

effects in Bzhedugh

Bzhedugh

Colouring

The pattern

An account

Basic Assumptions OT Harmonic Grammar

Discussion

Conclusion

References

Vowel colouring patterns in Bzhedugh Adyghe Evidence for cumulative constraint interaction

Ludger Paschen (Leipzig University)

Wednesday, 6 January 2016

Console XXIV, York

Outline

Cumulative effects in Bzhedugh

- Bzhedugh
- Colouring
- The pattern
- An account
- Basic Assumption OT Harmonic Grammar
- Discussion
- Conclusion
- References

- 1 Background I: Bzhedugh Adyghe
- (
 - Sowel colouring in Bzhedugh Advghe
 - 4 Accounting for the rounding and backing patterns

Background II: Vowel colouring and coarticulation

- Basic Assumptions
- Why Standard OT fails to account for the backing pattern
- A Harmonic Grammar Account
- 5 Discussion

Conclusion

Bzhedugh Adyghe

effects in Bzhedugh

Bzhedugh

Colouring

The pattern

An account

Basic Assumptions OT Harmonic Grammar

Discussion

Conclusion

References

Adyghe:

- One of the four languages belonging to the Northwest Caucasian family
- 100,000 speakers in Russia (stable), 300,000 in Turkey (dwindling)
- Bi-/Trilingualism (Höhlig, 1997)

Bzhedugh:

- One of the four main dialects of Adyghe
- 15,000 speakers in 20 villages along the Pshish and Psekupe rivers in Adygea (Russia) (Sitimova, 2004)

Caucasian languages

- Colouring
- The pattern
- An account
- Basic Assumptions OT Harmonic Grammar
- Discussion
- Conclusion
- References

taken from Gippert (2010),

http://titus.uni-frankfurt.de/didact/karten/kauk/kaukasf.jpg

Typological profile of Bzhedugh Adyghe

effects in Bzhedugh

Bzhedugh

- Colouring
- The pattern
- An account
- Basic Assumption OT Harmonic Grammar
- Discussion
- Conclusion
- References

- Rich consonant inventory
- Small vertical vowel phoneme inventory
- Lack of lexical tone and stress
- Polysynthetic verbal morphology
- Absolutive/Ergative Alignment

Consonant inventory

	b	р	р ^һ	p'	p' ^w	f	w	m	
	d	t	t ^h	ť	t' ^w	r	n		
	Z	dz	S	ts	ts ^h	ts'			
Bzhedugh	7	dz	ſ	ſĥ	tſ				
Colouring		. T	J.	J	<u> </u>	.,			
The pattern	3 ^J	d3	lı	∫」n	t∫	t∫ ^{jn}			
An account	ź	âw	dźw	ŝ	ŝ ^w	tŝ ^w	ŝ'	ŝ' ^w	tŝ' ^w
Basic Assumptions OT	3	ł	¢'			-			-
Harmonic Grammar	j								
Discussion	g∼γ	g ^w	k ^w	k' ^w					
Conclusion	R	$R_{\rm M}$	q	q ^h	q^w	q ^{wh}	χ	χ ^w	
References	ħ								
	н								
	?	?∾							

Vowel inventory

- Vowel phonemes: /ə, ε, a/ (Sitimova, 2004; Smeets, 1984)
 - But: rich allophony

- Bzhedugh
- Colouring
- The pattern
- An account
- Basic Assumptions OT Harmonic Grammar
- Discussion
- Conclusion
- References

i.

