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A B S T R A C T

Humans make mistakes, especially when faced to complex tasks, such as
the construction of modern hardware or software. This thesis focuses on
machine-assisted techniques to guarantee that computers behave correctly.

Modern computer systems are large and complex. Automated formal ver-
ification stands as an alternative to testing or simulation to ensuring their
reliability. It essentially proposes to employ computers to exhaustively check
the system behavior. Unfortunately, automated verification suffers from the
state-space explosion problem: even relatively small systems can reach a
huge number of states. Using the right representation for the system behav-
ior seems to be a key step to tackle the inherent complexity of the problems
that automated verification solves.

The verification of concurrent systems poses additional issues, as their
analysis requires to evaluate, conceptually, all possible execution orders of
their concurrent actions. Petri net unfoldings are a well-established verifi-
cation technique for concurrent systems. They represent behavior by partial
orders, which not only is natural but also efficient for automatic verification.

This dissertation focuses on the verification of concurrent systems, em-
ploying Petri nets to formalize them, and studies two prominent verification
techniques: model checking and fault diagnosis.

We investigate the unfoldings of Petri nets extended with read arcs. The
unfoldings of these so-called contextual nets seem to be a better representa-
tion for systems exhibiting concurrent read access to shared resources: they
can be exponentially smaller than conventional unfoldings on these cases.

Theoretical and practical contributions are made. We first study the con-
struction of contextual unfoldings, introducing algorithms and data struc-
tures that enable their efficient computation. We integrate contextual un-
foldings with merged processes, another representation of concurrent behav-
ior that alleviates the explosion caused by non-determinism. The resulting
structure, called contextual merged processes, is often orders of magnitude
smaller than unfoldings, as we experimentally demonstrate.

Next, we develop verification techniques based on unfoldings. We de-
fine SAT encodings for the reachability problem in contextual unfoldings,
thus solving the problem of detecting cycles of asymmetric conflict. Also,
an unfolding-based decision procedure for fault diagnosis under fairness
constraints is presented, in this case only for conventional unfoldings.

Finally, we implement our verification algorithms, aiming at producing
a competitive model checker intended to handle realistic benchmarks. We
subsequently evaluate our methods over a standard set of benchmarks and
compare them with existing unfolding-based techniques. The experiments
demonstrate that reachability checking based on contextual unfoldings out-
performs existing techniques on a wide number of cases.

This suggests that contextual unfoldings, and asymmetric event structures
in general, have a rightful place in research on concurrency, also from an
efficiency point of view.
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R É S U M É

L’être humain fait des erreurs, en particulier dans la réalisation de taches
complexes comme la construction des systèmes informatiques modernes.
Nous nous intéresserons dans cette thèse à la vérification assistée par ordi-
nateur du bon fonctionnement des systèmes informatiques.

Les systèmes informatiques actuels sont de grande complexité. Afin de
garantir leur fiabilité, la vérification automatique est une alternative au
testing et à la simulation. Elle propose d’utiliser des ordinateurs pour ex-
plorer exhaustivement l’ensemble des états du système, ce qui est probléma-
tique: même des systèmes assez simples peuvent atteindre un grand nombre
d’états. L’utilisation des bonnes représentations des espaces d’états est es-
sentielle pour surmonter la complexité des problèmes posés en vérification
automatique.

La vérification des systèmes concurrents amène des difficultés addition-
nelles, car l’analyse doit, en principe, examiner tous les ordres possibles
d’exécution des actions concurrentes. Le dépliage des réseaux de Petri est
une technique largement étudiée pour la vérification des systèmes concur-
rents. Il représentent l’espace d’états du système par un ordre partiel, ce qui
se révèle aussi naturel qu’efficace pour la vérification automatique.

Nous nous intéressons à la vérification des systèmes concurrents mod-
élisés par des réseaux de Petri, en étudiant deux techniques remarquables
de vérification: le model checking et le diagnostic.

Nous étudions les dépliages des réseaux de Petri étendus avec des arcs
de lecture. Ces dépliages, aussi appelés dépliages contextuels, semblent être
une meilleure représentation des systèmes contenant des actions concur-
rentes qui lisent des ressources partagées : ils peuvent être exponentielle-
ment plus compacts dans ces cas.

Ce travail contient des contributions théoriques et pratiques. Dans un
premier temps, nous étudions la construction des dépliages contextuels,
en proposant des algorithmes et des structures de données pour leur con-
struction efficace. Nous combinons les dépliages contextuels avec les merged
process, une autre représentation des systèmes concurrents qui contourne
l’explosion d’états dérivée du non-déterminisme. Cette nouvelle structure,
appelée contextual merged process, est souvent exponentiellement plus com-
pacte, ce que nous montrons expérimentalement.

Ensuite, nous nous intéressons à la vérification à l’aide des dépliages
contextuels. Nous traduisons vers SAT le problème d’atteignabilité des dé-
pliages contextuels, en abordant les problèmes issus des cycles de conflit
asymétrique. Nous introduisons également une méthode de diagnostic avec
des hypothèses d’équité, cette fois pour des dépliages ordinaires.

Enfin, nous implémentons ces algorithmes dans le but de produire un
outil de vérification compétitif et robuste. L’évaluation de nos méthodes
sur un ensemble d’exemples standards, et leur comparaison avec des tech-
niques issues des dépliages ordinaires, montrent que la vérification avec des
dépliages contextuels est plus efficace que les techniques existantes dans de
nombreux cas.

Ceci suggère que les dépliages contextuels, et les structures d’évènements
asymétriques en général, méritent une place légitime dans la recherche en
concurrence, également du point de vu de leur efficacité.
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1I N T R O D U C T I O N

Since the advent of affordable digital computers, three decades ago, the
complexity of hardware and software devices has grown without pause,
and there is no reason to think that this will naturally stop in a near future.
As systems grow in complexity, so does the difficulty to construct them, and
consequently the likelihood that subtle errors remain undetected in the final
product. Our modern society is increasingly dependent on computers, and
this tendency is likely to hold for long time. We need, in summary, adequate
methods for constructing complex and reliable computer-based systems.

Reliability is paramount in safety-critical systems, customarily defined as
those whose malfunction may result in risks for human life, environmen-
tal damage, or substantial economic loss [Kni02]. Well known examples are
avionics, nuclear-power plants, oil refineries, traffic control systems, space-
crafts, and medical or military equipment.

Reliability is also important for non-critical systems. Any unreliable sys-
tem often has negative economic consequences for the manufacturer. For
instance, a faulty smartphone may substantially decrease the sales and turn
the market attention to the competing vendor.

Testing and simulation are two methods to improve reliability. They are
very effective at least on the early stages of the development. However, test-
ing or simulation explore some of the possible behaviors. They can only
show the existence of errors, not the absence thereof. It is often claimed
that testing can in the best case achieve systems whose failure rate oscillates
around 10−4 or 10−5 failures per hour of operation [Bis13]. This is insuf-
ficient for certain applications. Failure rates for avionics, for instance, are
often required to be under 10−9, a figure thousands of times more stringent
than what testing seems to offer.

In the last decades, formal verification has been suggested as an effective
means of improving reliability. Unlike testing, formal verification examines
all behaviors of the system and compares them to a formal specification, which
distinguishes the good behaviors from the faulty ones. If the system is de-
clared correct, formal verification has established a mathematically rigorous
proof that the system is free from all faults described by the specification.
Otherwise, depending on the particular technique used, one obtains some
level of evidence that the system contains an error.

Observe that formal verification cannot guarantee absolute correctness, it
only ensures the system to be as correct as the specification is. It can, how-
ever, effectively reveal very subtle errors that may otherwise go undetected
if only testing or simulation was used.

Formal verification encompasses a number of methods for proving cor-
rectness. Two well-established ones are theorem proving [BC04] and model
checking [CGP99], both of which are machine-assisted. In theorem proving,
a number of proof obligations are generated from the specification and the
implementation. These are formal statements whose validity entails the cor-
rectness of the system. Assisted by the theorem prover, the user constructs
the proof of each obligation, either interactively or in a highly automated
way, depending on the capabilities of the method used. A shortcoming of
theorem proving is that it often requires substantial interaction of the user.

1



2 introduction

In contrast, model checking is a fully automatic technique. Here, a com-
puter exhaustively explores all possible execution paths that the system
could follow, and checks compliance with the specification for each of them.
If the search terminates without finding any error, model checking has es-
tablished a formal argument proving the system correct with respect to
the specification. If not, an execution path that falsifies the specification is
shown to the user, which often is highly valuable to fix the problem.

Asserting validity of the specification thus requires reasoning about the
potentially intractably many possible ways in which the system reacts. Even
very small systems contain a huge number of execution paths. The state-
space explosion (SSE) problem refers to the computational difficulty of per-
forming this analysis automatically, and is one of the main obstacles hinder-
ing the adoption of model checking in practice.

For certain applications, even formal verification is unable to provide the
required reliability. This is the case, e.g., in ultra-critical systems [PNW12].
Recall that formal methods cannot guarantee absolute reliability. What if
the formal specification was wrong? Also, formal verification often makes
assumptions that may be hard to guarantee. Software verification, for in-
stance, guarantee that a program is logically correct provided that the CPU
or memory behave as expected, which in some harsh environments such as
outer space one cannot really assume.

Complementary techniques have been proposed to mitigate the conse-
quences of faults dynamically, while the system runs. Among them one
finds runtime verification [LS09], fault tolerance [Avi67], or fault diagno-
sis [SSL+95]. The latter is specially useful when limited information of the
system execution is available. For instance, the system could be a large
telecommunication network with links and nodes that can fail at any mo-
ment, where only restricted or even outdated state information of them is
known at every time. Fault diagnosis monitors a system in execution and
infers which states the system could currently be in, and more specifically,
whether a fault may have happened, or will inevitably happen.

Despite its clear benefits, formal verification is still far from being fully
integrated into mainstream industrial practice, specially for the develop-
ment of software. A number of causes have been identified [BBD+96; Par10;
Was12], among which we cite:

1. Lack of robust, high-quality tool support [HB96; ADKT11; Was12].
2. Inherent complexity of the verification task hinders scalability to prob-

lems of industrial size [ADKT11].
3. Lack of representative benchmarks to drive tool quality and allow re-

alistic evaluation of the proposed methods [HB96; Par10].
4. The growing gap between the concepts, needs, and views of research

in formal methods and industrial practice [Gla96; Par10].

Thus foundational work aiming at more efficient algorithms for the auto-
mated verification of systems and the development of robust tools support-
ing these methods address at least two of the causes above.

This dissertation makes foundational and practical contributions to model
checking and fault diagnosis. We present algorithms for reducing the inter-
nal representation of a system that model checkers or fault diagnosers need
to construct during the analysis. Furthermore, we implement our model
checking algorithms into the Cunf Toolset, a robust model checker intended
to handle realistic examples.

We focus on the verification and diagnosis of concurrent systems.



1.1 automated verification of concurrent systems 3

1.1 automated verification of concurrent systems

Two actions are said to be concurrent when they are executed simultaneously.
A concurrent system is one which performs concurrent actions.

Verification techniques for concurrent systems need to deal with the ad-
ditional complexity introduced by concurrency. If two concurrent actions a
and b are present, the analysis needs to explore, in principle, the execution
paths where a happens before b, or b before a, or even when a and b happen
at the same time. If n concurrent actions are present, the number of execution
paths grows exponentially with n. Concurrency is a well known source of
SSE for automated verification techniques, including model checking and
fault diagnosis.

In model checking of concurrent systems, existing approaches to mitigate
the SSE problem can mainly be classified as symbolic or partial-order methods.
Ordinarily, model checking explicitly generates and explores each possible
state that the system under analysis could enter. In contrast, symbolic model
checking explores and manipulates sets of reachable states represented im-
plicitly, or symbolically, e.g., as the solutions of a Boolean formula. Symbolic
model checking was introduced by Ken McMillan [BCM+92; McM93a], who
proposed to use binary decision diagrams (BDDs) [Bry86] as a symbolic, more
abstract, representation for sets of states. BDDs seem to exploit very well the
regularity of synchronous digital circuits, making symbolic model checking
with BDDs a very successful technique for the verification of hardware.

Partial-order methods encompasses two families of techniques of similar
nature that are often presented quite differently. On the one hand we have
partial-order reduction techniques, such as stubborn sets, persistent sets, and
ample sets, see [Val98]. They work by classifying all execution paths of the
system according to some equivalence relation such that all paths in each
equivalence class either satisfy or falsify the property. Then, they explore
at least one path on each equivalence class, thus potentially avoiding the
exploration of many equivalent paths. In this sense, these techniques can
also be described as model checking using representatives [Pel93].

On the other hand we have methods issued from partial-order semantics of
the modelling language. Here, the system is transformed into a set of events
partially ordered by a precedence relation. Concurrent actions are repre-
sented as unordered events, and execution paths correspond to precedence-
closed sets of events. Importantly, every such set symbolically represents
many execution paths, a fact that the model checker uses to avoid individ-
ually generating each of them. This manuscript develops model checking
methods based on partial-order semantics, we come back to them in the
next section.

Similarly, fault diagnosis faces the SSE problem due to concurrency. A
prominent approach based on partial-order semantics has been proposed
by Benveniste et al. [BFHJ03]. As before, the technique constructs a partial-
order representation of the system upon which the reasoning is performed.
This thesis contributes with a generalization and extension of this method.

Both model checking and fault diagnosis assume that a model of the sys-
tem is given as input to the verification procedure. Well-established gen-
eral models for concurrent systems are process algebras [Bae05] and Petri
nets [Rei13]. Process algebras, or process calculi, are formal languages whose
modelling primitives focus on expressing the interaction between the differ-
ent agents, or processes, that compose the system. A process algebra pro-
vides algebraic laws making possible to analyze and transform system mod-
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Figure 1: A Petri net modelling a mutual exclusion algorithm.

els using equational reasoning. The three most well-known process algebras
are CCS, CSP, and ACP; many variants of them appear in the literature,
see [Bae05]. Petri nets are both a graphical and formal notation for mod-
elling systems, and they will be the specification language for the methods
developed in this thesis.

1.2 petri nets and non-sequential semantics

Petri nets [Rei13] are a formal notation to represent, manipulate, and rea-
son about concurrent systems. Because they are general models of concur-
rency, their study is the study of the principles underlying diverse classes
of systems. While Petri nets were invented by Carl Adam Petri at the age
of 13 [PR08], the first semi-formal notations for them appeared on his the-
sis [Pet66].

Figure 1 shows the graphical representation of a Petri net. This net models
a system with two components that operate in mutual exclusion, as it will be
clear shortly. Petri nets are composed of three kinds of elements: places, de-
picted as circles, transitions, depicted as boxes, and arcs, which can only link
places to transitions and vice versa, but never transitions to transitions or
places to places. Certain places, idle1 and idle2 in our example, are depicted
with a dot inside. Such dots are called tokens. The preset of a transition is the
set of places from which there is an arc to the transition; the postset is the set
of those reached by an arc originating at the transition.

Petri net can be given essentially two kinds of semantics, so called sequen-
tial and non-sequential. A third kind of semantics, so called step semantics can
basically be derived from non-sequential semantics.

We recall now the sequential semantics of Petri nets. A state of the net, or
marking, is an assignment of tokens to places. The initial marking is the one
often depicted with the net: in Fig. 1, it is the marking that assigns one token
to idle1, idle2, and mutex, and zero to the remaining places. From a marking,
one may fire a transition and reach a new marking, provided that the tran-
sition is enabled by the first marking. A transition is enabled at a marking if
the latter assigns at least one token to each place in the preset of the tran-
sition. For instance, the initial marking in Fig. 1 enables start1 and start2,
but not enter1, as there is no token in waiting1. Firing any enabled transition
consumes one token in places of the preset and produces one token for the
places in the postset. In the example, firing start1 produces a new marking
that assigns one token to waiting1, zero to idle1, and leaves remaining places
as they were on the initial marking. In this new marking, both enter1, and
start2 are enabled and may be fired, again producing new markings. Any
sequence of transitions that can be fired from the initial marking is called a
firing sequence or run, and the last marking it produces is said to be reachable.
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Finally, the reachability graph of the net is a directed, edge-labelled graph
whose vertices are the reachable markings and such that there is an edge
labelled by a transition t between a marking m and m′ if and only if t is en-
abled at m and, after firing, produces m′. Clearly, the firing sequences of the
net correspond to paths on the reachability graph starting from the initial
marking. The reachability graph is often referred as the state space of the net.

It should now be clear that Fig. 1 represents a mutual exclusion algorithm
for two parties, 1 and 2. Initially, any of the parties can execute starti, reach-
ing a marking where at most one can execute enteri. This is because both
enter1 and enter2 consume the token in mutex. So only after the party which
manages to enter the critical section executes the corresponding exit transi-
tion, putting back the token in the mutex, will the other party be able to enter
the critical section.

The literature of Petri nets contains many extensions to this basic formu-
lation. Examples are time Petri nets, coloured nets, nets with inhibitor arcs,
nets with read arcs, etc. The latter ones will be specially relevant in this work.

Sequential semantics, then, associate every net with a set of firing se-
quences, or alternatively, a directed graph that represent all reachable mark-
ings. A firing sequence imposes a total order on the transition occurrences
and, as such, implicitly assumes the existence of a global time that marks
the order of occurrence. Non-sequential semantics eliminate this assump-
tion and order transition occurrences, also called events, not by their time
of occurrence, but by their relative causal or precedence relations. For instance,
any occurrence of the transition writing1 is always preceded by another one
of start1. In contrast, the two events corresponding to firing start1 and start2
after the initial marking are concurrent, causally unrelated, they can happen
in any order without one affecting the other.

Replacing the total ordering of time by the relative precedences between
transition occurrences induces a partial ordering of events. In it, concurrent
events necessarily appear unordered.

Historically, the non-sequential semantics of Petri nets settled in two steps,
see [Esp10]. Petri himself defined non-sequential processes [Pet77], the notion
corresponding to sequential runs in the realm of partial-order semantics.
A process represents a partially-ordered run, where precedence-unrelated
events may happen in any order. Any linear extension of the precedence
order yields a sequential run.

Figure 2 (a), (b), (c), and (d) show four different processes of the net in
Fig. 1. Processes are actually represented as acyclic Petri nets instead of par-
tial orders of events, but this is only a technical matter. For instance, (b)
corresponds to the sequential run start1, start2, enter1, but also to the same
run if we swap the first two transitions. Conceptually, (b) represents a con-
current run where both parties intend to enter the critical section, but only
the first enters, no matter in which order they interleave their actions.

The second step was to fuse the common parts of all processes of the net,
into an object called unfolding. The unfolding is conceptually equivalent to
the computation tree in sequential semantics, it binds together all processes
and branches where executions diverge into different futures. This notion
first appeared, with a different name, in [NPW81].

Figure 2 (e) shows the unfolding of Fig. 1. Actually, the unfolding of Fig. 1

is infinite: since an infinite sequential execution is possible in the net, the un-
folding contains an infinite branch. So (e) only shows a prefix of the unfolding.
Observe that all processes shown in Fig. 2 are embedded in this unfolding
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Figure 2: Non-sequential semantics of the Petri net in Fig. 1. In (a), (b), (c),
and (d), four different processes are shown. (e) is a prefix of the
infinite (thus the bottom dots) unfolding, all shown processes are
embedded in it.

prefix, and that they share, roughly speaking, the events that are common
to multiple processes.

Given a net, many natural questions can be posed, such as: (reachabil-
ity) is a given marking reachable on the net? or, (deadlock-freeness) is it
possible to reach a marking that enables no transition? Observe that the
second question actually reduces to the first. Similarly, many verification
questions reduced to the reachability problem. Answers to them can, theo-
retically, be found by looking into any of the two semantics presented here.
But in practice, it will be more interesting to use non-sequential semantics,
as we explain now.

1.3 unfoldings for verification

Model checking was invented independently by two groups in the begin-
ning of the 80s [CE82; QS82], see [Cla08]. It introduced a different regard
for semantics. While semantics were, and still are, a mathematical object
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Figure 3: The finite, complete unfolding prefix constructed by McMillan’s
algorithm for Fig. 1.

of interest in capturing the precise meaning of programs, model checking
suggested to compute them as a means to explore the reachable states of the
system.

Model checking suffered from the SSE problem, one of the sources was
concurrency, as explained above. The non-sequential semantics of Petri nets
had been developed from the late 70s, providing not only an adequate repre-
sentation of concurrency, but also a concise one, in the form of a partial order.
The time was ripe and Ken McMillan made the key contribution [McM93b;
McM95b]. He proposed an algorithm to construct and prune the infinite un-
folding of a bounded1 net into a finite unfolding prefix that still represented
complete reachability information about the system.

Figure 3 shows the finite and complete unfolding prefix constructed by
McMillan’s algorithm from the net shown in Fig. 1. The events crossed out
are the pruning points that the algorithm chooses, called cutoffs in the litera-
ture. Cutoffs are chosen in a way such that they prune all potentially infinite
branches, but late enough to preserve in the prefix all reachable states of the
system. Observe that this prefix is actually a prefix of Fig. 2 (e).

While complete unfolding prefixes are in general larger than the original
net, they are usually much smaller than the reachability graph, effectively
palliating the SSE problem derived from concurrency. Consider again Fig. 1.
Exploring the states reached by all interleavings of the transitions start1 and
start2 requires visiting four states. With n participants in the mutual exclu-
sion, we would have 2n states. However, the unfolding would just include n
concurrent events, as shown in Fig. 3 for n = 2.

Although McMillan’s algorithm usually builds very compact unfolding
prefixes, it may also produce prefixes larger than the reachability graph.
Subsequent work [ERV96; ERV02] addressed this, essentially improving the
pruning algorithm so that the resulting prefix was never larger than the state
space of the net.

From the perspective of complexity, unfoldings provide an interesting
trade-off between space and time. While checking for deadlock-freeness or
reachability on a bounded Petri net are PSPACE-complete problems on the
net, they are only NP-complete when a complete unfolding prefix is on the
input. Naturally, such prefix may be exponentially larger than the net, but

1 That is, one for which the reachability graph is finite.
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. . .

Figure 4: A Petri net with exponentially large unfolding prefix.

never larger (and often much smaller) than the reachability graph, where
these problems can be solved in linear time.

Unfortunately, concurrency is not the only source of SSE in automatic
verification. An important source are sequences of choices. For example, the
smallest complete prefix of the Petri net in Fig. 4 is exponential in its size (as
big as the state space) since no event can be declared a cutoff — intuitively,
each reachable marking remembers its past, and so different runs cannot lead
to the same marking.

Recently, a technique addressing this source of SSE emerged. In [KKKV06],
a new condensed representation of Petri net behavior called merged processes
(MPs) was proposed, which copes not only with concurrency, but also with
sequences of choices. The main idea behind MPs is to fuse some nodes in the
unfolding prefix, and use the result as the basis for verification. Moreover,
MPs are sufficiently similar to unfoldings so that a large body of results
developed for them can be re-used.

Another important source of SSE are concurrent read accesses, that is,
multiple actions requiring non-exclusive access to a shared resource, as we
explain in the next section.

1.4 contextual net unfoldings

Assume that we want to model a system that has two concurrent actions,
a and b, which need to test that some resource r is available for them to
proceed. The resource could represent, for instance, a logical condition that
a third concurrent component may independently enable or disable.

A Petri net modelling this system could be that shown in Fig. 5 (a). The
only possibility for modelling the reading, or testing operation is by means
of the depicted consume-produce loops. However, this is not entirely satis-
factory. Actions a and b are supposed to be truly concurrent but they are
not: the loops serialize the access to r, rather modelling a system where a
and b acquire and return the right to access r. The problem lies in the fact
that the modelling primitives of Petri nets can only express consuming and
producing.

A solution is to incorporate read arcs into Petri nets, which results in the
net shown in Fig. 5 (b). Read arcs are the undirected (red) lines between r
and a or b. Petri nets with read arcs are called contextual nets [MR95] and, like
ordinary Petri nets, have been given sequential, step, and non-sequential se-
mantics [JK93; JK95; MR95; BP96; VSY98; GM98; BCM01]. Under sequential
semantics, the nets in Fig. 5 (a) and (b) are completely equivalent. However,
their step semantics authorize firing {a, b} in (b) while such step can only be
emulated by interleaving in (a).

While faithful modelling of concurrency is important, it is not the central
subject of this dissertation.

Consider the unfolding semantics of Fig. 5 (a) and (b), shown in (d) and
(e). Indeed, the consume-produce loops of (a) have been unfolded in (d),
yielding an explicit representation of all the interleavings of a and b. The
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Figure 5: Three models (a), (b), and (c), of a system exhibiting concurrent
read access, together with their respective unfoldings semantics
(d), (e), and (f).

unfolding (e) of the already acyclic contextual net (b) is isomorphic to (b). If
we had n reading actions in (a) instead of 2, (d) would be of size exponential
in n, while (e) would still be isomorphic to (b). The so called place-replication
(PR) encoding of (a) [MR95; VSY98], shown in (c), partially mitigates the
explosion affecting (d). The PR-encoding duplicates n times a resource with
n readers, and each reader obtains a private copy which is accessed with a
consume-produce loop. Although smaller than (d), the resulting unfolding
(f) is still exponential in n.

Thus the unfolding of a contextual net can be exponentially more com-
pact than that of an equivalent ordinary Petri nets, when the system con-
tains concurrent read-access actions. One goal of this thesis is proving that
automated verification based on contextual unfoldings improves existing
methods based on ordinary unfoldings.

Concurrent read access naturally arise in many practical applications, and
would benefit from verification methods based on contextual unfoldings.
Contextual nets have been used, e.g., to model concurrent database access
[Ris94], concurrent constraint programs [MR94], priorities [JK91], and asyn-
chronous circuits [VSY98]. We highlight the following applications:

• Distributed algorithms. For instance, mutual exclusion protocols, such
as those by Dijkstra and Dekker, use a number of state variables per
process, which the other concurrent processes read in order to synchro-
nize adequately. Verification of mutual exclusion protocols, and other
distributed algorithms that need to read state could be an important
application of c-net unfoldings. We provide a case study in Ch. 7.
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Figure 6: Three contextual nets where different step semantics found in the
literature disagree on accepting the step {t1, t2}.

• Asynchronous circuits. Asynchronous digital circuits (ACs) are mas-
sively concurrent systems. Hazard checking in ACs [McM93b; VSY98]
is another promising application. A network of asynchronous Boolean
gates can be modelled by a c-net, where each gadget encoding a gate
contains many read arcs. Hazards are unsafe behaviors of ACs, whose
existence reduces to a coverability question on the c-net [McM93b]. In
our experiments, we observed that signal changes in the circuit could
propagate in many different orders, which were distinguished by Petri-
net unfoldings but not by c-net unfoldings, reducing the unfolding
size.

• Concurrent Boolean programs. Software verification often employs ab-
stract representations of programs, such as Boolean programs [BR00].
A Boolean program is simply a program that only uses Boolean vari-
ables. A set of non-recursive Boolean programs communicating with
shared memory can readily be encoded into a safe contextual net,
where read arcs do reading or testing operations on variables. Any
expression reading a global variable is a potential concurrent reading
action. This application remains to be studied.

While the properties and construction of ordinary Petri net unfoldings
are well-understood, research on how to construct and exploit contextual
unfoldings for automated verification has been lacking so far. The rest of
this section reviews the literature on contextual nets upon which this work
stands.

Contextual nets have been proposed by Montanari and Rossi in [MR95],
although the notion of read arc had already been discussed before [AF73;
Pet81; JK91; JK93; CH93], in many cases under a different name, such as test
arc or activator arc.

The step semantics of contextual nets can be grouped in two different
schools, essentially distinguished by the steps that they assign to the nets
in Fig. 6, see [Vog97]. While all considered semantics agree on allowing the
step {t1, t2} for (a), they disagree on (b) and (c). If, for instance, transition
occurrences are viewed as activities taking time, then {t1, t2} should be also
a step of (b) and (c), as it can in fact be observed if t1 and t2 start at the
same time. In [JK95], Janicki and Koutny develop step semantics under this
notion of observation. In contrast, Montanari and Rossi [MR95] adopt a dif-
ferent view: only transitions that are independent from each other should be
allowed in a step. Clearly, t1 and t2 are not independent because they cannot
fire in any order: t1t2 is a valid firing sequence but t2t1 is not. Then {t1, t2}
should not be a step of (b) and (c). These semantics can be understood as
viewing transition occurrences as instantaneous events. The same semantics
are adopted in [CH93; BP96], as well as in this dissertation.

Process semantics for contextual nets can be found in [JK91; MR95; BP96;
JK95; Vog97; Win98; GM98]. However, in this dissertation the focus will be
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on the non-sequential unfolding semantics of contextual nets, independently
introduced by Baldan, Corradini, and Montanari in [BCM98], and Vogler,
Semenov, and Yakovlev in [VSY98]. In both works, the same unfolding se-
mantics are defined, employing the view of [MR95] about the simultaneous
occurrence of transitions.

A first unfolding procedure for constructing finite and complete contex-
tual prefixes is found in [VSY98]. Their procedure is essentially a general-
ization of McMillan’s algorithm, and works for only a restricted class of so-
called read-persistent contextual nets. The authors find that interesting practi-
cal applications, such as hazard checking in asynchronous circuits, lie within
this class. However, the class is quite restricted. It consist of all the contex-
tual nets that have no reachable marking which enables two transitions such
that one consumes a place read by the other. The c-nets in Fig. 6 (b) and (c),
for instance, lie outside, despite their simple structure.

The problem with non read-persistent nets is that events have multiple
causal histories. Roughly speaking, a history of an event e is a set of events
that must precede e in a possible execution. This multiplicity negatively
interacts with the cutoff criterion of McMillan’s algorithm, preventing the
latter from constructing complete prefixes.

A general procedure for the whole class of contextual nets was later pro-
posed by Winkowsky [Win02], who lifted McMillan’s cutoff criterion from
local configurations [McM93b] to the aforementioned causal histories. The
procedure always terminates with a complete unfolding prefix, but it is not
constructive in general, as events may have infinitely many causal histories.

A constructive, general solution was finally given in [BCKS08], at the price
of making the underlying theory notably more complicated. In particular,
computing a complete prefix required to annotate every event e with a subset
of its histories.

However, it remained unclear whether the approach of [BCKS08] could be
implemented with reasonable efficiency, and how. For safe nets, the interest
of computing a complete contextual prefix was not evident from a practi-
cal point of view: while the prefix can be exponentially smaller than the
complete prefix of the corresponding PR-encoding, the intermediate struc-
ture used to produce it has asymptotically the same size. More precisely,
the number of histories that the approach of [BCKS08] needs to consider to
construct the contextual prefix matches the number of events in the prefix
of the PR-encoding (for general bounded nets, this is not the case).

Additionally, only an abstract procedure was given in [BCKS08], mainly
focusing on the technical difficulties of the cutoff criterion. It was left unre-
solved how to turn the procedure into a reasonably efficient algorithm, and
no data structure for dealing with causal histories was proposed.

1.5 contributions and outline

This dissertation makes foundational and practical contributions to model
checking and fault diagnosis. We present verification algorithms for Petri
nets that exploit the aforementioned compactness of contextual unfoldings,
and extend an unfolding-based diagnosis method with fairness assump-
tions. We implement our model checking algorithms aiming at producing an
efficient and robust model checker intended to handle realistic benchmarks.

We demonstrate that contextual unfolding construction and analysis is
practical and outperforms existing techniques on a wide number of cases.
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Contextual nets and their unfoldings therefore have a rightful place in re-
search on concurrency, also from an efficiency point of view.

More specifically, the outline and contributions of the manuscript are:

• Chapter 3. We render effective the abstract procedure of [BCKS08] with
a view to efficiency. We develop a concurrency relation on a notion of
unfolding conditions enriched with histories, use it to characterize the
possible extensions of the prefix, and provide an inductive characteri-
zation of this relation that lies at the heart of the efficient computation
of prefix extensions. We include adequate orders in the framework
of contextual unfoldings and compare our method to the one inde-
pendently proposed in [BBC+10]. This chapter is based on [RSB11b;
BBC+12].

• Chapter 4. We encode into SAT the reachability and deadlock-freeness
problems based on contextual unfoldings. Unlike conventional unfold-
ings, contextual unfoldings may contain cycles of so-called asymmet-
ric conflict. We propose and optimize encodings for avoiding them. A
number of additional optimizations are also studied. This chapter is
based on [RS12b].

• Chapter 5. We integrate two methods for representing the state space of
Petri nets: merged processes and contextual unfoldings. The resulting
technique, called contextual merged processes (CMPs), combines the ad-
vantages of the original techniques and copes with several important
sources of state space explosion: concurrency, sequences of choices,
and concurrent read accesses to shared resources. A SAT encoding of
the reachability problem based on CMPs is presented. This chapter is
based on [RSK13].

• Chapter 6. We present an unfolding-based procedure for deciding the
weak fault diagnosis problem. The diagnosis approaches proposed
in [BFHJ03] and [EK12], mostly focused on sequential observations.
We generalize them to partially ordered observations, and extend the
method adding fairness assumptions, which gives rise to weak diag-
nosis. Additionally, we present a decision procedure of the weak diag-
nosis problem using SAT. The results in this chapter hold for ordinary
Petri nets, not contextual nets. This chapter is based on [HRS13].

• Chapter 7. We evaluate the techniques presented in Ch. 3 to 5, and
compare them with with existing methods to construct or analyze
unfoldings. We implemented the techniques of Ch. 3 and 4 into the
Cunf Toolset, a competitive verification tool. The relevant data struc-
tures and algorithms of the implementation are described, and opti-
mizations to the SAT encoding of Ch. 4 are evaluated. We demonstrate
over a standard benchmark suite that contextual unfolding construc-
tion and analysis is practical and outperforms existing techniques on
a wide number of cases. This chapter is based on [RSB11b; BBC+12;
RS12b; RSK13; RS13b].

Chapter 2 fixes general definitions and assumptions for the rest of the
manuscript, and contains a number of small technical results that will be
used later. We conclude in Ch. 8. The manual of the Cunf Toolset is con-
tained in App. A.
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2P R E L I M I N A R I E S

This first technical chapter recalls and formally defines general background
that will be necessary for the rest of the manuscript. New, often technical,
results are spread over the presentation. We have decided to place them
here not only because they are preliminary results, necessary for subsequent
developments, but mainly because they contribute to forge deeper intuitions
about the basic notions presented here, before they are used to construct,
over the next chapters, the main contributions of the thesis.

The outline is as follows. We recall basic notions about orders and mul-
tisets in § 2.1. Petri nets with read arcs and related notions are formally
defined in §§ 2.2 and 2.3, and two different ways to encode them into or-
dinary Petri nets are recalled. Their non-sequential unfolding semantics are
presented in § 2.4.

2.1 orders and multisets

Let S be a set. A relation R ⊆ S× S is

• reflexive if (s, s) ∈ R for all s ∈ S;
• irreflexive if (s, s) /∈ R for all s ∈ S;
• transitive if {(s, t), (t, u)} ⊆ R implies (s, u) ∈ R for all s, t, u ∈ S;
• asymmetric if (s, t) ∈ R implies (t, s) /∈ R for all s, t ∈ S; and
• antisymmetric if {(s, t), (t, s)} ⊆ R implies s = t for all s, t ∈ S.

A (non-strict) partial order is any reflexive, transitive, and antisymmetric
relation. A strict partial order is any irreflexive and transitive relation. Any
strict partial order is asymmetric and antisymmetric, which can easily be
derived from the definition. Finally recall that if R is asymmetric, it is also
irreflexive.

The reflexive closure of any strict partial order is a partial order. Con-
versely, the reflexive reduction of any partial order is a strict partial order.

Any partial order R, strict or not, is total if any two elements of S are
ordered, i.e., ether (s, t) ∈ R or (t, s) ∈ R holds for all s, t ∈ S with s 6= t. For
any subset S′ ⊆ S, we denote by RS′ the relation R ∩ (S′ × S′), also called
the restriction of R to S′.

A chain of R is any subset C ⊆ S that is totally ordered under R, i.e., RC
is total. A linear extension of R, or topological ordering of S, is any total order
R′ on S such that R ⊆ R′. Observe that a linear extension of R always exists
because R is a partial order. In many cases we will also call R′ an interleaving
of R — or S if R is clear.

We identify any relation R on S with the directed graph whose edge re-
lation is precisely R. We say that R is acyclic iff its associated digraph is. In
other words, R is acyclic if its transitive closure is irreflexive, i.e., a strict par-
tial order. Similarly, we will speak about the Strongly Connected Components
(SCCs) of R to mean SCCs of the directed graph identified by R.

A multiset over a set S is a function M : S → N. The support of M is the
set M̄ := {x ∈ S : M(x) > 0} of elements in S occurring at least once in M.

15
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Figure 7: A c-net with four read arcs.

We write x ∈ M if x is in the support of M; we say that M is finite iff its
support is. Given multisets M and N over S, their sum and difference are

(M + N)(x) := M(x) + N(x),

(M− N)(x) := max(0, M(x)− N(x)).

We write M ≤ N iff M(x) ≤ N(x) for all x ∈ S. We let S (observe the bold
typography) denote the set of multisets over S. For any function f : S → T
we lift f to multisets as the partial function f : S → T (again observe the
bold typography for f) that maps M ∈ S to f(M) = N where N(t) :=
∑s∈ f−1(t) M(s). Observe that N is well-defined iff for every t ∈ T finitely
many terms M(s) are non-zero, with s ∈ f−1(t). This is always the case if,
e.g., M has a finite support. Any set will be interpreted as a multiset in the
natural way.

2.2 contextual nets

A contextual net (c-net) is a tuple N := 〈P, T, F, C, m0〉, where

• P and T are disjoint sets of places and transitions,
• F ⊆ (P× T) ∪ (T × P) is the flow relation,
• C ⊆ P× T is the context relation, and
• the initial marking m0 is a multiset over P.

A pair (p, t) ∈ C is called read arc. A Petri net is a c-net without read arcs. N
is called finite if P and T are finite sets. Places and transitions together are
called nodes. The size |N| of the net is the number of nodes and arcs of the
net1, i.e., |P|+ |T|+ |F|+ |C|. For any node x ∈ P ∪ T we will sometimes
write x ∈ N to mean that x is a node of N. Throughout this manuscript,
whenever N denotes a c-net, we will assume that N := 〈P, T, F, C, m0〉, un-
less otherwise stated. Subscripts, primes or other decorations of N will pass
through to the components of the tuple.

Figure 7 shows a c-net. As usual, transitions are depicted as boxes and
places as circles. Read arcs are depicted as undirected lines.2 For instance,
(s1, q0) is a read arc. Places initially marked will be drawn with a token
inside. In this case, the initial marking puts one token on places p0 and q0.

Within this work, Petri nets will be referred or qualified as ordinary nets,
as opposed to contextual nets.3 By extension, any notion related to them
will also be qualified as ordinary. For instance, we will speak of ordinary

1 Indeed, we do not include the initial marking. This is because in this manuscript we will
assume that it is safe, see the general assumptions in p. 18.

2 In the color version of this document, read arcs are also colored in red for readability.
3 Observe that this use is not standard: in the literature of general Petri nets, an ordinary Petri net

is one whose arc weights are 1’s.
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occurrence nets, or ordinary unfoldings when discussing the corresponding
notions in Petri net theory.

For any node x ∈ P ∪ T, the preset, postset, and context of x is defined as a
function from x to, respectively, the set:

•x := {y ∈ P ∪ T : (y, x) ∈ F},
x• := {y ∈ P ∪ T : (x, y) ∈ F},
x := {y ∈ P ∪ T : (y, x) ∈ C ∪ C−1}.

Such notions are naturally lifted to sets and multisets of nodes. In Fig. 7, we
have •s1 = {p1}, s•1 = {p2}, s1 = {q0}, {p1, q1} = {w1, w2}.

