∂(y) = x, and σ∗(x) = p∗(y). Thinking in
terms of a relative spectral sequence or using (FpE, F0E) ⊂ (E, F ), we see that
dr(p∗(y)) = 0 for r < p, so that the transgression τ(p∗(y)) = dp(p∗(y)) is defined.
Since i∗(x) = 0, x cannot survive the spectral sequence. A check from the definition
of the differentials in terms of our exact couple shows that dp(p∗(y)) = x. �

There is also a cohomological Serre spectral sequence. When π = R is a commu-
tative ring, this is a spectral sequence of DGA’s by an application of Corollary 4.2.
To construct this variant, we use the cohomological exact couple obtained from the
long exact sequences in cohomology of the pairs (FpE, Fp−1E). The diagonal map
gives a map of fibrations

E
∆ //

p

��

E × E

p×p

��
B

∆
// B × B

and therefore gives a map of cohomological spectral sequences.

Theorem 5.2 (Cohomology Serre spectral sequence). There is a first quadrant
cohomological spectral sequence {Er, dr}, with

Ep,q
1

∼= Cp(B; H q(F ; π)) and Ep,q
2

∼= Hp(B; H q(F ; π))
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that converges to H∗(E; π). It is natural with respect to maps of fibrations. Assum-
ing that F is connected, the composite

Hp(B; π) = Hp(B; H0(F ; π)) = Ep,0
2

eB→ Ep,0
∞ → Hp(E; π)

is the map induced by p : E → B. The composite

Hq(E; π) −→ E0,q
∞

eF−→ E0,q
2 = H0(B; Hq(F ; π)) = Hq(F ; π)

is the map induced by i : F ⊂ E. The transgression τ : Hp−1(F ; π) → Hp(B; π)
is the inverse additive relation to the suspension σ∗ : Hp(B; π) −→ Hp−1(F ; π). If
π = R is a commutative ring, then {Er} is a spectral sequence of DGA’s such that
E2 = H∗(B; H ∗(F ; R)) as an R-algebra and E∞ = E0H∗(E; R) as R-algebras.

Sketch proof. Up to the last statement, the proof is the same as in homology. For
the products, we already have the map of spectral sequences induced by ∆, so
it suffices to work externally, in the spectral sequence of E × E. Since we are
using cellular chains, we have a canonical isomorphism of chain complexes C∗(B)⊗
C∗(B) ∼= C∗(B × B) [2, p. 99]. Using this, it is not difficult to define a pairing of
E1 terms

φ : C∗(E; H ∗(F )) ⊗ C∗(E; H ∗(F )) −→ C∗(E; H ∗(F ))

that satisfies µ. Then the last statement follows from Corollary 4.2. �

A short exact sequence

1 −→ G′ −→ G −→ G′′ −→ 1

of (discrete) groups gives a fibration sequence

K(G′, 1) −→ K(G, 1) −→ K(G′′, 1),

and there result Serre spectral sequences in homology and cohomology. Focusing
on cohomology for definiteness, it takes the following form. This spectral sequence
can also be constructed purely algebraically, and it is then sometimes called the
Lyndon spectral sequence. It is an example where local coefficients are essential.

Proposition 5.3 (Lyndon-Hochschild-Serre spectral sequence). Let G′ be a normal
subgroup of a group G with quotient group G′′ and let π be a G-module. Then there
is a spectral sequence with

Ep,q
2

∼= Hp(G′′; Hq(G′; π))

that converges to H∗(G; A).

Proof. The point that needs verification in a topological proof is that the E2 term
of the Serre spectral sequence agrees with the displayed algebraic E2 term. The
latter is shortened notation for

Extp

Z[G′′](Z, Extq

Z[G′](Z, π)),

where the group actions on Z are trivial. The algebraic action of G′′ on G′ coming
from the short exact sequence agrees with the topologically defined action of the
fundamental group of π1(K(G′′, 1)) on π1(K(G′, 1)). We can take account of the
G′′-action on π when defining the local cohomology groups H ∗(K(G′, 1); π) and
identifying E2, and then the point is to identify the displayed Ext groups with

Hp(K(G′′, 1); H ∗(K(G′, 1); π)).