Cumulative effects in Bzhedugh

GRAA

Bzhedugh

Colouring

The pattern

An account

Basic Assumption OT Harmonic Grammar

Discussion

Conclusion

Vowel colouring and prosodic boundaries

- Coarticulation: overlapping of articulatory movements associated with separate sound segments (Hardcastle, 2006)
- Consonant-vowel interactions: consonants and vowels frequently assimilate or dissimilate in place to one another (Padgett 2011 a.o.)
- Degree of (phonetic) coarticulation and likelihood of (phonological) CV interactions decrease if prosodic boundaries intervene

Colouring

The pattern

An account

Basic Assumption OT Harmonic Grammar

Discussion

Conclusion

Colouring

Grammar

Prosodic domains and prosodic boundaries

		U
	The prosodic hierarchy:	ΙP
	 Prosodic structure consists of prosodic categories of different types 	ı ıP
1	 Prosodic categories are ordered in a hierarchy 	ϕ ω
	 Competing theories about domains and labels (Jun, 2005; Nespor and Vogel, 2007; Selkirk, 1986) 	 F σ μ

Vowel colouring and prosodic boundaries

- Bzhedugh
- Colouring
- The pattern
- An account
- Basic Assumptions OT Harmonic Grammar
- Discussion

Conclusion

- Postboundary (domain-initial) vowels are coarticulated less with preceding vowels across a higher prosodic boundary (IP) than across a lower prosodic boundary (ip, Wd) (Cho, 2004)
- Lack of across-syllable coarticulation facilitates Wd boundary recognition (Mattys, 2004)
- Articulatory strengthening at prosodic domain boundaries (Fougeron and Keating, 1997)
- Single acoustic cues vs. subjective perceived boundary strength (Mann and Repp, 1981)

Vowel space: Bzhedugh vowel phonemes

ω•u

γłο

∧ † ⊃

a + p

• U

• Contextual allophony: preceding consonants in literary (Terek) Kabardian (Choi, 1991) Colouring (F2 - F1) 2500 2000 1500 1000 500 200 Hz (F1) 300 Assumptions k^w ł k 400 k^W Э 500 c h 600 e ₫₩ 700 a

1800

effects in Bzhedugh

Bzhedugh

Colouring

The pattern

An account

Basic Assumptions OT Harmonic Grammar

Discussion

Conclusion

References

• Contextual allophony: preceding consonants in Turkish Kabardian (Gordon and Applebaum, 2006)

• ATB neutralisation in Ubykh (Colarusso, 1988)

Colouring

The pattern

An account

Basic Assumption OT Harmonic Grammar

Discussion

Conclusion

Vowel colouring in Bzhedugh Adyghe

- effects in Bzhedugh
- Bzhedugh
- Colouring

The pattern

An account

Basic Assumption OT Harmonic Grammar

Discussion

Conclusion

- Field trip to the village of Vochepshiy (Очэпщы/Вочепший), Russia, in July 2014
- Investigating the acoustic properties of /ə, e/ in various phonetic environments
- Main findings:
 - Labialised consonants induce *rounding* of adjacent vowels in the same syllable
 - Coronal and palatalised consonants cause *fronting* of adjacent following vowels
 - Posterior consonants cause *backing* of adjacent preceding vowels
- On closer inspection, the *backing* pattern was found to depend on several different factors

Rounding, fronting and backing

Cumulative effects in Bzhedugh

(1)

Bzhedugh

Colouring

The pattern

An account

Basic Assumption OT Harmonic Grammar

Discussion

Conclusion

References

- a. $\hat{s}^{w} = \hat{s}^{v} \hat{s}^{w} \hat{s}^{v}$ 'woman'
 - $\begin{array}{ll} \mathsf{b.} & /\mathsf{q}\mathsf{a}\mathsf{q}/ \to [\mathsf{q}\mathsf{x}\mathsf{q}] \\ & `\mathsf{stutterer'} \end{array}$
 - c. $/de \kappa^w / \rightarrow [d \varpi \kappa^w]$ 'good (predicative form)'

d.
$$/des^w a / \rightarrow [d\epsilon.s^w a]$$

'good (attributive form)

• Various processes can apply simultaneously, e.g. *fronting* and *rounding* in (1-a)

Rounding, fronting and backing

Cumulative effects in Bzhedugh

(1)