A marking of N is a multiset m : P→N over P. We say that m is k-bounded
if m(p) ≤ k for all p ∈ P. A set A ⊆ T of transitions is enabled at marking m
if for all p ∈ P,

m(p) ≥ |p• ∩ A|+
{

1 if p ∩ A 6= ∅
0 otherwise

(1)

Such A can occur or be executed, leading to a new marking m′, where

m′(p) = m(p)− |p• ∩ A|+ |•p ∩ A|
for all p ∈ P. We call 〈m, A, m′〉 a step of N. If A is a singleton with one
transition t ∈ T, we also write 〈m, t, m′〉. Although the enabling condition
could be defined for multisets A instead of sets, for the purposes of this
work, sets will suffice.

Some examples follow. In Fig. 7, the initial marking enables the sets {t1}
and {t1, t2}. In both cases, the marking covers the pre-places of all tran-
sitions; and the presets of t1, t2 do not overlap. A marking m such that
m(p1) = 2 and m(q0) = 2 would enable the set {s1, t2}. Here, s1 overlaps
•t2, but the only place in common, q0, contains two tokens. Coming back to
the discussion about steps semantics in § 1.4, and considering Fig. 6 (b), the
set {t1, t2} is not enabled at the initial marking. In this case, the only place
in t1 ∩ •t2 contains only one token, but (1) demands at least two.

A finite sequence of transitions σ = t1 . . . tn ∈ T∗ is a run or firing sequence
iff there exist markings m1, . . . , mn such that 〈mi−1, ti, mi〉 is an step for all
for 1 ≤ i ≤ n, and m0 is the initial marking of N. If such a run exists, mn is
said to be reachable; we denote by reach(N) the set of reachable markings of
N. For instance, in Fig. 7, t1s1t2 f1 is a run. An infinite sequence t1t2 . . . ∈ T∞

is a run if all its finite prefixes are. We call any run repetition-free if it fires
every transition at most once.

A c-net N is said to be k-bounded if every reachable marking of N is k-
bounded; we say N is bounded if it is k-bounded for some k ∈N and safe if it
is 1-bounded. For safe nets, we treat markings as sets of places. A marking
m is deadlocked if it does not enable any transition, and coverable if there is
some other reachable marking m′ ∈ reach(N) such that m ≥ m′.

The reachability graph of N is the directed graph whose vertices are all
reachable markings of N, i.e., reach(N), and whose edges are all pairs (m, m′)
such that 〈m, t, m′〉 is an step for some t ∈ T.

The immediate causality relation on N is the binary relation <i on P ∪ T
defined as x <i y iff

(x, y) ∈ F, or (2)

x, y ∈ T and x• ∩ y 6= ∅ (3)

The second condition, (3), is new for contextual nets w.r.t. ordinary nets. In
Fig. 8, for instance, it establishes that t1 <i t2. The causality relation < is the
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t2

t1

t3 t4

Figure 8: Illustrating causality, symmetric, and asymmetric conflict.

transitive closure of <i, and we denote by ≤ the reflexive closure of <. For
a node x, we define its set of causes as the set of transitions preceding it:

[x] := {t ∈ T : t ≤ x}.
A set X ⊆ T is causally closed if [t] ⊆ X for all t ∈ X. The conflict relation
# ⊆ (P ∪ T)2 is the least symmetric relation satisfying

• t # t′ if t, t′ ∈ T with t 6= t′ and •t ∩ •t′ 6= ∅; and
• x # z if there is y ∈ P ∪ T such that x # y and y < z.

In Fig. 8, we have t3 # t4. Two transitions t and t′ are in asymmetric conflict,
written t↗ t′, iff either

t• ∩ (•t′ ∪ t′) 6= ∅, or (4)

t ∩ •t′ 6= ∅, or (5)

t # t′. (6)

Again in Fig. 8, we have the following examples

t1 ↗ t2, by (4) t1 ↗ t3, by (4) t2 ↗ t3, by (5)

t3 ↗ t4, by (6) t4 ↗ t3, by (6)

As explained in § 2.1, for any set X ⊆ T of transitions, we will denote the
relation↗∩ (X× X) by↗X .

Although we define causality, symmetric, and asymmetric conflicts for
general c-nets, the intuition behind them is only meaningful for occurrence
nets, a subclass of c-nets defined in § 2.4. For this reason, it will be in § 2.4
where we explain more in detail these definitions. We will instantiate these
notions for general c-nets on certain cases, so we need to define them for
general c-nets rather than directly for occurrence nets.

Remark 1. For any c-net, (<i ∪<i
2) ∩ (T × T) ⊆ ↗.

Proof. If t <i t′ for some t and t′ in T, necessarily (3) holds, and then (4) also
holds. If t <i

2 t′ holds, there is some place p such that t <i p <i t′. Then (4)
holds between t and t′.

Remark 2. For any Petri net,↗ = #∪ (<i
2 ∩ (T × T))

general assumptions . Throughout this manuscript, we will often as-
sume that a c-net N satisfies the following conditions:

1. (•t ∪ t•) ∩ t = ∅ for each transition t ∈ T; (7)
2. •t 6= ∅ for all t ∈ T; (8)
3. m0 is safe; (9)

Observe that due to (7), relation <i is irreflexive. Assuming that the initial
marking m0 is safe is not restrictive4 and will simplify the notation of some
definitions, notably the branching processes of N, in § 2.4.2.

4 As it can always be ensured, introducing a new safe initial marking from which a set of transi-
tions produce the unsafe previous initial marking.
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Let N′ = 〈P′, T′, F′, C′, m′0〉 be a c-net. A homomorphism [VSY98] from N to
N′ is a function h : P ∪ T → P′ ∪ T′ satisfying:

• h(P) ⊆ P′ and h(T) ⊆ T′; (10)
• h(m0) = m′0; (11)
• for all t ∈ T, h(•t) = •h(t), h(t•) = h(t)•, and h(t) = h(t). (12)

Such a homomorphism is a specialisation of Definition 4.20 in [BCM01].
Notice that (11) is equivalent to asking that h restricted to m0 is a bijection
between m0 and m′0. Similarly, (12) requests that for every transition t of
N, h restricted to •t is a bijection to •h(t), and similarly for t• and t. An
isomorphism between N and N′ is a bijection f : P ∪ T → P′ ∪ T′ such that f
and f−1 are homomorphisms.

We finish this section showing that asymmetric conflict, causality, and
steps are, among other notions, preserved by homomorphisms. Remark that
the following result is restricted to singleton steps, which are enough for our
purposes.

Lemma 1. Let N and N′ be c-nets, and h be a homomorphism from N to N′. If
〈m, t, m̂〉 is a step of N and h(m) is well-defined, then

〈h(m), h(t), h(m̂)〉 is a step of N′.

Furthermore, for any nodes x, y and transitions t, u of N,

x < y implies h(x) < h(y)

and

t↗ u implies either h(t)↗ h(u) or h(t) = h(u).

Proof. That c-net homomorphisms preserve steps, the first part of the lemma,
is already stated by Proposition 4.1 in [BCM01], since our definition of ho-
momorphism is a specialisation of theirs — we enforce h to be total and h(p)
is a place instead of a multiset of places. At any rate, the second part of our
lemma is new, and what follows is a proof of both parts.

Let P, T and P′, T′ be the places and transitions of, respectively, N and N′.
Let 〈m, t, m̂〉 be step of N such that m′ := h(m) is a well-defined marking
of N′. Let t′ := h(t).

We first show that t′ is enabled at m′. Let p′ ∈ •t′. Because h restricted to •t
is a bijection between •t and •t′, there is a single p ∈ •t such that h(p) = p′.
Since t is enabled at m, m(p) ≥ 1. Recall that m′(p′) = ∑ p̂∈h−1(p′) m( p̂).
Then m′(p′) ≥ 1 because p ∈ h−1(p′). An analogous argument shows that
m′(p′) ≥ 1 if p′ ∈ t′.

So m′ enables t′. Let 〈m′, t′, m̂′〉 be a step of N′. We show that h(m̂) = m̂′,
i.e., that for any p′ ∈ P′, we have h(m̂)(p′) = m̂′(p′). We proceed as follows:

h(m̂)(p′) = ∑
p∈h−1(p′)

m̂(p)

= ∑
p∈h−1(p′)

(m(p)− |{p} ∩ •t|+ |{p} ∩ t•|)

=
(

∑
p∈h−1(p′)

m(p)
)
−
(

∑
p∈h−1(p′)

|{p} ∩ •t|
)
+

(
∑

p∈h−1(p′)

|{p} ∩ t•|
)

=
(

∑
p∈h−1(p′)

m(p)
)
− |h−1(p′) ∩ •t|+ |h−1(p′) ∩ t•|
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As for m̂′(p′), we have:

m̂′(p′) = h(m)(p′)− |{p′} ∩ •t′|+ |{p′} ∩ t′•|

=
(

∑
p∈h−1(p′)

m(p)
)
− |{p′} ∩ •t′|+ |{p′} ∩ t′•|

Therefore, to show that h(m̂)(p′) = m̂′(p′) it suffices to show that

|{p′} ∩ •t′| = |h−1(p′) ∩ •t|
and that

|{p′} ∩ t′•| = |h−1(p′) ∩ t•|.
Either p′ ∈ •t′ holds or not. If it holds, there is a single p ∈ •t such that
h(p) = p′, since otherwise h restricted to •t would not be a bijection between
•t and •t′. Then |h−1(p′) ∩ •t| = 1. If p′ /∈ •t′, then no p ∈ •t is such that
h(p) = p′, again because h is a homomorphism. Then |h−1(p′) ∩ •t| = 0.
This proves that |{p′} ∩ •t′| = |h−1(p′) ∩ •t|; an analogous argument shows
that |{p′} ∩ t′•| = |h−1(p′) ∩ t•|.

We now show why x <i y implies h(x) <i h(y), for x, y ∈ P ∪ T. That
x < y implies h(x) < h(y) is basically a consequence of the previous fact.
Three cases are possible:

• x ∈ P and x ∈ •y. Since y ∈ T, we know that h restricted to •y is a
bijection to •h(y). So h(x) ∈ •h(y) and h(x) <i h(y).

• x ∈ T and x ∈ •y. Analogous.
• x, y ∈ T and x• ∩ y 6= ∅. Then let p ∈ x• be such that p ∈ y. Again,

h(p) is in h(x)• and in h(y), and so h(x) <i h(y).

We now show that t ↗ u implies either h(t) ↗ h(u) or h(t) = h(u).
Assume the hypothesis and assume that h(t) 6= h(u), we show that h(t) ↗
h(u). Three cases are possible:

• t• ∩ (•u ∪ u) contains some place p. Then, by the properties of homo-
morphisms, h(p) is contained in h(t)•, and in •h(u) or in h(u). In any
case, h(t)↗ h(u).

• t ∩ •u contains some place p. Analogous argument.
• •t ∩ •u contains some place p. Analogous argument.

As usual, homomorphisms preserve runs and reachable markings: if σ
is a run of N that reaches m, then h(σ) is a run of N′ that reaches h(m),
because h(m0) = m′0 is a well-defined marking and due to Lemma 1.

2.3 encoding contextual nets into ordinary petri nets

A c-net N can be encoded into a Petri net whose reachable markings are in
one-to-one correspondence with those of N. We discuss two such encodings,
and illustrate them by the c-net N in Fig. 9 (a). Place p has two transitions
t2, t3 in its context, modelling a situation where, e.g., two processes are ac-
cessing in a read-only way a common resource represented by p. Note that
the step {t2, t3} can occur in N after executing t1.

2.3.1 Plain Encoding

Given a c-net N, the plain encoding of N is the net Np obtained by replac-
ing every read arc (p, t) in the context relation by a consume-produce loop
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Figure 9: (a) A c-net; (b) its plain encoding N′; (c) and its Place-Replication
encoding N′′

(p, t), (t, p) in the flow relation. The net Np has the same reachable mark-
ings as N; it also has the same runs but not the same steps as N. The plain
encoding of the net shown in Fig. 9 (a) is the net shown in (b). Observe that
in (b) the firings of t2 and t3 are sequentialized: after executing t1, the step
{t2, t3}, which was possible in (a), can no longer occur.

2.3.2 Place-Replication Encoding

The Place-Replication (PR-) encoding [MR95; VSY98] of a c-net N is a Petri net
Nr in which we substitute every place p in the context of n ≥ 1 transitions
t1, . . . , tn by places p1, . . . , pn and update the flow relation of Nr as follows.
For all i ∈ {1, . . . , n},

1. transition ti consumes and produces place pi;
2. any transition t producing p in N produces pi in N′′;
3. any transition t consuming p in N consumes pi in N′′.

The PR-encoding of the net N in Fig. 9 (a) is the net N′′ shown in Fig. 9 (c).
Reachable markings, runs, and steps of N′′ are in bijective correspondence
to those of N.

More formally, let N := 〈P, T, F, C, m0〉 be a c-net. Assume that P is parti-
tioned in two sets P0 and P1 that contain, respectively, all places with zero
(P0) and one or more (P1) incident read arcs. The PR-encoding of N is the
ordinary net Nr := 〈Pr, Tr, Fr, m0,r〉, defined as follows.

• Pr := P0 ∪ {〈p, t〉 : p ∈ P1, t ∈ T, (p, t) ∈ C}
• Tr := T
• F′ contains all directed arcs (p, t) and (t, p) in F such that p ∈ P0, plus

– arcs (〈p, t〉, t′) for all 〈p, t〉 ∈ Pr and all (p, t′) ∈ F,
– arcs (t′, 〈p, t〉) for all 〈p, t〉 ∈ Pr and all (t′, p) ∈ F,
– arcs (t, 〈p, t〉) and (〈p, t〉, t) for all 〈p, t〉 ∈ Pr.

• m0,r marks all P0 ∩ Pr ⊆ m0 and all 〈p, t〉 ∈ Pr such that p ∈ m0.

Remark 3. A sequence t1t2 . . . ∈ T∗ is a run of N iff it is a run of Nr.

Proof. Steps of N are in bijective correspondence with the steps of Nr.

2.4 unfoldings

In this section we define the notion of unfolding of a c-net and recall prop-
erties of it. We mainly follow [BCKS08].
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2.4.1 Occurrence Nets

In the context of this manuscript, an occurrence net is a c-net that represent
the occurrences of transitions in one or several executions of the net. All five
nets illustrated in Fig. 2 are occurrence nets.

Formally, an occurrence net (ON) is a c-net O = 〈B, E, G, D, m̃0〉 that satis-
fies the following:

• |•c| ≤ 1 holds for any c ∈ B; (13)
• [e] is finite for all e ∈ E; (14)
• ↗[e] is acyclic for all e ∈ E; and (15)
• m̃0 = {c ∈ B : •c = ∅}. (16)

As before, when denoting an ON by O, unless otherwise stated, we will
assume O := 〈B, E, G, D, m̃0〉. For the rest of this section, let O be an ON.

As per tradition, we call the elements of B conditions, and those of E events.
The requirements (13), (14) and (16) are usual in this definition. The general
assumptions of p. 18 also apply to ON; in particular, property (8) implies that
all <-minimal nodes are conditions, and by (16) they are initially marked.
Notice that m̃0 is safe. As for (15), we shall see later in this section that it
asks for [e] to be, intuitively, a firable set of events.

Occurrence nets are defined above differently than in [BCKS08; BCM01;
Win02]: we do not require O to be safe or < to be a (strict) partial order.5

These properties can rather be derived from the definition:

Remark 4. For any occurrence net O:

1. < is irreflexive, i.e., it is a strict partial order.
2. Every run of O is repetition-free.
3. O is safe.

Proof. 1. For some node x, assume that x < x. If x <i x then necessarily
x ∈ E and by Rmk. 1 we have x ↗ x, a contradiction to (15). On the
other hand, if <i is irreflexive, then the pair (x, x) has been added to
< during the transitive closure and there are n ≥ 1 nodes x1, . . . , xn of
O that form a cycle of <i which involves x, i.e., such that

x <i x1 <i . . . <i xn <i x.

Since either x or x1 is an event, w.l.o.g. we can assume x ∈ E. From
this cycle in the relation <i we can extract a cycle in the relation <e :=
<i ∪ <i

2 which only involves events. That is, there are m ≥ 0 events
xi1 , . . . , xim such that

x <e xi1 <e . . . <e xim <e x,

and ij ∈ {1, . . . , n} for 1 ≤ j ≤ m, and each ij is either ij−1 + 1 or
ij−1 + 2 for 2 ≤ j ≤ m. Notice that all xij are in [x]. By Rmk. 1, such
cycle of in relation <e is a cycle of↗[x], a contradiction to (15).

2. By induction on the length n of any run e1, . . . , en of O. The claim is
obviously true for n ≤ 1. If, for a proof by contradiction, en = ei for
some 1 ≤ i < n, any condition c ∈ •ei is marked twice. By (16), c /∈ m̃0;
by (13), the single event in •c ⊆ {e1, . . . , ei−1} fires twice in the run
e1, . . . , en−1, a contradiction.

3. Marking a condition c twice needs to fire •c twice.

5 See def. 6 in [BCKS08], def. 5.24 in [BCM01], and def. 3.1 in [Win02]. In contrast, acyclicity of <
in [VSY98] is also derived from the definition of ONs. However, their definition of asymmetric
conflict is slightly different from ours, and we prefer to have a new proof.
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Figure 10: Two occurrence nets illustrating a circular asymmetric conflict of
length 3 (a) and two (b).

In the light of Rmk. 4, let us present some intuition behind the relations
<, #, and ↗ in ONs. Any two nodes x, y of O satisfy x < y iff any run that
fires or marks y first fires or marks x. Intuitively, this is a consequence of
the fact that a condition is never marked again once it is consumed, which
in turn follows after the second item in Rmk. 4 and (13).

If x, y are in symmetric conflict, then no run that fires or marks x, fires or
marks y, for the same reasons as before. In ordinary ONs, the inverse state-
ment is also true, i.e., if no run fires or marks x and y, then both are in sym-
metric conflict. This is however not valid in contextual ONs. Figure 10 (b)
shows an ON where no run fires both events e1 and e2 but they are not in
symmetric conflict. They actually form a cycle of asymmetric conflict, as we
discuss now.

An asymmetric conflict can be thought of as a scheduling constraint: if
two events e and e′ both occur in a run σ of O and e ↗ e′, then e must occur
first — firing e′ prevents e from firing. The definition of ↗, in p. 18, relates
e and e′ in three possible ways, let us see why this intuitive understanding
of↗ holds in all the three cases:

1. If (4) holds between e and e′, then e < e′ and the intuition is trivially
true.

2. If (5) holds, e′ consumes some condition c read by e. Since c cannot
be marked again once consumed, e needs to read before e′ consumes.
Notice that (5) does not force by itself to fire e in every run that fires e′,
in contrast to (4). Only if both events fire it forces an order of occurrence.
For instance, in Fig. 10 (a), we have e1 ↗ e2. If both e1 and e2 fire, then
surely e1 fires first. But firing e2 on some run does not, itself, imply
that e1 fires, e2 can fire alone.

3. As for (6), the intuition vacuously holds: e, e′ cannot both occur.

If we think of asymmetric conflict as a scheduling constraint, it should
be clear that any set of events containing a cycle of asymmetric conflict can
never be entirely contained in a run — otherwise any event in the cycle
would have to fire before itself. The simplest cycles we can find arise when
e # e′, where we have e ↗ e′ ↗ e, a cycle of length two, due to (6). In
ordinary ONs, every cycle of↗ corresponds to a cycle of length two created
by a symmetric conflict. Cycles of↗ in (contextual) ONs may, however, have
unbounded length: Fig. 10 shows two ONs with cycles of length two and
three, that can be generalized to any length; even cycles of length two may
be due to other causes than symmetric conflicts, as in Fig. 10 (b).

If three events e1, e2, e3 satisfy e1 ↗ e2 ↗ e3, then it is not true that every
run that fires e3 also fires e1. It is not even true that, if both e1 and e3 fire,
then e1 fires before e3. Both statements are, however, true if all the three fire
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in the run. This illustrates a common pitfall about asymmetric conflicts. In
contrast to the similarities between <i and <, not all intuitions behind ↗
are true for↗∗.

Finally, notice that none of the intuitions given above about <, #, and↗ is
necessarily true for general c-nets. For instance, a run may mark twice one
given place, and there may exist a run that fires two transitions in symmetric
conflict.

A configuration of O is the set of events that a run of O fires. It can be
defined formally as any set C ⊆ E satisfying

• C is causally closed; (17)
• ↗C is acyclic; (18)
• for all e ∈ C, the set {e′ ∈ C : e′ ↗ e} is finite. (19)

Observe that any finite set of events automatically satisfies (19). For in-
stance, [e] is a configuration for all e ∈ E, which McMillan has called the
local configuration [McM93b; McM95b]. We denote by conf (O) the set of all
configurations of O.

Let us check that this formalization meets the intuitive definition. Assume
that σ := e1e2 . . . is a finite or infinite run of O and let C := {e1, e2, . . .} be the
events in σ. By now, it should be clear that C is causally closed and induces
no cycle in ↗. As all events e′ in asymmetric conflict to e fire before e, and
only finitely many events fire before e in σ, (19) also holds.

Conversely, if C := {e1, . . .} is a configuration, then any linear extension
σ := e1, e2, . . . of ↗C , involving exactly the events in C is a run of O. This
is because, first, ↗ is irreflexive in occurrence nets; second, ↗∗C is a partial
order, due to (18), so a linear extension σ of ↗C always exists; third, σ
is a run because any finite prefix e1, . . . , ei−1 marks conditions enabling ei,
which can easily be shown using (17) to (19). In particular, (19) is necessary
to ensure that only finitely many events in C need to be fired before ei in σ.
We call σ an interleaving of C.

All interleavings of a finite configuration C mark the same marking of O.
We call such marking the cut of C, and define it as

cut(C) := (m̃0 ∪ C•) \ •C.

Remark that the cut is defined only for finite configurations; similarly, the
marking reached by a run is only defined for finite runs.

The depth of an event e, denoted by depth(e), is the length of the longest
<-chain of events in [e], and can be inductively defined as

depth(e) :=

{
0 if e enabled at m̃0

1 + maxe′<e depth(e′) otherwise
(20)

The depth of a configuration C is the depth of the deepest event in the config-
uration, which

depth(C) := supe∈C depth(e);

and similarly for the depth of an occurrence net O:

depth(O) := supe∈E depth(e).

Given two configurations C and C ′, we say that C evolves to C ′, written
C v C ′, iff

C ⊆ C ′ and ¬(e′ ↗ e) for all e ∈ C and e′ ∈ C ′ \ C.

Note that v is not merely the subset relation between configurations (as
it is in ordinary ONs). Intuitively, C v C ′ iff an interleaving of C can be
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extended with all events in C ′ \ C to form an interleaving of C ′. Note also that
v is transitive. For instance, in Fig. 5 (e), which is an occurrence net, we have
{c} v {c, d}, and {c, a} v {c, a, d}. But we also have that {c, d} 6v {c, a, d},
an archetypical example of why v for c-nets is not just set inclusion.

An extension of a configuration C is any set X ⊆ E of events such that

• C ∩ X = ∅, and
• C ∪ X is a configuration.
• C v C ∪ X.

Configurations C, C ′ are in conflict, written C # C ′, when there is no con-
figuration C ′′ satisfying C v C ′′ and C ′ v C ′′. Again in Fig. 5 (e) we have
{c, d} # {c, a, d} and {c, a, d} # {c, b, d}.

Remark 5. The following statements are equivalent:

1. C # C ′
2. C 6v C ∪ C ′ or C ′ 6v C ∪ C ′
3. There is e ∈ C and e′ ∈ C ′ \ C such that e′ ↗ e, or the symmetric condition

holds.

Lemma 2. Let C1, C2, C3 ∈ conf (O) be configurations. We have:

1. If ¬C1 # C2, then C1 ∪ C2 is a configuration.
2. If ¬C1 # C2 and ¬C2 # C3 and ¬C1 # C3, then ¬(C1 # (C2 ∪ C3)).
3. If C1 # C2 and C1 v C3, then C3 # C2.

Proof. We show each statement independently:

1. We check that (17) to (19) hold on C1 ∪ C2. Clearly it is causally closed,
as both C1 and C2 are. C1 ∪ C2 satisfies (19) because for all e ∈ C1 ∪ C2,
all events e′ ∈ C1 ∪ C2 such that e′ ↗ e need to be such that e′ < e.
Indeed, e # e′ or e′ ∩ •e 6= ∅ cannot hold because they entail C1 # C2.
As a result, (19) holds just because it holds independently for C1 and
C2. Similarly, the existence of a cycle in ↗C1∪C2

entails C1 # C2, so (18)
holds as well.

2. We know that C2 ∪ C3 is a configuration. For a proof by contradiction,
assume that C1 # (C2 ∪ C3) holds. Two cases are possible:

a) There exist e1 ∈ C1 and e2 ∈ (C2 ∪ C3) \ C1 satisfying e2 ↗ e1.
Then either C1 # C2 or C1 # C3, a contradiction in any case.

b) There exist e1 ∈ C2 ∪ C3 and e2 ∈ C1 \ (C2 ∪ C3) satisfying e2 ↗ e1.
Analogous argument.

3. If C1 # C2, then there is no configuration C such that C1 v C and C2 v C.
So if one assumes that ¬C3 # C2, then C3 ∪ C2 is a configuration. Then
taking C := C3 ∪ C2 we have, using Rmk. 5 and transitivity of v, that
C1 v C3 v C and C2 v C, a contradiction to C1 # C2. So necessarily
C3 # C2 holds.

We finish this section with an important definition. Given occurrence nets
O and O′ := 〈B′, E′, G′, D′, m̃′0〉, we say that O is a prefix of O′, and write
O � O′, iff O satisfies:

• E ⊆ E′ and E is causally closed in O′;
• B = m̃′0 ∪ E•;
• G and D are the restrictions of G′ and D′ to B ∪ E.

Note that O completely determined by its set of events E, which can be any
causally closed subset of E′.
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2.4.2 Branching Processes

The unfolding of a c-net N is an occurrence net O equipped with a homo-
morphism from O to N that is obtained by means of unrolling the cycles of
N. Perhaps the most intuitive definition we can give is the following.

The unfolding of N := 〈P, T, F, C, m0〉, denoted by UN , is a labelled oc-
currence net 〈O, h〉, where O := 〈B̃, Ẽ, G̃, D̃, m̃0〉 is an occurrence net and
h : B̃ ∪ Ẽ → P ∪ T is a homomorphism from O to N, defined by the follow-
ing inductive rules:

p ∈ m0

c := 〈⊥, p〉 ∈ B̃ h(c) := p c ∈ m̃0
Ini

t ∈ T X, Y ⊆ B̃ h(X) = •t h(Y) = t X ∪Y is coverable

e := 〈X, Y, t〉 ∈ Ẽ •e := X e := Y h(e) := t
Ev

e ∈ Ẽ h(e) = t t• = {p1, . . . , pn}
ci := 〈e, pi〉 ∈ B̃ e• := {c1, . . . , cn} h(ci) := pi

Cond

Although UN is the pair 〈O, h〉, for simplicity we often identify UN and O.
The reader familiar with the unfolding construction of ordinary nets will

notice that the only difference between this construction and the one for
ordinary nets (e.g., Definition. 3.5 in [EH08]) is that here, in the rule Ev, the
set Y plays the role of context for an event, and we ask Y to be coverable.
Remaining elements of the definition are standard.

In this definition, the nodes of UN are assigned unique, canonical names.
Every condition c has the form 〈e, p〉, where p is a place of N and e is the
single event that produces c. If e is ⊥, then c has been constructed by the rule
Ini, p is initially marked in N, and so is c in UN . If e is an event in Ẽ, then
c has been constructed by the rule Cond. The unique names guarantee that
exactly one condition c satisfying h(c) = p is added for each place p ∈ h(e)•,
and also that no other event produces c.

Events are of the form 〈X, Y, t〉, where t ∈ T is a transition of N and X, Y
are sets of conditions h-labelled by the preset and context of t, respectively.
All events are appended by the rule Ev, which guarantees that e is occurs in
some run when asking that X ∪Y is coverable. Although X, Y, •t, and t are
sets, we remark that the premises h(X) = •t and h(Y) = t interpret them as
multisets. In other words, for every p ∈ •t, exactly one c with with h(c) = p
is to be present in X, and similarly for t. Finally observe that different events
have either different labels or different presets or different contexts.

Figure 11 shows a prefix of the unfolding for the net shown in Fig. 7.
Events and conditions are given explicit names, and the labelling h is given
in parenthesis. Condition c1 would be constructed by the above rules as
〈⊥, p0〉; event e5 we would be 〈{c3}, {c4}, w1〉. Now consider transition s1 in
Fig. 7, it consumes the place p1 and reads q0. There are two occurrences of s1
in this unfolding prefix, e3 and e9, and both consume the same occurrence
of p1, namely c3. Observe, for instance, that there is no occurrence of s1
consuming c15 and reading c9, and this is because such conditions are not
coverable. Any run that marks c15 and c9 needs to fire e3 and e4, but [e3]∪ [e4]
contains a cycle of asymmetric conflict: e3 ↗ e2 ↗ e4 ↗ e1 ↗ e3.

We briefly argue that O and h are indeed an ON and a homomorphism.
That O satisfies (13), (14) and (16) is immediate after the definition; that↗[e]
is acyclic, (15), can easily be shown by induction on the structure of O. As
for h, it is immediate to show it satisfies (10) and (12). Condition (11) asks
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c2 (q0)

e8 ( f2)

c9 (q0)

e1 (t1)

e3 (s1)

e7 ( f1)

c1 (p0)

c3 (p1)

c5 (p2)

c7 (p0)

e14 (t1)

c15 (p1)

e5 (w1) e6 (w2)

c10 (q0)

e9 (s1)

c8 (p0)

e12 (w2)

e10 (t2)

c12 (q1)

e13 (s2)

c14 (q2)

c13 (p0)

e11 (w1)

c11 (p2)

e2 (t2)

e4 (s2)

c6 (q2)

c4 (q1)

Figure 11: Unfolding prefix of the c-net in Fig. 7; the labelling is given in
parenthesis.

that h acts as a bijection between m̃0 and m0 and holds because m0 is safe, as
we assumed in (9). Relaxing this is possible, at the cost of some impractical
notation in the rule Ini.

A branching process of N is a labelled occurrence net P := 〈O′, h′〉, where
O′ is an occurrence net and h′ is a homomorphism from O′ to N satisfying
that for all events e, e′ ∈ O′,

h′(e) = h′(e′) and •e = •e′ and e = e′ imply e = e′ (21)

This property intuitively means that P does not duplicate events: for any
reachable marking m of P and any transition of N enabled at h′(m), a single
event e with h′(e) = t will be found among those enabled by m.

The unfolding UN is indeed a branching process, we have already argued
why it satisfies the contrapositive of (21).

We lift the prefix order � on occurrence nets to branching processes.
Given two branching processes P1 := 〈O1, h1〉 and P2 := 〈O2, h2〉, we say
that P1 is a prefix of P2, written P1 � P2, if O1 � O2 and h1 is h2 restricted
to O1. Abusing of notation, we will often say that actually 〈O1, h2〉 is a prefix
of P2, which is safe due to h1 being a restriction of h2 to the nodes of O1.

Remark 6. 〈O′, h′〉 is a branching process of N iff it is (isomorphic to) a prefix of
UN .

Proof. (Sketch) Obviously, every prefix of UN is a branching process. The op-
posite direction can be shown by induction on the depth of O′. If depth(O′) =
0, the branching process consist only of the initial marking, and by (11) it
is (isomorphic to) the initial marking of UN . Otherwise O′ have some maxi-
mal (w.r.t. causality) event e with depth(e) ≥ 1. By the induction hypothesis
C := [e] \ {e} is (isomorphic to) a configuration of UN , and mark(C) is a
reachable marking of N that enables h(e). So e is (isomorphic to) an event
of UN , and 〈O′, h′〉 is (isomorphic to) a prefix of UN .
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In the light of Rmk. 6, branching processes will be also called unfolding
prefixes or just prefixes. As we said, given any prefix 〈O′, h′〉, we will also
consider 〈O′, h〉 a prefix of UN (recall that h is the homomorphism in UN).

The unfolding UN contains all behavioral information of the net. However,
it is in general infinite and therefore of limited use for the purpose of auto-
matic verification. Indeed, if N has at least one infinite run, UN will contain
at least one infinite configuration.

In general, we are interested in computing a finite prefix of the unfolding
and using it to reason about the behavior of the net. If such a prefix is too
small, it may not contain enough information. Completeness criteria encode
which information is to be preserved in the prefix. Different criteria have
been proposed in the literature to address different verification problems,
see [KKV03] for a general discussion.

For bounded nets, however, there is always a finite unfolding prefix that
contains sufficient information to characterize the reachable markings of the
net (through the h-image of the prefix’s reachable markings).

This is usually formalized as follows. First, for any finite configuration
C ∈ conf (UN), one defines the marking of C in N as

mark(C) := h(cut(C)),
i.e., the marking of N that labels the marking cut(C) reached by any inter-
leaving of C. Then, an unfolding prefix P is called marking-complete if for
any marking m reachable in N there is a configuration C ∈ conf (P) with
mark(C) = m.

Marking-completeness often suffices for reachability-like problems. This
will actually be the case for all applications investigated within this thesis,
with the exception of the diagnosis problem in Ch. 6. In § 4.2, we discuss on
the use of different criteria for checking deadlock-freeness.

Before finishing this section, let us remark some simple fact about the
structure of UN . Consider two distinct, finite configurations C, C ′ of UN that
reach the same marking mark(C) = mark(C ′). Since they reach the same
marking of N, the behavior that UN displays after C and after C ′ must be
the same. In other words, consider the two occurrence nets that one obtains
after removing from UN all nodes in C and m̃0 ∪ C•, and similarly for C ′.
Such occurrence nets, suitably labelled with h restricted to each of them, are
isomorphic; let f : Ẽ → Ẽ be such isomorphism. Note that f also preserves
the value of (the respective restrictions of) h. They are, in fact, isomorphic
to the unfolding of N with the initial marking m0 replaced by mark(C).

As a result, for every extension I of C there is an isomorphic extension
I′ := f (I) of C′ reaching the same marking mark(C ∪ I) = mark(C′ ∪ I′). For
ordinary Petri nets, this is formalized, e.g., in Proposition 4.3 of [ERV02]. We
will use extensively this simple fact in Ch. 6.
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Theoretical foundations for constructing finite, complete unfolding prefixes
of contextual nets have recently been proposed in [BCKS08]. While that
work gave an abstract algorithm for the purpose, it left unresolved several
important aspects, such as proposing an effective procedure for computing
the possible extensions of the prefix. Moreover, it remained unclear whether
the approach was useful in practice and which algorithms and data struc-
tures would be appropriate to implement it. In this chapter, we address
these questions.

We provide one concrete method for computing contextual unfoldings,
with a view to efficiency. We develop a concurrency relation on a notion of
unfolding conditions enriched with histories, use it to characterize the possi-
ble extensions of the prefix, and provide an inductive characterization of this
relation that lies at the heart of the efficient computation of prefix extensions.
We include adequate orders in the framework of contextual unfoldings and
compare our method the one independently proposed in [BBC+10].

This chapter includes and extends the results of [RSB11b; BBC+12].

3.1 introduction

Not surprisingly, contextual unfoldings are constructed using procedures
lifted from the theory of ordinary net unfoldings. We first recall how ordi-
nary unfoldings are constructed, mostly for the reader unfamiliar to the
concerned key literature [McM93b; McM95b; ERV02; ER99; KKV03; EH08].

Recall that our goal is producing a finite and marking-complete unfolding
prefix for a given c-net.

It is often insightful to recall how this could be done if, instead of a Petri
net, we are given a finite, directed graph G and one vertex v of it, and the
goal is producing a labelled tree that represents all vertices of G reachable
from v. Each node of the tree would be labelled by one vertex of the digraph.
One would start with a tree that only contains the root, a node labelled by v.
From there, one would proceed iteratively. For each unprocessed node n of
the tree, labelled by u, one would extend the tree with a node labelled by
u′ if the digraph has an edge from u to u′. We call all such nodes possible
extensions; after adding them all, n would be declared processed. Different
orders to choose the next node to process are possible (depth-first, breath-
first, etc.), we call them strategies.

If any vertex of G contained in a cycle is reachable from v, this construc-
tion would continue forever. But our goal is just visiting all reachable ver-
tices, so we could declare cutoff any node of the tree whose label equals
that of a node already present in the currently constructed part of the tree,
and possible extensions would only be added for nodes that are not cut-
offs. Since G is finite, this approach will always construct a finite tree that
is complete, i.e., it contains a node labelled by u for every vertex u reachable
from v.

This simple idea was first lifted to ordinary Petri nets by McMillan. His
algorithm [McM93b; McM95b] constructs finite and complete unfolding pre-
fixes for ordinary bounded Petri nets. As for digraphs, it starts with an un-
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folding prefix containing only the initial marking, appropriately labelled,
and iteratively computes and appends possible extensions to the prefix. The
nodes of the tree before correspond here to markings of the prefix. Every
marking of the prefix is labelled by a reachable marking on the net, and ev-
ery transition enabled by it correspond to a possible extension. Thus finding
possible extensions requires, conceptually, enumerating all reachable mark-
ings of the prefix and searching for the transitions of the net enabled by the
labelling of those markings.

Again the construction would not stop if the net contains a reachable loop,
and again, the algorithm designates some events as cutoff, preventing the
prefix from being extended after them. An event is a cutoff if the marking of
its local configuration (see § 2.4.1) is labelled by a marking that equals that of
the local configuration of another event. Because the net is bounded, finitely
many markings are reachable and the construction always stops with a fi-
nite prefix. As before, the algorithm relies on some strategy to chose the
next event to extend the prefix. For digraphs, all strategies yield complete
prefixes, but not for Petri nets, see [EKS07; EH08]. In [ERV02], a class of so
called adequate strategies is presented that produce prefixes no larger than
the reachability graph of the net.

The two key steps in McMillan’s algorithm are thus (i) computing the
possible extensions and (ii) deciding whether an event is a cutoff. Solutions
for both were proposed by McMillan [McM93b; McM95b] and improved by
others [ER99; ERV02; KKV03]. In particular, the use of concurrency relations
to efficiently compute possible extension was proposed in [ER99].

Unfoldings for contextual nets can, conceptually, be constructed with
McMillan’s algorithm. For that, one first needs to appropriately lift the no-
tion of cutoff and find an efficient algorithm for computing the extensions
of the prefix.

A solution to the problem of choosing cutoffs in contextual unfoldings
was given in [BCKS08], at the price of making the underlying theory notably
more complicated. In particular, computing a complete prefix required to
annotate every event e with a subset of its histories; roughly speaking, a
history of e is a set of events that must precede e in a possible execution.
How to effectively store these histories was left open.

Moreover, [BCKS08] did not address how to effectively compute possible
extensions. It remained unclear whether contextual unfolding could be im-
plemented with reasonable efficiency, and how. For safe nets, the interest
of computing a complete contextual prefix was not evident from a practical
point of view: while the prefix can be exponentially smaller than the com-
plete prefix of the corresponding PR-encoding, the intermediate structure
used to produce it has asymptotically the same size. More precisely, the
number of histories in the contextual prefix of a safe c-net matches the num-
ber of events in the prefix of the PR-encoding (for general bounded nets,
this is not the case).

In this chapter we address these open issues and propose an algorithmic
solution for constructing finite, marking-complete contextual net unfoldings.
Our solution is based on concurrency relations. In particular, we make the
following contributions:

• We provide key elements to implement contextual-net unfoldings effi-
ciently, including the necessary results to maintain a concurrency rela-
tion and exploit it for computing the possible extensions. We compare
our approach to the one independently proposed in [BBC+10].
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• We generalise the results in [BCKS08] in order to deal with a slight
generalisation of the adequate orders from [ERV02]. Although not very
surprising, this extension is quite relevant in practice as it can drasti-
cally reduce the size of the resulting prefixes.

We implemented both our approach and the one in [BBC+10], aiming
for a competitive verification tool. The resulting implementation will be de-
scribed in Ch. 7. Experiments with it suggest that efficient contextual un-
folding is possible and performs better than the PR-encoding, even for safe
nets.