The details are elaborations of those needed to work [2, Ex’s 2, pp 127, 141]. �
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6. The comparison theorem

We have had several occasions to use the following standard result. We state it
in homological terms, but it has an evident cohomological analogue.

Theorem 6.1 (Comparison Theorem, [1, XI.11.1]). Let f : E −→ ′E be a homo-
morphism of first quadrant spectral sequences of modules over a commutative ring.
Assume that E2 and E′

2 admit universal coefficient exact sequences as displayed in
the following diagram, and that, on the E2 level, f is given by a map of short exact
sequences as displayed.

0 // E2
p,0 ⊗ E2

0,q
//

f⊗f

��

E2
p,q

//

f

��

Tor1(E
2
p−1,0, E

2
0,q)

Tor(f,f)

��

// 0

0 // ′E2
p,0 ⊗

′E2
0,q

// ′E2
p,q

// Tor1(
′E2

p−1,0,
′E2

0,q)
// 0

Write f r
p,q : Er

p,q −→ ′E
r
p,q. Then any two of the following imply the third.

(i) f2
p,0 : E2

p,0 −→ ′E
2
p,0 is an isomorphism for all p ≥ 0.

(ii) f2
0,q : E2

0,q −→ ′E
2
0,q is an isomorphism for all q ≥ 0.

(iii) f∞
p,q : E∞

p,q −→ ′E
∞
p,q is an isomorphism for all p and q.

Details can be found in [1, XI.11]. They amount to well arranged induction
arguments. The comparison theorem is particularly useful for the Serre spectral
sequence when the base and fiber are connected and the fundamental group of the
base acts trivially on the homology of the fiber. The required conditions on the E2

terms are then always satisfied.

7. Convergence proofs

To give a little more insight into the inner workings of spectral sequences, we
give the proof of Theorem 3.2 in detail. In fact, the convergence proof for filtered
complexes will give us an alternative description of the entire spectral sequence that
avoids explicit use of exact couples. If we had given a chain level construction of
the Serre spectral sequence, its convergence would be a special case. The proof of
convergence with the more topological construction that we have given is parallel,
but simpler, as we explain at the end of the section.

We begin with a description of the E∞-term of the spectral sequence of an
arbitrary exact couple 〈D, E; i, j, k〉. Recall that, for any (homological) spectral
sequence, we obtain a sequence of inclusions

0 = B0 ⊂ B1 ⊂ . . . ⊂ Z2 ⊂ Z1 ⊂ Z0 = E1

such that Er+1 ∼= Zr/Br for r ≥ 1 by setting Zr = Ker(dr) and Br = Im(dr).
When {Er} arises from an exact couple, dr = jrkr. Here Zr = k−1(Im ir).

Indeed, jrkr(z) = 0 if and only if kr(z) ∈ Ker jr = Im ir. Since kr is the map
induced on homology by k, z ∈ k−1(Im ir). Similarly, Br = j(Ker ir). Indeed,
b = jrkr(c) for some c ∈ Cr−1 if and only if b ∈ jr(Im kr) = jr(Ker ir). Since jr is
induced from j acting on D, b ∈ j(Ker ir). Applying this to the calculation of Er

rather than Er+1, we obtain

(7.1) Er = Zr−1/Br−1 = k−1(Im ir−1)/j(Ker ir−1)
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and therefore

(7.2) E∞ = k−1D∞/jD0,

where D∞ = ∩r≥1Im ir and D0 = ∪r≥1 Ker ir.
Now let A be a filtered complex. Define a (shifted) analogue Cr of Zr by