Bzhedugh

Colouring

The pattern

An account

Basic Assumption OT Harmonic Grammar

Discussion

Conclusion

- a. $\hat{s}^{w} az a / \rightarrow [\hat{s}^{w} y.zi]$ 'woman'
 - $\begin{array}{ll} \mathsf{b.} & /\mathsf{q}\mathsf{a}\mathsf{q}/ \to [\mathsf{q}\mathtt{x}\mathsf{q}] \\ & `\mathsf{stutterer'} \end{array}$
 - c. $/de \kappa^w / \rightarrow [d \varpi \kappa^w]$ 'good (predicative form)'
 - $\begin{array}{ll} \mathsf{d}. & /\mathsf{d}\epsilon \mathtt{s}^{\mathsf{w}} \vartheta / \to [\mathsf{d}\epsilon . \mathtt{s}^{\mathsf{w}} \vartheta] \\ & \text{`good (attributive form)'} \end{array}$
- Rounding is sensitive to the σ domain: heterosyllabic labialised consonants do not trigger rounding (1-d)

Rounding, fronting and backing

Cumulative effects in Bzhedugh

(1)

Bzhedugh

Colouring

The pattern

An account

Basic Assumption OT Harmonic Grammar

Discussion

Conclusion

References

- a. $(\hat{s}^w \partial z \partial / \rightarrow [\hat{s}^w \mathbf{y}. z_l]$ 'woman'
 - $\begin{array}{ll} \mathsf{b.} & /\mathsf{q}\mathsf{a}\mathsf{q}/ \to [\mathsf{q}\mathtt{r}\mathsf{q}] \\ & `\mathsf{stutterer'} \end{array}$
 - c. $/de s^w / \rightarrow [d \varpi s^w]$ 'good (predicative form)'

d.
$$/d\epsilon \omega \partial \phi / \rightarrow [d\epsilon \omega \partial \phi]$$

'good (attributive form)'

• A single adjacent uvular is not sufficient to trigger *backing* (1-c), and progressive fronting takes precedence over regressive *backing* (1-d)

Backing: complications

Cumulative effects in Bzhedugh

(2)

Bzhedugh

Colouring

The pattern

An account

Basic Assumption OT Harmonic Grammar

Discussion

Conclusion

- a. $/\chi_{m}$ are $/ \rightarrow [\chi_{m} \circ re]$ (pecame, $/\chi_{m} \circ re]$
- b. $/xek^w/ \rightarrow [xek^w]$ 'land (predicate form)'
- $\begin{array}{lll} \mathsf{c.} & / \mathtt{s}^{\mathsf{w}} \mathtt{e} \mathtt{g}^{\mathsf{w}} \mathtt{ə} / \rightarrow [\mathtt{s}^{\mathsf{w}} \mathtt{e} . \mathtt{g}^{\mathsf{w}} \mathtt{e}] \\ & \text{`way (attributive form)'} \end{array}$
- $\begin{array}{ll} \mathsf{d}. & / \mathtt{s}^{\mathsf{w}} \mathtt{e} \mathtt{g}^{\mathsf{w}} / \to [\mathtt{s}^{\mathsf{w}} \mathtt{z} \mathtt{g}^{\mathsf{w}}] \\ & \text{`way (predicative form)'} \end{array}$
- *Backing* can apply when there is one posterior consonant in the same syllable and an adjacent one in a different syllable (2-a)

Backing: complications

Cumulative effects in Bzhedugh

(2)

Bzhedugh

Colouring

The pattern

An account

Basic Assumption OT Harmonic Grammar

Discussion

Conclusion

- a. $/\chi^w \Rightarrow \epsilon e \to [\chi^w \circ \epsilon]$ (pecame)
 - b. $/xek^w/ \rightarrow [xek^w]$ 'land (predicate form)'
 - c. $/{\tt s}^w {\tt eg}^w {\tt ə} / \rightarrow [{\tt s}^w {\tt eg}^w {\tt eg}]$ 'way (attributive form)'
 - $\begin{array}{ll} \mathsf{d}. & / \mathtt{s}^{\mathsf{w}} \mathtt{e} \mathtt{g}^{\mathsf{w}} / \to [\mathtt{s}^{\mathsf{w}} \mathtt{z} \mathtt{g}^{\mathsf{w}}] \\ & \text{`way (predicative form)'} \end{array}$
- However, this applies only to uvulars; two velars cannot trigger *backing* even when they are in the same syllable (2-b)