The chapter is structured as follows. § 3.2 recalls the notion of history
and cutoff, introducing a number of technical results that will be neces-
sary later in the chapter. In § 3.3 we lift adequate orders from ordinary
nets to c-nets, and show that they yield marking-complete prefixes. An ab-
stract unfolding procedure is presented in § 3.4, and it is shown to construct
marking-complete prefixes under given conditions. The rest of the chapter
is devoted to presenting theoretical results enabling efficient algorithms for
finding possible extensions of the prefix. Section 3.5 explains possible meth-
ods for this task; one of them is the development of concurrency relations,
and we propose one in § 3.6. We next characterize possible extensions of the
prefix with this relation, in § 3.7. The concurrency relation has to be main-
tained as the prefix grows, and § 3.8 provides theoretical results for this. Our
characterization of possible extensions allows to construct the same possible
extension multiple times. We refine this characterization in § 3.9. In §§ 3.10

and 3.11, we compare our approach to computing possible extensions and
the one in [BBC+10]. We conclude in § 3.12.

3.2 pruning the unfolding

Finite, marking-complete unfolding prefixes are constructed iteratively. The
two main tasks that the unfolder carries out during the construction are:

1. Identifying possible extensions, i.e., computing the events and condi-
tions that shall be appended to the currently constructed prefix.

2. Deciding which events are the cutoff points, i.e., the events after which
the construction does not need to continue because they do not con-
tribute with new markings to the prefix.

In this section we focus on the second task. For ordinary nets, McMil-
lan’s algorithm identifies a set of so called cutoff events, and constructs the
maximal prefix without cutoffs. Whether an event e is a cutoff depends on
the marking mark([e]) reached by the local configuration [e] and the events
already present in the prefix. Every event is thus identified with a single
marking of N.

However, for c-nets every event has, loosely speaking, different local con-
figurations and it is not clear, a priori, which should be taken in order to
associate a marking to the event. Such local configurations are formally called
histories, they will be defined below.

Considering only the local configuration [e] produces a finite prefix that
unfortunately is not necessarily marking-complete, as observed in [VSY98],
see Fig. 12. Instead, considering all histories [Win02] would yield a finite and
marking-complete prefix, but an event may have infinitely many histories
and the approach is not constructive.

A solution has been presented in [BCKS08], where the authors proposed
to consider only a finite subset of useful histories, showing that this suffices
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c1 (p2)

e1 (t2)

e3 (t3)

c3 (p4)

c6 (p2)

c5 (p3)

e2 (t1)

c2 (p1)p2
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Figure 12: (a) A c-net; (b) a prefix of its unfolding. Applying McMillan’s
algorithm to (a) using only local configurations produces a prefix
that is not marking-complete. In fact, it produces the prefix (b)
without event e3. Event e3 would be considered a cutoff, as its
local configuration reaches the initial marking. Then {e1, e2, e3}
is not a configuration of the built prefix, and marking {p2, p3} is
unreachable on it.

to guarantee marking-completeness. This will be the approach followed in
this chapter.

The notion of history can thus be seen as a suitable generalization of
McMillan’s local configurations [McM95b] to contextual unfoldings. Follow-
ing [BCKS08], we now present the formal definition.

First, let us fix notation for the rest of the chapter. Unless otherwise stated
we let N := 〈P, T, F, C, m0〉 be a finite, bounded c-net satisfying the general
assumptions in p. 18. We let UN := 〈〈B̃, Ẽ, G̃, D̃, m̃0〉, h〉 denote the full un-
folding of N.

Definition 1 (history). [BCKS08] Let C be a configuration of UN and e ∈ C one
of its events. We call the configuration C[[e]], defined as

C[[e]] := {e′ ∈ C : e′ (↗C)∗ e},
the history of e in C. Moreover, we denote by

Hist(e) := {C[[e]] : C ∈ conf (UN) ∧ e ∈ C}
the set of histories of e.

The history of e in C is the set of events that fire before e in every possible
firing sequence that involves all events in C. Such history will necessarily
contain [e], but may contain other events of C as well. Notice that a history
is always a configuration, as the definition claims: it is causally closed, free
of cycles in↗, and satisfies (19) because C already satisfies it.

For instance, let C := {e1, e2, e3} be a configuration in Fig. 12 (b). The his-
tory of e3 in C coincides with C; the history of e2 is {e1, e2}, which coincides
with [e2]. Consider now Fig. 11 and let C := {e2, e4, e8, e1} be a configuration
there. The history of e4 in C is the set {e2, e4}. Indeed, it does not hold that
e1 ↗ e4 or e8 ↗ e4, so e1 and e8 must be excluded from the history. The
history of e1 in C is C \ {e8}, again because e8 is not in asymmetric conflict
to e1.

The local configuration [e] of any event e is always a history of e. While
in Petri net unfoldings each event has exactly one history, a contextual un-
folding may have multiple histories per event. For instance, in Fig. 12 (b),
Hist(e3) = {{e1, e3}, {e1, e2, e3}}.

Events may even have infinitely many histories. Consider the unfolding
of the net shown in Fig. 13 (a), a prefix of which is shown in Fig. 13 (b).
The unfolding produces infinitely many copies of transition t1 as events
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Figure 13: (a) a c-net; (b) a prefix of its unfolding. Event e2 has infinitely
many histories.

e1, e3, e4 . . . All of them are in asymmetric conflict with e2, whose histories
are all infinitely many configurations that contain e2.

Some technical results will be necessary for future developments in this
chapter:

Remark 7. Let C be a configuration of UN , and e, e′ ∈ C events in C. Then:

1. C[[e]] v C; (22)
2. ¬ (C[[e]] # C[[e′]]); (23)
3. If e↗∗C e′, then C[[e]] v C[[e′]] (24)
4. For any A, B ⊆ C, it holds that ¬ (⋃ê∈A C[[ê]]) # (

⋃
ê∈B C[[ê]]) (25)

Proof. We show each statement independently:

1. This is a consequence of (25) and Rmk. 5 (2). If we take in (25) A =
{e}, B = C, we derive that ¬C[[e]] # C. This, together with Rmk. 5 (2)
imply that C[[e]] v (C ∪ C[[e]]).

2. Again, this follows after (25), taking A = {e} and B = {e′}.
3. Let H := C[[e]] and H′ := C[[e′]]. If e ↗∗C e′, then e ∈ H′. (24) is a

consequence of (22) and the fact that H = H′[[e]], which in turn holds
because for any e′′ ∈ C, e′′ ↗∗C e iff e′′ ↗∗H′ e, which can be easily
shown by induction.

4. Let C1 :=
⋃

ê∈A C[[ê]] and C2 :=
⋃

ê∈B C[[ê]]. By contradiction, assume
that C1 # C2. Then by Rmk. 5 (3) we have two cases:

a) There exist e ∈ C1 and e′ ∈ C2 \ C1 such that e′ ↗ e. As e ∈ C1,
there is some ê ∈ A such that e ↗∗C ê; but then e′ ↗∗C ê, which
implies that e′ ∈ C1 holds. This is a contradiction.

b) There exist e ∈ C2 and e′ ∈ C1 \ C2 satisfying e′ ↗ e. Analogous
argument.

In any case we reach a contradiction, so ¬(C1 # C2) holds.

Given a configuration H that is also a history, the event e of which H is a
history is uniquely determined. That event e is, by definition, the↗-maximal
event in H. However, it will be convenient to write the event together with
the history, in the form of an enriched event.

Definition 2. If e ∈ Ẽ is an event and H ∈ Hist(e) a history of e, a pair 〈e, H〉 is
called enriched event.



34 contextual unfolding construction

McMillan’s algorithm labels every event with the marking of its local con-
figuration, and we have already given the notion of history as a suitable
generalization for c-net unfoldings. A second ingredient in the algorithm is
an order on the configurations of the unfolding. It will be used to decide in
which order events of UN will be appended to the prefix.

Definition 3 (strategy). A strategy on UN is any strict partial order ≺ on the
finite configurations of UN verifying that for all finite C, C ′ ∈ conf (UN),

if C @ C ′ then C ≺ C ′.

For the rest of this chapter we fix an arbitrary strategy ≺ on UN . Strate-
gies not only fix the order in which the events of UN are appended to the
prefix. They parametrize the definition of the cutoff event set, i.e., differ-
ent strategies identify different sets of cutoff events. For ordinary Petri nets,
such identification is done through the local configuration of the event: to
decide whether e is a cutoff, one needs to examine whether C ≺ [e] holds for
certain configurations C of the prefix. For c-nets, we need to compare not
only [e], but the possibly multiple histories of e to decide whether e should
be included in the prefix. This amounts to lifting the notion of cutoff from
events to histories or, in other words, to enriched events:

Definition 4 (feasible and cutoff enriched events). An enriched event 〈e, H〉
is ≺-feasible if for all e′ ∈ H with e′ 6= e, the enriched event 〈e′, H[[e′]]〉 is not
≺-cutoff. A ≺-feasible enriched event 〈e, H〉 is ≺-cutoff if either:

1. mark(H) = m0, or
2. there exists some ≺-feasible enriched event 〈e′, H′〉 ∈ UN , called corre-

sponding, such that H′ ≺ H and mark(H) = mark(H′).

The idea of using enriched events as cutoffs is from [BCKS08], but our
definition is more in line with [KKV03; EH08]. Intuitively, feasible events
correspond to those explored by the unfolding algorithm. Cutoff events are
those that will be discovered but not appended to the prefix, and feasible
non-cutoff will be those appended to the unfolding prefix. We will come
back to this in § 3.4.

Recall that we assumed the c-net N to be bounded. Due to this reach(N)
is a finite set, and we can show the following:

Lemma 3. If 〈e, H〉 is ≺-feasible, then depth(H) < | reach(N)|.

Proof. Assume that there is some ≺-feasible enriched event 〈e, H〉 that sat-
isfies depth(H) ≥ | reach(N)|. Let e1 <i c1 <i e2 <i c2 . . . cn−1 <i en = e be
a chain of immediate causality in H, where n ≥ | reach(N)|. Consider the
sequence m0, mark(H[[e1]]), . . . , mark(H[[en]]) of n + 1 markings associated to
those events, together N’s initial marking m0. By the pigeonhole principle,
such a sequence repeats a marking at least twice. Let ei be the event asso-
ciated to the first repetition. Either mark(H[[ei]]) = m0 and 〈ei, H[[ei]]〉 is a
≺-cutoff, or there is some j < i such that mark(H[[ej]]) = mark(H[[ei]]). Be-
cause ej < ei, by (24), we know that H[[ej]] v H[[ei]], which in turn implies
that H[[ej]] ≺ H[[ei]]. Then 〈ei, H[[ei]]〉 is a ≺-cutoff as well, which is a contra-
diction to 〈e, H〉 being ≺-feasible.

We can now show that the sets of ≺-feasible and ≺-cutoff events in Def. 4

are well defined and unique:

Lemma 4. Definition 4 identifies exactly one finite set of ≺-feasible enriched events
and one finite set of ≺-cutoff events, for any given strategy ≺.
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Event Histories Enriched event is Corresponding

e1 {e1} feasible, non-cutoff
e2 {e1, e2} feasible, non-cutoff
e3 {e1, e3} feasible, cutoff m̃0

{e1, e2, e3} feasible, non-cutoff

Table 1: Enriched events associated to the events of Fig. 12 (b).

Proof. There is finitely many ≺-feasible enriched events because their depth
is bounded by | reach(N)| and there are finitely many events in UN of any
given depth, and therefore finitely many histories using only those events.

Now we show that for any given strategy ≺, Def. 4 defines a unique set
of ≺-feasible and ≺-cutoff enriched events. For a contradiction, let 〈I, L〉
be a collection of, respectively, feasible and cutoff events, and let 〈I′, L′〉 be
a different one. We show that I = I′, which in turn implies that L = L′.
Because I and I are finite and different, the set I \ I′ ∪ I′ \ I is finite and
non-empty. W.l.o.g., let 〈e, H〉 be an enriched event in I \ I′ such that H is
≺-minimal. Since 〈e, H〉 /∈ I′, there is some e′ ∈ H such that 〈e′, H[[e′]]〉 is
in L′, also in I, but not in L; i.e., it is cutoff in the second collection, but
feasible and non-cutoff in the first. Because it is cutoff in the second, there
is some corresponding event in the second collection that is not feasible in
the first — otherwise, 〈e′, H[[e′]]〉 would be also cutoff in the first. That is,
there exist some 〈e′′, H′′〉 ∈ I′ \ I such that H′′ ≺ H[[e′]] and mark(H′′) =
mark(H[[e′]]). But then H′′ ≺ H[[e′]] ≺ H and H is not the ≺-minimal history
of an enriched event in the difference between I and I, as we assumed.

Abusing the notation, we call an event e ∈ Ẽ ≺-feasible if some enriched
event associated to it is ≺-feasible, i.e. if there is some history H ∈ Hist(e)
such that 〈e, H〉 is ≺-feasible. Similarly, e is called ≺-cutoff if it is ≺-feasible
and all its feasible histories correspond to ≺-cutoff enriched events, i.e., for
all H ∈ Hist(e), if 〈e, H〉 is ≺-feasible, then it is also ≺-cutoff.

The intuition behind this definition is that an event will be part of the
constructed unfolding prefix only if one feasible, non-cutoff history for that
event exists; and will be left outside in the opposite case, i.e., if all feasible
histories are also cutoffs.

An important remark is that the set of ≺-feasible events is causally closed.
To see this, recall that the local configuration [e] of any event e is contained
in any history H ∈ Hist(e). Since any ≺-feasible event e has at least one
feasible history H, by Def. 4 every causally related event e′ ∈ [e] has one
feasible, non-cutoff history H[[e′]]. As a result, the ≺-feasible events identify
a well-defined unfolding prefix:

Definition 5. The ≺-prefix is the unique unfolding prefix P≺N whose set of events
is exactly the set of ≺-feasible events that are not ≺-cutoff.

The ≺-prefix of an ordinary net was first defined in [KKV03], where it
was called the canonical prefix.

We now present several examples. Consider the unfolding of Fig. 12 (a), a
prefix of which is shown in Fig. 12 (b). Consider the size strategy ≺1 defined
as C ≺1 C ′ iff |C| < |C ′|. Table 1 lists all enriched events associated to the
events of the prefix in Fig. 12 (b), and specifies whether they are feasible or
cutoffs w.r.t. ≺1.
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Event Histories Enriched event is Corresponding

e1 {e1} feasible, cutoff m̃0
e3 {e1, e3} unfeasible
e4 {e1, e3, e4} unfeasible
e2 {e2} feasible, non-cutoff

{e1, e2} unfeasible
{e1, e3, e2} unfeasible

Table 2: Some enriched events associated to the events of Fig. 13 (b).

According to the table, all the three events e1, e2, e3 are feasible and not
cutoff, as they have at least one feasible, non-cutoff history. They would
therefore be part of the ≺1-prefix. It is actually not difficult to see that the
≺1-prefix only contains these three events. As for the unfolding of Fig. 13 (a),
using the same strategy, we would have the enriched events listed in Table 2.
In this case, all feasible enriched events associated to e1 are cutoffs, so we
declare e1 cutoff; as for e2, among its feasible histories, at least one is not a
cutoff, so e2 is feasible and not cutoff. The ≺1-prefix in this case would only
contain the event e2.

3.3 adequate strategies and completeness

The shape and size of P≺N depends on the particular choice of the strategy
≺. By Lemma 4 we know that P≺N is finite for every strategy. In this section
we show that for adequate strategies it is also marking-complete.

For contextual unfoldings, the only strategy that was known to generate
marking-complete prefixes was the size strategy, defined in [BCKS08] as:

C ≺M C ′ iff |C| < |C ′| (26)

This condition was originally introduced by McMillan [McM93b] in his sem-
inal paper on Petri net unfoldings. However, it is known that McMillan’s or-
der may create complete prefixes that are up to exponentially larger than the
reachability graph [ERV02]. This is because ≺M is a partial order: multiple
enriched events may lead to the same marking, but if they are incomparable
(because their histories have the same size), then none of them is a cutoff.

Figure 14 illustrates a net for which this happens. Consider the two events
labelled by t1 and u1. For both, the local configuration produces marking
p2 and has size 1. Then their local configurations are incomparable with
≺M and none of them is a cutoff. Similarly, any two events whose local
configuration produces the marking pi, for 2 ≤ i ≤ n + 1, has the same size
and is incomparable with ≺M. As a result, none of the exponentially many
feasible events is a cutoff.

It is therefore preferable to replace McMillan’s order by a suitable finer
order, ideally a total order, in which case the resulting prefix will have at
most as many events as there are reachable markings in the net (and usually
far fewer).

For ordinary nets, this problem was addressed in [ERV02], where ade-
quate strategies were introduced (called adequate orders in [ERV02]). Any
adequate order will yield a complete prefix, and [ERV02] exhibits an ade-
quate order that is total for safe nets. Below, in Def. 6, we present a slight
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Figure 14: A c-net (a) whose unfolding (b) is exponentially larger than the
set of reachable markings.

generalisation of the adequate orders from [ERV02] that is more suitable for
c-nets. We then show that these orders also yield complete prefixes.

Definition 6 (adequate strategy). An strategy ≺ is adequate if it satisfies:

1. ≺ is well founded;
2. ≺ is preserved by finite extensions, i.e., if C ≺ C ′, and mark(C) = mark(C ′),

then for any finite extension X of C there is some finite extension X′ of C ′
such that

a) C ∪ X ≺ C ′ ∪ X′, and
b) mark(C ∪ X) = mark(C ∪ X).

The adequate strategies introduced in [ERV02] are slightly less general
than in Def. 6. In particular, the second condition asked for the finite exten-
sion X′ to be isomorphic to X. In [KKV03, Def. 2, item 3(b)], this condition
was stated as in Def. 6, i.e., any finite extension suffices. Our notion of ad-
equate strategy differs from the one in [KKV03] only on the fact that ≺
refines the evolution order v rather than subset inclusion ⊆. Note that for
Petri net unfoldings C ⊂ C ′ implies C @ C ′, hence the two notions coin-
cide. However, for contextual unfoldings this is not the case; for instance, in
Fig. 12 {e1, e3} 6@ {e1, e2, e3}. For c-nets, Def. 6 is thus a slight generalisation
of both [ERV02; KKV03].

Theorem 1. P≺N is marking-complete if ≺ is adequate.

Proof. Let m be an arbitrary reachable marking of N. There exists a finite
configuration C of UN such that mark(C) = m. Either C is a configuration of
P≺N , and we are done, or C contains some ≺-cutoff event e. In the latter case,
〈e, C[[e]]〉 is ≺-cutoff and by Def. 4, its corresponding enriched event 〈e′, H′〉
satisfies

H′ ≺ C[[e]], and

mark(H′) = mark(C[[e]]).
Since C \ C[[e]] is a finite extension of C[[e]], by Def. 6 there is some finite
extension X′ of H′ satisfying

H′ ∪ X′ ≺ C, and

mark(H′ ∪ X′) = mark(C).
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We have found a finite configuration C ′ := H′ ∪ X′ of UN that reaches the
same marking m and is ≺-smaller. If C ′ is not yet a configuration of P≺N , it
suffices to iterate this argument finitely many times until we get a configu-
ration of P≺N because ≺ is well-founded.

Theorem 1 states that any strategy≺ satisfying Def. 6 will yield a marking-
complete ≺-prefix. It is easy to see that ≺M, defined in (26) is adequate, but
it may give rise to very large prefixes.

The essence of the problem is that ≺M is not a total order. Any total
strategy orders any pair of ≺-feasible enriched events. Thus in any set of
more than | reach(N)| enriched events, the histories of two of them share the
same marking and one is smaller than the other; therefore one of them is a
≺-cutoff. This shows that

Remark 8. If ≺ is total, the number of ≺-feasible enriched events that are not
≺-cutoff is bounded by | reach(N)|.

This remark entails that if≺ is adequate and total, the≺-prefix is marking-
complete and not larger than the reachability graph of N. At this point,
the natural question is whether we can find an adequate and total order.
In [ERV02], the order ≺F is presented, and shown to be adequate and total
for ordinary nets. Clearly, ≺F is adequate for contextual nets according to
our definition, and showing that it is total is straight-forward.

3.4 unfolding procedure

In previous sections we have defined P≺N and shown that it is (i) finite, (ii)
marking-complete if ≺ is adequate, and (iii) have no more events than N
has reachable markings if ≺ is total. Following [BCKS08], in this section we
present a procedure for constructing P≺N .

Histories had a prominent role in the definition of the ≺-prefix. Conse-
quently, they are also key in its construction. To construct the ≺-prefix, one
annotates events with a subset of their histories. This annotation is formal-
ized by the function χ in our next definition:

Definition 7 (enriched prefix). [BCKS08] An enriched prefix (EP) is a tuple
E := 〈O, h′, χ〉 such that 〈O, h′〉 is an unfolding prefix, O := 〈B, E, G, D, m̃0〉,
and χ : E→ 22E

satisfies that for all e ∈ E:

• ∅ 6= χ(e) ⊆ Hist(e), and (27)
• for all H ∈ χ(e) and e′ ∈ H, we have H[[e′]] ∈ χ(e′). (28)

Condition (27) simply asks that every event is labelled by a non-empty set
of histories of that event. Remark that it does not require χ(e) to include all
potentially infinitely many histories in Hist(e).

The second condition (28) requires the labelling χ to be closed by the
operation ‘history of ’: if χ(e) contains one history H, then any event in H
must be labelled with its history in H. This property will allow us in § 3.7
to construct EPs incrementally.

For the rest of this chapter, we fix an arbitrary enriched prefix E :=
〈O, h, χ〉 where O := 〈B, E, G, D, m̃0〉. This is in addition to the notation
already fixed: the net N, the unfolding UN , and the strategy ≺. We take the
labelling h of UN as the homomorphism for the underlying unfolding prefix
〈O, h〉 of E , which is a safe abuse of notation, as we explained at p. 27.

Let us define some notation for EPs. An enriched event 〈e, H〉 belongs to
E , written 〈e, H〉 ∈ E , if e ∈ E and H ∈ χ(e). A configuration of E is a
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Algorithm 1 Contextual unfolding procedure

Input: A bounded c-net N := 〈P, T, F, C, m0〉 satisfying the general assump-
tions in p. 18 and a strategy ≺.

Output: An enriched prefix E = 〈O, h, χ〉, with O = 〈B, E, G, D, m̃0〉 and
χ : E→ 22E

.

Create n := |m0| new conditions c1, . . . , cn
Set m̃0 := {c1, . . . , cn}
Set h such that h(m̃0) = m0
χ := ∅
X := pe(E)
while X 6= ∅ do

Remove from X one enriched event 〈e, H〉 s.t. H is ≺-minimal
if 〈e, H〉 is not ≺-cutoff then

if e /∈ E then
Append e to O

end if
Append H to χ(e)
Create n := |h(e)•| new conditions c1, . . . , cn
Set e• := {c1, . . . , cn}
Set h such that h(e•) = h(e)•

X = pe(E)
end if

end while

any configuration C of O satisfying C[[e]] ∈ χ(e) for all e ∈ C. We denote by
C ∈ E that C is a configuration of E . Finally, we call E marking-complete iff for
every reachable marking m of N there exists a configuration C ∈ E verifying
mark(C) = m.

Unfolding prefixes of ordinary Petri nets are built incrementally. Similarly,
in [BCKS08] a complete contextual prefix is constructed by a saturation pro-
cedure that adds one enriched event at a time until there remains no addi-
tion that would contribute new markings. Such appended enriched events
are called possible extensions:

Definition 8 (possible extension). An enriched event 〈e, H〉 is a possible exten-
sion (PE) of E if 〈e, H〉 /∈ E and 〈e′, H[[e′]]〉 ∈ E for all e′ ∈ H \ {e}.

We will denote by pe(E) the set of possible extensions of E . We can now
present an algorithm for constructing P≺N . Algorithm 1 takes as input a
bounded c-net N and an arbitrary strategy ≺. It builds an enriched pre-
fix E := 〈O, h, χ〉 whose size and shape depends on the choice of ≺. The
algorithm can thus be seen as a family of algorithms, one for each strategy.

The construction proceeds iteratively. O is initially set as a copy of N’s
initial marking: an unfolding prefix with only conditions. X is initialized to
the PEs of such a prefix, enriched events associated to events that consume
from the initial marking. All such enriched events are necessarily ≺-feasible.

The loop iteratively extends the prefix with one enriched event whose
history is ≺-minimal among all the PEs of the prefix at that time. Observe
that, due to the choice of possible extensions in Def. 8, property (28) remains
invariantly true on the successive versions of EN that the loop produces: (28)
is clearly satisfied initially, when there are no events; and every addition of a
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PE maintains the property. Similarly, since ≺-cutoff extensions are skipped,
the prefix only contains feasible (enriched) events.

An specialization of Algorithm 1, where the arbitrary strategy taken as in-
put was instead the size strategy ≺M, was first introduced in [BCKS08]. That
specialization was there shown to produce finite and marking-complete pre-
fixes. Here we show that it always terminates, producing the ≺-prefix, when
invoked with arbitrary strategies:

Theorem 2. Algorithm 1 always terminates and produces a prefix 〈O, h, χ〉 such
that 〈O, h〉 = P≺N when invoked on a bounded c-net N and some strategy ≺.

Proof. We first show that the algorithm only appends ≺-feasible enriched
events to the prefix. The proof is by induction on the size of the history. Let
〈e, H〉 be the last enriched event that Algorithm 1 appended to the prefix.
If |H| = 1, then it is ≺-feasible by definition. Assume that |H| ≥ 2. All
〈e′, H[[e′]]〉, where e′ ∈ H, are already in the prefix and, by induction hy-
pothesis, we can assume they are ≺-feasible. The algorithm never appends
a ≺-cutoff enriched event, and as a result 〈e, H〉 is necessarily ≺-feasible.

We now show that the algorithm always terminates. We start by observing
that any finite enriched prefix always has finitely many PEs. This is a conse-
quence of the fact that every finite configuration of UN enables finitely many
events, which in turn holds due to (21). Now, any time pe(·) is called within
the loop, an enriched event is added to the prefix. Such enriched event is
≺-feasible and there are finitely many of them. Therefore, Algorithm 1 ever
adds finitely many enriched events to the set X. As a result, the while loop
makes finitely many iterations.

Finally, we show that every ≺-feasible, non ≺-cutoff enriched event is
eventually added to the prefix. We do it by induction on the depth of the
event. Let 〈e, H〉 be ≺-feasible and not ≺-cutoff. Assume that depth(e) = 1.
Then H = {e}, and 〈e, H〉 is included in X on the first call to pe(·), just
before the loop starts. Since finitely many events are ever added to X, 〈e, H〉
will eventually be appended to the prefix. Now assume that depth(e) > 2. By
induction hypothesis, assume that all 〈e′, H[[e′]]〉 with e′ ∈ H have already
been added to the prefix. Then 〈e, H〉 is by definition a PE and will be
included in X on the next call to pe(·). Again, once an extension is in X
it will eventually be extracted. Since 〈e, H〉 is not ≺-cutoff, it will also be
appended to the prefix.

It follows that Algorithm 1 constructs complete prefixes when invoked
with adequate strategies.

Corollary 1. Algorithm 1 constructs a finite, marking-complete unfolding prefix
P≺N when invoked on 〈N,≺〉 if ≺ is adequate.

3.5 possible extensions

In the previous section, we deliberately left unspecified the algorithm to
compute PEs. In this section, we discuss two existing approaches to com-
pute PEs for ordinary unfoldings, explaining the issues that prevent lifting
one of them to contextual unfoldings. This will serve as introduction to the
developments in the next section, where we address these issues.

The main computational problem of Algorithm 1 is to identify the PEs in
each iteration. For ordinary net unfolders, which do not deal with histories,
this requires identifying sets M of conditions such that conc(M) and h(M) =
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•t for some t ∈ T, cf. the inductive rule Ev on p. 26. Two approaches have
been proposed to this respect for ordinary unfoldings:

1. Backwards Exploration. A given a set M ⊆ B of conditions from the
prefix is coverable iff there is no two conditions from M in symmetric
conflict. The flow relation in an unfolding prefix is acyclic, so exploring
[M] in backwards direction, from M to the initial marking, suffices to
determine whether conc(M) holds.
This approach uses a working list, initialized to M. Then it iteratively
extracts a node from the list and visits its causal immediate predeces-
sors. All unvisited predecessors are appended to the working list; if an
event is visited for the second time, it is not included in the working
list. If a condition is visited twice, then a symmetric conflict has been
found, and the algorithm stops. If the working list is eventually empty
and no conflict has been found, then M is coverable. This algorithm
runs in linear time on the prefix.

2. Concurrency Relations. [ER99] For ordinary unfoldings, it is known that
conc(M) holds iff conc({c, c′}) holds for all pairs c, c′ ∈ M. Deciding
whether M is coverable thus reduces to decide whether {c, c′} is cov-
erable for all such pairs. One can therefore construct a binary concur-
rency relation on conditions and use it for finding PEs. Moreover, this
binary relation can be computed efficiently and incrementally during
prefix construction. This idea is exploited by existing tools such as
Mole [Sch] or Punf [Kho]. The latter unfolder can also employ back-
wards exploration.

Turning now the attention to c-net unfoldings, the first method can be ap-
plied seamlessly to contextual prefix construction. The set M is, in this case,
coverable iff the set of events in [M] does not induce a cycle of asymmet-
ric conflict. This can be easily detected by a depth-first search on [M]. One
would explore the edges asymmetric conflict backwards, stopping as soon
as a back edge is found, which indicates the existence of a cycle.

However, applying the second method to contextual unfolding entails
some difficulties. Roughly speaking, these come from the fact that the above
statement about conc(·) and binary concurrency relations is invalid for con-
textual unfoldings. Consider again the net shown in Fig. 10 (a) on p. 23,
which is identical to its unfolding, and the set M := {c4, c5, c6}. Clearly, M is
not coverable, but all the elements of M are pairwise coverable. For instance
c4, c5 may be covered by firing e1, then e2. In fact, [{c4, c5, c6}] = {e1, e2, e3}
cannot be fired in the same run because e1 ↗ e2 ↗ e3 ↗ e1, i.e., it includes
a cycle of asymmetric-conflict and it is not a configuration.

3.6 a concurrency relation for efficient construction

In the following, we introduce a binary relation for c-net unfoldings in
which pairwise concurrency does imply reachability of the whole set. This
relation is defined on conditions enriched with histories.

Definition 9 (histories for conditions). Let c ∈ B̃ be a condition.

• A generating history of c is ∅ if c ∈ m̂0, or H ∈ Hist(e), where {e} = •c.
• A reading history of c is any H ∈ Hist(e) such that e ∈ c.
• A compound history of c is any configuration H1 ∪ H2, where H1 and H2

are histories of c verifying ¬(H1 # H2).

In general a history of c is any of the three preceding kinds of histories.
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In words, for a condition c, not belonging to the initial marking, a generat-
ing history is any history of the unique event producing c. When c is in the
initial marking it has only an empty generating history. A reading history
is any history of the events reading c. Compound histories are conflict-free
combinations of generating and (possibly multiple) reading histories.

If H is a history of c, we call 〈c, H〉 an enriched condition (EC), referred to
as generating, reading, or compound condition, according to H. Our nota-
tion for ECs is similar to that for enriched events. We say that 〈c, H〉 ∈ E
if for all e ∈ (•c ∪ c) ∩ H it holds that H[[e]] ∈ χ(e), i.e., H is built from
histories in χ. The mapping h is extended to enriched events and conditions
by h(〈e, H〉) := h(e) and h(〈c, H〉) := h(c).

Definition 10 (concurrency for ECs). Two ECs 〈c, H〉, 〈c′, H′〉 are said to be
concurrent, written 〈c, H〉 ‖ 〈c′, H′〉, iff

¬(H # H′) and c, c′ ∈ cut(H ∪ H′). (29)

To illustrate the definition, we give some examples from Fig. 12.

• 〈c1, ∅〉 6 ‖ 〈c3, {e1}〉 because c1 /∈ cut({e1});
• 〈c6, {e1, e3}〉 6 ‖ 〈c5, {e1, e2}〉 because {e1, e3} # {e1, e2};
• 〈c6, {e1, e3}〉 6 ‖ 〈c6, {e1, e2, e3}〉 because {e1, e3} # {e1, e2, e3};
• 〈c1, ∅〉 ‖ 〈c2, ∅〉;
• 〈c3, {e1}〉 ‖ 〈c3, {e1, e2}〉;

Relation ‖ on ECs allows to recover full information about coverability
of conditions, as it was possible for ordinary unfoldings. This is easy to see
formally. Let M := {c1, . . . , cn} ⊆ B̃ be a set of n conditions. Using Lemma 2,
one can show that conc(M) holds iff there exists n histories H1, . . . , Hn, one
for each condition in M, such that

〈ci, Hi〉 ‖ 〈cj, Hj〉 holds for 1 ≤ i < j ≤ n,

i.e., the associated ECs are pairwise concurrent. In other words, reachability
of n ECs reduces to O(n2) queries to a binary, as it was the case for ordinary
nets. The price to pay now is that we need to keep track of histories for
conditions.

Remark 9. For ECs ρ := 〈c, H〉 and ρ′ := 〈c′, H′〉, the statement ρ ‖ ρ′ is
equivalent to the conjunction of the next four statements:

1. ¬(∃e1 ∈ H, ∃e2 ∈ H′ \ H, e2 ↗ e1)
2. ¬(∃e1 ∈ H′, ∃e2 ∈ H \ H′, e2 ↗ e1)
3. ¬(∃e ∈ H, c′ ∈ •e)
4. ¬(∃e ∈ H′, c ∈ •e)

The following Lemma 5 will be useful in the subsequent proofs. It essen-
tially states that all distinct histories of one event are in conflict, and that, as
a consequence, no two distinct generating ECs are concurrent.

Lemma 5. Let H, H′ be two histories of the same event e and c ∈ e• a condition
in its postset. The following statements are equivalent:

1. ¬(H # H′).
2. There is a configuration C such that H, H′ v C.
3. Generating conditions ρ := 〈c, H〉 and ρ′ := 〈c, H′〉 satisfy ρ ‖ ρ′.
4. H = H′.

Proof. By definition of #, in p. 25, 1) and 2) are equivalent. Also by definition,
3) implies 1); and 1) implies 3) because there is no way in which either H or
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H′ can consume a condition in the preset of e, as e is ↗-maximal in any of
its histories. Trivially 4) implies 1), so we only show that 1) implies 4).

Assume that 1) holds but 4) not, and that H \ H′ contains, w.l.o.g., some
event e′. Since e′ ↗∗H e, it is easy to see that there exists some e1 ∈ H \H′ and
e2 ∈ H′ with e1 ↗ e2, which by Rmk. 5 implies H # H′, a contradiction.

We are now ready to present how ‖ can be used to compute PEs. The rest
of the chapter is actually devoted to this point.

In § 3.7, we first characterize PEs in terms of ‖ in a way suitable for
constructing them algorithmically once ‖ has been constructed. However, for
each extension added to the prefix, new enriched conditions are appended,
and one needs to update an stored copy of ‖ with the newly appended
conditions. We present in § 3.8 an inductive characterization of ‖ that allows
for this. Our characterization of PEs with ‖ allows to construct the same
PEs from different collections of enriched conditions. In § 3.9, we refine
the characterization in order to obtain a unique decomposition for each PE.
We then compare from a theoretical point of view our approach and another
one independently developed in [BBC+10], discussing their benefits in § 3.10

and their memory usage in § 3.11.
Another approach for computing PEs, presented in [BBC+10], has been

developed independently and at the same time as we worked on the method
presented in following sections. Our approach was originally presented
in [RSB11b], where we additionally discussed implementation details and
gave an experimental evaluation. On a latter publication [BBC+12], the au-
thors of both approaches made a coherent presentation of both solutions,
comparing their differences and discussing their merits.

Following [BBC+12], in the remaining sections of this chapter we inter-
leave the presentation of both approaches. Each approach proposes a differ-
ent solution to each of the multiple subproblems that arise in producing an
efficient algorithm for computing PEs. Our exposition alternates the presen-
tation of both approaches for each such subproblem, which, we think, eases
the comparison of both solutions.

Before we proceed, let us recall a notion that will be necessary in the
sequel, that of an ancestor:

Definition 11 (ancestor). [BBC+10] Let ρ = 〈c, H〉 be a reading history. The
ancestor of ρ, denoted ρ↑, is the unique generating condition 〈c, H′〉 such that
H′ v H.

Note that indeed H′ is uniquely determined due to Lemma 5.

3.7 characterizing possible extensions concurrency

Our first step is to characterize PEs in terms of concurrent ECs; this is the
goal of this section.

As we explained above, we discuss two ways of computing PEs. We call
them, for reasons that we explain below, the lazy and eager approach. The
first one was introduced in [BBC+10], while the second one is a contribution
of us, originally presented in [RSB11b].

The lazy approach avoids constructing compound ECs, therefore reduc-
ing the number of ECs constructed by the unfolding algorithm. The eager
approach does use compound conditions, which saves work when search-
ing for PEs. In the light of these approaches, compound ECs can be seen as
pre-calculated coverability information that the eager approach computes and
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Figure 15: Predecessors w.r.t. asymmetric conflict of an event e.

stores before starting to search for PEs. The lazy approach computes equiv-
alent information on the fly, every time that a PE is searched, and discards
it once the search is done. As a result, the same information is possibly
computed several times. Although this can incur computation overheads, it
has the benefit of using the memory less eagerly. The eager approach com-
putes ECs only once and avoids the overhead, but may store unnecessary
compound ECs in memory.

3.7.1 Lazy Approach

The lazy approach [BBC+10] is based on the observation that the history as-
sociated with an event can be constructed by taking generating and reading
histories for places in the pre-set, and generating histories for places in the
context. The following Prop. 1 employs this facts to characterize enriched
events in terms of concurrent collections of generating and reading histo-
ries. The proposition is a modified version of the Lemma 1 in [BBC+10].

Some remarks seem to be necessary at this point. Proposition 1 modifies
the Lemma 1 of [BBC+10] in several aspects. First, we remove one technical
condition of Lemma 1 to make Prop. 1 suitable to for fair comparison to
our contribution, the eager approach, introduced in Prop. 2. Second, we
provide a characterization while Lemma 1 in [BBC+10] only states half of
this characterization: where Prop. 1 says ‘iff ’, Lemma 1 says ‘only if ’. Third,
although we gave an original and dedicated proof of Prop. 2 (published
in [RSB11a], the long version of [RSB11b]), in [BBC+12] we rewrote it to
reuse the proof of Prop. 1, and it will be this new, shorter proof the one we
will give in § 3.7.2 for Prop. 2. For these three reasons, we present here a
proof of Prop. 1.

Proposition 1 (possible extensions - lazy). A pair 〈e, H〉 is an enriched event
iff there exist sets Xp, Xc of ECs such that

• h(Xp) = •t and h(Xc) = t, with h(e) = t; (30)
• Xp contains only generating or reading ECs; (31)
• Xc contains only generating ECs; (32)
• Xp ∪ Xc has exactly one generating EC for each c ∈ (•e ∪ e), (33)
• ρ ‖ ρ′ holds for all ρ, ρ′ ∈ Xp ∪ Xc; (34)
• finally, H = {e} ∪⋃〈c,H′〉∈Xp∪Xc H′. (35)

Proposition 1 allows to identify new possible extensions whenever a prefix
is extended with new ECs. Compound conditions are avoided at the price
of allowing Xp to contain, for every c ∈ •e, an arbitrary number of reading
conditions.

To illustrate the meaning of Xp and Xc in Prop. 1, consider Fig. 15. To
create a history for event e, Xp must contain generating histories for c2 and
c3, i.e., histories of events e3 and e4. Optionally, Xp may contain one or more
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reading histories of c3, coming from e5 or e6 or both. As for Xc, it must
contain a generating history of c1, coming from e2, but it cannot contain
a reading history of c1. In fact, note that e1 is not an asymmetric-conflict
predecessor of e, hence it is not included in any history of e.