Cr
p,q = {a|a ∈ FpAp+q and d(a) ∈ Fp−rAp+q−1}

These are the cycles up to filtration r. We shall prove shortly that

(7.3) Er
p,qA = (Cr

p,q + Fp−1Ap+q)/(d(Cr−1
p+r−1,q−r+2) + Fp−1Ap+q)

for r ≥ 1 and therefore

(7.4) E∞
p,qA = (C∞

p,q + Fp−1Ap+q)/(d(C∞)p,q) + Fp−1Ap+q),

where C∞
p,q = ∩r≥1C

r
p,q and d(C∞)p,q = ∪r≥1d(Cr−1

p+r−1,q−r+2).

Recall that j denotes the quotient map FpA −→ FpA/Fp−1A = E0
pA, which fits

into the exact sequence (3.1). Formula (7.3) rigorizes the intuition that an element
x ∈ Er

p,q can be represented as j(a) for some cycle up to filtration r, say a ∈ Cr
p,q,

and that if d(a) = b ∈ Fp−rA, then j(b) represents dr(x) in Er
p−r,q+r−1. The

formula can be turned around to give a construction of {ErA} that avoids the use
of exact couples. Historically, the alternative construction came first. Assuming
this formula for the moment, we complete the proof of Theorem 3.2 as follows.

Proof of Theorem 3.2. We are assuming that A = ∪FpA. and, for each n, there
exists s(n) such that Fs(n)An = 0. Give the cycles and boundaries of A the induced
filtrations

FpZp+q = Zp+q(A) ∩ FpA and FpBp+q = Bp+q(A) ∩ FpA.

Then FpB ⊂ FpZ and H(FpA) = FpZ/FpB. Since FpH(A) is the image of H(FpA)
in H(A), we have

FpH(A) = (FpZ + B)/B and E0
p,∗H(A) = FpH∗(A)/Fp−1H∗(A).

With a little check for the third equality, this implies

E0
p,∗H∗(A) = (FpZ + B)/(Fp−1Z + B)

= (FpZ)/(FpZ ∩ (Fp−1Z + B))
= (FpZ)/(FpZ ∩ (Fp−1A + FpB))
= (FpZ + Fp−1A)/(FpB + Fp−1A).

For each q and for sufficiently large r, namely r ≥ p − s(p + q − 1), we have

FpZp+q + Fp−1Ap+q = Cr
p,q + Fp−1Ap+q = C∞

p,q + Fp−1Ap+q.

Therefore

FpZ + Fp−1A = C∞
p,∗ + Fp−1A.

If b ∈ FpBp+q, then b = d(a) for some a ∈ Ap+q+1. By assumption, a ∈ FtA for

some t, and then, by definition, a ∈ Ct−p
t,p+q+1−t = Cr−1

p+r−1,q−r+2, where r = t+1−p.
Therefore

FpB + Fp−1A = d(C∞
p,∗) + Fp−1A.

By (7.4), we conclude that E0H(A) = E∞A. �
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Proof of (7.3). To see the starting point, observe that j : FpA −→ E0
pA carries C1

p,q

onto the cycles of E0
p,qA and carries d(C0

p,q+1) onto the boundaries of E0
p,qA. The

proof of (7.3) has four steps. We show first that j induces a map

j̄ : Cr
p,q + Fp−1Ap+q −→ Zr−1

p,q .

We show next that j̄ is surjective. We then observe that

j̄(d(Cr−1
p+r,p−q+1) + Fp−1Ap+q) ⊂ Br−1

p,q .

Finally, we show that the inverse image of Br−1
p,q is exactly d(Cr−1

p+r,p−q+1)+Fp−1Ap+q.