Backing: complications

Cumulative effects in Bzhedugh

(2)

Bzhedugh

Colouring

The pattern

An account

Basic Assumption OT Harmonic Grammar

Discussion

Conclusion

- a. $/\chi_{m}$ sec/ \rightarrow [χ_{m} o.re] (pecame,
 - b. $/xek^w/ \rightarrow [xek^w]$ 'land (predicate form)'
 - c. $/{\tt s}^w {\tt eg}^w {\tt ə} / \rightarrow [{\tt s}^w {\tt o}. {\tt g}^w {\tt eg}]$ 'way (attributive form)'
 - $\begin{array}{ll} \mathsf{d}. & / \mathtt{s}^{\mathsf{w}} \mathtt{e} \mathtt{g}^{\mathsf{w}} / \to [\mathtt{s}^{\mathsf{w}} \mathtt{z} \mathtt{g}^{\mathsf{w}}] \\ & \text{`way (predicative form)'} \end{array}$
- When there are both a velar and a uvular adjacent to a non-low vowel, *backing* is triggered only if they are in the same syllable ((2-c)-(2-d))

Acoustic evidence: Backing

Bzhedugh

Colouring

The pattern

An account

Basic Assumptions OT Harmonic Grammar

Discussion

Conclusion

			\R 66 9\	way.ATTK		
B W 6 g 0	R _w	w	6	g ^w	Ð	

Acoustic evidence

Cumulative effects in Bzhedugh

Bzhedugh

Colouring

The pattern

An account

Basic Assumptions OT Harmonic Grammar

Discussion

Conclusion

References

Average acoustic data from 2 speakers x 4 tokens:

Vowel	Stimulus	Gloss	F1_av	F1_std	F2_av	F2_std
ə	ŝ ^w əzə	woman	408	19	1750	141
ə	χ_{m} экб	became	440	40	771	62
е	₽ _w 68 _w 9	way.ATTR	528	46	1270	190
е	к _м ед _м	way.PRED	516	64	956	101

• Qualities of the allophonous variants are clearly distinct and not simply the results of coarticulatory effects

Basic Assumptions

- Colouring
- The pattern
- An account
- Basic Assumptions OT Harmonic Grammar
- Discussion
- Conclusion
- References

- Feature Geometry: Segmental features are organised in a hierarchical structure, each structural node instantiates a separate tier (Clements and Hume, 1995; McCarthy, 1988; Morén, 2003)
- Optimality Theory (OT): Competition of several output candidates from a single input, licensing of winner candidate is governed by ranked and violable constraints (Prince and Smolensky, 1993)
- Harmonic Grammar: Adding weights to constraints (Pater, 2009)

Feature Geometry: Underlying representations

Bzhedugh

Colouring

The pattern

An account

Basic Assumptions OT Harmonic Grammar

Discussion

Conclusion

Feature Geometry: Underlying representations

Bzhedugh

Colouring

The pattern

An account

Basic Assumptions OT Harmonic Grammar

Discussion

Conclusion

Basic Assumptions

Feature Geometry: Underlying representations

Feature Geometry: Underlying representations

Feature Geometry: Underlying representations

Colouring

The pattern

An account

Basic Assumptions OT Harmonic Grammar

Discussion

Conclusion

Feature Geometry: Spreading

Spreading of LAB from left to right:

Conclusion

Feature Geometry: Spreading

Spreading of LAB from right to left:

Discussion

Conclusion

Feature Geometry: Spreading

Spreading of DOR only from right to left:

Conclusion

Constraints

(3)

(4)

(5)