Proof. We prove Prop. 1 in two steps. First assume that 〈e, H〉 is an enriched
event. We construct sets Xp and Xc that satisfy (30) to (35). We start defining
Xp. Property (31) requests Xp to contain generating or reading conditions.
We define

Xp := X1 ∪ X2,

where X1 (resp. X2) are sets of generating (resp. reading) conditions ob-
tained from the generating (resp. reading) histories of •e that extend to H:

X1 := {〈c, ∅〉 : c ∈ •e ∩ m̂0} ∪ {〈c, H[[e′]]〉 : c ∈ •e \ m̂0 ∧ {e′} = •c}
X2 := {〈c, H[[e′]]〉 : c ∈ •e ∧ e′ ∈ c ∩ H}

For Xc, we can only take the generating histories that conditions in e induce
in H, as (32) requests:

Xc := {〈c, ∅〉 : c ∈ e ∩ m̂0} ∪ {〈c, H[[e′]]〉 : c ∈ e \ m̂0 ∧ {e′} = •c}
This choice of Xp and Xc evidently satisfies properties (30) to (33). We now
show that they also satisfy (34) and (35):

• Property (34). Let 〈c1, H1〉, 〈c2, H2〉 ∈ Xp ∪ Xc. By (23) we have that
¬(H1 # H2). Moreover, c1 ∈ cut(H1) and c2 ∈ cut(H2). Assume w.l.o.g.
that c1 /∈ cut(H1 ∪ H2). Then there exists e′ ∈ H2 such that c1 ∈ •e′.
Since c1 ∈ •e ∪ e, we have e ↗ e′. Moreover, e′ ∈ H2 ⊆ H, where the
configuration H is a history of e, therefore by definition e′ ↗∗H e. Then
H contains an asymmetric conflict cycle, a contradiction.

• Property (35). Recall that any e′ ∈ H satisfies e′ ↗∗H e. So either e′ = e
or there exists e′′ ∈ H such that e′ ↗∗H e′′ and e′′ ↗ e. From all such e′′,
pick one that is maximal w.r.t. <. According to the definition of ↗ in
(4) to (6), this leaves three cases: there is a condition c such that either

– c ∈ •e and e′′ ∈ •c, or
– c ∈ •e and e′′ ∈ c, or
– c ∈ e and e′′ ∈ •c.

Moreover, since e′′ ∈ H, we use (22) to conclude that H′′ := H[[e′′]] is
a history such that H′′ v H. Thus, in the first two cases, 〈c, H′′〉 ∈ Xp,
and in the third, 〈c, H′′〉 ∈ Xc. Finally, e′ ∈ H′′ because e′ ∈ H and
e′ ↗∗H e′′.

This concludes one direction of the proof. As for the opposite direction,
assume that there are sets Xp, Xc, and H fulfilling properties (30) to (35). We
have to show that H is a history of e. To see this, it suffices to show that H
is a configuration and that H[[e]] equals H.

• H is causally closed. Any H′ such that 〈e′, H′〉 ∈ Xp ∪ Xc is causally
closed. Moreover, the choice of Xp ensures that all causal predecessors
of e are contained in H.

• ↗H is acyclic. By contradiction, assume that there exists a simple cycle

e1 ↗H e2 ↗H · · · ↗H en ↗H e1,

for some n ≥ 2. Either e appears in the cycle or not. If it appears, then
w.l.o.g. e1 = e and e2 ∈ H2, for some 〈c2, H2〉 ∈ Xp ∪ Xc. Now, e ↗ e2
implies, by (4) to (6), either
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– e < e2, or
– e ∩ •e2 6= ∅, or
– •e ∩ •e2 6= ∅.

In all cases, H2 consumes a token from some c1 ∈ •e ∪ e. Due to
(33), Xp ∪ Xc contains some tuple 〈c1, H1〉, but 〈c1, H1〉 6 ‖ 〈c2, H2〉
because H2 consumes c1, violating (34). Otherwise, if e does not ap-
pear in the cycle, then w.l.o.g. e2 ∈ H2 and e1 ∈ H1 \ H2 for some
〈c1, H1〉, 〈c2, H2〉 ∈ Xp ∪ Xc, where H1 6= H2. By Rmk. 5, we conclude
that H1 # H2, which violates (34).

• H[[e]] = H. We need to show that e′ ↗∗H e holds for each e′ ∈ H. Recall
that the elements 〈c′, H′〉 ∈ Xp ∪ Xc are chosen such that H′ is either
empty or a history of some e′′ such that e′′ ↗ e. Thus, if e′ 6= e, we
have e′ ↗∗H e′′ ↗ e for some suitable e′′, and for e′ = e the condition
holds trivially.

3.7.2 Eager Approach

The eager approach, instead of attempting to combine generating and read-
ing histories when computing a possible extension, explicitly produces all
types of ECs, including compound ones. This means more ECs, but on the
other hand less work when computing possible extensions.

Proposition 2 (possible extensions - eager). The pair 〈e, H〉 is an enriched event
iff there exist sets Xp, Xc of ECs such that

• h(Xp) = •t and h(Xc) = t, with h(e) = t; (36)
• Xp contains arbitrary ECs; (37)
• Xc contains only generating ECs; (38)
• Xp ∪ Xc contains exactly one EC for each c ∈ (•e ∪ e); (39)
• ρ ‖ ρ′ holds for all ρ, ρ′ ∈ Xp ∪ Xc; (40)
• finally, H = {e} ∪⋃〈c,H′〉∈Xp∪Xc H′. (41)

Before we proceed with the proof, let us make some remarks. First, notice
that |Xp| = |•t| by (36) and (39), whereas no such bound exists in Prop. 1,
where multiple reading ECs may be in Xp for the same condition. Like
Prop. 1, Prop. 2 allows to identify new possible extensions upon addition of
new ECs.

As an example, consider again Fig. 15. The set Xp must contain an arbi-
trary history for c2 and c3. Concretely, for c2 we can take only a generating
history, from e3, while for c3 we can use a generating history, from e4, a
reading history, from e5, or a compound history, from the combination of
reading histories of e5 and e6. Instead, Xc is still restricted to include gener-
ating histories only, in this case of c1.

Second, one can establish a relation between possible extensions accord-
ing to Prop. 1 and Prop. 2. That is, for each enriched event we can relate
the set Xp identified by both propositions. Let Xp be a set satisfying the
conditions in Prop. 1. We define

Eager(Xp) := {〈c,
⋃

〈c,H〉∈Xp

H〉 : c ∈ •e},

i.e., we merge all generating or reading histories associated to the same
condition in •e, to produce generating, reading, or compound ECs. Remark
that the elements of Xp are concurrent, due to (34), which is necessary to
form compound histories, as Def. 9 requests.
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On the other hand, if Xp is a set as in Prop. 2, let

Lazy(Xp) := {〈c, H[[e′]]〉 : 〈c, H〉 ∈ Xp ∧ e′ ∈ (•c ∪ c) ∩ H}
∪ {〈c, ∅〉 : c ∈ •e ∩ m̂0}.

In this case we perform the reverse operation, splitting reading or com-
pound histories. Namely, from each reading EC ρ ∈ Xp we get two ECs:
ρ and ρ↑, i.e., a copy of the EC and its ancestor, a generating EC. Similarly,
from each compound condition we get the elementary reading ECs forming
the compound, together with their ancestors.

We are now ready to state the proof of Prop. 2. As explained at the be-
ginning of § 3.7.1, recall that we prove here Prop. 2 via a reduction to the
proof of Prop. 1. See [RSB11a], the long version of [RSB11b], for an original,
dedicated proof of Prop. 2.

Proof. We shall prove that a collection of ECs satisfying the six conditions
in Prop. 1 exists iff another collection exists, and satisfies the six properties
in Prop. 2. We will define these collections, the reader may have guessed it,
using Eager(·) and Lazy(·).

The proof has again two parts. From left to right, let Xp, Xc be a pair of
sets of ECs as per Prop. 1. We define

X′p := Eager(Xp)

and prove that X′p, Xc satisfy (36) to (41) in Prop. 2.
Conditions (36) to (38) and (41) are immediate. For property (39), observe

that Eager(·) produces a single history in X′p out of all the histories Xp from
the same condition, so the property holds.

As for property (40), it holds as a consequence of (34) and (24), in Rmk. 7.
Let

ρ := 〈c, H1 ∪ . . . ∪ Hm〉,
ρ′ := 〈c′, Hm+1,∪ . . . ∪ Hn〉

be ECs in X′p ∪ Xc, such that

〈c, Hi〉, 〈c′, Hj〉 ∈ Xp ∪ Xc

for 1 ≤ i ≤ m < j ≤ n. By (34), the elements of Xp ∪ Xc are concurrent,
so c, c′ ∈ cut(H1 ∪ . . . ∪ Hn). Moreover, defining suitable sets A, B in (24) it
follows that

¬(H1 ∪ . . . ∪ Hm) # (Hm+1 ∪ . . . ∪ Hn),

which implies that ρ ‖ ρ′ holds.
This completes the left-to-right direction of the proof. For the opposite

direction, let Xp, Xc be a pair of sets as per Prop. 2. Define

X′p := Lazy(Xp).

We show that X′p, Xc satisfy all the six properties in Prop. 1.
The first four properties, (30) to (33) are immediate from the definition of

X′p, Xc. Property (34) follows from pairwise concurrency in Xp, Xc, Lemma 2

and Rmk. 7. As for (35), we need to show that every event e′ ∈ H is included
in one of the elements of X′p ∪ Xc. For e′ = e, this is immediate. Otherwise
there exists a chain e′ ↗H . . . ↗H e′′ ↗H e such that e′′ ∈ •(•e) ∪ •e ∪ •(e).
The definition of X′p and Xc implies that their union contains at least one
tuple 〈c, H[[e′′]]〉, where e′ ∈ H[[e′′]].
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3.8 updating the concurrency relation

The previous section explains how to identify PEs: it suffices to find a set
of concurrent ECs satisfying suitable technical conditions. We thus need a
technique for efficiently computing the binary concurrency relation ‖ on
ECs.

This section discusses a method to do this incrementally, i.e., by extending
‖whenever the unfolding grows by the insertion of new ECs. Such extension
will be possible thanks to the inductive characterization of ‖ that Prop. 3 and
Prop. 4 provide.

Again, it shall be useful to contrast our approach with that for ordinary
Petri nets. Let e be the last event appended to the unfolding prefix of an
ordinary Petri net; let X := •e be its set of pre-conditions, and let c be a
condition in the postset of e. One can show [ER99] that c is concurrent to

• any other condition in e•,
• any other condition c′ from the prefix if c′ is concurrent to every condi-

tion in X, and
• no other condition among those currently in the prefix.

This characterization is at the heart of efficient unfolding construction for
ordinary nets. It gives rise to a dynamic programming algorithm to com-
pute concurrency: whenever c is appended to the prefix and we want to
compute whether it is concurrent to any other c′, we reuse the concurrency
information between c′ and conditions in X to compute the answer.

This characterization is not correct for c-nets, even when lifted to ECs.
Consider Fig. 12 (b) and let

ρ := 〈c6, {e1, e3}〉
ρ′ := 〈c5, {e1, e2}〉.

be two ECs in that unfolding prefix. It should be clear that ρ 6 ‖ ρ′, as
{e1, e3} # {e1, e2}, violating (29). Now, ρ is a generating EC, whose history
{e1, e3} was constructed, in terms of Prop. 2, using

ρ̂ := 〈c3, {e1}〉.
However ρ̂ ‖ ρ′, which contradicts the above characterization. Intuitively,
the problem is that ρ′ contains an event, e2, that reads, without consum-
ing, a condition in •e3, namely c3, and such event is not included in ρ̂. For
computing the concurrency relation ‖, we must therefore introduce an addi-
tional condition ensuring that such events are taken into account correctly.

The following two results show how to achieve this. Proposition 3 deals
with generating and reading conditions, and Prop. 4 with compound condi-
tions.

Proposition 3 (updating concurrency). Let 〈e, H〉 ∈ pe(E) be a PE of E and
Xp, Xc its sets of ECs as per Prop. 1 or Prop. 2. Let

Yg := e• × {H} ρ := 〈c, H〉 ∈ Yg ∪Yr,

Yr := e× {H} ρ′ := 〈c′, H′〉 ∈ E
be the sets of generating and reading ECs produced by 〈e, H〉 and two ECs, the
second one, ρ′, from E . Then ρ ‖ ρ′ holds iff

ρ′ ∈ Yg ∪Yr ∨
(
c′ /∈ •e ∧ •e ∩ H′ ⊆ H ∧ ∀ρ̂ ∈ Xp ∪ Xc : (ρ̂ ‖ ρ′)

)
.

Before we proceed with the proof, let us put forward the intuition. In the
above statement 〈e, H〉 is a possible extension of the EP E , which sooner
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or later will be added to E by Algorithm 1. When that happens, all ECs in
Yg ∪Yr will be included in E as well, and one needs to compute whether they
are concurrent to any other EC already present in E . We thus characterize
whether ρ ‖ ρ′ holds for any ρ in Yg ∪Yr and any arbitrary ρ′ in E .

Proof. We prove both directions. From left to right, assume ρ ‖ ρ′ holds and
ρ′ /∈ Yg ∪ Yr holds as well. Since ¬(H # H′), there exists a configuration C
such that H v C and H′ v C.

1. Clearly, c′ /∈ •e is implied by c′ ∈ cut(H ∪ H′).
2. Let e′′ be an event in •e ∩ H′. Then e′′ ↗ e. Since ¬(H # H′), and due

to Rmk. 5, e′′ cannot be in H′ \ H, so e′′ ∈ H.
3. Let ρ̂ := 〈ĉ, Ĥ〉 ∈ Xp ∪ Xc be an arbitrary EC used to construct 〈e, H〉.

Then Ĥ v H v C, therefore ¬(Ĥ # H′). Moreover c′ ∈ cut(Ĥ ∪ H′), as
otherwise there would exist ê ∈ Ĥ that consumes c′, which would con-
tradict c′ ∈ cut(H ∪ H′). It remains to show that ĉ ∈ cut(Ĥ ∪ H′). Let
e′ be the single event such that H′ ∈ Hist(e′). For a proof by contradic-
tion, assume that there is e′′ ∈ H′ such that ĉ ∈ •e′′. We will show in
the sequel that e /∈ H′. This implies that e 6= e′, and also that either (5)
or (6) holds between e and e′′, so necessarily e ↗ e′′, with e ∈ H \ H′

and e′′ ∈ H′. In turn, by Rmk. 5, this means that H # H′, a contradic-
tion. So we want to show that e /∈ H′. We proceed by contradiction.
Assume that e ∈ H′. Then either H′[[e]] = H or not. If H′[[e]] = H, then
by (22) H v H′. But then because 〈e′, H′〉 ∈ E and using (28), this
means that 〈e, H〉 ∈ E , a contradiction to the fact that 〈e, H〉 is a PE
of E . Otherwise, if H′[[e]] 6= H, then Lemma 5 implies that H′[[e]] # H.
Since H′[[e]] v H′, this implies that H # H′, by Lemma 2. This is a
contradiction to ρ ‖ ρ′.

This completes the left-to-right direction. For the opposite one, we show
that if the right-hand side of Prop. 3 holds, then ρ ‖ ρ′ holds as well.

Suppose ρ′ ∈ Yg ∪ Yr. Then H′ = H, so ¬(H # H′). Moreover, since
c, c′ ∈ e ∪ •e, and H is a history for e, we have c, c′ ∈ cut(H). Therefore,
ρ ‖ ρ′ as desired.

Let us now assume that the right-hand part of the disjunction holds and
that ρ ‖ ρ′ does not hold. Then either H # H′ or c, c′ /∈ cut(H ∪ H′).

1. If H # H′, then (i) either there exists e1 ∈ H, e2 ∈ H′ \ H with e2 ↗ e1
or (ii) e1 ∈ H \ H′, e2 ∈ H′ with e1 ↗ e2. In either case, e1 = e must
hold, as if it were not the case, then e1 would be in H \ {e}, and then
then ρ̂ 6 ‖ ρ′ for some ρ̂ ∈ Xp ∪ Xc.

(i) There are three cases for e2 ↗ e.
• If e2 < e, then e2 ∈ H because H is causally closed, which

contradicts e2 ∈ H′ \ H.
• If e2 ∩ •e 6= ∅, then again e2 ∈ H because •e ∩ H′ ⊆ H.
• If •e2 ∩ •e 6= ∅, then clearly ρ′ 6 ‖ ρ̂ for some ρ̂ ∈ Xp.

(ii) There are three cases for e↗ e2.
• If e < e2, then H′ consumes all tokens from •e, so ρ′ is not

concurrent with any element of Xp.
• If e ∩ •e2 6= ∅, then ρ′ is not concurrent with some element

of Xc.
• If •e ∩ •e2 6= ∅, see (i).
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2. If c′ /∈ cut(H ∪ H′), then there exists e1 ∈ H with c′ ∈ •e1. If e1 6= e,
we would get ρ̂ 6 ‖ ρ′ for some ρ̂ ∈ Xp ∪ Xc. But if e1 = e, then c′ ∈ •e,
contradicting our assumption.

3. If c /∈ cut(H∪H′), then there exists e1 ∈ H′ with c ∈ •e1. If ρ ∈ Yg, then
H′ consumes all of •e; if ρ ∈ Yr, then H′ consumes some element of e.
In either case, we get non-concurrency between ρ′ and some element
of Xp ∪ Xc.

As a complement to Prop. 3, the following result allows to compute the
concurrency relation for compound conditions.

Proposition 4 (updating concurrency - compound). Let

ρ1 := 〈c, H1〉 ρ2 := 〈c, H2〉 ρ := 〈c, H1 ∪ H2〉
be ECs verifying ¬(H1 # H2), and ρ be a compound EC. For any EC ρ′ it holds
that

ρ ‖ ρ′ iff ρ1 ‖ ρ′ ∧ ρ2 ‖ ρ′

Proof. Let H := H1 ∪ H2 be the history in ρ and let ρ′ := 〈c′, H′〉.
From left to right, assume, for a contradiction, that ρ ‖ ρ′ and w.l.o.g.

ρ1 6 ‖ ρ′. Then one of the four statements in Rmk. 9 must be false:

1. There is e1 ∈ H′ and e2 ∈ H1 \ H′ verifying e2 ↗ e1. As e2 ∈ H \ H′,
we have H # H′, a contradiction to ρ ‖ ρ′.

2. There is e1 ∈ H1 and e2 ∈ H′ \ H1 verifying e2 ↗ e1. As H1 ⊆ H, we
have e1 ∈ H. Regarding e2, we have two cases: either e2 /∈ H or e2 ∈ H.
Assuming the former immediately leads us to the contradiction H #
H′. Assuming e2 ∈ H = H1 ∪ H2 leads to e2 ∈ H2 \ H1. In turn, this
implies H1 # H2, a contradiction to our hypothesis.

3. There is e ∈ H1 such that c′ ∈ •e. Then e ∈ H and H also consumes c′,
a contradiction to ρ ‖ ρ′.

4. There is e ∈ H′ such that c ∈ •e. This is a contradiction to ρ ‖ ρ′.

From right to left, assume ρ1 ‖ ρ′, ρ2 ‖ ρ′, and by contradiction ρ 6 ‖ ρ′. We
consider the four cases of Rmk. 9:

1. There exist e1 ∈ H and e2 ∈ H′ \ H verifying e2 ↗ e1. Then either
e1 ∈ H1, and H1 # H′ holds, or e1 ∈ H2 and H2 # H′ holds. In any case
we reach a contradiction to our hypothesis.

2. There exist e1 ∈ H′ and e2 ∈ H \ H′ verifying e2 ↗ e1. Same argument
as before, regarding e2 instead of e1.

3. There exists e ∈ H such that c′ ∈ •e. Either e ∈ H1 and ¬(ρ1 ‖ ρ′) or
e ∈ H2 and ¬(ρ2 ‖ ρ′). In any case we reach a contradiction to our
hypothesis.

4. There exists e ∈ H′ such that c ∈ •e. This is a contradiction to ρ1 ‖
ρ′.

3.9 unique possible extensions

Section 3.7 shows how possible extensions are constructed, in both lazy and
eager fashions. Essentially, a history H for an event is constructed by taking
generating histories for the conditions in e, while for the conditions in •e one
takes a generating history and optionally some reading histories. In the eager
case, the latter are combined to one single compound history.
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Figure 16: The characterization in § 3.7 allows multiple constructions of the
enriched event 〈e, {e1, . . . , en, e}〉.

The optionality of the reading histories means that, in some cases, the
same history H may be constructed in different ways, by combining differ-
ent sets of ECs. Consider the unfolding in Fig. 16. Condition c has n + 1
different reading histories: H0 := ∅, H1 := {e1}, . . . , Hn := {e1, . . . , en},
while c′ has one single history Hn. Notice that we have 〈c, Hi〉 ‖ 〈c′, Hn〉 for
all i = 0, . . . , n. Thus, there exists a multitude of possibilities to construct the
enriched event 〈e, Hn ∪ {e}〉: there are 2n collections satisfying Prop. 1 and
n + 1 collections for Prop. 2.

In the following, we discuss how to remove this ambiguity, i.e., how addi-
tional constraints can be inserted into Prop. 1 or Prop. 2 so that every tuple
〈e, H〉 can be obtained from a unique collection of ECs. Roughly, the idea is
simple: if one element of Xp ∪Xc contains an event e′ that reads from c ∈ •e,
then that event must be contained in a reading or compound condition for c
included in Xp. In our example, this means we need to take all reading his-
tories of c. That is, the unique collection associated to 〈e, Hn ∪ {e}〉 in the
lazy method would be the sets

Xc := ∅ (42)

Xp := {〈c′, Hn〉, 〈c, ∅〉, 〈c, H1〉, . . . , 〈c, Hn〉}. (43)

Lazy would refuse any other pair of sets where Xp does not contain some
〈c, Hi〉, for i = 1, . . . , n. Likewise, the eager method would construct a com-
pound EC that includes all n reading histories of c, giving rise to the follow-
ing associated sets:

Xc := ∅ (44)

Xp := {〈c′, Hn〉, 〈c, H1 ∪ . . . ∪ Hn〉}. (45)

In both lazy and eager mode, this requires to compute an additional re-
lationship between ECs. We recall how this is done in the lazy method and
present a conceptually simpler solution for the eager method.

3.9.1 Lazy Approach: Subsumption

The lazy approach of [BBC+10] deals exclusively with generating and read-
ing histories, and uses the notion of subsumption:

Definition 12 (subsumption). [BBC+10] Let H′ be a history of some e′. Let
ρ := 〈c, H〉 be a generating or reading EC and ρ′ := 〈c′, H′〉 be a reading EC, with
c′ ∈ e′. We say that ρ subsumes ρ′, written ρ ∝ ρ′ if e ∈ H, c′ ∈ cut(H), and
H′ = H[[e′]].

In other words, the subsuming condition ρ includes H′ and reads but
never consumes c′. For instance, in Fig. 16, we have that 〈c′, Hn〉 ∝ 〈c, Hi〉,
for all i = 1, . . . , n.

A suitable closeness condition involving subsumption can help in mod-
ifying Prop. 1 to provide a unique characterization of PEs. Proposition 5
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characterizes enriched events using all conditions (30) to (35) from Prop. 1,
and adds one new condition, (46), ensuring that the pair of sets Xp, Xc is
unique. When applied, e.g., to the enriched event 〈e, Hn ∪ {e}〉 in Fig. 16, it
only accepts Xp, Xc as defined in (42) and (43). Indeed, a set Xp which does
not contain, e.g., 〈c, H1〉 would be rejected by (46): 〈c′, Hn〉 subsumes 〈c, H1〉,
and the ancestor 〈c, H1〉↑ = 〈c, ∅〉 is in Xp, due to (33). So 〈c, H1〉 needs to
be also in Xp. In [BBC+10], any pair of sets Xp, Xc satisfying (46) is said to
be subsumption-closed.

This new condition, (46), is the technical condition that we removed from
the Lemma 1 of [BBC+10] to make Prop. 1, see the beginning of § 3.7.1
for a detailed explanation. Thus Prop. 1 plus (46) (roughly) corresponds
to Lemma 1 in [BBC+10]. The next proposition additionally states that the
collections Xp, Xc are unique for each enriched event, which was not stated
in [BBC+10], and provides a proof (no proof was given in [BBC+10] and we
are not aware of any publication containing them, except [BBC+12]).

Proposition 5 (unique lazy extensions). The pair 〈e, H〉 is an enriched event iff
there exist sets Xp, Xc of ECs satisfying (30) to (35) and additionally

• for any ρ ∈ Xp ∪ Xc, if ρ ∝ ρ′ and ρ′↑ ∈ Xp, then ρ′ ∈ Xp. (46)

Moreover, for any enriched event 〈e, H〉 there exists exactly one pair of sets Xp, Xc
satisfying (30) to (35) and (46).

Proof. The “iff” part follows almost directly from Prop. 1. We just need to ob-
serve that any collection that does not satisfy (46) can be made subsumption-
closed by adding all subsumed ρ′ according to (46). Observe that such addi-
tions never violate any condition in Prop. 1.

It remains to show the uniqueness of the pair Xp, Xc w.r.t. 〈e, H〉. Let
X′p, X′c be another pair of sets of ECs satisfying (30) to (35) and (46) for
〈e, H〉. We show in the sequel that Xp ⊆ X′p and Xc ⊆ X′c. Once done, by
symmetry, both collections must coincide.

Let ρ := 〈c, Ĥ〉 ∈ Xp ∪ Xc be an EC. We distinguish two cases. First, let
ρ be a generating EC. By (33) there is another generating EC ρ′ = 〈c, Ĥ′〉 ∈
X′p ∪ X′c. Because Ĥ and Ĥ′ are either empty or histories of the same event
in H, by (22), it holds that both evolve to H and so ρ̂ ‖ ρ̂′. Then, by Lemma 5,
ρ = ρ′ ∈ X′p ∪ X′c.

Second, let ρ be a reading EC, i.e., c ∈ •e and Ĥ is the history of some
ê ∈ •e. Since ê ∈ H, there is in X′p ∪ X′c some other ρ′ := 〈c′, Ĥ′〉 ∈ X′p ∪ X′c
that contains ê, i.e., ê ∈ Ĥ′. Of course, c and c′ do not need to be the same
condition. Now, clearly c ∈ cut(Ĥ′), as otherwise Ĥ′ would consume c ∈ •e.
Therefore, ρ′ subsumes the reading EC of c with the history of ê in Ĥ′. That
is, ρ′ ∝ 〈c, Ĥ′[[ê]]〉 =: ρ′′. Moreover, it is easy to see that ρ′′↑ ∈ X′p and thus
the subsumption closure property (46) of X′p, X′c leads us to conclude that
ρ′′ ∈ X′p. To conclude, observe that Ĥ′[[ê]] v Ĥ′ v H and Ĥ v H, and thus
by Lemma 5, Ĥ′[[ê]] = Ĥ, since they are both histories of event ê. Therefore
ρ = ρ′′ ∈ X′p ∪ X′c.

It also suggests to compute and maintain not only the concurrency rela-
tion ‖, but also the subsumption relation ∝ during the construction of the
enriched prefix. To do this, one solution is investigating an inductive char-
acterization that could allow to dynamically update the relation when new
ECs are included in the enriched prefix, in a similar fashion to Prop. 3. This
is done in Prop. 6, where ρ plays the role of that new EC.
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Proposition 6 (updating subsumption). [BBC+10] Let 〈e, H〉, Xp, Xc, Yg, Yr,
ρ, and ρ′ be as in Prop. 3, but such that Xp, Xc and 〈e, H〉 satisfy Prop. 5. Then
ρ ∝ ρ′ iff

ρ′ ∈ Yr ∨ (∃ρ′′ ∈ Xp ∪ Xc : ρ′′ ∝ ρ′ ∧ ρ ‖ ρ′)

We finish this section with an additional result. In Prop. 3 we gave an
inductive characterization of ‖. In [BBC+10], a different inductive character-
ization that uses the subsumption relation has been given too. Since they
characterize the same relation, both are obviously equivalent. It it still natu-
ral to ask how the technical conditions of both relate.

We start recalling the characterization from [BBC+10]. Let 〈e, H〉, Xp, Xc,
Yg, Yr, ρ, and ρ′ be as in Prop. 6. Lemma 2 in [BBC+10] says that ρ ‖ ρ′ iff
either ρ′ ∈ Yg ∪Yr, or

• c′ /∈ •e, and
• for all ρ̂ ∈ Xp ∪ Xc it holds that ρ̂ ‖ ρ′, and
• if ρ′ ∝ ρ′′ and ρ′′↑ ∈ Xp, then ρ′′ ∈ Xp. (47)

The phrasing of Lemma 2 here is actually different than in [BBC+10], due
to the fact that ‖ is reflexive for us but defined as an irreflexive relation
in [BBC+10]. The careful reader may quickly check that both statements are
equivalent. Notation in [BBC+10] is also quite different.

The main difference between Prop. 3 and the above characterization is
that the technical condition

•e ∩ H′ ⊆ H (48)

from Prop. 3 is substituted by (47). These two conditions should in principle
be equivalent, and Prop. 7 confirms that this is the case.

Proposition 7 (concurrency vs. subsumption). Let 〈e, H〉 ∈ pe(E) be a PE of
E and Xp, Xc its sets of ECs as per Prop. 5. Let

Yg := e• × {H} ρ′ := 〈c′, H′〉 ∈ E
Yr := e× {H}

be the sets of generating and reading ECs produced by 〈e, H〉 and any EC ρ′ from
E satisfying

ρ′ /∈ Yg ∪Yr and c′ /∈ •e and ∀ρ̂ ∈ Xp ∪ Xc : (ρ̂ ‖ ρ′).

Then, the statements (47) and (48) are equivalent.

Proof. From (48) to (47), let e′′ be in •e ∩ H′, i.e., e′′ ∈ H′ and there is c1 ∈
•e ∩ e′′. Let ρ′′ := 〈c1, H′[[e′′]]〉 and note that ρ′ does not consume c1, so
by definition ρ′ ∝ ρ′′. Let ρ1 = 〈c1, H1〉 ∈ Xp be the generating condition
associated with c1 in Xp. Denote ρ′′↑ =: 〈c1, H′′1 〉. Recall that ρ1 ‖ ρ′ implies
the existence of a configuration C such that H1 v C and H′′1 v H′[[e′′]] v
H′ v C. Therefore ¬(H′′1 # H1), and thus, by Lemma 5, H′′1 = H1. Therefore,
ρ1 = ρ′′↑ and thus, by (47) we have ρ′′ ∈ Xp and hence e′′ ∈ H.

From (47) to (48), suppose that ρ′ ∝ ρ′′ where ρ′′ := 〈c1, H′′1 〉, and H′′1 :=
H′[[e′′]] for some e′′ ∈ H′. Suppose also that ρ1 := 〈c1, H1〉 := ρ′′↑ and
ρ1 ∈ Xp. Now c1 ∈ •e ∩ e′′, and by (7), one of the general assumptions
in p. 18, we have that •e ∩ e = ∅, and so e′′ 6= e. But e′′ ∈ •e ∩ H′ and
by (48) we get e′′ ∈ H, so there must be some ρ2 = 〈c2, H2〉 ∈ Xp ∪ Xc
with e′′ ∈ H2. By assumption, ρ2 ‖ ρ′, so there exists some configuration
C such that H2[[e′′]] v H2 v C and H′′1 = H′[[e′′]] v H′ v C. This implies
¬(H2[[e′′]] # H′′1 ), hence by Lemma 5 they are equal, so by definition ρ2 ∝ ρ′′.
Since Xp, Xc are subsumption-closed, we have ρ′′ ∈ Xp, as desired.
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3.9.2 Eager Approach: Asymmetric Concurrency

We now show how possible extensions can be made unique in the eager
approach. In the lazy case, the concept of subsumption was used to achieve
this. Recall the intuition behind it: if one element of Xp ∪ Xc contains an
event e′ that reads from some c ∈ •e, then that event must be contained in
a reading condition for c included in Xp. For the eager case, this idea must
be adapted to compound conditions, where the history of c may be a union
of several of its readers. In this case, we demand that at least those readers
of c contained elsewhere in Xp ∪ Xc are included in the (compound) history
chosen for c in Xp.

We introduce a new relation between ECs that captures this intuition. It
is a refinement of ‖ that we call asymmetric concurrency (//). It turns out that
unique possible extensions can be characterised using only this relation.

Definition 13 (asymmetric concurrency). For any two ECs ρ := 〈c, H〉 and
ρ′ := 〈c′, H′〉, we say that ρ is asymmetrically concurrent to ρ′, written ρ // ρ′,
iff

ρ ‖ ρ′ and c ∩ H′ ⊆ H. (49)

Notice that // is an asymmetric relation. For instance, in Fig. 16 we have
c ∩ H1 ⊆ H2 but c ∩ H2 = {e1, e2} 6⊆ H1. Consequently 〈c, H2〉 // 〈c, H1〉
holds but 〈c, H1〉 // 〈c, H2〉 is false.

Observe how asymmetric concurrency can be used to satisfy the intuition
stated at the beginning of this section. By asking that ρ // ρ′ for every ρ ∈ Xp
and every ρ′ ∈ Xp ∪ Xc, one is indeed asking that all events that read the
preset of e and are included in some history ρ′ in Xp ∪ Xc are also included
in ρ as well.

We will use this fact in Prop. 9 to produce a unique characterization of
PEs, but first we need to establish a relation between ‖ and // for generating
conditions. The following technical result will be necessary later.

Proposition 8 (concurrency vs asymmetric concurrency). For ECs ρ, ρ′, if ρ
is generating then ρ ‖ ρ′ iff ρ // ρ′ or ρ′ // ρ.

Proof. Let ρ := 〈c, H〉 and let ρ′ := 〈c′, H′〉. We only need to prove the direc-
tion from left to right, the other trivially follows from Def. 13. So suppose
by contradiction that ρ ‖ ρ′ and neither ρ // ρ′ nor ρ′ // ρ. Thus, there exist
e1 ∈ (c ∩ H′) \ H and e2 ∈ (c′ ∩ H) \ H′. So H is not empty, and it is in fact
the history of some event e ∈ •c. Therefore e <i e1, so e must be in H′. More-
over, e2 ∈ H \ H′, so e2 6= e and e2 ↗+ e. This means H # H′, contradicting
ρ ‖ ρ′.

We can now state a unique characterization of PEs suitable for the eager
approach. This results shows that it is possible to entirely characterize PEs
using only //.

Proposition 9 (unique eager extensions). The pair 〈e, H〉 is an enriched event
iff there exist sets Xp, Xc of ECs satisfying

• h(Xp) = •t and h(Xc) = t, with h(e) = t; (50)
• Xp contains arbitrary ECs; (51)
• Xc contains only generating ECs; (52)
• Xp ∪ Xc contains exactly one EC for each c ∈ (•e ∪ e); (53)
• ρ // ρ′ holds for all ρ ∈ Xp and all ρ′ ∈ Xp ∪ Xc; (54)
• either ρ // ρ′ or ρ′ // ρ holds for all ρ, ρ′ ∈ Xc; (55)
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• finally, H = {e} ∪⋃〈c,H′〉∈Xp∪Xc H′. (56)

Moreover, for any enriched event 〈e, H〉 there exists exactly one pair of sets
Xp, Xc satisfying (50) to (56).

Proof. The “iff” follows almost directly from Prop. 2 and Prop. 8. In partic-
ular, properties (54) and (55) imply that ρ ‖ ρ′ holds for all ρ, ρ′ ∈ Xp ∪ Xc,
i.e., they imply (40). Moreover, let Xp, Xc be some collection satisfying the
conditions of Prop. 2 but not Prop. 9. Then there are ρ1 = 〈c1, H1〉 ∈ Xp and
ρ′ = 〈c2, H2〉 ∈ Xp ∪ Xc with ρ1 ‖ ρ2 and some e′ ∈ (c1 ∩ H2) \ H1. We have
H2[[e′]] v H and therefore ¬(H1 # H2[[e′]]). Thus ρ1 can be replaced with
the compound condition ρ′1 = 〈c1, H1 ∪ H2[[e′]]〉 in Xp. This process can be
repeated until (54) is satisfied.

It remains to show uniqueness. Suppose there exists another collection
X′p, X′c for the same enriched event 〈e, H〉. There must be some ρ1 = 〈c, H1〉 ∈
Xp ∪ Xc and ρ2 = 〈c, H2〉 ∈ X′p ∪ X′c with H1 6= H2 and w.l.o.g. some
e1 ∈ H1 \ H2. Since e1 ∈ H, there must be some ρ3 = 〈c′, H3〉 ∈ X′p ∪ X′c
such that e1 ∈ H3.

If c ∈ •e and e1 ∈ c, then ρ2 ∈ Xp. But ρ2 // ρ3 would be violated.
So let c ∈ e ∪ •e. If e1 ∈ •c, then H2 would not be a history of c. The

final possibility is that e1 ↗+ e′ for some e′ ∈ •c ∪ c) and e′ ∈ H2. But then
H2 # H3.

Let us now briefly discuss the practical computation of //. First, observe
that ρ // ρ’ implies ρ ‖ ρ′, by definition. Therefore ‖ is an overapproximation
of //, which enables the use of the following idea. We use Prop. 3 and Prop. 4

to compute and store ‖. Then we check whether c∩H′ ⊆ H and c′ ∩H ⊆ H′

hold, on a single exploration of the events in H. The data structure used to
store ‖ is slightly augmented with two bits for each pair in ‖. Such bits store
whether ρ // ρ′ and ρ′ // ρ holds. More details are discussed in § 7.1.3,
on p. 113.

Because this method is available and seems to perform well in practice,
we did not investigate an inductive characterization of // in the style of
Prop. 3.

3.10 discussion : lazy vs eager approach

In order to discover possible extensions of the form 〈e, H〉, both approaches
consider combinations of generating and reading histories for conditions
c ∈ •e.

Consider Prop. 1. For every possible extension, the lazy approach takes
one generating and possibly several reading histories for c, all of which must
be concurrent. If the events in c have many different histories, or c is large,
then many different combinations need to be checked for concurrency.

The eager characterization in Prop. 2 takes exactly one EC of arbitrary
type, including compound, for c. A compound history is a set of concur-
rent reading histories, cf. Def. 9; thus a compound condition represents pre-
computed information needed to identify possible extensions. In this sense,
the eager and the lazy approach can be thought of as different time/space
tradeoffs.

We consider two examples in which eager beats lazy and vice versa. In
Fig. 17 (a), condition c has a sequence of n readers and hence n reading or
compound histories {e1, . . . , ei}, for i = 1, . . . , n and one empty generating
history. For each history H of c′, eager simply combines H with the n + 1
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Figure 17: Good examples for the eager (a) and the lazy (b) approach.

histories for c, while lazy checks all 2n subsets of e1, . . . , en only to find these
n+ 1 compound histories. This effect is actually increased if c′ has many his-
tories, eager thus becomes largely superior. Of course, an intelligent strategy
may help lazy to avoid exploring all 2n subsets one by one. However, even
with a good strategy, lazy still has to enumerate at least the same combi-
nations as eager; and since the problem of identifying the useful subsets is
NP-complete [Hel99a], there will always be instances where lazy becomes
inefficient, whatever strategy is employed.

On the other hand, consider Fig. 17 (b). Again, c has n concurrent readers,
which this time yields 2n histories for c. Suppose that h(c) is an input place
of some transition t. Now, if t also has h(c′) and h(c′′) in its preset, then
no t-labelled event e that consumes c′ and c′′ will ever be generated in the
unfolding, and all histories of c are effectively useless if h(c) has no other
transition than t in its postset. Since those compound conditions also appear
in the computation of the concurrency relation, they become a liability in
terms of both memory and execution time. The lazy approach does not
suffer from this problem here.

Both approaches therefore have their merits, and we implemented them
both. We shall report on experiments in Ch. 7.