These statements directly imply (7.3).
Let x ∈ Cr

p,q and let y = d(x) ∈ Fp−rA. Note that y is a cycle, but not generally
a boundary, in the chain complex Fp−rA and continue to write y for its homology
class. Note too that y ∈ C∞

p−r,q+r−1 since d(y) = 0. Write x̄ for the element of

E1
p,qA represented by j(x). The connecting homomorphism

k∗ : E1
p,q = Hp+q(E

0
pA) −→ Hp+q−1(Fp−1A) = D1

p−1,q

takes x̄ to ir−1
∗ (y). Therefore x̄ ∈ Zr−1

p,∗ and we can set j̄(x) = x̄.

To see the surjectivity, consider an element w ∈ Zr−1
p,q ⊂ E1

p,q. We have k∗(w) =

ir−1
∗ (y) for some y ∈ Hp+q−1(Fp−rA), and we again also write y for a representative

cycle. Let w be represented by j(x′), where x′ ∈ FpA. Then k∗(w) is represented by
d(x′) ∈ Fp−1A, and d(x′) must be homologous to y in Fp−1A, say d(x′′) = d(x′)−y.
Let x = x′ − x′′. Then d(x) = y and j(x) = j(x′) since x′′ ∈ Fp−1A. Therefore
j̄(x) = w and j̄ is surjective.

Now let v ∈ d(Cr−1
p+r−1,q−r+2) ⊂ Cr

p,q, say v = d(u), where u ∈ Fp+r−1A. Again,
v is a cycle but not necessarily a boundary in FpA, and we continue to write v
for its homology class. Since v becomes a boundary when included into Fp+r−1A,
ir−1
∗ (v) = 0. Thus the class v̄ represented by j(v) is in j∗(Ker ir−1

∗ ) = Br−1.
Conversely, suppose that j̄(x) ∈ Br−1

p,q , where x ∈ Cr
p,q. This means that j̄(x) =

j∗(v) for some v ∈ Ker ir−1
∗ . Then j(x) is a chain, also denoted v, such that

v = d(u) for some chain u ∈ Fp+r−1A. Since j(x − d(u)) = 0, x − d(u) ∈ Fp−1A.

Thus x = d(u) + (x − d(u)) is an element of d(Cr−1
p+r,p−q+1) + Fp−1Ap+q. �

Proof of convergence of the Serre spectral sequence. For a large
enough r, we have E∞

p,q = Er
p,q.

Precisely, Er
p,q consists of permanent cycles when r > p and it consists of non-

bounding elements when r > q + 1, since the relevant differentials land in or come
from zero groups. Fix r > max(p, q + 1) and consider the description of Er

p,q given
in (7.1). We take notations as in Section 3, writing i∗ etc. Omitting the coefficient
group π from the notation, we have the exact sequence

· · · //Hp+q(Fp−1E)
i∗ //Hp+q(FpE)

j∗ //

Hp+q(FpE, Fp−1E)
k∗ //Hp+q−1(Fp−1E) // · · ·

With D1
p,q = Hp+q(FpE) and E1

p,q = Hp+q(FpE, Fp−1E), this displays our exact

couple. Consider Zr−1
p,q , which is k−1

∗ (Im ir−1
∗ ). The domain of ir−1

∗ is zero with our
choice of r, so that

Zr−1
p,q = Im j∗.
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Similarly, consider Br−1
p,q , which is j∗(Ker ir−1

∗ ). With our choice of r, Ker ir−1
∗ is

the kernel of the map

i∞p,∗ : Hp+q(FpE) −→ Hp+q(E),

so that
Br−1

p,q = j∗(Im(∂ : Hp+q+1(E, FpE) −→ Hp+q(FpE))).

Recall that FpHp+q(E) = Im i∞∗ and define

j̄ : FpHp+q(E) −→ Zr−1
p,q /Br−1

p,q = E∞
p,q

by
j̄(i∞∗ (x)) = j∗(x).

This is well-defined since Ker i∞∗ = Im ∂, and it is clearly surjective. Its kernel is
Fp−1H

∗
p+q(E) = Im i∞p−1,∗ since i∞p−1,∗ = i∞p,∗ ◦ i∗ and Ker j∗ = Im i∗. �
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