(6)

effects in Bzhedugh

Bzhedugh

Colouring

The patter

An account

Basic Assumption OT Harmonic

Discussion

Conclusion

- $D_{EP} P_{F}^{V_{PL}}$: Count one * for each epenthetic association line between a V_{PL} node and a segmental feature ("do not spread") (Trommer, 2011)
- CRISP(EDGE): Count one * for each phonetically visible association line that links two elements dominated by different σ ("do not spread across syllable boundaries") (cf. Basri, Broselow, and Finer 1999)
- $A({\rm GREE})(X): \mbox{ Count one * for each adjacent VC or CV} sequence that does not agree in X specifications}$
- A(GREE)(X)-[p(osterior)]: Count one * for each pair of adjacent VC or CV sequences that do not agree in X and posterior specifications (cf. Kimper 2011)

Standard OT: Rounding

- Rounding (spread of LAB from one $V_{\rm PL}$ node to another) always applies within a syllable, but never across a syllable boundary
 - Constraint ranking:

 $\operatorname{Crisp} \gg A(\operatorname{lab}) \gg \operatorname{Dep}_{\mathsf{F}}^{\mathsf{V}_{\operatorname{PL}}}$

(7)		$\chi_{\sf m}$ экб	CRISP	A(lab)	$\mathrm{DEP}_{F}^{V_{\mathrm{PL}}}$
	a.	$\chi_{\sf m}$ э.кб		*İ**	
Ľ₿ [®]	b.	Х _м о.ке		**	*
	с.	Х _м о.к _м ь	*!	*	**
	d.	χ _м о. _R _м ຍ	*!*		***

- Denouugn
- ----
- An account
- Basic Assumptions OT Harmonic Grammar

Discussion

Conclusion

Standard OT: Backing

- Cumulative effects in Bzhedugh
- Bzhedugh
- Colouring
- The pattern
- An account
- Basic Assumption OT Harmonic Grammar
- Discussion
- Conclusion
- References

- Backing (spread of DOR from one $C_{\rm PL}$ node to a $V_{\rm PL}$ node) never applies if no [post] features are present (i.e. if only velars are involved)
- Constraint ranking:

 $\mathrm{Dep}_{\mathsf{F}}^{\mathsf{V}_{\mathrm{PL}}} \underset{\mathsf{F}}{\overset{\mathsf{V}_{\mathrm{PL}}}{\Rightarrow}} \gg \mathrm{A}(\mathrm{Dor})$

(8)		×ek ^w	CRISP	A(lab)	$\mathrm{DEP}_{F}^{V_{\mathrm{PL}}}$	A(dor)
ß	a.	xək ^w				**
	b.	xɔk ^w			*i	

Standard OT: Backing

- *Backing* always applies if two dorsal consonants carrying [post] features (i.e. uvulars) are adjacent to a vowel, regardless of syllable boundaries
 - Constraint ranking:

 $A(DOR-[p]) \gg CRISP$

(9) $\chi^{w} \Rightarrow \kappa \epsilon$ $A(DOR-[p])$ $CRISP$ $DEP \downarrow$ $A(DOR-[p])$)R.)
)
	k
a. X are all all all all all all all all all al	-
 p. X_mo're *i * * * 	
 C. X_mo'rv * ** 	

• Problem: ranking predicts overapplication (the same problem would arise if the two constraints were ranked the same)

Standard OT: Backing

- Cumulative effects in Bzhedugh
- Bzhedugh
- Colouring
- The pattern
- An account
- Basic Assumptio OT Harmonic Grammar
- Discussion

Conclusion

References

- *Backing* always applies if two dorsal consonants carrying [post] features (i.e. uvulars) are adjacent to a vowel, regardless of syllable boundaries
- Alternative constraint ranking: $\mathrm{CRISP} \gg \mathrm{A}(\mathrm{DOR}\text{-}[p])$

(10)		$\chi_{\!\scriptscriptstyle M}$ экб	Crisp	A(Dor-[p])	$\mathrm{Dep} \overset{V_{\mathrm{PL}}}{\underset{F}{\overset{\downarrow}{\downarrow}}}$	A(Dor)
ſ	a.	$\chi_{\rm m}$ э.кб		***		***
0	b.	Х _м о.кв	*!	*	*	*
	с.	Х _м о.в∨	*!		**	