3.11 memory usage

We shall briefly discuss the memory usage arising from the methods pro-
posed in this section. There are two major factors determining memory con-
sumption:

• As some of our examples show, notably Fig. 9 (a) and Fig. 17 (b), a
condition in the unfolding may have a number of histories exponential
in the number of events reading from it. Thus, the memory usage for
creating a finite unfolding prefix may be exponentially larger than the
unfolding prefix that is eventually produced.

• Moreover, the memory needed to store the binary relations between
ECs such as ‖, ∝, and // is quadratic on the number of these enriched
conditions, in the worst case.

One could ask whether these memory blowups are really necessary. Let
us first discuss this question with regard to the second point. In a concrete
implementation, the binary relations ‖, ∝, and // could either be stored
explicitly, at the cost of quadratic memory overhead, or decided individ-
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ually for each pair whenever necessary. These two approaches have been
discussed in § 3.5, and referred under the name of, respectively, concurrency
relations and backwards exploration. The second approach requires, for each
query to the relation, to explore the prefix using the respective definitions,
thus incurring higher computation time. We initially implemented the sec-
ond approach [Rod10]. The running times were such that only small unfold-
ings with a few hundred events could be produced in reasonable time. We
therefore chose to store the binary relations explicitly.

In [RS13a], we have introduced an improved algorithm to perform the
backwards exploration. Essentially, it tries to reduce both the fragment of
the prefix to be explored, and the number of times it is explored. Although
the approach only works for ordinary unfoldings, and the prototype imple-
mentation was certainly limited, its performance was quite promising when
compared to that of stored concurrency relations.

Histories, on the other hand, have the twofold purpose of allowing to
identify both cutoff events and new PEs, as in § 3.7. In principle, one could
imagine an additional time/space trade-off in which not only the concur-
rency relation but even the histories themselves are constructed on demand
whenever one needs to cutoff the prefix or compute PEs. The would lead to
an algorithm which consumes only linear space on the size of the unfold-
ing prefix. Due to the unsatisfactory results with the backwards exploration
approach, we did not consider this idea.

In any case, the memory usage is asymptotically the same as for the PR-
encoding. Section 7.1.1, on p. 112, contains some hints on how to store histo-
ries efficiently, and § 7.4, on p. 119, provides data on actual memory usage
on several examples.

3.12 conclusion

We have made theoretical contributions to the computation of contextual
unfoldings, opening the way to their practical use for verification. Our im-
plementation of the methods introduced in this chapter will be presented in
Ch. 7, together with experimental results and evaluations. Those will show
that these methods are practical and outperform existing techniques on a
wide number of cases.

Our main contribution is the eager approach to compute PEs. Technically,
we have proposed to associate histories to conditions of the prefix. We pre-
sented a concurrency relation on conditions enriched with such histories,
showed how it can be used to characterize PEs (eager method), and gave an
inductive characterization of this relation, thus enabling the use of efficient
algorithms to maintain the relation as the construction of the prefix pro-
gresses. Next, we refined the characterization of PEs using asymmetric con-
currency. This novel notion simplifies the theoretical characterization w.r.t.
to existing results and has the practical benefit of not requiring an ad-hoc
algorithm for computing it.

Additionally, we compared our eager method to the lazy method, an-
other approach to computing PEs developed independently [BBC+10]. We
compared both and discussed their merits on theoretical cases.

Unfolding-based methods need two ingredients: an efficient technique for
constructing them, and efficient methods for analyzing the prefixes. We have
provided the first ingredient in this quest. In the next chapter, we show that
their succinctness helps in speeding up these analyses.
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Moreover, it would also be interesting to investigate a mix between eager
and lazy that tries to get the best of the two worlds. For instance, one could
start with the eager approach and switch (selectively for some conditions) to
lazy as soon the number of compound conditions exceeds a certain bound.
This, and other ideas, remain to be tested.



4R E A C H A B I L I T Y A N D D E A D L O C K C H E C K I N G

Model checking based on unfoldings conceptually happens in two steps.
First, one constructs an unfolding of the system; then one reduces the ver-
ification question to some analysis on the unfolding. A method to con-
struct contextual unfoldings was presented in the previous chapter. Here
we present a reduction of the coverability and deadlock-freeness problems
into SAT. We study a number of optimizations of the encoding. In Ch. 7, we
report on the impact of such optimizations and compare the performance
of our encoding to other deadlock-checking tools.

This chapter presents results of [RS12b].

4.1 introduction

McMillan introduced unfoldings as a method for verifying properties of
ordinary Petri nets. He showed that for a bounded net N, one can use a finite
unfolding prefix P to check certain properties of N such as reachability
of markings or deadlock-freeness. The publication of his work [McM93b]
triggered a large body of research on unfoldings, in particular on their use
for verification [McM95a; MR97; Hel99c; KK00; EH01; ES01].

Recall that given a finite complete prefix P of a bounded net N, decid-
ing deadlock-freeness, reachability, or coverability on N is NP-complete,
see [McM93b]. Consequently, previous works on deadlock-checking of or-
dinary nets have proposed reductions to different NP-complete problems:
McMillan [McM93b; McM95b] employed a branch-and-bound method, Hel-
janko [Hel99d; Hel99c] a stable-models encoding, and Melzer and Römer
[MR97] used mixed integer linear programming, later improved by Kho-
menko and Koutny [KK00; KK07]. The technique used by Esparza and
Schröter [ES01] is an ad-hoc algorithm based on additional information ob-
tained while computing the unfolding.

The previous decade has seen the emergence of powerful SAT solving al-
gorithms. Programs like Minisat [ES03] employ advanced techniques such
as clause learning, 2-watch propagation schemes, etc. It is natural to profit
from these advances and reduce to SAT instead; all the more so because
unfoldings are 1-safe nets, so the marking of a place naturally translates to
a Boolean variable. Indeed, SAT solving has already been proposed for the
similar problem of model-checking merged processes [KKKV06], and [EH08]
gives an explicit SAT encoding for ordinary net unfoldings. However, we are
not aware of a publicly available tool that uses this idea. In this chapter, we
propose reachability and deadlock-freeness checking methods based on con-
textual unfoldings.

Our contributions are twofold: we investigate SAT-encodings of unfold-
ings, and we extend them to c-nets, proposing some optimizations. Building
on advantages of contextual unfolding, i.e., faster construction and smaller
size, we intend to produce faster verification methods. It is worth noting
that the smaller size of c-net unfoldings does not automatically translate to
an easier SAT problem, for the following reasons:

59
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1. The presence of read arcs may cause so-called cycles of asymmetric con-
flict. Thus, a SAT encoding requires acyclicity constraints, which are
not necessary for conventional unfoldings.

2. An event in a c-net unfolding can occur in multiple different execu-
tion contexts, called histories, and the constructions proposed in Ch. 3

require to annotate events with potentially many such histories. In
contrast, every event of an ordinary net unfolding has only one his-
tory. Some verification algorithms for ordinary nets rely on this fact
and do not easily adapt to c-nets.

In this chapter, we propose solutions for both problems. Our encoding does
not refer to the histories at all, and the effect of the acyclicity constraints can
be palliated by several strategies.

Our algorithms have been implemented in the tool Cna, integrated in the
Cunf Toolset, and will be experimentally evaluated in Ch. 7. The solving
times of the SAT instances generated by the tool are better than previous
approaches when the tool is applied to ordinary net unfoldings, and even
better when used on c-net unfoldings.

The chapter is structured as follows. In § 4.2 we discuss how unfoldings
can be used to check for deadlock and reachability. In, § 4.3, the core of
the reduction into SAT is presented. The detection of cycles of symmetric
conflict plays an important role in the problem we solve, § 4.4 discusses the
solution we propose. In §§ 4.5 to 4.7, we discuss the size of the encoding
and present optimizations to it. Conclusions are drawn in § 4.8.

4.2 using c-net unfoldings for verification

In this section, we illustrate why some existing verification approaches for
Petri net unfoldings do not adapt well to c-net unfoldings. In particular, we
show that existing deadlock-checking techniques based on ordinary unfold-
ings [McM95b; MR97; Hel99c; KK07] do not lift straight-forwardly to c-net
unfoldings. This will justify the completeness criterion considered in Ch. 3

for constructing unfolding prefixes.
We fix now notation for the rest of the chapter. Unless otherwise stated

we let N := 〈P, T, F, C, m0〉 be a finite, bounded c-net satisfying the general
assumptions in p. 18. We let UN := 〈〈B̃, Ẽ, G̃, D̃, m̃0〉, h〉 denote the full un-
folding of N and denote by E := 〈O, h, χ〉 an arbitrary enriched prefix for N.

Recall that a marking m of a net N is deadlocked if it does not enable any
transition of N. The deadlock-checking problem is to decide whether N has
at least one such marking.

In Ch. 3, we presented an algorithm for the construction of marking-
complete prefixes. Most of the existing deadlock-checking techniques based
on ordinary unfoldings rely on prefixes that are complete w.r.t. a notion
stronger than marking-completeness. We first lift this notion from ordinary
unfoldings to contextual ones.

Consider the unfolding prefixes that Algorithm 1 would construct if it
is modified to include all possible cutoff extensions in the prefix. Such ex-
tensions could be kept on a separate list and appended to the prefix after
the main loop has terminated. Modified in this way, Algorithm 1 would
produce an enriched prefix E that, besides being marking-complete, would
satisfy the following: if a reachable marking m of N enables a transition t,
then for any cutoff-free configuration C of E , if C reaches m, then there is an
event e in the prefix such that h(e) = t and e is enabled by cut(C). Let us
formalize this notion:
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Definition 14. Let Ecut be a set of enriched events contained in E . We call E
enable-complete w.r.t. Ecut if for every reachable marking m of N, there is a finite
configuration C ∈ conf (E) such that,

1. C is free of enriched events in Ecut, and
2. m = mark(C), and
3. for every event e of UN , if C ′ := C ∪ {e} is a configuration, then E contains

the enriched event 〈e, C ′[[e]]〉.

Conditions 1 and 2 ask that E stripped of Ecut is marking-complete; 1 and
3 enforce the property we mentioned before.

A confusing point is that the prefix is enable-complete w.r.t. a set of en-
riched events and not per se. Unfolding prefixes are obtained by pruning
the full unfolding UN at arbitrary points. Such pruning introduces cuts m̃
that artificially enable fewer events than h(m̃), the associated marking in N.
So any configuration with cutoffs may enable fewer events than its mark-
ing in N, and we need to restrict ourselves to configurations without cut-
offs. The definition is therefore relative. When restricted to ordinary nets,
enable-completeness coincides with the completeness criterion satisfied by
canonical prefixes [KKV03].

Remark 10. If E is enable-complete w.r.t. Ecut, then N has a reachable deadlocked
marking iff E has a configuration C free of enriched events in Ecut such that cut(C)
deadlocks.

Remark 10 is either directly [MR97; Hel99c; KK07] or indirectly [McM95b]
employed in existing deadlock-checking techniques for ordinary Petri nets.
Now, the problem with generalizing to c-nets any of these techniques is
that Rmk. 10 requires to reason about cutoffs, and therefore about histories.
Crucially, an unfolding prefix with O(n) events could have O(2n) histories.
Several approaches to overcome this are in principle possible, we discuss
them now, keeping in mind that our goal is to encode the deadlock-checking
problem into SAT. In the following, let E be an enable-complete enriched
prefix.

reasoning about histories . We could produce a SAT encodings that
explicitly handles the notion of history. Satisfying assignments of such for-
mulas would encode configurations free of enriched events from the set

E1 := {〈e, H〉 ∈ E : 〈e, H〉 is cutoff}.
While the approach would be sound, even with a compact representation
of histories such an encoding would probably be of exponential size on
the number of events in E . Clearly, this approach does not profit from the
additional compactness of c-net unfoldings.

approximating cutoffs by events . A second approach could be
based on the idea of transferring the notion of cutoff from enriched events
to events, so that the SAT encoding reasons only about events. Let us show
why this is a bad idea.

Events may have multiple histories, some of which are cutoffs while oth-
ers are not. Each event e can be found in exactly one of the following classes:

1. All feasible histories in Hist(e) are cutoffs.
2. Among the feasible histories in Hist(e), there is at least one cutoff and

one non-cutoff.
3. No feasible history in Hist(e) is a cutoff.
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Figure 18: (a) A safe c-net N; and (b) an unfolding prefix P for N.

Observe that we restrict the attention to only the feasible histories in Hist(e).
Clearly the SAT encoding would forbid any event in the first class from
being used in the satisfying configuration, and would allow all events in
the third. As for those in the second, we now show that either including
or forbidding them yields an unsound characterization of the deadlocked
markings.

Assume that we allow events of the second class to be present in the
satisfying configuration. This amounts to using the set

E2 := {〈e, H〉 ∈ E : e is in the first class}
of enriched events as cutoffs in Def. 14, i.e. not forbidding events in the
second class. Although encoding E2 in SAT is easy, as it does not require
information about histories, E is not enable-complete w.r.t. E2, as we show
below, and the resulting formula would incorrectly characterize the dead-
locked markings of N.

Consider the c-net show in Fig. 18 (a), we will use it to show that E is
not enable-complete w.r.t. E2. The c-net is free of deadlocks. An unfolding
prefix P is shown in Fig. 18 (b), the mapping h is given in parentheses.
Event e1 has two histories, H1 := {e1} and H2 := {e3, e1}. Now fix the size
strategy ≺M, defined in (26) as C ≺M C ′ iff |C| < |C ′|. According to the
framework of Ch. 3, both 〈e1, H1〉 and 〈e1, H2〉 are ≺M-feasible, but 〈e1, H2〉
is ≺M-cutoff while 〈e1, H1〉 is not. Indeed H2 leads to the same marking
{r, s} as 〈e2, {e2}〉 and {e2} ≺M H2. An event is shown in black if all its
feasible histories are cutoffs, i.e., if it belongs to the first class above. The
prefix in Fig. 18 (b) is marking-complete and also enable-complete w.r.t. E1
but not w.r.t. E2: consider the cut m̃ = {c3, c6}, which is deadlocked in P .
The configuration leading to m′ contains a cutoff, namely 〈e1, H2〉, but such
enriched event is not included in E2, because e1 is in the second class. As a
result, its marking is interpreted by Def. 14 as a faithful representative of a
marking of N, which is wrong, as h(m̃) = {r, s} enables transition t5 in N.

Alternatively, one could forbid all events in the second class. This corre-
sponds to using the set

E3 := {〈e, H〉 ∈ E : e is in the first or second class}
of enriched events as cutoff points in Def. 14. Now the problem is that E
stripped of E3 is not necessarily marking-complete, as Def. 14 asks. There is
thus no hope to achieving enable-completeness w.r.t. E3, which intuitively
forbids using too many enriched events.

additional layer of cutoffs . A third option could be extending
E with a further layer of infeasible enriched events. The resulting enriched
prefix would be computed in two steps: (i) saturating the prefix with all
histories arising from events already present on it; (ii) assuming that E ′N is
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the prefix computed on the previous step, one would extend E ′N with the
set

E4 := pe(E ′N)
The enriched prefix E ′′N resulting after the two steps would indeed be enable-
complete w.r.t. E4. Observe that by definition all events of E ′′N having histo-
ries in E4 have been added in step (ii), and all those histories are infeasible:
we now have a safe correspondence between cutoffs and events. As a result,
the SAT encoding would just need to forbid all such events. Although this
approach seems feasible, it has the disadvantage of requiring a potentially
larger (enriched) prefix.

using just marking-completeness . Another, perhaps simpler ap-
proach is simply relying on a marking-complete unfolding prefix. One can
just check if a configuration C represents a deadlocked marking by looking
at the transitions enabled by mark(C). Apart from being conceptually sim-
pler, the main advantages are that we do not need histories at all. Moreover,
according to Rmk. 8, the approach does not need a prefix with more events
than reachable markings exist in N. In the next section, we provide a SAT
encoding whose correctness relies on this idea.

Remark 11. Let P be a marking-complete prefix for N. Then N contains a deadlock
iff P has either a reachable marking m̃ such that h(m̃) is deadlocked.

4.3 sat-encodings of c-net unfoldings

In this section, we define two propositional formulas. The first one is satis-
fiable iff N has a reachable deadlocked marking, and the second iff it has
a reachable marking that covers a given set of places. Our encodings relies
on Rmk. 11 and requires a marking-complete unfolding prefix P . When
this encoding is restricted to ordinary nets, it essentially coincides with the
one given in [EH08, § 5.1.2]. We also give a number of optimizations of the
encoding. Most constraints that we give translate directly into CNF.

For the rest of the chapter, we fix a marking-complete unfolding prefix
P := 〈〈B, E, G, D, m̃0〉, h〉. Recall that additional notation has been fixed at
the beginning of previous section. The SAT problem is as follows: given
a formula φ of propositional logic, find whether there exists a satisfying
assignment that makes φ true. Our goal is to construct from P and a given
set M ⊆ P of places in N, propositional formulas

• φdead
P , satisfiable iff N has a deadlocked reachable marking;

• φmark,M
P , satisfiable iff N has a reachable marking m such that m(p) ≥ 1

for all p ∈ M.

Both formulas reason about reachable markings of N. Their satisfying as-
signments encode configurations of P that reach the requested markings.
Both formulas are defined over variables e for every event e ∈ E and p for
for every place p ∈ P, and have the form:

φdead
P := φconf

P ∧ φdis
P

φmark,M
P := φconf

P ∧ φcov,M
P

The first constraint φconf
P is present on both formulas, and enforces that any

satisfying assignment represents a finite configuration C. Constraints φdis
P

and φcov,M
P compute the marking mark(C) reached by the configuration and
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require, respectively, that mark(C) is deadlocked, or that it covers all places
in M.

Recall that a finite configuration C is a set of events, causally closed and
free of loops in the ↗C relation, see (17) to (19) in p. 24. For efficiency
reasons, we treat separately cycles in the symmetric and asymmetric conflict
relation, and define:

φconf
P := φcausal

P ∧ φ
sym
P ∧ φ

asym
P

Subformulae φcausal
P and φ

sym
P request C to be a causally closed set of events

that has no pair of events in symmetric conflict:

φcausal
P :=

∧
e∈E

e′∈•(•e∪e)

(e→ e′), φ
sym
P :=

∧
c∈C

AMO(c•),

where AMO(x1, . . . , xn) is satisfied iff at most one of x1, . . . , xn is satisfied1 (see
§ 7.2.2). The subformula φ

sym
P forbids symmetric conflicts, i.e., it ensures that

any two events e, e′ ∈ C satisfy ¬(e # e′). Recall that due to (6), symmetric
conflicts correspond to loops of length 2 in ↗. Constraint φ

asym
P forbids all

loops of asymmetric conflict not forbidden by φ
sym
P , as we detail in § 4.4.

The formula φdis
P characterizes the marking reached by C and asks for it

to be deadlocked. We define it as:

φdis
P :=

( ∧
c∈B

p= f (c)
{e}=•c

((
e∧

∧
e′∈c•
¬e′
)
→ p

))
∧
( ∧

t∈T

∨
p∈•t∪t

¬p
)

This constraint is a conjunction of two main subformulas. Recall that φconf
P

enforces any satisfying assignment to encode a configuration C. The left-
hand side of the main conjunction computes a (super)set of the places marked
by C. Intuitively, it says that any place p should be marked, i.e., variable p
should be true, if it labels at least one condition c such that •c is in C but
no event in c• is in C. The right-hand side subformula just asks that no
transition of the original net is enabled at the (superset of the) marking com-
puted by the left-hand side subformula. Notice that a variable p may be true
even if p /∈ mark(C). However, such an assignment can only serve to hide a
deadlock, so this encoding is safe.

For coverability, we want to check whether N has a reachable marking m
such that M ⊆ m, where M ⊆ P is given. We define constraint φcov,M

P as the
conjunction of two subformulas:

φcov,M
P :=

( ∧
p∈M

( ∨
f (c)=p

c
))
∧
( ∧

f (c)∈M

(
c→

( ∧
e∈•c

e∧
∧

e∈c•
¬e
)))

The first subformula ensures that for every place p in M, at least one condi-
tion labelled with p is marked. For any such condition, the second subfor-
mula constraints which events fire. If a condition c is chosen, then necessar-
ily •c must be in C and none of the events in c• can be in C. Observe that
the direction of the implication here and in φdis

P is the opposite. This yields
correct results in both cases.

4.4 asymmetric conflict loops

We now explain φ
asym
P , which ensures that ↗C is acyclic. As explained in

§ 2.1, we equate a relation with a directed graph in the natural way. Sym-

1 Note that quite frequently, the actual implementation of the AMO constraint will introduce
new auxiliary variables in φdead

P , as it is the case of the k-trees proposed in § 7.2.2.
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Figure 19: Partial unfolding of Dekker’s algorithm with asymmetric cycles.

metric conflicts form cycles of length 2 in ↗ and are efficiently handled by
the AMO constraints of φ

sym
P . In a Petri net, these are the only cycles that

can occur. However, in a c-net there may also be other kind of cycles. Recall
that the definition of ↗ considers three cases: (4), (5), and (6), the last one
being symmetric conflict. For convenience, we explicitly repeat the first two
cases. For events e, e′ ∈ E, define

e l e′ iff e• ∩ (•e′ ∩ e′) 6= ∅

e↗↗ e′ iff e ∩ •e′ 6= ∅ (57)

Indeed, observe that e l e′ holds (resp. e ↗↗ e′ holds) iff (4) holds (resp. (5)
holds) between e and e′.

In a c-net unfolding, every cycle of ↗ not involving events in symmetric
conflict is also a cycle in the relation

R := l∪↗↗. (58)

We show that these cycles occur naturally in well-known examples.
Consider Fig. 19, which shows the beginning of an unfolding of Dekker’s

mutual-exclusion algorithm [Ray86], where only some events of interest are
shown. In the beginning, both processes indicate their interest to enter the
critical section by raising their flag (events e1, f1). They then check whether
the flag of the other process is low (events e2, f2) and if so, proceed (e3) and
possibly repeat (e4, e5). If both processes want to enter the critical section
( f ′2), some arbitration happens (not displayed). Two conflict cycles in this
example are

e1 l e2 ↗↗ f1 l f2 ↗↗ e1

and

f1 l f ′2 ↗↗ e3 l e4 l e5 ↗↗ f1.

Several encodings have been proposed in the literature for acyclicity con-
straints, including transitive closure and ranks (see, e.g., [CGS09]). In the
ranking method, one introduces for each event e additional Boolean vari-
ables that represent an integer, the so-called rank of e, up to r, where r is
a large enough number. Then, for every pair (e, f ) ∈ R, one introduces a
clause of the form

(e∧ f)→ se, f

where se, f is a new variable that, if true forces the rank of e to be less than
the rank of f . This is enforced by an additional set of clauses that involve
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e1 ek

fk

...
f1

. . .

Figure 20: An occurrence net of size O(k) where |↗↗| = k2.

the ranks of e and f together with se, f . Naturally, these clauses are only
necessary if e and f are in the same SCC of R.

A lower bound for r is the length of the longest chain in↗ that does not
contain a cycle. However, finding whether any such chain of a given length
exists is already a NP-complete problem. A simple upper bound for r is the
size of the largest SCC of R.

If the ranks of events are represented in binary, the encoding involves
O(|R| log r) literals. Integers up to r can be encoded in binary by log r
Boolean variables. The clauses that enforce two rankings to be sorted involve
a number of literals linear on log r, and every edge of R requires one such
comparison. Alternatively, coding in unary the ranks yields an encoding of
size O(|R|r). We refer the reader to § 7.2.3 for an experimental evaluation
of the alternative encodings.

To further reduce the size of the encoding, observe the following. Let
n = O(|P|) be the size of the prefix, as defined in § 2.2, in p. 16. Observe
that |R| = O(n2), because |↗↗| = O(n2) even though |l| = O(n), as Fig. 20

illustrates. An straightforward application of the acyclicity encoding pre-
sented above to R produces a formula of size O(n2 log n), if ranks are coded
in binary. One can however use a trick to reduce to this to O(n log n), as we
explain now.

The idea is to reduce the O(n2)-explosion in ↗↗ introducing additional
nodes in the underlying graph. We explain it with an example, consider
the occurrence net in Fig. 20. Here one would substitute the k2 edges in
(the underlying graph of) ↗↗ by one new node, which represents the single
condition in the net, and 2k edges, k from the new node to all the events ei
and k reaching it from the events fi.

Another idea for reduction is to exploit the fact that C is causally closed
and that every cycle in R contains at least two edges stemming from ↗↗.
Consider the relation

R′ := {(e, g) : ∃ f , h : e↗↗ f ≤ g↗↗ h}. (59)

One can easily see that any causally closed set of events contains a cycle in R
iff it contains a cycle in R′, so one can ask for acyclicity of R′ instead of R.

On the other hand, R′ may actually contain more pairs than R, and com-
puting R′ may take quadratic time in |E|. So instead, we reduce the size of R
by a less drastic method that can run in linear time: An event e is eliminated
from R by fusing its incoming and outgoing edges in R only if (i) e is not
the source of a↗↗-edge and (ii) fusing the edges and eliminating e will not
increase the number of edges in R.

Figure 19 demonstrates another important point. The unfolding contains
two different cycles, both of which contain f1. Thus, all events in Fig. 19 be-
long to the same SCC in R. Indeed, we observe in our experiments that the
SCCs of R tend to be large, often composed of thousands of events, but con-
sist of many short, interlocking cycles. This suggests that an upper bound
for r better than the size of R, even after reduction, may still be feasible.
We therefore suggest another trick: first, check for deadlock or coverability
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Subformula Size Size

φcausal
P |E|q O(n)

φ
sym
P |B|pk O(n)

φ
asym
P (|G|+ |D|) log(|E|+ |B|) O(n log n)

φdis
P |B|(1 + p) + |T|q O(n)

φmark,M
P |B|+ |B|(1 + p) O(n)

Table 3: Size of φdead
P and φcov,M

P . See text for interpretation.

while omitting φ
asym
P from φdead

P or φcov,M
P altogether. This may result in false

positives, i.e., a set of events leading to the requested marking that is not ac-
tually reachable because it contains a cycle in↗. If the SAT solver comes up
with such a spurious solution, we repeat with φ

asym
P properly included. The

experiments concerning these points are discussed in § 7.2.3.

4.5 encoding size

In this section we examine the size of the formulas φdead
P and φcov,M

P . Al-
though not all the formulas given in § 4.3 are in CNF, they translate directly
to CNF, with the exception of φ

sym
P — for which we did not yet provide a

definition. For instance, φdis
P involves a conjunction of subformulas of the

form l1 ∧ . . . ∧ ln → l0 where all the li are literals. Each such subformula is
obviously equivalent to a clause of the form ¬l1 ∨ . . . ∨ ¬ln ∨ l0.

Table 3 presents the sizes of the different subformulas of our encodings,
i.e., the number of literals in each subformula when it is translated to CNF.
Sizes are given in terms of a constant k, which depends on the particular
implementation of the AMO constraints in φ

sym
P , and the three following

parameters depending on P :

q := max
e∈ E
|•e ∪ e| p := max

c∈ B
|c•| n := |B|+ |E|+ |G|+ |D|

It is almost immediate to see that all sub-constraints except φ
asym
P are linear

on the size n of the unfolding prefix P . An AMO constraint for m variables
can be implemented with a number of clauses and literals both linear on m,
as we show in § 7.2.2.

The size O(n log n) of φ
asym
P often dominates the size of the encodings,

although it can sometimes be completely omitted from it. Experiments con-
cerning this will be presented in § 7.5.

4.6 reduction of stubborn events for deadlock checking

In SAT solving, the value of a variable that is either known or has been
tentatively decided is propagated to simplify other clauses, see [SS96; ES03].
This process is referred as propagation or unit propagation. In this section,
we discuss an optimization that palliates a propagation problem of SAT
checkers when solving φdead

P . We also explain why such an optimization is
not applicable to φcov,M

P .
Consider the occurrence net shown in Fig. 21, where certain events have

been explicitly named (e1, e2, . . .) and only the label is given for conditions,
in parenthesis. If e1 fires, then nothing can prevent e2, e3, e4, and e5 from
firing. Thus, any configuration leading to a deadlock must either contain all
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Figure 21: Stubborn events.

five events or none of them. However, e1 is not guaranteed to fire due to the
white event that consumes from its context.

The formula φdead
P will consist of the following clauses for the named

events and conditions in Fig. 21; we assume that the black event at the right
is a cutoff (has no non-cutoff histories). For φcausal

P , we have the clauses
¬ej ∨ ei for 1 ≤ i < j ≤ 4 and ¬e5 ∨ e3 and ¬e5 ∨ e4. For φ

sym
P and φ

asym
P , no

clauses will be generated. The left-hand side of the main conjunction in φdis
P

will consist of the following clauses:

¬e1 ∨ e2 ∨ p1 ¬e2 ∨ e4 ∨ q1 ¬e3 ∨ e5 ∨ r1

¬e1 ∨ e3 ∨ p2 ¬e2 ∨ e3 ∨ q2 ¬e3 ∨ e4 ∨ r2

¬e1 ∨ e4 ∨ p3 ¬e4 ∨ e5 ∨ s ¬e5 ∨ t

The clauses forming the right-hand side are:

¬p1 ¬q2 ∨ ¬p2 ¬q1 ∨ ¬r2 ∨ ¬p3

¬r1 ∨ ¬s ¬t

When this formula is presented to a SAT solver like Minisat, the unit
clauses ¬p1 and ¬t lead to some immediate simplifications. This propaga-
tion is handled very efficiently by modern solvers, and there is no gain in
emulating this behavior while generating the SAT encoding.

Suppose that the solver then tries to set e1 to true and propagates this
decision. The remaining simplified clauses are shown below. Note that e2
and ¬e5 are implied as consequence of e1 and the other simplifications.

¬e4 ∨ e3 e3 ∨ p2 e4 ∨ p3 e4 ∨ q1

e3 ∨ q2 ¬e4 ∨ s ¬e3 ∨ r1 ¬e3 ∨ e4 ∨ r2

¬q2 ∨ ¬p2 ¬q1 ∨ ¬r2 ∨ ¬p3 ¬r1 ∨ ¬s

In the remaining clauses, all variables appear both positively and nega-
tively; the formula cannot be simplified any further. Notice, more impor-
tantly, that the solver is unable to find a conflict after tentatively setting e1
to true when e5 is set to false.

This happens because unit propagation in the proposed encoding is un-
able to detect that e3, e4, and e5 are logical implications of e1. Even when a
solver tentatively sets e1 to true, unit propagation only infers that e2 must
also be true, but not e3 or e4. It takes another decision, e.g., for e3 or e4, to
derive a contradiction and, depending on the solver, possibly multiple steps
to decide that e1 must necessarily be false.

On the other hand, such information is easy to detect on the unfolding
structure, and we shall modify φdead

P in these cases.
Let us call stubborn any event e satisfying (•e ∪ e)• = {e}. Intuitively,

once all events preceding e have fired, then firing e is unavoidable to find a
deadlock. In Fig. 21, events e2, e3, e4, e5 are all stubborn.
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Indeed, consider any deadlocked configuration C of P , and let e be any
stubborn event verifying •(•e∪ e) ⊆ C. Then either e is in C or it is enabled at
cut(C), since C contains all events preceding e. But the latter is not possible
because C is a deadlock, so e must be in C, which proves that e ∈ C iff
•(•e ∪ e) ⊆ C (the other direction follows from the fact that C is causally
closed).

This suggests that we could substitute every occurrence of e by a conjunc-
tion of the variables associated to the predecessors of e. We denote by Es the
set of stubborn events, and define inductively the set of predecessors of any
event e as

pred(e) := •(•e ∪ e) \ Es ∪
⋃

e′∈•(•e∪e)∩Es

pred(e′)

The definition is well-given as a consequence of < being well-founded.

Proposition 10. If e is stubborn, then any deadlocked configuration C of P verifies
that e ∈ C iff pred(e) ⊆ C.

Proof. Notice that pred(e) ⊆ [e]. If e ∈ C, then obviously pred(e) ⊆ C. We
prove the opposite direction by induction on the size of [e].

base . Let e be such that |[e]| = 1. Since C deadlocks, •e∪ e 6⊆ cut(C) holds.
Some event in C has thus consumed some condition of •e ∪ e ⊆ m̂0, and it
can only be e because it is stubborn.

step. Let k ∈N be k ≥ 2 and assume that the statement is true if |[e]| < k.
Let now e be such that |[e]| = k. Again, since C deadlocks, •e ∪ e 6⊆ cut(C)
holds. Since no event different than e can consume •e ∪ e, either e ∈ C or
there exist e′ ∈ •(•e ∪ e) such that e′ /∈ C. In the first case we are done. In
the second we reach a contradiction, as we see now. First notice than e′ has
to be stubborn, since otherwise e′ ∈ pred(e) and pred(e) 6⊆ C, a contradiction.
Because e′ is stubborn and such that |[e′]| < k (since e′ < e) and pred(e′) ⊆
pred(e) ⊆ C, the induction hypothesis applies, implying that e′ ∈ C. But this
is a contradiction.

Corollary 2. φdead
P ≡ φdead

P ∧∧e∈Es(e↔
∧

e′∈pred(e) e′)

Corollary 2 can be exploited to modify φdead
P in two ways: for every

stubborn event e, (i) add a clause
∧

e′∈•(e∪•e) e′ → e, or (ii) substitute e by∧
e′∈pred(e) e′. Method (i), when applied to Fig. 21, will allow to derive a con-

tradiction when e1 is made true. On the other hand, when the solver sets
e4 to false, no information about the other events can be obtained through
unit propagation. Method (ii) will eliminate the stubborn events from the
encoding altogether. The resulting formula, after an initial unit propagation
phase by the SAT solver, allows to immediately derive ¬e1.

We briefly explain the changes to φdead
P motivated by method (ii): φ

sym
P is

not affected because no stubborn event appears in any symmetric conflict,
and neither is φdis

P , which is only over variables for places. In φcausal
P , how-

ever, clauses e→ e′ are discarded if e is stubborn or replaced by e→ e′′ for
every e′′ ∈ pred(e) if e is not stubborn. In a clause

(
e ∧ ∧e′∈c• ¬e′

)
→ p of

φmark,M
P , we need to replace e by a conjunction over pred(e) if e is stubborn.

In principle, the same needs to be done for e′. However, if |c•| ≥ 2, then no
event in c• is stubborn, and nothing changes; but if c• = {e′} is a singleton,
and e′ is stubborn, then the clause is split into | pred(e′)| different clauses.
For φ

asym
P , in a clause of the form e ∧ f → [[e < f]], both e and f are replaced
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Figure 22: Good (a) and bad (b) cases for the stubborn event optimization

by conjunctions, if applicable; thus, the formula will still require ranks for e
and f even if e or f are not present.

Method (ii) reduces the number of variables and either reduces (up to a
linear factor) or increases (up to a quadratic factor) the number of clauses,
as shown in Fig. 22. In (a), part of an occurrence net is shown. Without
optimizations, n clauses of the form e → ei and n of the form ei → f are
generated in φcausal

P . Assuming that e1, . . . , en are stubborn, method (ii) re-
places these 2n clauses by one clause e→ f. Similar reductions occur in φdis

P
and φmark,M

P . On the other hand, φcausal
P for (the fragment of) the occurrence

net (b) has, when no optimization is used, n clauses of the form ei → e and
n of the form e → fi, but n2 clauses of the form ei → fj when method (ii) is
used. Nonetheless, in our experiments we used method (ii) due to the better
behavior of unit propagation in the resulting encodings, as explained above.

We remark that stubborn events are also treated specially in the stable-
models encoding of [Hel99c]. While stable models are similar to SAT, the
treatment in [Hel99c] is simpler; its analogue in propositional logic would
not eliminate stubborn events from the formula nor allow to directly con-
clude that e1 cannot be fired.

It should be clear at this point that the optimization presented in this sec-
tion only applies to the deadlock-checking encoding, not the coverability-
checking encoding φcov,M

P . Indeed, only in deadlocked configurations stub-
born events can be equated to the conjunction of their predecessors.

4.7 additional simplification

We briefly mention some possible simplifications of the formula. First, for a
place p, if p• ∪ p = ∅, then p does not appear in φdis

P and no condition c with
h(c) = p need to be considered on the left-hand side of the main conjunction
in φdis

P . Similarly, during the construction of φmark,M
P , only events e such that

h(e•) or h(•e) contains some place of M shall be included in φconf
P .

Secondly, a potentially more interesting simplification concerns subset
checking. For two conditions c, d, if c• ⊆ d•, then AMO(c•) is implied by
AMO(d•) and can be omitted from φ

sym
P . Similarly, for two transition t, u

where •t ⊆ •u, disabledness of t implies disabledness of u, so u can be
omitted from φdis

P . We return to this point in § 7.2.1.

4.8 conclusions

We presented verification algorithms based on c-net unfoldings. Special at-
tention was payed to the treatment of acyclicity in the asymmetric conflict
relation and the optimization of the overall encoding. For acyclicity, we pro-
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posed to deal separately with symmetric and asymmetric conflict cycles, and
gave three optimizations to reduce the size of the asymmetric conflict rela-
tion. General optimizations of the overall encoding included the reduction
of stubborn events and the elimination of subsumed disabled transitions.
These optimizations operate at the level of the unfolding, in Ch. 7 we will
discuss additional optimizations at the level of the SAT solver.

The encodings proposed here will be evaluated in Ch. 7. Experimental
evaluation will show that solving times of these encodings beat the per-
formance of existing unfolding-based deadlock-checking tools, a result that
was not a foregone conclusion due to the richer structure of c-net unfoldings,
in particular the presence of cycles and histories. Some of the optimizations
proposed here will turn to be critical to achieve this.





5C O N T E X T U A L M E R G E D P R O C E S S E S

Contextual unfoldings represent the state space of contextual nets. They
cope with the state-space explosion due to concurrency and concurrent read
access, as we have explained.

In this chapter, we integrate two compact representations: contextual un-
folding prefixes and merged processes. The resulting representation, called
contextual merged processes (CMP), combines the advantages of the original
ones and copes with several important sources of state space explosion: con-
currency, sequences of choices, and concurrent read accesses to shared re-
sources. The chapter essentially presents theoretical results on the construc-
tion of CMPs and a reduction to SAT of the reachability problem based on
CMPs. In Ch. 7 we demonstrate on a number of benchmarks that CMPs are
more compact than either of the original representations.

This chapter is partially based on [RSK13].

5.1 introduction

We explained in Ch. 1 that model checking is an important and practical
way of ensuring the correctness of a system. However, it suffers from the
state-space explosion (SSE) problem.

There are several common sources of SSE. One of them is concurrency,
and the unfolding technique was primarily designed for efficient verification
of highly concurrent systems. Indeed, a marking-complete prefix is often
exponentially smaller than the corresponding reachability graph because it
represents concurrency directly rather than by multidimensional diamonds,
as it is done in reachability graphs. However, unfoldings do not cope well
with some other important sources of SSE. In what follows, we consider two
such sources.

One important source of SSE are sequences of choices. For example, the
smallest complete prefix of the Petri net in Fig. 23 is exponential in its size
since no event can be declared a cutoff — intuitively, each reachable marking
remembers its past, and so different runs cannot lead to the same marking.

Recently, a technique has emerged that address this source of SSE, among
others. In [KKKV06], a new condensed representation of Petri net behavior
called merged processes (MPs) was proposed; it copes not only with concur-
rency, but also with sequences of choices. Moreover, this representation is
sufficiently similar to the traditional unfoldings so that a large body of re-
sults developed for unfoldings can be re-used. The main idea behind MPs
is to fuse some nodes in the unfolding prefix, and use the resulting net as
the basis for verification. For example, the unfolding of the net shown in
Fig. 23 will collapse back to the original net after the fusion. It turns out that

. . .

Figure 23: A Petri net with exponentially large unfolding prefix.
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Figure 24: A c-net (a) whose contextual unfolding is isomorphic to the c-net
itself, but whose plain encoding into a Petri net has exponentially
large merged process, since no place instances in its unfolding
(b) can be merged, and so there are 2n mp-events corresponding
to transition t. For this c-net the PR encoding coincides with the
plain one, and so has the same unfolding and MP.

for a safe Petri net, model checking of a reachability-like property (i.e., the
existence of a reachable state satisfying a predicate given by a Boolean ex-
pression) can be efficiently performed on its MP, and in [KKKV06] a polyno-
mial reduction of this problem to SAT is presented. Furthermore, an efficient
unravelling algorithm that builds a complete MP of a given safe ordinary net
has been proposed in [KM11; KM13]. The experimental results in [KKKV06]
indicate that this method is quite practical.

Unfortunately, MPs do not cope well with concurrent read access. As illus-
trated in Fig. 24, the contextual unfolding of a system may be exponentially
smaller than its merged process. Similarly, contextual unfoldings suffer from
SSE resulting from sequences of choices, e.g., they do not offer any improve-
ment for the Petri net in Fig. 23, as it contains no read arcs.

We observe that in fact contextual unfoldings and merged process are
techniques that address orthogonal aspects of the SSE problem when com-
pressing an unfolding prefix into a more compact structure. They can thus
be combined into one that copes with all the mentioned sources of SSE, viz.

1. concurrency,
2. sequences of choices, and
3. concurrent read accesses to a shared resource.

Moreover, there are striking similarities between the main complications
that had to be overcome in the theories of MPs and c-net unfoldings: events
have multiple local configurations, or histories (which causes difficulties in
detection of cutoff events) and certain cycles (in the flow relation in case
of MPs and in the asymmetric conflict relation in case of c-net unfoldings)
have to be prohibited in valid configurations. Hence, the combination of the
two techniques is not only possible, but also very natural.

The chapter is organised as follows. In § 5.2, the notion of a contextual
merged process is presented. With the help of an example, in § 5.3 we
deepen on the differences between the various ways to unfold and merge a
c-net, clarifying the notion of CMP. In §§ 5.4 and 5.5, results to characterize
the configurations of CMPs of safe c-nets and two encodings into SAT of
the reachability problem using CMPs are presented. We use these results in
§ 5.6 to discuss the various ways to construct CMPS, and conclude in § 5.7.

5.2 contextual merged processes

In this section, we introduce the notion of contextual merged processes (CMPs)
and discuss some of their properties. The results presented here generalize
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those of [KKKV06]. In particular it turns out that the notion configuration
of a contextual unfolding and mp-configuration of a merged process, de-
fined in [KKKV06], both of which introduce acyclicity constraints, can be
seamlessly integrated into a common framework.

Let us now fix notation for the rest of the chapter. Unless otherwise
stated we let N := 〈P, T, F, C, m0〉 be a finite c-net satisfying the general
assumptions in p. 18. Remark that N is not even necessarily bounded. We
let UN := 〈〈B̃, Ẽ, G̃, D̃, m̃0〉, h〉 denote the full unfolding of N and denote by
P := 〈〈B, E, G, D, m̃0〉, h〉 an arbitrary unfolding prefix for N.

Recall that asymmetric conflict, causality, steps, runs, and reachable mark-
ings are, among other notions, preserved by homomorphisms, as a conse-
quence of Lemma 1, on p. 19. The first step to define CMPs is the notion of
occurrence depth.

Definition 15 (occurrence depth). Let x be a node of P . The occurrence depth
of x, denoted od(x), is the maximum number of h(x)-labelled nodes in any path in
the directed graph

(m̃0 ∪ [x] ∪ [x]•,<i)

starting at any initial condition and ending in x.

Recall that the cone [x] is finite and that <i is a partial order, so there is
only a finite number of paths to evaluate, and the definition is well-given.

As an example, in Fig. 25 (b), consider the condition c9, and the associated
digraph whose nodes are m̃0 ∪ [c9]∪ [c9]

• and whose edge relation is <i. The
occurrence depth of c9 is 2 because the digraph contains the path c1 <i e2 <i
c5 <i e4 <i c7 <i e6 <i c9 and both c5 and c9 have the same label p3.

A CMP is obtained from a branching process in two steps. First, all condi-
tions that have the same label and occurrence depth are fused together (their
initial markings are totalled); then all events that have the same label and
environment (after fusing conditions) are merged. Conditions in the initial
marking will have, by definition, occurrence depth 1. This is formalised as
follows:

Definition 16 (Contextual Merged Process). The Contextual Merged Process
(CMP) of P is the labelled c-net Q = 〈〈B̂, Ê, Ĝ, D̂, m̂0〉, ĥ〉, with

• B̂ ⊆ P×N,
• Ê ⊆ T × 2B̂ × 2B̂ × 2B̂,
• ĥ : B̂ ∪ Ê→ P ∪ T is a homomorphism from Q to N,

where Q is defined as follows. First, let h̄ : B ∪ E→ B̂ ∪ Ê be homomorphism from
P to Q defined, for b ∈ B and e ∈ E, by

h̄(b) := 〈h(b), od(b)〉
h̄(e) := 〈h(e), h̄(•e), h̄(e), h̄(e•)〉.

Then Q is defined by

1. B̂ := h̄(B);
2. Ê := h̄(E);
3. Ĝ, D̂ are such that for every ê = 〈t, X, Y, Z〉 ∈ Ê we have • ê := X ê := Y

ê• := Z;
4. for all p ∈ P, m̂0(〈p, 1〉) := 1 and m̂0(〈p, d〉) := 0 if d > 1.
5. ĥ maps every node of Q to the first component of the tuple.

The unravelling, denotedMN , is the contextual merged process of UN .



76 contextual merged processes

p5

e3(t3)

e5(t4)

c8(p2)

c6(p3)

(b) c1(p1)

c2(p4)

e1(t1) e2(t2)

c3(p5)

c9(p3)

e6(t3)

e4(t4)

c7(p2)

c5(p3)c4(p2)
t1 t2

p3

(a)

p2p4

v5(t3) v6(t4)

p1
1

v1(t1) v2(t2)

v3(t3) v4(t4)

p1
3

p2
2p2

3

(c)

t3 t4

p1
2p1

4 p1
5

p1

Figure 25: (a) A net; (b) its unfolding; (c) its unravelling.

Figure 25 shows a 1-safe net (taken from [KKKV06]), its unfolding, and
its unravelling. For the rest of this chapter, unless otherwise stated, we let
Q = 〈〈B̂, Ê, Ĝ, D̂, m̂0〉, ĥ〉 be the contextual merged processes of P and ĥ the
associated homomorphism from Q to N. We additionally let h̄ denote the
homomorphisms from P to Q.

The places of Q are called mp-conditions and its transitions mp-events. We
shall write pd for an mp-condition 〈p, d〉. Note that m̂0(pd) equals m0(p) if
d = 1 and is 0 otherwise. An mp-event ê is an mp-cutoff if all events in h̄−1(ê)
are cutoffs. Recall from Ch. 3 that speaking about cutoffs requires to first fix
an strategy on UN . Indeed, here we are assuming that one strategy ≺ has
been fixed, and that P is in fact P≺N , which allows to speak about the cutoff
events of P . We denote the set of mp-cutoffs by Êcut.

Remark 12. The following properties hold for CMPs or c-net unfoldings:

1. In general,MN is not acyclic; see Fig. 25 (c).
2. There can be mp-events consuming conditions in the postset of an mp-cutoff.
3. There is at most one mp-condition pk resulting from fusing occurrences of

place p at depth k ≥ 1.
4. For two mp-conditions pk and pk+1, there is a directed path in the <i relation

from the former to the latter.
5. Two different conditions c1 and c2 having the same label and occurrence depth

are not causally related. Hence, if the original c-net is safe, then ↗[c1]∪[c2]

contains a cycle.
6. h = ĥ ◦ h̄.
7. h̄ and ĥ are homomorphisms.
8. A sequence of transitions σ is a run of N iff there exists a run σ̂ ofMN such

that σ = ĥ(σ̂).

Additionally, if N is safe, we have:

9. h̄ is injective when restricted to the events of a configuration.
10. Property 8 is true if we additionally require σ̂ to be repetition-free.

Proof. Properties 1 and 2 are already true for merged processes of ordinary
Petri nets; 3 and 4 are immediate after the definition.

5 If the original c-net is safe, and c1, c2 have the same label and oc-
currence depth, then [c1] ∪ [c2] is not a configuration, since otherwise
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they would be concurrent, producing two occurrences of the associ-
ated place (they cannot be causally related). Since [c1] ∪ [c2] is finite, it
contains a cycle in↗.

6 Any mp-event inherits the label associated to the events that were
merged to produce it, so for any e ∈ E, we have h(e) = ĥ(h̄(e)).

7 By construction h̄(E) ⊆ Ê, h̄(B) ⊆ B̂, ĥ(E) ⊆ T, and ĥ(B) ⊆ P; so (10)
holds for h̄ and ĥ. Also trivially (11) holds: h̄(m̃0) = m̂0 because mp-
conditions with depth 1 map, through h̄, to only conditions in m̃0, and
because m̃0 is 1-safe due to the general assumptions in p. 18. Similarly
ĥ(m̂0) = m0 because

m0 = h(m̃0) = h(h̄(m̂0)) = ĥ(m̂0).

For the rest of the proof, let ê ∈ Ê be an mp-event, e ∈ E any event
such that h̄(e) = ê, and t = h(e) = ĥ(ê).
We now show that h̄ restricted to •e is a bijection. Recall that • ê is
defined as h̄(•e), so we only need to show that h̄ restricted to •e is
injective. Let c, c′ ∈ •e. If c 6= c′ then h(c) 6= h(c′), because h is a
homomorphism. Then c and c′ cannot be merged and h̄(c) 6= h̄(c′).
Analogous arguments prove that h̄ restricted to e• or e is also bijective.
Finally, we show that ĥ restricted to • ê is bijective. The proof for ê•

or ê is similar. Let ĉ, ĉ′ ∈ • ê, and let c, c′ ∈ •e such that h̄(c) = ĉ
and h̄(c′) = ĉ′. Because h is a homomorphism, h(c) 6= h(c′). Then
h(c) = ĥ(ĉ) 6= h(c′) = ĥ(ĉ′). Hence ĥ restricted to • ê is injective. To see
why it is surjective, let p ∈ •t. Again, because h is a homomorphism,
there is a single c ∈ •e such that h(c) = p. Let ĉ = h̄(c). Recall that
h(c) = ĥ(ĉ) = p. Because h̄ is a homomorphism, ĉ ∈ • ê, and so ĥ
restricted to • ê is surjective.

8 For any run σ̂ ofMN , ĥ(σ̂) is a run of N, by Lemma 1. For any run σ of
N, there is, by the properties of UN , a run σ̃ in UN such that h(σ̃) = σ.
Then σ̂ := h̄(σ̃) is a run ofMN that satisfies ĥ(σ̂) = h(σ̃) = σ.

9 Let C be a configuration of PN . We prove that e 6= e′ implies h̄(e) 6=
h̄(e′) for all e, e′ ∈ C. For an argument by contradiction, assume h̄(e) =
h̄(e′). Events e and e′ have been merged into the same mp-event, so
h(e) = h(e′). Since e 6= e′, by (21) either •e 6= •e′ or e 6= e′, which
implies that there exists some c ∈ •e ∪ e and c′ ∈ •e′ ∪ e′ such that
c 6= c′ but both c and c′ are labelled by p and have occurrence depth k.
By property 5, [c]∪ [c′] contains a cycle in relation↗, but [c]∪ [c′] ⊆ C.
This is a contradiction.

10 Any repetition-free run σ̂ of MN is, by property 8, such that ĥ(σ̂) is
a run of N. Now, let σ be a run of N. We know (cf. proof of property
8) that there is a run σ̃ of UN with h(σ̃) = σ and that there is a run
σ̂ of MN verifying h̄(σ̃) = σ̂ and ĥ(σ̂) = σ. We now prove that σ̂
is repetition-free. Recall that the set {e ∈ E | e fires in σ̃} is a configu-
ration of UN , and that σ̃ is repetition-free. If σ̂ was not repetition-free,
some mp-event ê would fire two times, implying that there are two dif-
ferent events e, e′ that fire in σ̃ such that h̄(e) = h̄(e′). This contradicts
property 9.

Note that Property 9 is still true when h̄ is restricted to the elements of
m̃0 ∪ C ∪ C•. Indeed, h̄ is bijective when restricted to m̃0, because m̂0 is safe,
and two conditions c, c′ ∈ C• cannot be merged because↗[c]∪[c′ ] would have
cycles and [c] ∪ [c′] ⊆ C.
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Definition 17 (mp-configuration). A multiset of mp-events Ĉ is an mp-configu-
ration of Q if there exists a configuration C of UN verifying h̄(C) = Ĉ.

As it is the case for configurations of branching processes, any mp-conf-
iguration of a merged process represents a (concurrent) run of its mp-events,
i.e., there exists at least one linear ordering of the mp-events of Ĉ that is a run
of the merged process. This is because the same is true for configurations of
the associated branching process and because h̄ is a homomorphism.

Every finite firing sequence of UN consists of a set of events that form a
configuration C, which, due to Def. 17, corresponds to an mp-configuration
Ĉ of MN . However, the inverse statement is not true: a firing sequence of
MN may consist of a multiset of events X that is not an mp-configuration
since no C ∈ conf (UN) satisfies h̄(C) = X. This already holds for ordinary
nets, as the example in Fig. 25 shows: v1v5 is a valid firing sequence ofMN
corresponding to events e1 and e6 of UN (i.e. h̄(e1) = v1 and h̄(e6) = v5)
which do not form a configuration. However, ĥ applied to v1v5 still gives a
valid firing sequence t1t3 of N thanks to Rmk. 12 (8).

We shall regard a CMP Q as marking-complete when all the markings of
N are represented, not by arbitrary runs of Q, but by those associated to
mp-configurations of Q.

Definition 18 (marking-complete CMP). Let X be a finite multiset of mp-events.
The cut and marking of X are respectively defined as the multisets

cut(X) := (m̂0 + X•)− •X
mark(X) := ĥ(cut(X)).

We call Q marking-complete if for each reachable marking m of N there exists a
cutoff-free mp-configuration Ĉ in Q satisfying mark(Ĉ) = m.

The intuition behind these definitions is as follows. If X is the multiset of
mp-events associated to a finite run (i.e., the multiset M such that M(ê) = n
if ê fires n times) then cut(X) is the marking reached by this run in the CMP,
and mark(X) is the ĥ-image of cut(X), i.e., the corresponding marking of N.

Observe that in the definition of a marking-complete CMP, one could
ask for a finite run (rather than a configuration) that reaches a marking m.
The resulting definition would be equivalent, but we preferred the current
variant because it (i) mimics the analogous definition for unfoldings and
(ii) avoids some unpleasant properties of runs: e.g., finite CMPs can have
infinite runs and therefore infinitely many finite runs, which is impossible
for configurations.

5.3 interplay between read-arcs and choice

Let us now illustrate the benefits of using CMPs on a concrete family of c-
nets. We compare the various approaches to unfold and merge such c-nets,
and explain why CMPs, on this family, achieve such gains.

Our family of c-net examples is called n-Gen, and the instance for n = 2
is shown in Fig. 26. The net represents n processes that concurrently gener-
ate resources ri. Once all resources ri are produced, an action t consumes
them all. Resource ri can be produced if one of two conditions is fulfilled,
symbolised by transitions ti or t′i. Thus, ti, t′i share context with transitions
tj and t′j, respectively, whenever j 6= i.

For some n ≥ 1, let Nc be the c-net n-Gen, Np its plain encoding, and Nr
its PR encoding. The unfoldings of the three nets and the MPs of Np and Nr
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Figure 26: The c-net 2-Gen.

blow up due to at least one of the following reasons, which we explain in
the sequel: (a) choices between ti and t′i or (b) sequentialized read access to
p and p′.

For (a), notice that process i can produce ri in two different ways. At least
two occurrences of each ri are thus present in the unfolding of any of the
three nets. Hence there are at least 2n ways of choosing t’s preset, i.e., at
least 2n occurrences of t and p′′ in any of the three unfoldings.

Roughly speaking, (b) refers to the same phenomena that were demon-
strated in Fig. 5 and discussed in § 1.4, on p. 8. While all ti are concurrent
in Nc, they are sequentialized in Np: they all consume and produce the
same p. This creates conflicts between them, and as a result all their expo-
nentially many interleavings are explicitly present in UNp . Importantly, any
occurrence of ti that consumes an occurrence of p at depth d, produces an
occurrence of p at depth d + 1.

In Nr, even if all ti are still concurrent to each other, their occurrences
produce two conditions with occurrence depths 1 and 2, each labelled by
their respective private copy of p. For UNr , this again has the consequence
of producing 2n ways of choosing v3’s preset, and 2n events labelled by v3.
More importantly, the private copies of ti cannot be merged with those of tj
and they remain in QNr . As a result, all 2n occurrences of v3 are also present
in the MP of Nr. This suggests that MPs of PR unfoldings may not yield, in
general, much gain.

While the size of the contextual unfolding of Nc explodes due to (a), it is
unaffected by (b). On the other hand, the MP of Np effectively deals with
(a), but only partially with (b). We now see why. Notice that there are O(2n)
conditions labelled by p in UNp , all with occurrence depths between 1 and
n + 1. In the MP, they are merged into the n + 1 mp-conditions p1, . . . , pn+1.
Since all instances of qi and ri have occurrence-depth 1, all the exponentially
many events labelled by ti are merged into n mp-events, each consuming
some pj and producing pj+1, for 1 ≤ j ≤ n. This yields an MP of size O(n2).

Finally, the CMP of Nc deals effectively with both (a) and (b); it is, in
fact, isomorphic to N. Roughly speaking, this is because the unfolding of
Nc already deals with (b), as we said, and the ‘merging’ solves (a). Thus, the
CMP is polynomially more compact than the MP of Np and exponentially
more than the MP of Nr, or the unfoldings of Nc, Np, or Nr. See Table 4 for
a summary.
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Table 4: Growth of contextual, plain, and PR unfoldings and MPs for the
collection of c-nets n-Gen.

Merged Processes Unfoldings
Ctx Plain PR Ctx Plain PR

O(n) O(n2) O(2n) O(2n) O(2n) O(2n)

While this example in itself is artificial, the underlying structures are quite
simple and commonly occur in more complex c-nets, which explains some
of the experimental results in Ch. 7.

5.4 characterizing reachability

In this section we present two results that pave the way to a practical reach-
ability algorithm based on CMPs. We give, for safe nets, characterizations of
sets of mp-events that correspond to reachable markings of N (Prop. 11) and
to configurations of Q (Prop. 12). These characterizations will be used in the
next section to produce SAT encodings of the reachability problem based on
CMPs. In particular, they will serve to aid CMP-based model-checking, as
well as the direct construction of CMPs.

We note that the problem of generalizing these approaches to bounded,
but not safe, nets is still open even for merged processes without read
arcs [KKKV06].

Therefore we focus on the practically relevant class of safe c-nets. Here,
the mapping h̄ lifted to configurations of UN establishes an injective corre-
spondence between the configurations of the unfolding and the mp-configu-
rations of the unravelling. For each mp-configuration Ĉ there exists a unique
configuration C of UN such that Ĉ = h̄(C).

Our first step is to characterize a subset of repetition-free runs of Q that
is large enough to include all interleavings of all mp-configurations. It thus
contains sufficient firing sequences to characterize the set of reachable mark-
ings of N, as discussed further below.

Lemma 6. Assume N is safe, and let X be any set of mp-events of Q satisfying:

1. •X ∪ X ⊆ m̂0 ∪ X•, and (60)
2. ↗X is acyclic. (61)

Then any linear extension of↗X is a repetition-free firing sequence of Q. Moreover,
any mp-configuration of Q satisfies (60) and (61).

Proof. Let ê1, . . . , ên be a total order on X that is compatible with ↗, i.e.,
such that êi ↗ êj implies i < j for all 1 ≤ i, j ≤ n. We prove, by induction on
n, that such sequence is a run of Q.

We show that ê1 is enabled at the initial marking. Condition (60) says that
all ĉ ∈ • ê1 ∪ ê1 are initially marked or generated by some other mp-event
in X. Since ê1 is ↗-minimal, no event êj satisfies êj < ê1, so ĉ is initially
marked.

We now show that, if ê1, . . . , êk is a run, then ê1, . . . , êk, êk+1 is a run too,
for 1 ≤ k < n. Assume the hypothesis. Let Ĉk := {ê1, . . . , êk} and let m̂ :=
cut(Ĉk) be the cut reached after firing ê1, . . . , êk. We prove that any ĉ ∈
• êk+1 ∪ êk+1 verifies ĉ ∈ m̂. By condition 1, we know that ĉ ∈ m̂0 or ĉ ∈ X•.
Since any mp-event êj in the preset of ĉ is such that êj ↗ êi, we know that
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êj ∈ Ĉk, and ĉ ∈ Ĉ•k . So ĉ ∈ Ĉ•k ∪ m̂0. It remains to prove that ĉ /∈ •Ĉk. If
this was not the case, then some êl ∈ Ĉk would be such that ĉ ∈ • êl , and
also such that êi ↗ êl , since either • êi ∩ • êl 6= ∅ or êi ∩ • êl 6= ∅. But then
i < l, and êl /∈ Ĉk, a contradiction. So ĉ ∈ (Ĉ•k ∪ m̂0) \ •Ĉk = cut(Ĉk), and
ê1, . . . , êk, êk+1 is a run.

As for the second statement, let Ĉ be an mp-configuration of Q and C a
configuration of P such that h̄(C) = Ĉ. We show that Ĉ satisfies (60) and (61).
Note that m̂0, Ĉ, and Ĉ• are sets rather than general multisets, essentially
because N is safe and h̄ restricted to C is injective.

• Since Ĉ is an mp-configuration, there is a linear order ê1, . . . , ên on the
mp-events of Ĉ that is a run of N. Let êi be any mp-event of Ĉ, and
let ĉ ∈ • êi ∪ êi be any mp-condition on its preset or context. We prove
that either ĉ ∈ m̂0 or • ĉ ∩ Ĉ 6= ∅. This is trivially true for ê1, since it
is enabled at the initial marking, so assume that i ≥ 2. The sequence
ê1, . . . , êi−1 is a run, let m̂ be the marking it reaches. Then êi is enabled
at m̂, so ĉ ∈ m̂. So either ĉ is initially marked or there is some mp-event
êj ∈ Ĉ, 1 ≤ j < i, such that êj ∈ • ĉ, which shows (60).

• Since h̄ restricted to C is injective, h̄−1 restricted to Ĉ is an injective
function; furthermore, it is a homomorphism. The absence of cycles in
↗Ĉ follows from the properties of homomorphisms. Specifically, if, by
contradiction, it was possible to find a cycle

ê1 ↗ . . .↗ ên ↗ ê1

in Ĉ, then, using Lemma 1, we could also find the cycle

h̄−1(ê1)↗ . . .↗ h̄−1(ên)↗ h̄−1(ê1)

in C, which would contradict (18).

Lemma 6 identifies a subset of repetition-free runs of Q. Observe that not
every repetition-free run satisfies the two conditions: v1v3v4 is a repetition-
free run of Fig. 25 but {v1, v3, v4} violates (61). This means that Lemma 6

characterizes a strict subset of repetition-free runs, which is, however, large
enough to contain all interleavings of all mp-configurations, and therefore
enough runs for representing all reachable markings of N. This fact is ex-
ploited in Prop. 11.

A key detail in both results is that acyclicity of ↗ prohibits, at the same
time, asymmetric conflicts inherent to c-net unfoldings, as those in Fig. 10,
on p. 23, and cycles in the flow relation introduced by merging, as shown in
Fig. 25 (c).

Using Lemma 6, we can now characterize the reachable markings of N in
terms of a marking-complete CMP Q of N. In essence, the following result
states that reach(N) is the ĥ-image of the markings reached by a subset of
Q’s repetition-free runs.

Proposition 11. If N is safe and Q marking-complete, a marking m is reachable
in N iff there is a cutoff-free set X of mp-events of Q satisfying:

1. properties (60) and (61), and
2. m = mark(X). (62)

Proof. Let m be a reachable marking of N. Then there is a mp-configuration
X of Q, free of cutoffs and satisfying mark(X) = m. As Lemma 6 shows, X
also satisfies (60) and (61).

For the opposite direction, if X satisfies all the three properties, it clearly
identifies a marking m reachable in N. By Lemma 6, any linear extension of
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↗X is a run of Q, that reaches a cut cut(X) of Q. Such reachable marking
of Q maps, through ĥ, to a reachable marking of N, thanks to Lemma 1.

We now extend Lemma 6 with two additional constraints to fully char-
acterize the mp-configurations of Q. The first condition asks that all mp-
conditions p1, . . . , pk−1 are present in the candidate set if pk is also present,
and the second ensures that they are visited in the right order.

Proposition 12. If N is safe, a set of mp-events Ĉ is an mp-configuration of Q iff
it satisfies the following conditions, for any pk+1 ∈ Ĉ• with k ≥ 1:

1. (60) and (61) hold for Ĉ, and
2. pk ∈ m̂0 ∪ Ĉ•, and (63)
3. the digraph (m̂0 ∪ Ĉ ∪ Ĉ•,<i) has a path from pk to pk+1. (64)

Proof. Assume that Ĉ is an mp-configuration. By Lemma 6 it satisfies (60)
and (61). We show it also satisfies (63) and (64), essentially due to the prop-
erties of h̄. Let C be the such that h̄(C) = Ĉ. Recall that m̂0, Ĉ, and Ĉ• are
sets rather than general multisets.

• Assume that pk+1 ∈ Ĉ•, and let c ∈ B be the single condition in m̃0∪C•
such that h̄(c) = pk+1. Condition c exists and is unique by property
9 in Rmk. 12. Since c has occurrence depth k + 1, there exists c′ with
occurrence depth k and label p, such that c′ < c, and therefore c′ ∈
m̃0 ∪ C•. Then h̄(c′) = pk, and pk ∈ m̂0 ∪ Ĉ•. This shows (63).

• Let c and c′ be as in the previous paragraph. Let e1, . . . , el be events
verifying

c′ <i e1, and el <i c, and e•i ∩ (•ei+1 ∪ ei+1) 6= ∅

for 1 ≤ i < l. They exists because c′ < c, and they identify a path
from c′ to c in (m̃0 ∪ C ∪ C•,<i), that h̄ maps to a path identified by
h̄(e1), . . . , h̄(el) from pk and pk+1 in the digraph (m̂0 ∪ Ĉ ∪ Ĉ•,<i). This
shows (64).

We now prove, by induction, the opposite direction. We show that any set
Ĉ of mp-events satisfying the four properties above is an mp-configuration.

For the base case, assume that Ĉ = ∅. Clearly, ∅ is a configuration of UN ,
and h̄(∅) = ∅. For the inductive step, assume that the statement is true if Ĉ
has at most n ≥ 0 mp-events, and let Ĉ be a set of n + 1 mp-events. Let ê be
any ↗-maximal mp-event in Ĉ, which exists by (61), and let Ĉ ′ := Ĉ \ {ê}.
Recall that no mp-event ê′ ∈ Ĉ ′ satisfies ê < ê′ because ê is ↗-maximal. We
prove that Ĉ ′ satisfies all the four conditions above.

• Property (60). Assume that Ĉ ′ violates (60). Then there is some ê′ ∈ Ĉ ′
such that ê• ∩ (• ê′ ∪ ê′) 6= ∅. But this is not possible because ê < ê′.

• Property (61) is trivially true for Ĉ ′ as it was already for Ĉ.
• Property (63). For some k ≥ 1 and place p ∈ P, assume that pk+1 ∈ Ĉ ′•

but pk /∈ m̂0 ∪ Ĉ ′•. Then pk ∈ ê• because pk ∈ m̂0 ∪ Ĉ•. Since Ĉ satisfies
(64), there is a path in (m̂0 ∪ Ĉ ∪ Ĉ•,<i) from pk to pk+1, so there exists
some ê′ ∈ Ĉ with pk < ê′ < pk+1. But then, ê < ê′, a contradiction, so
pk ∈ Ĉ ′•.

• Property (64). To show that there is a path in (m̂0 ∪ Ĉ ′ ∪ Ĉ ′•,<i) from
pk to pk+1, let ê1, . . . , êl ∈ Ĉ be mp-events satisfying

pk <i ê1 < . . . < êl <i pk+1, and ê•i ∩ (• êi+1 ∩ êi+1) 6= ∅

for 1 = 1, . . . , l and for some l ≥ 1. We prove that ê 6= êi, for any i =
1, . . . , l, and therefore êi ∈ Ĉ ′. Obviously, for i = 1, . . . , l − 1 we have
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that ê 6= êi, since otherwise êi+1 would satisfy ê < êi+1, contradicting
that ê is↗-maximal in Ĉ. So we only have to check that ê 6= êl . Assume,
for a proof by contradiction, that e = êl . Then, pk+1 ∈ ê•. Since pk+1 ∈
Ĉ ′• and because ê /∈ Ĉ ′, there is some other ê′ ∈ Ĉ ′ such that pk+1 ∈ ê′•.
So pk+1 has at least two different mp-events in its preset. Now, by
Lemma 6, all events in Ĉ can be ordered to form a run of Q. Then,
since N is safe, there exists some mp-event ê′′ ∈ Ĉ that consumes pk+1.
But ê is ↗-maximal in Ĉ, so necessarily ê = ê′′. So ê consumes and
produces pk+1. Any event in h̄−1(ê) obviously consumes one condition
labelled by p and produces a different one, also labelled by p; and both
conditions have been merged into pk+1. This is a contradiction, both
conditions have different occurrence depth.

Since Ĉ ′ satisfies all the three conditions, by induction hypothesis, there
exists some configuration C ′ of UN such that h̄(C ′) = Ĉ ′. In the sequel, we
prove that there exists some event e enabled at cut(C ′) such that h̄(e) = ê,
and therefore h̄(C ′ ∪ {e}) = Ĉ ′ ∪ {ê} = Ĉ. Then Ĉ is an mp-configuration
because C ′ ∪ {e} is a configuration.

Let m := cut(C ′) be the cut of C ′, and m̂ := cut(Ĉ ′) be the cut of Ĉ ′. Recall
that h̄(m) = m̂, because h̄ is a homomorphism. The mp-event ê is necessarily
enabled at m̂. Then some transition ĥ(ê) is enabled at the marking ĥ(m̂) =

h(m) of N, and therefore, some event e exists in UN such that h(e) = ĥ(ê).
Note that e is unique, due to (21). We now show that h̄(•e) = • ê, and h̄(e) =
ê, and h̄(e•) = ê•, which implies that h̄(e) = ê.

• We prove that h̄(•e) = • ê, the case for h̄(e) = ê is analogous. Let c ∈ •e
be a condition in the preset of e. We show that h̄(c) ∈ • ê. Since e is
enabled at m, then c ∈ m, and h̄(c) := pk ∈ m̂. Since h(e) = ĥ(ê), there
exists some mp-condition pk′ ∈ • ê. Also, pk′ ∈ m̂, because ê is enabled
at m̂. But pk = pk′ , since otherwise ĥ(m̂) would not be safe. This proves
that h̄(•e) ⊆ • ê. Recall that |•e| = |• ê|, so necessarily h̄(•e) = • ê.

• We prove that h̄(e•) = ê•. Since |e•| = |ê•|, because h(e) = ĥ(ê), and
since h̄ is injective when restricted to e•, we only need to prove that
h̄(e•) ⊆ ê•. Let c ∈ e• be such that h̄(c) = pk. We know that some mp-
condition pk′ is present in ê•. We prove that (i) k ≥ k′ and (ii) k′ ≥ k,
and therefore k = k′.

i Because Ĉ satisfies (64), there is a path σ̂ in the directed graph
(m̂0 ∪ Ĉ ∪ Ĉ•,<i) from some initial condition to pk′ that visits
p1, p2, . . . , pk′ in that order. The last two elements of σ̂ are ê and
pk′ , and when removed from σ̂, the resulting path σ̂′ is also a
path in the graph (m̂0 ∪ Ĉ ′ ∪ Ĉ ′•,<i). Since C ′ is a configuration,
h̄ restricted to it is a bijection from C ′ to Ĉ ′, and therefore σ′ :=
h̄−1(σ̂′), where h̄−1 denotes now the inverse of such restriction, is
a path in the graph (m̃0 ∪ C ′ ∪ C ′•,<i) from some initial condition
of m0 to some element of •(e∪ e). But this means that σ′ followed
by e, c is a path in (m̃0 ∪ [c] ∪ [c]•,<i) from the initial conditions
to c where at least k′ occurrences of p happen, so the occurrence
depth of c is at least k′, and so k ≥ k′.

ii For an argument by contradiction, assume that k > k′, and that
therefore some condition c′ < e is such that h̄(c′) = pk′ . By
Lemma 1, we have pk′ < ê; moreover, there is an immediate
causality path in m̂0 ∪ Ĉ ∪ Ĉ• from pk′ to ê. Recall that, by def-
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inition we have ê < pk′ . So we have a causality cycle in Ĉ, a
contradiction to (61).

5.5 encoding reachability into sat

In the previous section, two results, Prop. 11 and Prop. 12, helped to charac-
terize reachable markings of N and configurations of Q in terms of suitably
constrained sets of mp-events. Here, we turn these results into SAT formulas
whose solutions encode runs of N or mp-configurations of Q.

Note that [KKKV06] discusses the corresponding problems for ordinary
MPs and Ch. 4 for contextual unfoldings. Remarkably, both problems re-
quire to encode acyclicity for different purposes, which are united into a
single acyclicity constraint in our case.

5.5.1 Reachability via Arbitrary Runs

Assume we want to verify the coverability of a set m ⊆ P of places in N,
and we have a marking-complete CMP Q of N. Proposition 11 gives nec-
essary and sufficient conditions for m to be reachable; using this result, we
define a propositional formula γmark,M

Q that is satisfiable iff m is coverable,
although our formula can be very easily modified to check that m is reach-
able. The formula is over variables e for every mp-event e ∈ Ê and cgen, ccon

for every mp-condition c ∈ B̂. Actually, it will involve other variables, but
this will be discussed later. The intuition behind the encoding is as follows.
Any satisfying assignment of γmark,M

Q corresponds to a set X of mp-events
that satisfy (60), (61), and a variant of (62). Specifically, if V is the set of
variables in γmark,M

Q and v : V → {0, 1} is a satisfying assignment, then the
set X := {e ∈ Ê : v(e) = 1} satisfies all the three properties. The formula is
a conjunction of four subformulas,

γmark,M
Q := γflow

Q ∧ γ
asym
Q ∧ γcov,M

Q ∧ γaux
Q ,

where the first three of these are defined as follows:

γflow
Q :=

∧
e∈Ê, c∈•e∪e

e→ cgen

γ
asym
Q := ACY(∆Q) ∧

∧
c∈B̂

AMO(c•)

γcov,M
Q :=

∧
p∈m

( ∨
c∈ĥ−1(p)

ccut
)

The first formula, γflow
Q , enforces X to satisfy (60). Indeed, (60) asks that ev-

ery mp-event has its preset and context covered by either conditions gener-
ated by X or the initial marking. Now, γflow

Q requests any such mp-condition
c to be generated by X. Below we will see that cgen holds iff c is initially
marked or at least one mp-event in the preset of c is in X.

The constraint γ
asym
Q enforces (61) to hold for X. As in Ch. 4, we separate

the handling of symmetric and purely asymmetric conflict loops. The sec-
ond part of the constraint forbids symmetric loops, its implementation is the
same as in § 4.3. The first part forbids satisfying assignments that include
cycles of↗. We come back to it later in this section.

Finally, γcov,M
Q constrains the satisfying assignment so that at least one

mp-condition among those whose label is p, for every p ∈ m, is in the cut
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of X. Observe that this encodes coverability of m, in contrast to (62), which
asks for reachability of m. The variable ccut holds iff c is generated by some
mp-event in the satisfying assignment and it is not consumed. It is defined
in γaux

Q , which is the conjunction of the following auxiliary subformulas:∧
c∈B̂

(ccon ↔
∨

e∈c•
e)

∧
c∈B̂\m̂0

(cgen ↔
∨

e∈•c
e)

∧
c∈B̂

ccut ↔ (cgen ∧ ¬ccon)
∧

c∈m̂0

cgen

For every mp-conditions c in Q, the variable cgen holds iff c is in m̂0 ∪ X•;
similarly ccon holds if c is in •X.

Although this SAT encoding naturally bears certain resemblance with the
one presented in Ch. 4, this one requires a more careful treatment. For in-
stance, any condition of an unfolding has a preset with zero or one events.
However, mp-conditions may have presets with more than one mp-event.
This requires to use dedicated variables for mp-conditions, like cgen or ccon,
to encode a property such as (60), which could be seen, roughly speaking,
as the equivalent for CMPs of causal closure for unfoldings.

We now discuss γ
asym
Q in detail. This constraint implements (61), it re-

quires satisfying assignments of γmark,M
Q to represent sets X such that ↗X

is acyclic. As we did in Ch. 4, we handle separately symmetric and asym-
metric conflict cycles. The AMO(·) constraint forbids symmetric cycles. The
constraint ACY(·) forbids all cycles of asymmetric conflict which do not con-
tain a cycle of symmetric conflict, as we explain now.

Given a digraph G, the constraint ACY(G) contains one Boolean variable
for each vertex of G. An assignment of truth to these variables satisfies
ACY(G) iff the variables assigned true correspond to a set of vertices that
induces an acyclic subgraph of G.

In γ
asym
Q , we apply ACY(·) to the digraph ∆Q, generated out of Q. This

digraph contains vertices for each mp-event and mp-condition of Q. The
intuition behind is that any set Y ⊆ Ê of mp-events in Q is↗-acyclic iff the
set of vertices in ∆Q associated to Y ∪ •Y ∪ Y• induces an acyclic subgraph.
This is quite similar to what we did in Ch. 4, were we also needed to encode
acyclicity of the asymmetric conflict relation. There, we had digraph whose
nodes were only the events of the prefix and whose edges were, roughly
speaking, the transitive reduction of causality on events. That graph was of
linear size w.r.t. the prefix. In contrast, ∆Q needs to include variables for
mp-conditions in order to achieve linear size w.r.t. to Q.

We do not formally define ∆Q, but a formal definition is easy to derive
from the example in Fig. 27, on which we now elaborate. In Fig. 27 (a) we
see a CMP, say Q; in (b) the associated digraph ∆Q. The digraph contains
one vertex for every mp-event of Q, and between one and two vertices for
every mp-condition. Two vertices are necessary for ensuring the right order
of occurrence for mp-events that have read arcs, as it will be clear shortly.
Recall the definition of↗, in p. 18: mp-events e, e′ satisfy e↗ e′ iff

e• ∩ (•e′ ∪ e′) 6= ∅, or

e ∩ •e′ 6= ∅, or

e # e′.

So given an mp-condition such as c6 in Fig. 27 (a), the digraph needs to
enforce that e2 fires before, e.g., e4 and e6, and that e6 fires before, e.g., e5.
We do this by introducing in ∆Q two vertices c6b and c6a (‘b’ for before and
‘a’ for after), and edges as follows: for any mp-event producing c6, an edge
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Figure 27: (a) A CMP Q together with (b) its associated digraph ∆Q.

from it to c6b; for any mp-event consuming c6, an edge from c6a to the mp-
event; read arcs from c6 are are translated as pairs of edges, leaving c6b and
coming back to c6a; one edge is put from c6b to c6a. This construction allows
any mp-event to optionally read c6 without imposing an order among the
possibly multiple readers, but enforcing that such readers happen after any
mp-event in the preset of c6 and before any event in the postset of c6.

Some mp-conditions, such as c8, are only read and consumed, but not
produced. For those, we only need one vertex in ∆Q, and read arcs are
translated as edges from the readers to the mp-condition. A similar situa-
tion happens in c7, where there is no consumer. In this case the read arc is
translated by an edge in the opposite direction, see Fig. 27 (b).

Several optimizations are obvious to this encoding, such as removing
nodes associated to mp-conditions with one incoming edge, but we do not
discuss them here. Independently of whether they are used, the size of ∆Q
is linear on Q.