• Problem: ranking predicts underapplication

Harmonic Grammar

- effects in Bzhedugh
- Bzhedugh
- Colouring
- The pattern
- An account
- Basic Assumptions OT Harmonic Grammar
- Discussion
- Conclusior
- References

(1

- Harmonic Grammar (HG): a connectionist model allowing for the implementation of cumulative effects (Legendre, Miyata, and Smolensky, 1990; Pater, 2009)
- Constraints are not ranked, but bear weights
- Harmonic weights are calculated into harmony scores
- The harmony score of a candidate is the sum of a candidate's violations multiplied by the weight of the respective constraint:

1)
$$\mathcal{H}_X = \sum_{i=1}^n v_X(C_i) \times w(C_i)$$

Deriving backing: velars

 $\bullet\,$ Velars are not enough: No change in quality when a vowel is surrounded by one or two velar consonants in the same σ

(12)	×ek ^w		$\begin{array}{c} V_{\rm PL} \\ {\rm DEP} \stackrel{\downarrow}{\underset{\sf F}{\downarrow}} \end{array}$	Crisp	A(Dor-[p])	A(Dor)	
	`land.PRED'		<i>w</i> =3	<i>w</i> =1.5	<i>w</i> =1.5	<i>w</i> =1	н
r§	a.	xək ^w				-2	-2
	b.	xɔkʷ	-1				-3

Harmonic Grammar Discussion

Assumptions

Conclusion

Deriving backing: uvulars I

• Two uvulars cause change in quality to a vowel when in the same syllable

(13)	qəq		$\operatorname{Dep}_{F}^{V_{\operatorname{PL}}}_{F}$	Crisp	A(Dor-[p])	A(Dor)	
	'stutterer'		<i>w</i> =3	<i>w</i> =1.5	<i>w</i> =1.5	<i>w</i> =1	н
	a.	qəq			-2	-2	-5
rig	b.	d&d	-1				-3

Harmonic Grammar Discussion

Assumptions

Conclusion

Assumptions OT Harmonic Grammar

Deriving backing: velars + uvulars

• Vowel quality is affected by a uvular and a velar only if both are in the same syllable as the vowel

(14)	к ^w eg ^w		$\begin{array}{c} V_{\mathrm{PL}}\\ \mathrm{DEP} \begin{array}{c} \downarrow\\ F \end{array}$	Crisp	A(Dor-[p])	A(Dor)	
	'w	ay.PRED'	<i>w</i> =3	w=1.5	w=1.5	w=1	н
	a.	r∞øg∞			-1	-2	-3.5
6	b.	к _м ⊃ã _м	-1				-3
(15)	к ^w eg ^w ə		V_{PL} DEP \downarrow F	Crisp	A(Dor-[p])	A(Dor)	
	'way.ATTR'		<i>w</i> =3	w=1.5	w=1.5	w=1	н
13	a.	к ^w ø.g ^w θ			-1	-2	-3.5
	b.	в _м р.g _м ө	-1	-1			-4.5

Deriving backing: uvulars II

• Gang effect: Two uvulars cause quality change to a vowel even when not in the same syllable

(16)	$\chi_{\sf m}$ экб		V_{PL} DEP \downarrow F	Crisp	A(Dor-[p])	A(Dor)	
	'b	ecame'	<i>w</i> =3	w=1.5	w=1.5	w=1	Н
	a.	$\chi_{\rm m}$ ө.кб			-2	-2	-5
1 37	b.	χ _м о.ке	-1	-1			-4.5

Harmonic Grammar Discussion

Assumptions

Conclusion

Cumulative interactions: summary

Cumulative effects in Bzhedugh

127			

Colouring

The pattern

An account

Basic Assumption OT Harmonic Grammar

Discussion

Conclusion

			$DEP \downarrow_{F}$	Crisp	A(Dor-[p])	A(Dor)	
			w=3	w=1.5	w=1.5	w=1	н
(17)		×ek ^w			T.		
E 37	a.	xək ^w			1	-2	-2
	b.	xɔkʷ	-1		1		-3
(18)		qəq			1		
	a.	qəq			-2	-2	-5
1 37	b.	dxd	-1		I		-3
(19)		₽ _w eg _w			1		
	a.	r∞øg∞			-1	-2	-3.5
E 37	b.	$R_m > d_m$	-1		1		-3
(20)		к _∞ 68 _∞ э			T.		
63	a.	r _w ø.g _w θ			-1	-2	-3.5
	b.	в _м р.g _м ө	-1	-1	1		-4.5
(21)		$\chi_{\rm m}$ эке			I		
	a.	$\chi_{\rm M}$ ө.кь			-2	-2	-5
E 37	b.	$\chi_{\rm m}$ о.ке	-1	-1	I		-4.5

The case of pharyngeals and glottals

• Pharyngeals and glottals cause backing in most varieties of Circassian, cf. the following examples from literary Adyghe (Colarusso, 1988; Smeets, 1984):

An account

Basic Assumption OT Harmonic Grammar

Discussion

Conclusion

References

• In Bzhedugh, however, no such CV interaction is attested:

The case of pharyngeals and glottals

- effects in Bzhedugh
- Bzhedugh
- Colouring
- The pattern
- An account
- Basic Assumption: OT Harmonic Grammar
- Discussion
- Conclusion
- References

- Bzhedugh has been characterised as having a rather conservative phonology, both in terms of inventory and processes (Sitimova, 2004)
- One possible account: different underlying representations for posterior sounds in literary Adyghe and Bzhedugh (see Sylak-Glassman 2014 for detailed discussion of related cases)
- Alternatively, one could also derive the divergent pattern by adjusting the constraint weights for each dialect:

Literary Adyghe: $w(A(PHAR)) > w(D_{EP_{+}^{\downarrow}}^{V_{PL}})$

Bzhedugh Adyghe: $w(A(PHAR)) < w(Der_{F}^{V_{PL}})$

Typology of interactions

- effects in Bzhedugh
- Bzhedugh
- Colouring
- The pattern
- An account
- Basic Assumption: OT Harmonic Grammar
- Discussion
- Conclusion
- References

- Possible interaction types: excitatory/inhibitory, sequential/simultaneous (Müller, 2013)
- Inhibitory simultaneous interaction: ${\rm CRISP} \gg A(X)$ would block spreading over a syllable boundary in Standard OT
- Excitatory simultaneous interaction: gang effect of markedness constraints (A(DOR) and A(DOR)–[p]) on faithfulness constraints (CRISP, DEP) in Harmonic Grammar
- Excitatory sequential interaction: Apocope gives rise to resyllabification and therefore feeds *backing*
- Vowel colouring in Bzhedugh seems to be opaque and transparent at the same time

$\label{eq:summary} Summary \ and \ outlook$

Cumulative effects in Bzhedugh

- Bzhedugh
- Colouring
- The pattern
- An account
- Basic Assumptions OT Harmonic Grammar
- Discussion

Conclusion

- CV interactions in Bzhedugh are sensible to both segmental place features and prosodic domains
- Cumulative effects can be modelled within the theory of Harmonic Grammar
- Global and parallel evaluation of both local and non-local phenomena
- More acoustic data needed to further explore the phonetic details of the observed patterns

- Bzhedugh
- Colouring
- The pattern
- An account
- Basic Assumptions OT Harmonic Grammar
- Discussion
- Conclusion
- References