The constraint ACY(·) is implemented as in Ch. 4. It encodes the idea
that if two nodes of the graph are selected, their ranks must be sorted. We
note that mp-events are selected if the associated variable is true, and mp-
conditions are selected if cgen is true.

5.5.2 Reachability via Mp-Configurations

The encoding in the previous section does not require the selected set of
events to be an mp-configuration; it only demands it to represent a repetition-
free firing sequence of the CMP.

In this section we produce a propositional formula whose models encode
all and only the mp-configurations of Q that cover a given marking of N.
The encoding is based on Prop. 12 and reuses all the constraints that com-
pose γmark,M

Q , presented in the previous section.
Specifically, given a set of places M ⊆ P, we define a propositional for-

mula γcon,M
Q whose satisfying assignments encode sets X of mp-events that

satisfy (60), (61), (63), (64), and a variant of (62). The formula is a conjunction
of two constraints:

γcon,M
Q := γmark,M

Q ∧ γ
no-gap
Q .

The subformula γmark,M
Q requests M to be coverable by means of a repetition-

free run, and enforces (60), (61), and (62), as we have already seen; γ
no-gap
Q

enforces (63) in a fairly obvious way:

γ
no-gap
Q :=

∧
c:=pk∈B̂, c′ :=pk−1∈B̂, k≥1

cgen → c′gen.
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We now discuss how (64) is encoded. This condition requests that X con-
tains a path of immediate causality that visits all mp-conditions p1, p2, . . . , pn

labelled with the same place p, by increasing order of depth. As in [KKKV06],
we enforce this property augmenting the digraph ∆Q with additional edges.
We first observe that asking for the presence of a path from pk to pk+1 is
equivalent to forbidding a path from pk+1 to pk:

Lemma 7. If N is safe, for any set Ĉ of mp-events satisfying (60), (61), and (63),
the following statement is equivalent to (64): for k ≥ 1,

• the digraph (m̂0 ∪ Ĉ ∪ Ĉ•,<i) has no path from pk+1 to pk. (65)

Proof. First, remark the difference between both properties: (64) requests a
path from pk to pk+1, and (65) forbids a path from pk+1 to pk. We denote in
the sequel the aforementioned digraph by G.

Trivially if Ĉ satisfies (61), (63), and (64), it also verifies (65). Otherwise,
there would exist some pk and pk+1 such that the Ĉ contains a cycle of
causality pk < pk+1 < pk, a contradiction to (61).

For the other direction, assume (65) holds but (64) is violated. We have
mp-conditions pk and pk+1 in m̂0 ∪ Ĉ that are mutually unreachable in G.
We show this is a contradiction to N being safe. Let ê1 be any mp-event in
•pk+1 ∩ Ĉ, which exists because k + 1 ≥ 2. Consider the set

Ĉ ′ := Ĉ \ {ê ∈ Ĉ : pk+1 /∗ ê},
where / denotes the relation <i ∩ (Ĉ ∪ Ĉ•)2. That is, we remove from Ĉ all
mp-events that can be reached from pk in G, observe that / is the edge
relation of G. Obviously Ĉ ′ contains ê1, otherwise Ĉ would violate (61). Also,
m̂0 ∪ Ĉ ′• contains pk as a consequence of pk not being reachable from pk+1.
It is also immediate to show that Ĉ ′ satisfies (60) and (61). As a result, any
linear extension of↗Ĉ ′ is a run of Q that marks pk+1. Now consider the set

Ĉ ′′ := Ĉ ′ \ {ê ∈ Ĉ ′ : pk /∗ ê},
i.e., we remove from Ĉ ′ all mp-events reachable from pk in G. Similarly, ê1
is in Ĉ ′′ because ê1 is unreachable from pk, and m̂0 ∪ Ĉ ′′• contains pk, due to
Ĉ ′ satisfying (61). So pk, pk+1 ∈ cut(Ĉ ′′). As before, Ĉ ′′ satisfies (60) and (61),
so there is a run of Q that marks pk and pk+1, a contradiction to N being
safe.

With this result, our task is simple: given two mp-conditions ĉ, ĉ′, forbid-
ding a path from ĉ to ĉ′ amounts to including in ∆Q an edge from ĉ to ĉ′; if
such a path is selected, this edge will close a cycle that γ

asym
Q will reject.

So we enforce (64) by including one edge from pk to pk+1, for every
pk, pk+1 ∈ B̂, in the digraph ∆Q.

5.6 constructing complete cmps

In this section, we discuss various algorithmic aspects of CMPs, in particular,
how to construct a marking-complete CMP from a given safe c-net N.

Recall that a CMP is marking-complete if every reachable marking m of
N is the ĥ-image of the cut of some cutoff-free mp-configuration. We wish
to construct such a CMP in order to analyze properties of N such as reacha-
bility or deadlock.

It follows from Def. 16 that one can achieve this goal by (i) constructing
a marking-complete unfolding prefix P and (ii) applying the construction
from Def. 16 to P . This does not yield any gain for practical verification, as
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the unfolding prefix can be much larger than the CMP. It will be, however,
the method we employ in § 7.6 to construct marking-complete CMPs in
order to compare their sizes with unfoldings.

Another option is to construct a CMP directly from the c-net N. A similar
approach for nets without read arcs was presented in [KM11; KM13]. No
such implementation currently exists for CMPs; in the following we describe
some key elements that are required for extending [KM13] to CMPs.

A procedure for directly constructing the CMP would start with a CMP
containing only the mp-conditions that represent the initial marking of N
and extend it one mp-event at a time. To know whether the current CMP Q
can be extended by an mp-event ê, one has to identify an mp-configuration
Ĉ of Q and check (i) whether Ĉ ∪ {ê} is an mp-configuration ofMN and (ii)
whether ê constitutes a cutoff.

Problem (i) is already solved, we can use the SAT encoding presented
in § 5.5.2 to find mp-configurations Ĉ that enable a new event ê. For (ii),
observe that an mp-configuration Ĥ corresponds to some history H of an
event e of UN with h̄(e) = ê iff ê is the maximal element of the relation
↗Ĥ . The problem then corresponds to asking whether for all such Ĥ there
exists another mp-configuration Ĉ such that mark(Ĉ) = mark(Ĥ) and Ĉ ≺ Ĥ.
For Ĉ, Ĥ in Q, this problem can be encoded in 2QBF, which is more compli-
cated than SAT but less so than QBF in general, and for which specialised
solutions exist [RTM04].

As Q grows, the number of possible candidates for Ĥ may increase. As a
result, in general ê cannot be designated a cutoff until the construction has
been terminated. So ê may become a cutoff as the construction progresses,
and the algorithm has to re-checked periodically.

To summarize, the basic structure of the algorithm from [KM13] would
remain unchanged, however one needs to use the encoding of § 5.5.2 to find
mp-configurations rather than the non-contextual one explained in [KM13].

5.7 conclusions

We have developed a new condensed representation of the state space of
a contextual Petri net, called contextual merged processes. This representa-
tion combines the advantages of merged processes and contextual unfold-
ings, and copes with several important sources of state space explosion:
concurrency, sequences of choices, and concurrent read accesses to shared
resources. Experimental results in Ch. 7 will demonstrate that this represen-
tation is significantly more compact than either merged processes or contex-
tual unfoldings.

We also proved a number of results which lay the foundation for model
checking of reachability-like properties of safe c-nets based on CMPs. In par-
ticular, given a CMP, they allow one to reduce (in polynomial time) such a
model checking problem to SAT. Furthermore, since the algorithm for direct
construction of merged processes of safe Petri nets proposed in [KM13] is
based on model checking, it can be transferred to the contextual case, which
would complete the verification flow based on CMPs.

Future work includes implementing the proposed model checking algo-
rithm and porting the algorithm for direct construction of MPs proposed
in [KM13] to the contextual case. While the high-level structure of the latter
algorithm remains the same, moving from Petri nets to c-nets entails several
low-level changes in the nets representation, which pervade the whole code;
thus, this porting requires significant implementation effort.
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Like Ch. 4, this chapter focuses on analysis methods for concurrent systems,
in this case, fault diagnosis. We present a methodology for the diagnosis of
faults in concurrent, partially-observable systems.

The chapter extends and generalizes the unfolding-based diagnosis ap-
proaches by Benveniste et al. [BFHJ03] as well as Esparza and Kern [EK12].
The latter work focused only on the use of sequential observations. We re-
move this assumption and employ partially-ordered observations. Diagno-
sis infers information from the system execution in order to detect faults. A
second contribution is extending the method to exploit the additional infor-
mation provided by the assumption of fair behavior. Theoretical foundations
and a decision procedure are presented. We define three unfolding prefixes
such that the diagnosis problem reduces to the existence of certain configu-
rations in them. Next we show that the existence of these configurations can
easily be encoded in SAT.

The results contained this chapter hold for ordinary Petri nets, not contex-
tual nets. We find this work already interesting for ordinary nets. Further-
more, the theory of the reveals relation, employed in characterizing weak
diagnosis, is not yet ready for contextual nets.

This chapter presents results of [HRS13].

6.1 introduction

Diagnosis under partial observation is a classical problem in automatic con-
trol in general, and has received considerable attention in discrete event
system (DES) theory, among other fields.

In formal verification, the objective is removing errors from a system un-
der development. In contrast, fault diagnosis only tries to detect and report
faults during execution. For certain systems, such as large telecommunica-
tion networks, with links and routers that can fail at any moment, it is just
not possible to avoid faults during operation. Diagnosis plays here, as we
explained in Ch. 1, a complementary role to verification.

Diagnosis thus monitor the system and tries to detect faults. In certain
cases, however, the amount of information available to the monitor is not
enough to determine in which stat the system currently is. For instance,
on a large network, distant nodes often cannot send full log information
due to limited available bandwidth. Also, system-on-chip devices are often
constructed with only very few pins to transmit debugging information. So
limited visibility of what the system is doing happens often in practice.

Fault diagnosis observes the visible part of the system execution and infers
which states the system could currently be in, and more specifically, whether
a fault has happened. Like verification, it assumes that a model of the system
is available.

The classical setting [SSL+95; CL08] assumes that the observed system is
an automaton with a transition set T. The automaton is equipped with a
labeling λ : T → X ∪ {ε} which models the information observed by each
execution: each transition is labelled by either some alarm or observable label
from the set X, or by the empty string ε. The former transitions are called
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observable transitions, the latter unobservable, and the mapping is not neces-
sarily assumed to be injective. When the system executes a sequence w ∈ T∗

of transitions, the monitor only sees λ(w). Some particular unobservable
transition φ is a fault. Diagnosis is then the task of deciding, given an ob-
servation ŵ ∈ X∗, whether or not all possible behaviors that explain the
observation, i.e., in λ−1(ŵ), contain an occurrence of φ.1 Diagnosis, in the
strict sense, reasons exclusively about the past of the system.

Classical diagnosis thus assumes that observations are streams of alarms.
However, different types of diagnosis emerge from the distinct architectures
of both the system and its supervision, see [BFHJ03].

In centralized, non-sequential, or asynchronous diagnosis, there are several
sensors, each of which observes (a fragment of) a concurrent or distributed
system. Each sensor produces a sequence of observations, as above. How-
ever, the different streams from the multiple sensors reach the (centraliz-
ing) supervisor asynchronously; no assumption is made about the commu-
nication architecture or speed. One assumes that the architecture respects
causality (if occurrence of a causally precedes that of a′, the supervisor sees
a before a′), and that the ordering of observations from the same sensor
is respected. By contrast, for any two alarms a and a′ recorded by distinct
sensors, any interleaving of a and a′ must be considered. Decentralized di-
agnosis involves several supervisors that cooperate to reach a global ver-
dict on whether or not a fault has occurred. The supervisors emit local
verdicts (e.g. yes/no) that are synthesized into a global one. In distributed
diagnosis [FBHJ05; BHK06], several supervisors compute explanations in a
distributed unfolding procedure.

In this chapter we focus on asynchronous diagnosis of concurrent sys-
tems. These are difficult to supervise using the classical approach because
SSE appears in multiple places as a consequence of using automata models.
First, modelling a concurrent system by an automaton provokes SSE due to
concurrency. But also, explanations are not in general streams of alarms, but
rather sets of streams of alarms (one per sensor), or more in general labelled
partial orders. Partially ordered observations must be first interleaved before
using them under the classical approach, yielding again a combinatorial
explosion.

Partially ordered observations and Petri net models of the system are em-
ployed in this work. The use of models that reflect the local and distributed
nature of the observed system, such as Petri nets, is not only helpful in terms
of computational efficiency, but also conceptually [FB07]. In [BFHJ03] diag-
nosis has been extended to asynchronous models using Petri net unfoldings
and partially ordered observations. Roughly speaking, from a given obser-
vation, a prefix of the unfolding is identified that contains all explanations.
The diagnosis method in [BFHJ03] assumes, however, that the model of the
system has no unobservable loops, i.e., every infinite execution produces in-
finitely many alarms. This assumption is removed in [EK12], but a new one,
not present in [BFHJ03], is introduced. The method from [EK12] assumes
that observations are sequences of alarms instead of labelled partial orders.

Here, we extend [EK12] to remove the assumption of sequential observa-
tions. Our approach extends that of [BFHJ03; EK12] or [HF13] and is also
based on unfoldings. As second aspect our extension, not considered in any
of the aforementioned works, is the introduction of weak fairness.

1 The problem is also stated assuming that the automaton has a set of faults, and the goal is to
see if any explanation at least contains one, but this does not alter the problem much.
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In concurrent systems, certain events and properties can be implied, or re-
vealed by others if some notion of fairness is assumed. Naturally, every event
that causally precedes another, is revealed by the latter; but fairness allows
to infer more. For instance, consider the occurrence net shown in Fig. 29.
Under the assumption that only the ⊆-maximal configurations correspond
to the runs of the system that we may observe, one may clearly conclude
that any run containing a also contains c, as a has disabled b and c has to
fire, by assumption.

The additional assumption that we need is that of weakly fair behavior: on
weakly fair runs, a transition t that becomes enabled at some point cannot
stay enabled forever; eventually, either t or another conflicting transition t′

must fire. Call t′, or t itself, a spoiler of t; for the run to be weakly fair, some
spoiler of t must fire. Weak fairness is also often called progress. The notion
of spoiler will play an important role in this chapter.

Diagnosis under the assumption of weakly fair behaviour is called weak di-
agnosis. We say that an observation ŵ weakly diagnoses fault φ iff all weakly
fair runs that explain ŵ contain φ. Thus we aim at extending the frameworks
of [BFHJ03; EK12] to weak diagnosis, and providing a decision procedure
for the weak diagnosis problem.

Both [BFHJ03] and [EK12] use Petri net unfoldings under certain restric-
tions: [BFHJ03] accepts partial-order observations, but refuses models with
unobservable loops; [EK12] accepts the latter, thanks to dedicated cutoff
criteria, but refuses the former. Our work uses both features, additionally
accounting for weak fairness in the diagnosis procedure. We generalize the
cutoff criteria of [EK12] to the partially ordered observations from [BFHJ03],
and extend the generalization to include fairness.

The chapter is organized as follows. In § 6.2 we recall basic notions and
explain how our notation for contextual nets specializes for the case of ordi-
nary Petri nets. In § 6.3, we present the diagnosis framework and formally
define the problem that we solve. In § 6.4, theoretical foundations are pre-
sented, supporting the definition of a decision procedure, in § 6.5, for the
weak diagnosis problem. This procedure is based on SAT solving. In § 6.6,
we conclude and discuss future work.

6.2 basic notions

In this section, we establish notations and recall how definitions introduced
in Ch. 2 specialize for ordinary Petri nets. We also discuss the notions of
weak fairness and labelled partial orders, and prove some statements about
them that will be used in the rest of the chapter.

petri nets A Petri net is a c-net with an empty context relation. In this
chapter we will denote a Petri net by a tuple N := 〈P, T, F, m0〉, where we
have indeed omitted the empty context relation. The immediate causality
relation <i for Petri nets, defined for c-nets in (2) and (3), on p. 17, coincides
now with the flow relation F, and the causality relation is, as before, the
transitive closure of <i. The asymmetric conflict relation, similarly, reduces
to the relation # ∪ (<i

2 ∩ (T × T)), as Rmk. 2 states. At any rate, we will
not use asymmetric conflict in this chapter, as symmetric conflict suffices to
express the conflicts that may relate events.

The axioms for occurrence nets, (13) to (16) on p. 22, are defined as before,
with the particularity that (15) reduces to asking that every event e in the net
is such that [e] is conflict-free, i.e., it contains no two events in symmetric
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conflict. Let O := 〈B, E, G, m̃0〉 be an occurrence net. The configurations of
O are all causally-closed, conflict-free set of events. Indeed, the axiom (18),
which forbids cycles of asymmetric conflict for configurations of a contex-
tual ON, reduces to forbidding the presence of conflicting events. By conf (O)
we denote the set of all such configurations.

We define specific notation for this chapter. For an event e ∈ E and
configuration C of O, we say that C enables e, written C e

 , iff e /∈ C and
(C ∪ {e}) ∈ conf (O).

Two nodes x, y of O are concurrent, written x ‖ y, if neither x ≤ y, nor
y ≤ x, nor x # y holds. Observe that we reuse here the symbol ‖ from Ch. 3

to denote a different relation, here between nodes of O, while in Ch. 3 it de-
noted the concurrency relation between enriched conditions of an enriched
prefix.

weak fairness Runs represent a sequential view of the executions of a
net, whereas configurations represent the concurrent point of view. We give
and relate the definitions of weak fairness for both.

Let N = 〈P, T, F, m0〉 be a finite Petri net, and UN = 〈〈B̃, Ẽ, G̃, m̃0〉, h〉 its
unfolding. A configuration of UN is weakly fair if it is ⊆-maximal in conf (UN).
Recall that the evolution order v between configurations of contextual un-
foldings reduces to set inclusion for ordinary unfoldings. We denote by
Ω(UN) the set of weakly fair configurations, or Ω if no confusion can arise.

Lemma 8. A configuration ω is weakly fair iff it does not enable any event.

Proof. If ω ∈ Ω enables e, then ω ∪ {e} is a configuration, and ω is not maxi-
mal, a contradiction. If ω is not weakly fair, then there exists a configuration
C that is a proper superset of ω. Pick some <-minimal event e from C \ ω.
By assumption, all causal predecessors of e are in ω, so all conditions in
•e are either initial or receive a token from some event in ω. Since C is a
configuration, it is conflict-free. So no event in ω will remove a token from
•e, and ω enables e.

Here we assume, for the sake of simplicity, that all weakly fair configura-
tions of UN are infinite. This entails no loss of generality, finite weakly fair
configurations correspond to deadlocks that can be detected and processed
separately — for instance, by adding a looping transition.

A spoiler of a transition t of N is any t′ ∈ T such that •t ∩ •t′ 6= ∅ (includ-
ing t itself). We write spoilers(t) for the set of such transitions. Following
Vogler [Vog95], who adapts the concept of weakly fair termination [Fra86] to
a Petri net setting, we say that an infinite run σ = t1t2 . . . ∈ Tω of N is
weakly fair if its marking sequence m0, m1, . . . satisfies that for all i ∈ N and
all t ∈ T, if mi enables t, then there exists j > i such that tj ∈ spoilers(t).
In other words, any t enabled at some point along σ either fires eventually,
or some other transition that consumes from its preset is fired. For runs
of an occurrence net O, such as UN , we can make the following, stronger
statement.

Lemma 9. Let σ be a weakly fair run of O and m0, m1 . . . its marking sequence.
For all i ∈N and all e ∈ E, if mi enables e, then

∃k > i ∀j ≥ k : mj does not enable e.

Proof. The statement follows from the definition of weakly fair runs and the
fact that < is acyclic for O; once a token from •e is consumed, it cannot be
replaced, and e remains disabled forever.
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Finally, we observe that weakly fair runs and weakly fair configurations
are related in the following way:

Lemma 10. Every weakly fair run of UN is an interleaving of some ω ∈ Ω.
Conversely, all interleavings of every ω ∈ Ω are weakly fair.

Proof. Let σ = e1e2 . . . be an (infinite) weakly fair run and ω := { ei : i ≥ 1 }.
Since no ei can fire without its causal predecessors putting tokens into its
preset, ω is causally closed. Due to the acyclic structure of UN , no condition
can receive a token twice, no event will be repeated in σ, so no two events
can consume from the same place, therefore ω is conflict-free and hence
a configuration. Now suppose ω is not weakly fair, then by Lemma 8 it
enables some event e. Arguing like in the proof of Lemma 8, we can conclude
that all conditions in •e are either initial or will receive tokens from events
in ω, and that no event in ω consumes from •e. Thus, some marking mi in
the marking sequence for σ enables e, and then e is never disabled, which
contradicts the weak fairness property for σ.

For the converse, let σ be an interleaving of a weakly fair configuration
ω. Suppose that σ is not weakly fair; then some event e eventually becomes
enabled during σ but neither e nor any conflicting event is in ω. Now, e
can only become enabled if all its causal predecessors are in ω and put
tokens into its preset, so ω ∪ {e} is also causally closed. Thus, ω ∪ {e} is a
configuration, which contradicts maximality of ω.

labelled partial orders An alphabet is a finite set X, whose elements
are called letters. A labelled partial order (LPO) over X is a tuple α = 〈S,<
, λ〉 where < ⊆ S× S is an irreflexive and transitive (hence antisymmetric)
relation on S, and λ : S → X a labelling map. The size |α| of α is |S|. Let
α′ = 〈S′,<′, λ′〉 be an LPO over X. A homomorphism from α to α′ is a function
h : S→ S′ verifying

• λ(a) = λ′(h(a)), and (66)
• a < b implies h(a) <′ h(b) for all a, b ∈ S. (67)

An isomorphism between α and α′ is a bijective homomorphism h from α to
α′ where h−1 is a homomorphism from α′ to α. We say that α is compatible
with α′ if there exists a bijective function f : S→ S′ such that

• λ(a) = λ′( f (a)), and (68)
• a < b implies ¬( f (b) <′ f (a)) for all a, b ∈ S. (69)

Observe that (67) and (69) are not equivalent, and f must be bijective. Denote
by compat(α) the set of LPOs compatible with α.

Lemma 11. Given LPOs α, α′, if there is a bijective homomorphism h from α′ to α,
then compat(α) ⊆ compat(α′).

Proof. Let A := 〈SA,<A, λA〉 ∈ compat(α), and let f1 : SA → S be the asso-
ciated bijection. Let f2 := h−1 be the (bijective) inverse of h. We show that
f := f2 ◦ f1 satisfies (68) and (69) from A to α′. For a, b ∈ SA, we prove that:

• f is bijective, as it is the composition of two bijections.
• λA(a) = λ′( f (a)). This is because f1 (by definition) and f2 (by con-

struction from h) preserve labels.
• a <A b implies ¬( f (b) <′ f (a)). Assume that a <A b and f (b) <′ f (a).

Let aα := f1(a), and bα := f1(b). We know that ¬(bα < aα) holds by
definition of f1. But by definition of h also bα = h( f (b)) < h( f (a)) = aα

holds, a contradiction.
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Figure 28: A safe Petri net with partial observation. The inscription of a tran-
sition indicates its name; the label next to it is either a Latin letter
or empty (ε), in which case the transition is invisible. Transition
t4 is the invisible fault transition, which is called φ in the text and
whose label is ε.

Lemma 12. LPOs α and α′ are isomorphic iff compat(α) = compat(α′).

Proof sketch. One direction is trivial, the other is reasoning by cases on the
possible orderings in the LPOs, after establishing that S and S′ have the
same size.

6.3 reveals and diagnosis

All diagnosis strives to detect ‘hidden’ events, but we aim at diagnosing also
latent but inevitable events, possibly in the future of the system evolution.
That is, we wish to diagnose exactly whether every weakly fair run that is
compatible with the observations so far, contains a fault occurrence. By the
above, we thus need to consider all weakly fair configurations in Ω that con-
tain an explanation of the current observation as a prefix. Let us formalize
these notions.

6.3.1 Reveals Relations

In occurrence nets, given two events e, e′, we say [Haa07; BCH11; HKS13])
that e reveals e′, written e . e′, iff

e ∈ ω ⇒ e′ ∈ ω for all ω ∈ Ω,

that is, the occurrence of e entails that e′ inevitably will occur, or has already
occurred. For instance, in Fig. 29, which shows an unfolding prefix of Fig. 28,
we have e5 . e1, and e4 . e6, and e3 . e2. After the occurrence of e5, the occur-
rence of e3 has become impossible; in a weakly fair execution, e1 must thus
necessarily occur. Similarly, when e4 occurs, e6 must already have occurred
previously (.−1 includes and extends causal precedence). Also, all weakly fair
configurations containing e3 must contain e2. Note that . is not a causal or
temporal relation. Any revealed event can be, with respect to the event that
reveals it, in the past (as for e4 . e6), be concurrent (as in e5 . e1), or in the
future (as in e3 . e2).

It is shown in [Haa10] that one can characterize . by:

x . y iff #[y] ⊆ #[x],
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Figure 29: A prefix of the unfolding for the net in Fig. 28. Events are named
according to the corresponding transition (via the mapping h): ei,
e′i , e′′i etc. for the occurrences of ti. Observation labels are as in
Fig. 28.

where #[u] := {z ∈ E : z # u}. That is, x . y iff every event that prevents y,
and these are contained in #[y], is also prevented by x, i.e., lies in #[x]. This
binary relation . can be computed, for 1-safe Petri nets, on a finite prefix
whose height is bounded [HKS13].

The binary reveals relation helps in detecting invisible events; however,
for diagnosis purposes, it is not strong enough. We shall need more general
relation that relates sets to sets, namely the extended-reveals relation −−. in-
troduced by Balaguer et al. [BCH11]. Assume that in Fig. 29, a and b are
observable labels, and that we actually do observe their occurrence. From
inspection of Fig. 29, we know that (i) e5 is bound to occur, and (ii) one of
the two instances of φ, either e4 or e′4, are inevitable. However, the binary
relation . does not permit to deduce (i) and (ii): while the conjunction of e1
and e11 makes e5 inevitable, we have neither e1 . e5 nor e11 . e5 individually;
also, the disjunction of e4 or e′4 is certain once e5 is assured, but neither e4 or e′4
are revealed individually. To account for such situations, following [BCH11]
we say, for sets of events A, B, that A extended-reveals B, written A−−. B, iff
every weakly fair configuration that contains A also ‘hits’ B, i.e.,

A−−. B iff ∀ω ∈ Ω : (A ⊆ ω ⇒ B ∩ω 6= ∅).

6.3.2 Diagnosis from Partial Observation

We fix now, for the rest of the chapter, the following framework. Let N :=
〈P, T, F, m0〉 be a finite, safe Petri net satisfying the general assumptions
on p. 18, and let UN := 〈〈B̃, Ẽ, G̃, m̃0〉, h〉 be its unfolding. We denote by
Ω the set of weakly fair configurations of UN and assume that all of them
are infinite. Let ε denote a unique ‘empty’ symbol, and let X denote a non-
empty observation (or alarm) alphabet where ε /∈ X. Let λ : T → X ∪ {ε} be
the mapping associating transitions of N with observations or ε, and φ ∈ T
the unique fault transition. We let

Tobs := T \ Tubs Tubs := λ−1(ε)
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be the sets of observable and unobservable transitions of N, and

Eobs := h−1(Tobs) Eubs := h−1(Tubs)

be the sets of observable and unobservable events of UN . Naturally, we assume
that φ is unobservable, i.e., φ ∈ Tubs, and define the set of fault events as

Eφ := h−1(φ).

Observe that Eφ ⊆ Eubs. We extend λ to Ẽ and, by abuse of notation, define
λ(e) := λ(h(e)) for all e ∈ Ẽ.

We now define the notion of observation pattern, or simply observation. Ob-
servations are LPOs over an observation alphabet. LPOs allow to capture
linearly ordered observations, produced by a single sensor that observes the
interleaving of the system; or sets of linear orders, produced by a number of
sensors that locally observe each concurrent process of a distributed system;
or yet others. This allows to work in an asynchronous setting as in [BFHJ03],
but without the need to enumerate the interleavings of observation patterns,
as opposed to the approach of [EK12]. For the rest of the chapter, fix a finite
observation pattern α := 〈Sα,<α, λα〉 over the observation alphabet X.

Given N and α, where α is the observation of some execution of N, our
goal is to determine whether that execution contains a fault, assuming that
runs of N are weakly fair. So we need to consider all those weakly fair
configurations of UN that are compatible with α. We formalize this in two
steps. First, we associate every configuration C with an LPO lpo(C) := 〈S,<′

, λ′〉, where S := C ∩ Eobs are the observable events in C, <′ is the restriction
to S of the causal order < on UN , and λ′ : S → X is the restriction of λ to S.
Since <′ and λ′ are restrictions of < and λ, it is safe to confuse them here,
and so we will.

Second, we define the observations of C as the set

obs(C) := compat(lpo(C)),
i.e., the set of all (LPOs modelling) observations compatible to the LPO of C.
Conversely, we say that C explains observation α if α ∈ obs(C), and define

expl(α) := {C ∈ conf (UN) : α ∈ obs(C)}.
As a consequence of Lemma 12, for configurations C, C ′, we have obs(C) =
obs(C ′) iff lpo(C) is isomorphic to lpo(C ′).

Definition 19. An observation pattern α weakly diagnoses φ iff

for all C ∈ expl(α), C −−. Eφ. (70)

Since weak diagnosis is the only form of diagnosis we consider, we hence-
forth simply speak of diagnosis.

In the context of Fig. 28, any observation containing a label c or d clearly
diagnoses φ. This is because once any transition labelled by them (t6 or
t8) has fired, p7 is marked. By fairness, necessarily t1 and t11 need to fire,
marking p9 and p10, which together with p7 enable t4, the faulty transition.

What is more, and may serve to see the power of weak diagnosis here, is
that observing a and b also weakly diagnoses φ. In fact, every weakly fair
configuration that allows to observe a and b must contain an occurrence of
t5, which marks p4 and forces to fire either t6 or t7. By the same argument
as above, the fault is bounded to happen. On the other hand, observing only
a or even a sequence ak is not sufficient for diagnosing φ (consider a weakly
fair run composed only of occurrences of t1, t9 and t10).



6.4 a solution using extended reveals 97

The diagnosis problem is to decide, given N and an observation α, whether
or not α weakly diagnoses φ. One of the keys to solve it is deciding relation
(70) for a given configuration.

6.4 a solution using extended reveals

By Def. 19 and definition of −−., α diagnoses φ iff

∀C ∈ expl(α) ∀ω ∈ Ω : (C ⊆ ω ⇒ Eφ ∩ω 6= ∅) (71)

Swapping the two ∀, this can be equivalently rephrased as:

∀ω ∈ Ω : (∃C ∈ expl(α) : C ⊆ ω) ⇒ Eφ ∩ω 6= ∅ (72)

In this section we derive an algorithm for deciding the negation of (72), i.e.,
given α, the algorithm decides whether or not there is some ω ∈ Ω that
contains an explanation C ∈ expl(α) and such that ω ∩ Eφ = ∅. Deriving
this algorithm needs to overcome two obstacles:

1. expl(α) may be infinite due to unobservable loops. In Fig. 29, a is ex-
plained by any configuration in which t9 and t10 fire any number of
times, followed by e1.

2. Ω is an infinite set in general, which we need to finitely represent
while still being able to check for set inclusion or whether Eφ ∩ω 6= ∅
for each weakly fair ω.

The main ideas behind our solution can be summarized as follows. Fol-
lowing [EK12], we fix the first problem by showing that it is sufficient for
deciding (72) to search for C within a finite subset of expl(α), instead of the
entire, potentially infinite set of explanations. Because this subset is finite,
there exists an unfolding prefix that contains it entirely (Pα), and we will
see how to construct it. Once such a configuration C has been found, the
algorithm needs to decide if it can be extended into a fault-free, weakly fair
ω ∈ Ω. We show (Lemma 15) that this is the case iff two configurations
C1 ⊂ C2 exist such that both of them reach the same marking, both are free
of faults, C2 disables every event enabled by C1, and C ⊆ C1. This result does
not quite yet give an algorithm, as, e.g., C2 could be unboundedly large. To
fix this, we define two finite unfolding prefixes P1

N and P2
N verifying that

(i), P1
N is contained in P2

N and, (ii), the aforementioned C1, C2 exist iff con-
figurations C̃1 ∈ conf (P1

N) and C̃2 ∈ conf (P2
N) exist and satisfy (again) that

C̃1, C̃2 reach the same marking, both are free of faults, C̃2 disables all events
enabled by C̃1, and some other technical condition asking (modulo details)
that C ⊆ C̃1. This ‘iff’ is shown in Lemma 17. These two prefixes can be seen
as fixing the second problem mentioned above. Our main result, Theorem 3,
formalizes these ideas; § 6.5 derives a decision procedure from them.

6.4.1 Succinct Explanations

In this section, we define, following [EK12], a finite subclass of explanations
of α and show, in Lemma 14, that this class is sufficient for deciding (72), i.e.,
that the existential quantification of C in (72) can be restricted to this finite
class.

Definition 20. Configuration C ∈ conf (UN) is verbose if it contains two events
e, e′ ∈ C satisfying

• e′ < e, and (73)
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• mark([e′]) = mark([e]), and (74)
• obs([e′]) = obs([e]). (75)

If C is not verbose, it is succinct.

Intuitively, C is verbose if it contains the occurrence of some loop of N
consisting entirely of unobservable transitions. In Fig. 28, t2, t3 is an unob-
servable loop, that produces the verbose configuration {e1, e′3, e′2} in Fig. 29

(set e, e′ of Def. 20 as e := e′2 and e′ := e1).
Observe that lpo([e′]) is isomorphic to lpo([e]), by (75) and Lemma 12, and

that [e′] ⊆ [e], by (73). This means that all events in [e] \ [e′] are unobservable,
see Fig. 30 (a). It also means that lpo([e]) = lpo([e′]), i.e., the LPO isomor-
phism is the identity function on C restricted to observable events. Finally,
observe that (74) does not imply (73), even for 1-safe nets.2

Def. 20 is different from the equivalent definition in [EK12] only in that
obs(C) is defined differently: here, it is a set of LPOs while in [EK12] it is the
set of sequences λ(σ) where σ is an interleaving of C.

We now introduce the notion of peeling a configuration, which will be
necessary in subsequent proofs. Intuitively, if C is a verbose explanation
of some α, peeling corresponds to finding a shorter explanation C ′ where
unnecessary (unobservable) fragments of C have been removed. Peeling C
one time yields a shorter explanation of α that reaches the same marking as
C. The new configuration may not yet be succinct, but since the operation
reduces the size of the explanation, finite explanations need to be peeled
only finite number of times until getting a succinct explanation.

Let us formalise this idea. Let C be verbose and finite, and let e, e′ ∈ C
be events satisfying (73)–(75). Let I := C \ [e]. We define peele,e′(C) as the
configuration

C ′ := [e′] ∪ I′,

where I′ is the isomorphic copy of I that continues UN just after cut([e′]).
Recall that I′ is well defined, as we have explained in § 2.4.2. Since |[e′]| <
|[e]|, we have |C ′| < |C|. So if C ′ is still verbose, we only need to peel again
finitely many times before obtaining a succinct configuration. We denote
by peelmax(C) the set of succinct configurations resulting from peeling C as
many times as necessary (choosing any e, e′ that satisfy (73)–(75) every time
we peel).3 Lemma 13 implies that peelmax(C) are explanations of α if C is.

Lemma 13. For any verbose configuration C with C ′ := peele,e′(C), it holds that:

• mark(C) = mark(C ′) (76)
• obs(C) ⊆ obs(C ′) (77)
• C ′ ∩ Eφ 6= ∅ ⇒ C ∩ Eφ 6= ∅ (78)

Proof. Let e, e′ ∈ C be events satisfying (73)-(75). Recall that C has the form
[e] ] I, and C ′ the form [e′] ] I′.

(76) is a consequence of (74) and the fact that I, I′ are isomorphic. Showing
(77) is more laborious. Let lpo(C) := 〈S,<, λ〉 and lpo(C ′) := 〈S′,<, λ〉. In
the sequel we define a mapping g : S′ → S and prove that g is a bijective
homomorphism from lpo(C ′) to lpo(C). (77) then follows by Lemma 11.

Let f1 be the LPO isomorphism between lpo([e]) and lpo([e′]). Recall that
f1 is actually the identity function. Let f2 : I′ → I be the isomorphism be-
tween I′ and I. Define g := f1 ∪ f ′2 where f ′2 is the restriction of f2 to S′, i.e.,
the observable events of C ′.

2 More precisely, there is a 1-safe net whose unfolding contains a configuration that has two
events, e and e′, such that mark([e′]) = mark([e]) but ¬(e′ < e).

3 We conjecture that peelmax(C) is a singleton, but do not rely on it in the sequel.



6.4 a solution using extended reveals 99

Observe that g is bijective because it is the union of two bijections whose
domains and codomains are disjoint; it satisfies (66) because so do f1 and f2.
Finally, for e1, e2 ∈ S′ with e1 < e2, we show that (67) holds. There are three
cases:

• e1, e2 ∈ [e′]. Then g(e1) = e1 < e2 = g(e2).
• e1, e2 ∈ I′. Since the isomorphism f2 preserves causality, we have

g(e1) = f2(e1) < f2(e2) = g(e2).
• e1 ∈ [e′] and e2 ∈ I′. Then there is some c ∈ cut([e′]) such that e1 < c <

e2. Since N is safe and by (74), there is a single condition c′ ∈ cut([e])
such that h(c) = h(c′), where h is UN’s labelling. It does not hold
that c # c′ or c ‖ c′, because [c] ∪ [c′] ⊆ C and N is safe. So c ≤ c′

holds, since c′ < c contradicts e′ < e. Since [e2] consumes c, necessarily
[ f2(e2)] consumes c′, as I′ and I are isomorphic. We therefore have:

g(e1) = f1(e1) = e1 < c ≤ c′ < f2(e2) = g(e2)

As for (78), let ẽ ∈ C ′ ∩ Eφ be some fault. If ẽ ∈ [e′] ⊆ C, then ẽ ∈ C. If
ẽ ∈ I′, then f2(ẽ) ∈ I ⊆ C is also fault, because f2 preserves transition labels.
In both cases C ∩ Eφ 6= ∅.

We define the set of succinct explanations of α as

succexpl(α) := {C ∈ expl(α) : C is succinct}

Proposition 13. succexpl(α) is finite.

Proof. Since N is finite, there are finitely many events in UN of depth less or
equal to any given n ∈N, and thus finitely many configurations made up of
such events. Assume now there are infinitely many succinct explanations of
α. Because of the above, there must be a succinct explanation C that contains
e ∈ C such that depth(e) = k(|α|+ 1), where k is the number of reachable
markings in the net. Let

e1 < . . . < e|α|+1 = e

be the events of some causality chain from the initial marking m̃0 to e, such
that mark(e1) = . . . = mark(e|α|+1), which exist by the pigeonhole principle.
Since only |α| events in C are observable, [ei+1] \ [ei] ⊆ Eubs holds for some i.
So C contains two causally related events, whose local configurations have
the same LPO, thus the same observation (Lemma 12), and reach the same
marking. Then C is verbose, a contradiction.

The previous proof works even if (73) is removed from Def. 20. However,
(73) is required for the following statement.

Proposition 14. The shortest explanations of α (in number of events) are succinct.

Proof. If C is an explanation of α and it is verbose, then peelmax(C) are
shorter explanations of α, so no shortest explanation can be found among
the verbose ones.

Prop. 14 would still work if (73) is replaced by the more general condition
|[e′]| < |[e]|, but then (77) would become false.

The main lemma of this subsection shows that (72) can be rephrased into
(79), eliminating the need to examine all potentially infinitely many expla-
nations of α.