- Basri, H., E. Broselow, and D. Finer (1999). "Clitics and crisp edges in Makassarese". In: Toronto Working Papers in Linguistics (TWPL) 16 (2), pp. 25–36.
- Cho, Teahong (2004). "Prosodically conditioned strengthening and vowel-to-vowel coarticulation in English". In: Journal of Phonetics 32, 141—176.
- Choi, John D. (1991). "An acoustic study of Kabardian vowels". In: Journal of the International Phonetic Association 21 (1), pp. 4–12.
- Clements, G. Nick and Elizabeth V. Hume (1995). "The internal organization of speech sounds". In: The handbook of phonological theory. Ed. by John A. Goldsmith. Blackwell handbooks in linguistics. Oxford: Blackwell, pp. 245–306. ISBN: 9780631180623.
- Colarusso, John (1988). The Northwest Caucasian Languages. A Phonological Survey. Garland.
- Fougeron, Cécile and Patricia A. Keating (1997). "Articulatory strengthening at edges of prosodic domains". In: J. Acoust. Soc. Am. 101 (6), pp. 3728–3740.
- Gordon, Matthew and Ayla Applebaum (2006). "Phonetic structures of Turkish Kabardian". In: Journal of the International Phonetic Association 36 (2), pp. 159–186.
- Hardcastle, William J. (2006). "Coarticulation". In: Encyclopedia of Language & Linguistics (Second Edition). Ed. by Keith Brown. Elsevier, pp. 501–505.
- Höhlig, Monika (1997). Kontaktbedingter Sprachwandel in der adygeischen Umgangssprache im Kaukasus und in der Türkei. Vergleichende Analyse des russischen und türkischen Einflusses in mündlichen adygeischen Texten. Lincom Europa.
 - Jun, Sun-Ah, ed. (2005). Prosodic typology. Oxford: University Press.
- Kimper, Wendell A. (2011). Competing triggers. Transparency and opacity in vowel harmony. Massachusetts Amherst: Department of Linguistics.
- Legendre, Géraldine, Yoshiro Miyata, and Paul Smolensky (1990). "Harmonic Grammar a formal multi-level connectionist theory of linguistic well-formedness. Theoretical foundations". In: ICS Technical Report 90 (5).
- Mann, Virginia A. and Bruno H. Repp (1981). "Influence of preceding fricative on stop consonant perception". In: J. Acoust. Soc. Am. 69 (2), pp. 548–558.

References II

- Bzhedugh
- Colouring
- The pattern

An account

Basic Assumptions OT Harmonic Grammar

Discussion

Conclusion

Mattys, Sven L. (2004). "Stress Versus Coarticulation. Toward an integrated approach to explicit speech
segmentation". In: Journal of Experimental Psychology 30 (2), 397—408.
McCarthy, John (1988). "Feature geometry and dependency: A review". In: Phonetica 43, pp. 84–108.
Morén, Bruce (2003). "The Parallel Structures Model of Feature Geometry". In: Working Papers of the
Cornell Phonetics Laboratory 15, pp. 194–270.
Müller, Gereon (2013). "Interaktion Grammatischer Bausteine [Interaction of Grammatical Building Blocks]
(IGRA)" Manuscript, Leipzig University.
Nespor, Marina and Irene Vogel (2007). Prosodic Phonology. Vol. 28. Studies in Generative Grammar.
Berlin: deGruyter.
Padgett, Jaye (2011). "Consonant-vowel place feature interactions". In: The Blackwell companion to phonology (Volume 3). Ed. by Marc van Oostendorp et al. Malden, MA: Wiley-Blackwell, 1761–1786.
Pater, Joe (2009). "Weighted Constraints in Generative Linguistics". Manuscript, University of
Massachusetts.
Prince, Alan and Paul Smolensky (1993). Optimality Theory. New Brunswick, NJ.
Selkirk, Elizabeth O. (1986). "On derived domains in sentence phonology". In: Phonology Yearbook 3, pp. 371–405.
Sitimova, Sara Saferovna (2004). Osobennosti bzhedugskogo dialekta advgejskogo jazyka. Majkop.
Smeets, H. J. (1984). Studies in West Circassian phonology and morphology. Leiden.

- Sylak-Glassman, John Christopher (2014). Deriving Natural Classes. The Phonology and Typology of Post-Velar Consonants. University of California, Berkeley.
- Trommer, Jochen (2011). Phonological Aspects of Western Nilotic Mutation Morphology. Leipzig: Institut für Linguistik.