Lemma 14. Observation pattern α diagnoses φ iff

∀ω ∈ Ω : (∃C ∈ succexpl(α) : C ⊆ ω)⇒ Eφ ∩ω 6= ∅ (79)
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Proof. (72) and (79) differ only in that succexpl(α) has replaced expl(α). Triv-
ially, (72) implies (79). Assume that (79) holds and let ω ∈ Ω, C ∈ expl(α) be
such that C ⊆ ω. We show that ω ∩ Eφ 6= ∅. If C is succinct, we are done,
so assume C is verbose and let C ′ ∈ peelmax(C). By (76), we can append
an isomorphic copy I of ω \ C to C ′, yielding a weakly fair configuration
ω′ := C ′ ∪ I. By (77), C ′ is a succinct explanation of α. Because C ′ ⊆ ω′ and
(79), it holds that ω′ ∩ Eφ 6= ∅. If C ′ ∩ Eφ 6= ∅, by (78), we have C ∩ Eφ 6= ∅.
If I ∩ Eφ 6= ∅, then ω \ C must contain a fault because it is isomorphic to I.
In any case, ω ∩ Eφ 6= ∅.

6.4.2 Characterizing Weakly Fair Configurations

We now investigate a finite characterization of the weakly fair configurations
in Ω that allows to reason about (i) inclusion of (succinct) explanations and
(ii) absence of faults.

According to (79), α does not diagnose φ iff we can find a fault-free, weakly
fair configuration ω that contains a succinct explanation. The next lemma
establishes a characterization of such weakly fair configurations, where the
spoilers of an event play an important role.

The main idea is simple: given a finite configuration C that plays the role
of the explanation, a fault-free, weakly fair configuration that extends C
exists iff one can find configurations C1, C2 with C1 ⊆ C2, both free of faults,
extending C, reaching the same marking, and such that C2 \ C1 disables all
events enabled by C1. Since both reach the same marking, the fragment
C2 \ C1 can then be iterated infinitely often without ever leaving any event
enabled:

Lemma 15. Let C be a finite configuration. There exists a weakly fair ω ∈ Ω such
that C ⊆ ω and ω ∩ Eφ = ∅ iff there are C1, C2 ∈ conf (UN) satisfying

• C ⊆ C1 ⊆ C2, and (80)
• mark(C1) = mark(C2), and (81)
• ∀e ∈ E : C1

e
 ⇒ spoilers(e) ∩ C2 6= ∅, and (82)

• C2 ∩ Eφ = ∅. (83)

Proof. Let ω ∈ Ω be weakly fair, such that C ⊆ ω and ω ∩ Eφ = ∅. Let
σ = e1e2 . . . be any weakly fair interleaving of ω, and en the last event of C
in σ. By the pigeonhole principle there are infinitely many n ≤ n1 < n2 <
n3 < . . . ∈N such that

mark(σn1) = mark(σn2) = mark(σn3) = . . .

where σi denotes the run e1e2 . . . ei. Let C1 be the restriction of ω to σn1 .
Because σ is weakly fair, there is some i ∈ N such that σni contains one
spoiler for every event enabled by C1 (Lemma 9). Let C2 be the restriction of
ω to σni . Then C1, C2 satisfy (80)-(83).

For the opposite direction, let C1, C2 be configurations satisfying (80)-(83).
We construct a fault-free, weakly fair ω ∈ Ω. For convenience, we write
ploop(C1, C2) for all pairs C1, C2 ∈ conf (UN) satisfying (80) and (81). Since
mark(C1) = mark(C2), we can append an isomorphic copy of C2 \ C1 to C2,
yielding C3, such that ploop(C2, C3) and C3 ∩ Eφ = ∅ hold. Iterating this
construction, one can obtain a family (Cn)n∈N of configurations satisfying
ploop(Cn, Cn+1) and Cn ∩ Eφ = ∅ for all n ∈N. We now let

ω :=
⋃

n∈N

Cn
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be the configuration resulting from their union. We prove that ω does not
enable any event, and thus ω ∈ Ω by Lemma 8. By contradiction, let e be any
event enabled by ω. It is therefore enabled by Ci for some i ∈ N. Since the
unfolding after cut(Ci) is isomorphic to the unfolding after cut(C1), there is
some e′ isomorphic to e that is enabled by C1. By construction, spoilers(e′) ∩
C2 6= ∅, so there is some ê′ in C2 \ C1 that disables e′. Because Ci+1 \ Ci is
isomorphic to C2 \ C1, there is some spoiler of e in Ci+1 \ Ci, and ω does not
enable e, a contradiction.

As an example, consider the weakly fair run (t1, t9, t10)
ω in Fig. 28. It

is represented in Fig. 29 by the fault-free, weakly fair configuration ω :=
{e1, e9, e10, e′1, . . .} ∈ Ω. Setting C := ∅, Lemma 15 implies the existence of
C1 = ∅ and C2 = {e1, e9, e10}.

While Lemma 15 identifies a method for finding fault-free, weakly fair
configurations that extend a given configuration, there are still infinitely
many configurations C1, C2 to consider. We would thus like to define a finite
unfolding prefix of UN such that, C1, C2 exist and verify (80) to (83) iff there
are small copies of C1, C2 among the configurations of such a prefix and they
still satisfy (80) to (83).

A first approach would be considering a finite prefix that is large enough
to contain such small copies. Observe that C1 is a superset of C. This means
that C should be included in the prefix, and C could be any succinct explana-
tion, so the prefix should include all succinct explanations. Conceptually, it
should also unfold enough to see all markings that can be reached from any
explanation (to find C1), and all markings that can be reached from those
ones (to find C2). Such a prefix would probably be very large. Fortunately,
the same information that this prefix carries can be represented in, not one,
but two unfolding prefixes.

Assume that we already have a prefix Pα that contains all succinct ex-
planations. In order to find configurations C1, C2 as in Lemma 15, we first
need to search for any configuration C1 such that C ⊆ C1. The key obser-
vation is that such C1 exists iff mark(C1) is reachable from mark(C) without
firing faulty events, as (83) requests. So we do not need to extend Pα into a
larger prefix where to find C1. Essentially, all that we need is a prefix that
has the following property: marking m′ is reachable from marking m in N
iff the prefix contains configurations Cm ⊆ Cm′ such that mark(Cm) = m
and mark(Cm′) = m′. Such prefix can actually be understood as two over-
lapping prefixes, an small prefix where Cm is to be found and a large prefix,
which extends the small one, and where Cm′ is to be found. This idea is used
by [HKS13] for a similar purpose.

Next, we need to find a suitable C2, which by Lemma 15 must include C1
and fire at least one spoiler for each event enabled by C1. This requires to
reason not only about the possibility of reaching one marking from another
one, but also about which events have been disabled on the way, or which
spoilers have been fired. We show in the sequel how to construct the afore-
mentioned small and large to convey complete information with regard to
this stronger requirement.

So we need to define two prefixes. For the small one, any finite, marking-
complete prefix will be enough. Intuitively, the first prefix just needs to
represent all possible reachable markings. We explained in Ch. 3 how to
construct marking-complete prefixes for contextual nets, and methods and
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Figure 30: The lined area in (a) represents unobservable, ε-labelled, events of
a verbose explanation. In (b), the lined area depicts D := [e] \ [e′]
in Def. 21, which does not consume any condition in B1.

tools to construct them for ordinary nets have already been described [EH08;
ERV02; McM93b], so we will not emphasize this point. We denote by

P1
N := 〈B1, E1, G1, m̃0〉

some finite, marking-complete prefix of UN . For any configuration C of UN ,
we denote by CE1 the set C ∩ E1 of events in C that are also in P1

N .
Then we need to define a prefix P2

N that includes P1
N and preserves not

only reachability of markings but also the capability of a configuration to
spoil previously enabled events, i.e., those events that can take the role of C2
in (82). The prefix P2

N will be defined using the following notion of cutoff,
which is relative to P1

N :

Definition 21. Event e ∈ E is an sp-cutoff w.r.t. P1
N if there is e′ ∈ E such that,

setting D := [e] \ [e′], we have e′ < e, and

• h(•D \ D•) = h(D• \ •D), and (84)
• B1 ∩ •D = ∅. (85)

The main intuition behind this cutoff criterion is that an event e should
be considered cutoff if it spoils the same events, among all those enabled
by any C1 ∈ conf (P1

N), that some other event e′ which reaches the same
marking and is a causal predecessor of e.

Intuitively, this is achieved by Def. 21 in the following way, which we
illustrate in Fig. 30 (b). The set D in Def. 21 is the difference between [e]
and [e′], and (85) ensures that e and e′ consume exactly the same conditions
generated by events of P1

N . As a result, both events are in conflict with
exactly the same events enabled by any configuration of P1

N . On the other
hand, that both events reach the same marking is a consequence of (84),
which implies that mark([e′]) = mark([e]), as Lemma 16 shows:

Lemma 16. Let e be an sp-cutoff, and e′ as in Def. 21. For all C ∈ conf (P1
N), if

C ∪ [e] is a configuration, then

mark(C ∪ [e]) = mark(C ∪ [e′]).

Proof. (sketch) Show by cases, using (84)-(85), that

f ((m̃0 ∪ C• ∪ [e]•) \ (•C ∪ •[e])) =
f ((m̃0 ∪ C• ∪ [e′]•) \ (•C ∪ •[e′])).

An important remark is that no event in P1
N can be an sp-cutoff, as oth-

erwise the difference set D would consume at least one condition in B1. We
can now define

P2
N := 〈B2, E2, G2, m̃0〉
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as the largest unfolding prefix that contains no sp-cutoff events, i.e., E2 is the
⊆-maximal set of events that is causally closed and contains no sp-cutoff. It
is immediate to see that P2

N is well-defined, in particular that it is unique.
Because no sp-cutoff is contained in P1

N , we get that P1
N is a prefix of P2

N .

Proposition 15. P2
N is finite.

Proof. Assume E2 is infinite. As in the proof of Prop. 13, we can find in-
finitely many events e1 < e2 < . . . in E2. Because T and the number of
reachable markings in N are finite, we can furthermore assume that h(e1) =
h(e2) = . . . and mark([e1]) = mark([e2]) = . . . Define the sequence of differ-
ence sets Di = [ei] \ [ei+1], for i ≥ 1. Since Di 6= ∅ for all i ≥ 1, we have
•Di 6= ∅. For i < j, •Di ∩ •Dj = ∅, otherwise [ej] would have conflicts. Since
B1 is finite, the number of Dis consuming from B1 must be finite. So there
is some k ≥ 1 such that B1 ∩ •Di = ∅ holds for all i ≥ k. Then ek+1 is an
sp-cutoff, a contradiction.

We have now defined two finite unfoldings prefixes, P1
N and P2

N , where
P1

N is a prefix of P2
N . Our next goal is showing that, roughly speaking,

configurations C1, C2 that satisfy Lemma 15 exist iff it is possible to find
representatives of them in P1

N ,P2
N . Specifically, we want to show that for

any given C1 ∈ conf (P1
N), there exists some C2 ∈ conf (UN) that satisfies

(80) to (83) iff there is some C ′2 ∈ conf (P2
N) such that C1, C ′2 satisfy (80) to (83).

To define C ′2 we introduce the notion of trimming a configuration, and prove
some properties of this transformation.

Any configuration C of UN that contains some sp-cutoff e can be trimmed
in a way analogous to the way verbose configurations can be peeled into
succinct configurations, cf. Lemma 13. Trimming C corresponds to finding
some smaller configuration C ′ that preserves the aforementioned spoiling
capabilities.

Formally, let C be any configuration that contains an sp-cutoff e and event
e′ ∈ C as in Def. 21. Consider the configuration CE1 ∪ [e] ⊆ C. Since CE1 is a
configuration of P1

N , by Lemma 16, we have that

mark(CE1 ∪ [e]) = mark(CE1 ∪ [e′]).

So we can partition C as (CE1 ∪ [e]) and I := C \ (CE1 ∪ [e]), and define
trime,e′(C) as the configuration

C ′ := (CE1 ∪ [e′]) ∪ I′,

where I′ is the isomorphic copy of I after cut(CE1 ∪ [e′]).

Lemma 17. Let C ′ := trime,e′(C) for any configuration C of UN . We have:

• mark(C) = mark(C ′) (86)
• C ∩ E1 ⊆ C ′ ∩ E1 (87)
• C ∩ Eφ = ∅ ⇒ C ′ ∩ Eφ = ∅ (88)
• ∀e ∈ B•1 : spoilers(e) ∩ C 6= ∅ ⇒ spoilers(e) ∩ C ′ 6= ∅ (89)
• |C ′| < |C| (90)

Proof. (87), (88), and (90) hold by construction of C ′. (86) is a consequence
of the fact that UN stripped of CE1 ∪ [e] is isomorphic to UN stripped of
CE1 ∪ [e′]. So isomorphic sets of events I and I′ yield the same marking of N.
As for (89), let e, e′ ∈ C be as in Def. 21, let ê ∈ B•1 , and let ê† ∈ spoilers(ê)∩ C.
Three cases are possible:

• ê† ∈ (C ∩ E1) ∪ [e′]. Then by construction, ê† ∈ C ′.
• ê† ∈ [e] \ [e′]. Not possible, entails contradiction to (85).
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• ê† ∈ I. Let c ∈ • ê† ∩ B1 be any condition in B1 consumed by ê†. We
show that c ∈ cut(CE1 ∪ [e′]). This is because c ∈ m̃0 ∪ (C ∩ E1)

• (since
C is causally closed), and also c /∈ •(CE1 ∪ [e′]) (since the only event
ê† in C that consumes c is in I). With analogous reasoning, one shows
that c ∈ cut(CE1 ∪ [e]). Now, because I, starting from cut(CE1 ∪ [e]), is
isomorphic to I′, starting from cut(CE1 ∪ [e′]), and c belongs to both
cuts, if ê† consumes from c, its isomorphic event in I′ also consumes
from c and hence spoils ê.

Trimming decrements the number of events (90), so if trime,e′(C) still has a
sp-cutoff we can trim again finitely many times until getting a configuration
free of sp-cutoff events, choosing any e, e′ as in Def. 21 every time we trim.
Let trimmax(C) denote the set of such configurations. Again, we conjecture
that trimmax(C) is a singleton, but this is not important for our purposes.
Since it has no sp-cutoff, trimmax(C) are always configurations of P2

N .
We can now define the configuration C ′2 that we have mentioned, above,

when motivating the investigation of trimming configurations. We said that
C ′2 needs to be in conf (P2

N) and that C1, C ′2 needs to satisfy (80) to (83). Taking
C ′2 := trimmax(C2) we get the desired result, which can be proved using
Lemma 17.

We can now state the main result of the chapter:

Theorem 3. Observation pattern α does not diagnose φ iff there exist configura-
tions

C, C ′1 ∈ conf (UN), C1 ∈ conf (P1
N), C2 ∈ conf (P2

N)

satisfying the following properties:

• C is a succinct explanation of α, and (91)
• C ⊆ C ′1, and (92)
• C1 ⊆ C2, and (93)
• mark(C ′1) = mark(C1) = mark(C2), and (94)
• ∀e ∈ E : C1

e
 ⇒ spoilers(e) ∩ C2 6= ∅, and (95)

• there is no fault event in either C ′1 or C2. (96)

Proof. By (79), if α does not diagnose φ, there is a fault-free, weakly fair
configuration ω ∈ Ω and some succinct explanation C ∈ succexpl(α) with
C ⊆ ω. By Lemma 15, there are configurations C̃1, C̃2 that satisfy (80)-(83).
Define C1 ∈ conf (P1

N) as any configuration in P1
N that reaches mark(C̃1).

Now let C ′2 denote C1 ∪ I where I is an isomorphic copy of C̃2 \ C̃1 starting at
cut(C1). Define C2 as either C ′2 if C ′2 contains no sp-cutoff or as any configura-
tion in trimmax(C ′2) otherwise. In both cases, C2 ∈ conf (P2

N). Define C ′1 ⊆ ω
as any configuration satisfying (92) whose marking is mark(C̃1), which exists
because ω repeats mark(C̃1) infinitely often.

(91) and (92) holds by definition of C, C ′1. By construction, C1 ⊆ C ′2. If
C ′2 has sp-cutoffs and C2 is taken from trimmax(C ′2), by (87) and the fact
that C1 ⊆ E1, we have C1 ⊆ C2. So (93) holds in any case. (94) holds by
construction of C ′1, C1, (81), and (86). Because ω is fault-free, C ′1 is as well. By
(83), C̃1, C̃2 are fault free, and so is C ′2 (by isomorphism). Then, by (88), C2
is fault-free. This shows (96). As for (95), we observe the following. C̃1, C̃2
satisfy (82). Since C̃1 cannot contain any spoiler of the events it enables,
all such spoilers are in C̃2 \ C̃1. Then, C ′2 disables all events enabled by C1
because C ′2 \ C1 is isomorphic to C̃2 \ C̃1. Now, because C1 ⊆ E1, all such
events are in B•1 . Then by (89), C2 disables all them, and (95) holds.

If C, C ′1, C1, C2 exist and verify (91)-(96), by Lemma 15 some fault-free,
weakly fair configuration ω ∈ Ω exists and repeats infinitely often the
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marking mark(C1) = mark(C ′1). Construct another weakly fair configuration
ω′ := C ′1 ∪ I ∈ Ω where I is an isomorphic copy of ω \ C1 starting at cut(C ′1).
Now, ω′ contains a succinct explanation and is fault-free because so was C ′1,
and by isomorphism between ω \ C1 and I.

In other words, Theorem 3 states that α does not diagnose φ iff one can
find suitable configurations C1, C2 in certain finite unfolding prefixes and a
succinct explanation C of α such that mark(C1) can be reached from mark(C)
without executing fault events. There are only finitely many succinct expla-
nations of α, and we can decide whether one marking is reachable from
another without executing faults using the next proposition. So Theorem 3

suggests a decision algorithm for the diagnosis problem that we shall inves-
tigate in § 6.5.

Proposition 16. There exist fault-free configurations C, C ′ in UN such that C ⊆ C ′
iff there are fault-free configurations Ĉ ⊆ Ĉ ′ of, respectively, P1

N ,P2
N , that satisfy

• mark(C) = mark(Ĉ), and
• mark(C ′) = mark(Ĉ ′).

Proof sketch. P1
N is marking-complete and we can find the requested fault-

free Ĉ in conf (P1
N), see the proof of Proposition 4.9 (a) in [ERV02]. Let Ĉ ′′ :=

Ĉ ∪ I where I is an isomorphic copy of C ′ \ C starting at cut(Ĉ). Let Ĉ ′ := Ĉ ′′
if Ĉ ′′ ⊆ E2, or Ĉ ′ ∈ trimmax(Ĉ ′′) otherwise. Then Ĉ, Ĉ ′ satisfy the proposition
by (86)-(88).

6.5 a decision procedure for diagnosis

Theorem 3 states a set of necessary and sufficient conditions that charac-
terize whether or not a given observation α diagnoses φ. In this section, we
present a method for deciding if these conditions hold. We discuss which in-
formation is needed in order to decide them (§ 6.5.1), and how to obtain that
information (§ 6.5.2). Based on this, we present an encoding of the diagnosis
problem into SAT (§ 6.5.3).

6.5.1 Preparation

Given the observation α, we need to decide whether all conditions in The-
orem 3 hold. Our goal is to minimize the work that is sensitive to changes
in α, in particular when α is extended by additional observations. However,
(91) and (92) seem to require constructing not only the prefix containing all
succinct explanations, but also a large section of the unfolding beyond each
of these explanations. Fortunately, this can be avoided thanks to Prop. 16

and the fact that C ′1 and C1 in Theorem 3 do not depend on C being an ex-
planation of α, merely on the fact that C ′1 is a fault-free extension of C. So,
we only require that mark(C ′1) is reachable from mark(C) without executing
faults, and replace (92) by:

∃C ′ : mark(C) = mark(C ′) ∧ C ′ ⊆ C ′1 (97)

Hence it suffices to construct only two unfolding prefixes:

• One prefix Pα containing all succinct explanations of α, used to search
for C.

• Prefix P2
N � P1

N , to check for the existence of a weakly fair configura-
tion starting from a given marking (see Lemma 17), and whether one
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marking is reachable from another (see Prop. 16). We shall search for
C ′, C1 in P1

N and for C ′1, C2 in P2
N .

Observe that restricting the construction of these prefixes to their fault-free
parts automatically satisfies (96). Also, notice that Pα depends only on the
observation, whereas P2

N depends only on N. So P2
N can be constructed

off-line, before α is acquired.

6.5.2 Constructing the Prefixes

We now explain how to compute the prefixes P2
N and Pα. There exist well-

known algorithms [ERV02] and efficient tools [Sch; Kho] for constructing
Petri net unfoldings. For our constructions, the iterative structure of these
algorithms can be maintained, it suffices to replace the criteria for cutoffs.

6.5.2.1 Constructing Pα

We need to restrict the unfolding construction as follows:

1. exclude fault events to ensure (96);
2. restrict to explanations of α; and
3. preserve all succinct explanations and eliminate all verbose ones.

For the first and second points, we synchronize N with a net represent-
ing α = 〈S,<, λ〉. Let Smin (resp. Smax) be the elements without predeces-
sor (resp. successor) in S. We re-translate α into an occurrence net Oα =
〈Pα, S, Fα, mα〉, whose events are S and whose causal relation is <. The defi-
nition of Oα is quite standard, we only remark that Pα := Pmin ] Pmid ] Pmax is
partitioned in three sets, where Pmax (resp. Pmin) is the postset (resp. preset)
conditions of Smax (resp. Smin).

We then compose N = 〈P, T, F, m0〉 and Oα into a Petri net Nα = 〈P′, To ∪
Tu, G, m′0〉, where:

• P′ = P ∪ Pα;
• To = { 〈t, s〉 : t ∈ Tobs, s ∈ S, λ(t) = λ(s) };
• Tu = Tubs \ {φ};
• for 〈t, s〉 ∈ To, •〈t, s〉 = •t ∪ •s and 〈t, s〉• = t• ∪ s•

• for t ∈ Tu, •t and t• remain as in N;
• m′0 = m0 ∪mα.

Intuitively, Nα adds the places of Oα to N in order to record which parts
of α have been seen during an execution. The observable transitions of N
and Oα are synchronized to ensure that no run contradict α or add fur-
ther observable events, and faults are excluded. Consider the unfolding UNα .
Projecting each event labelled with a tuple 〈t, s〉 to t instead, then each con-
figuration C of UNα is also a configuration of UN ; moreover C explains α iff
mark(C) contains Pmax.

It remains to ensure the third point. Thanks to Def. 20 it suffices to cut
the construction of UNα at any event e such that there is another event e′ < e
with mark([e′]) = mark([e]). Indeed, this ensures both (74) and (75) as no
observable event has occurred after e′. By the pigeon-hole principle on the
finitely many reachable marking in N, this cutoff criterion is guaranteed to
yield a finite prefix Pα.
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6.5.2.2 Constructing P2
N

We construct P2
N in two phases. First, P1

N is obtained by the usual unfolding
methods for marking-complete prefixes (e.g., [ERV02]). Then, we extend P1

N
by additional events, using Def. 21 as a cutoff criterion. Observe that decid-
ing whether e ∈ E is an sp-cutoff entirely depends information contained in
[e]. In particular any strategy for extending the prefix during construction
can be used.

6.5.3 Encoding Diagnosis into SAT

We propose an encoding of the diagnosis problem into SAT. Given prefixes
P1

N ,P2
N ,Pα, computed as per § 6.5.2, we construct a formula ϕ that is satisfi-

able iff α does not diagnose φ. This approach immediately gives a decision
procedure via efficient SAT solving. Not surprisingly, one can show (via
reduction from the reachability problem for unfolding prefixes) that find-
ing the configurations C, C ′, C1, C ′1, C2 discussed in § 6.5.1 in these prefixes is
NP-hard.

A SAT-based decision procedure for deadlock and coverability has been
proposed in Ch. 4. There, a satisfying assignment represents one configura-
tion with suitable properties. While we re-use this idea, the specificities of
diagnosis require to encode multiple configurations and relate them accord-
ing to Theorem 3.

For an unfolding prefix P := 〈〈B, E, G, m̃0〉, h〉 of N or Nα, and a label l,
we define the following collections of Boolean variables:

v(l) := {vl
x : x ∈ B ∪ E},

m(l) := {ml
p : p ∈ P}.

Intuitively, all variables in v(l) will encode a configuration that we will iden-
tify by l, and those in m(l) a marking referred by l. For labels l, l′, we define
the following predicates. First we have the predicate

config(l,P) :=
( ∧

e∈E

∧
e′∈••e

(vl
e ⇒ vl

e′)
)
∧( ∧

c∈B,{e1,...,en}=•c
amo(vl

e1
, . . . , vl

en)
)
∧

( ∧
c∈B

vl
c ⇔

( ∧
e∈•c

vl
e ∧

∧
e∈c•
¬vl

e
))

,

which demands v(l) to represent a configuration of P and its cut. The first
conjunct requests the configuration to be causally closed; the second one
asks for absence of symmetric conflicts and the third one defines the config-
uration’s cut. Observe that these formulas are quite close to those presented
in § 4.3, on p. 63. Next we have

subset(l, l′,P) :=
∧
e∈E

(vl
e ⇒ vl′

e ),

which asks that l-labelled events are a subset of l′-labelled events. The pred-
icate

mark(l, l′,P) :=
∧

p∈P

(
ml

p ⇔
( ∨

c∈ f−1(p)

vl′
c
))
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computes the marking of a configuration represented by v(l). It asks that
m(l) reflects the marking associated with the cut of v(l), assuming that v(l)
encodes a configuration of P . Similarly,

enables(l, l′,P) :=
∧
e∈E

(
vl′

e ⇔ (
∧

c∈•e
vl

c)
)

assumes that config(l,P) holds, and forces the variable vl′
e associated to an

event e to be true iff e is enabled in the configuration represented by v(l).
The predicate

spoils(l, l′,P) :=
∧
e∈E

(
vl′

e ⇒ (
∨

e′∈(•e)•
vl

e′)
)

holds iff v(l) has one spoiler for each event true in v(l′) and

explains(l) :=
∧

p∈Pmax

∨
f (c)=p

vl
c

requests that the configuration referred by l is a succinct explanation of α.

All these predicates are linear except for spoils(·), which can easily be
made linear by introducing new variables for conditions. Also, remark that
the amo() constraint in config() can be implemented in linear size, as we will
explain in § 7.2.2. Also, not all of them are directly given in CNF, but a linear
translation is always possible.

We can now turn to the encoding of Theorem 3, where (92) is replaced
by (97), as discussed in § 6.5.1. Fix labels m, m′, C, C′, C′1, C1, C2, D. Each of these
labels identifies (the collection of Boolean variables representing) a configu-
ration or a marking, except for D, which represents a set of events. For in-
stance C represents the configuration C, note the different typography. Our
formula ϕ is the conjunction of the following constraints:

1. config(C,Pα) ∧mark(m, C,Pα) ∧ explains(C)
2. config(C′,P1

N) ∧mark(m, C′,P1
N)

3. config(C′1,P2
N) ∧mark(m′, C′1,P1

N)
4. config(C1,P1

N) ∧mark(m′, C1,P2
N)

5. config(C2,P2
N) ∧mark(m′, C2,P2

N)
6. subset(C′, C′1,P1

N) ∧ subset(C1, C2,P2
N)

7. enables(C1, D,P2
N) ∧ spoils(C2, D,P2

N)

Only 1) actually depends on α, whereas remaining constraints can be built
before α is known. 7) corresponds to (95), the others to (93), (94), and (97).
Conditions (91) and (96) of Theorem 3 are guaranteed by construction.

6.6 conclusion

We presented an unfolding-based decision procedure for solving the prob-
lem of weak diagnosis in partially observable safe Petri nets.

Weak diagnosis exploits indirect dependencies, captured by the reveals
relations, to determine the inevitability of a fault. We stress that despite its
name, ‘weak’ diagnosis is actually stronger than conventional diagnosis as
in [BFHJ03]. Whereas in [BFHJ03] an observation can only be used to detect
faults having occurred in the past, weak diagnosis captures also faults that
are concurrent or in the future of the observation, under weak fairness. The
requirement of [BFHJ03] that no unobservable cycle is present in the system
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is also dropped, thanks to a characterization of the succinct explanations,
that bound the unfolding prefix needed to perform diagnosis. The results
here contain those of [EK12] and strengthen the existing approaches to the
more powerful capability of weak diagnosis. We have shown how diagnosis
can be performed using an algorithmic construction, and given an encoding
into SAT.

While the chapter provides many of the ingredients necessary for an im-
plementation, a practical obstacle to overcome could be the sizes of the pre-
fixes required. As for prefix P2

N , note that it contains all system behaviors,
but can be constructed off-line once and for all. The size of P2

N can be expo-
nential in the size of the net; however, it is known that unfoldings tend to be
much smaller than this for systems that exhibit a high degree of concurrency.
In general, the weak-diagnosis problem for Petri nets is PSPACE-complete
(hardness follows by reduction from the reachability problem, membership
by the fact that a fault-free weakly fair run matching the observation pattern
can be nondeterministically simulated in linear space).

The prefix containing all the succinct explanations must be created online,
but contains only the behaviors compatible with the observation. Notice that
it can alternatively be obtained by producing a marking-complete unfolding
of the net Nα from § 6.5.2, which should result in a reduction of its size. In
this work, we omitted this possibility for the sake of a simpler presenta-
tion. Also, representing both prefixes as merged processes should result in
a dramatic reduction of their size.

Future work also includes verification of weak diagnosability [HBFJ03;
Haa07; Haa09; Haa10; AMH12] based on the results here. Further, local pro-
jections of observations, as exploited in [EK12], are interesting, especially in
the context of distributed diagnosis.
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In Ch. 3 to 5 we presented methods for representing and analyzing the state
space of a contextual net. Implementations supporting these methods have
been made. In this chapter we report on these implementations and evaluate
them on a standard benchmark suite.

Specifically, we present implementation details of the algorithm intro-
duced in Ch. 3; we evaluate the optimizations proposed for the SAT en-
coding of Ch. 4; and we evaluate how compact are the contextual merged
processes of Ch. 5 with respect to the various ways to unfold and merge a
contextual net. This chapter is based on [RSB11b; BBC+12; RS12b; RSK13;
RS13b].

All implementations discussed here are distributed with the Cunf Toolset,
a collective name for a set of programs to carry out verification based c-net
unfoldings. The toolset includes one program for constructing unfoldings,
the unfolder Cunf, one program for analyzing coverability and deadlock,
called Cna, and a number of programs for handling, e.g., contextual merged
processes, format conversions, etc. All tools have been developed entirely
within the frame of this thesis and are publicly available under

http://code.google.com/p/cunf/

The manual of the Cunf Toolset is included in this manuscript on App. A.
The outline of the chapter is as follows. In §§ 7.1 and 7.2 the implemen-

tations of Cunf and Cna are described. All benchmarks considered in this
work are discussed in § 7.3, and the experimental evaluations of the differ-
ent tools are presented in §§ 7.4 to 7.6. In § 7.7 we study the performance of
merged processes and unfoldings on a model of Disktra’s mutual exclusion
algorithm [Dij65].

7.1 prefix construction : the cunf unfolder

In Ch. 3 we presented two approaches for constructing complete prefixes
for contextual nets. We implemented both of them, in this section we mainly
describe the eager approach to computing possible extensions. Specifically,
based on the results of Ch. 3 we present concrete data structures to represent
histories and algorithms for computing possible extensions and updating
the concurrency relation.

The resulting tool, called Cunf, and included in the Cunf Toolset, expects
as input a 1-safe c-net and produces as output a complete unfolding pre-
fix. Recall that the theory developed in Ch. 3 stands for bounded nets, not
necessarily 1-safe. The tool, as many other unfolders, is restricted to 1-safe
nets, as our examples of interest are in this domain. Moreover, this choice
simplifies the implementation of certain data structures and algorithms.

Notice that there exists efficient tools for the unfolding of ordinary Petri
nets, such as Mole [Sch] or Punf [Kho] — which as Cunf, can only deal
with 1-safe nets. While much experience was gained from experimenting
with the mature code of Mole, Cunf is not an extension of it. The issues
of asymmetric conflict and histories permeate every aspect of the construc-
tion so that we went for a completely new implementation in C language,
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comprising around 6.600 lines of code in version 1.6. Cunf matches the per-
formance of dedicated Petri net unfolders like Mole [Sch] or Punf [Kho] on
ordinary Petri nets, and additionally handles contextual unfoldings.

In this section, we review some features such as data structures and im-
plementation details relevant to handling the complications imposed by con-
textual unfoldings. These helped to produce an efficient tool. Experiments
with Cunf are reported in § 7.4.

7.1.1 The History Graph

Recall from Ch. 3 that the construction of a marking-complete enriched pre-
fix E requires to deal with enriched events and enriched conditions. Recall
that those are tuples 〈e, H〉 and 〈c, H〉 where H is a history of e or c.

Cunf needs to store them, and it does so in a graph structure. The con-
struction algorithm iteratively extends the enriched prefix with new en-
riched events and conditions, so our data structure needs to be easy to
extend when E is extended.

Formally, the history graph associated with E is a labelled directed graph
HE such that

1. the nodes are the enriched events of E ;
2. there is an edge 〈e, H〉 → 〈e′, H′〉 iff e′ ∈ H and H′ = H[[e′]] and either

a) (e′• ∪ e′) ∩ •e 6= ∅, or
b) e′• ∩ e 6= ∅;

3. each node 〈e, H〉 is labelled by e.

The second condition states simply thatHE has an edge from enriched event
〈e, H〉 to 〈e′, H′〉 iff some enriched condition 〈c, H′〉 was used to construct
〈e, H〉 in the sense of the eager or lazy methods of Prop. 9 and Prop. 5

in § 3.7.
This structure allows Cunf to perform many operations efficiently: every

enriched event appended to HE enlarges the graph by just one node plus
some edges; common parts of histories are shared. We can easily enumerate
the events of H ∈ χ(e) by following backwards the edges from node 〈e, H〉.
The graph also represents, implicitly, the relation @.

The unfolder also stores for every event e the set of histories χ(e) currently
present in E . This is done by means of a list of pointers to the corresponding
nodes of HE that are labelled by e. This list is stored in the data structure
that represent events. Given a condition c, we can enumerate its generating
and reading histories similarly.

Compound conditions are stored in a shared-tree-like structure, where
leaves represent reading histories and internal nodes compound histories.
An internal node has two children, one of which is a leaf, the other either
internal or a leaf. One easily sees that a compound history of c corresponds,
w.l.o.g., to a union H1 ∪ . . . ∪ Hn of reading histories. Every internal node
represents such a union, and the structure allows sharing if one compound
history contains another.

7.1.2 Possible Extensions

Computing the possible extensions (PE) of the prefix is the central task of
any unfolder. This section explains which algorithms Cunf uses for this
purpose.
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Cunf behaves similar to Mole or other unfolders in its flow of logic, but
its actions are on enriched events and enriched conditions. The tool imple-
ments Algorithm 1. There, we denoted by pe(E) the set of PEs of E , formally
defined in Def. 8, on p. 39. According to the eager approach to characterize
PEs, presented in § 3.9.2, on p. 54, this set can be computed using the follow-
ing steps, whose correctness relies on the Prop. 9. For any given transition t
of N, do the following:

1. Let {p1, . . . , pn} := •t and {p′1, . . . , p′m} := t be all places in the preset
and context of t.

2. Search for all sets of ECs in E of the form Xp := {ρ1, . . . , ρn} and
Xc := {ρ′1, . . . , ρ′m} that satisfy all the following requirements:

a) Xc contains only generating ECs;
b) h(ρi) = pi and h(ρ′j) = p′j for all i = 1, . . . , n and j = 1, . . . , m.
c) ρ // ρ′ holds for all ρ in Xp and all ρ′ in Xp ∪ Xc;
d) ρ ‖ ρ′ holds for all ρ, ρ′ in Xc;

3. For any pair of sets Xp, Xc found in the previous step, the pair 〈e, H〉 is
a PE of E , where e is a (possibly new) event whose preset and context
are all conditions in, respectively, Xp and Xc, and H is defined as
H := {e} ∪⋃〈c,H′〉∈Xp∪Xc H′.

These steps compute all extensions 〈e, H〉 such that h(e) = t. In principle,
the function pe(E) just needs to repeat the above steps for every transition t
in N, and return all found PEs.

Cunf computes PEs using an optimized version of these steps, explained
now. This optimization has already been described for ordinary unfold-
ings [KK01]. Observe that Algorithm 1 can be easily modified so that pe(E)
does not need to return all possible extensions of E , but just those which
are possible due to the last EC appended to E . Indeed, after including a
new EC ρ in the prefix, the only new PEs that pe(·) will return w.r.t. the last
time it was called are those for which ρ is in Xp or Xc. So step 2 above can
restrict the search in this way, and pe(·) can be modified to return PEs con-
structed using ρ, which now has to be passed to the function. Naturally, in
Algorithm 1 we have to update the set X of possible extensions differently.
Before, Algorithm 1 used the statement

X = pe(E),
which now needs to be updated to

X = X ∪ pe(E , ρ).

Another consequence of this optimization is that pe(·) needs to be called
after each EC ρ included in the prefix, and not just once after each enriched
event is added. Extending the prefix with one enriched event 〈e, H〉 entails
adding as many ECs as conditions there are in the postset of e, as we explain
in § 7.1.3.

7.1.3 Concurrency Relation

We have seen how Cunf computes PEs and stores them in the history graph.
Upon their discovery, PEs are kept in a heap, which allows to efficiently find
the ≺-minimal history among those in PE, as Algorithm 1 requires.

Extending the prefix with a PE 〈e, H〉 gives rise to various types of ECs for
whom Cunf needs to compute the concurrency relation. Namely, for every
condition c ∈ e•, we have a new generating EC 〈c, H〉 and for every c′ ∈ e,
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a new reading EC 〈c′, H〉, and perhaps other compound ECs derived from
〈c′, H〉.

We saw in § 7.1.2 that Cunf needs to compute the relations ‖ and // in
order to find possible extensions. The key results for their efficient computa-
tion are Prop. 3 and Prop. 4, which give an inductive characterization of the
relation ‖. Based on them, both ‖ and // can be computed, as we demon-
strate below.

Several alternatives for handling ‖ are available. Roughly speaking, one
could transform Prop. 3 and Prop. 4 into a recursive function that, given
two ECs, returns whether they are concurrent, recursively calling itself as
necessary. However, following the approach of Mole and Punf

1, Cunf in-
crementally computes and stores in memory both ‖ and //, instead of resort-
ing to a recursive computation. This requires updating the stored version
of the relation as the prefix grows. We detail now how Prop. 3 and Prop. 4

are used to efficiently compute this update. We comment on the recursive
computation of ‖ in Ch. 8.

Let c(ρ) denote the set of enriched conditions ρ′ verifying ρ ‖ ρ′. The
relation ‖ is generally sparse and Cunf stores c(ρ) as a list. However, for the
purpose of the following, c(ρ) could also be a row in a matrix representing
the relation ‖. Once computed, Cunf can check whether ρ ‖ ρ′ by either
searching for ρ′ in c(ρ) or for ρ in c(ρ′).

For reading and generating enriched conditions ρ, Cunf computes c(ρ)
using Prop. 3 as follows. It initially sets c(ρ) to Yp ∪ Yc. Next, it computes
the intersection of c(ρ′) for all ρ′ ∈ Xp ∪ Xc, and filters out those 〈c′, H′〉
for which •e ∩ H′ 6⊆ H holds. In order to compute this condition without
actually traversing H and H′, we use the sets r(H) and s(H) computed
earlier (see above). These are defined as

r(H) := {e′ ∈ H : e′ ∩ cut(H) 6= ∅}
s(H) := {e′ ∈ H : e′ ∈ •e}.

Then •e ∩ H′ 6⊆ H holds iff •e \ s(H) ∩ r(H′) 6= ∅, which can be computed
traversing •e and s(H) one time, and checking r(H′) for every ρ′. Note that,
while the other steps have their counterparts in Petri net unfoldings, this
step is new and specific to c-nets. However, we find that this implementation
keeps the overhead very small.

In summary, this allows to compute c(ρ) for every ρ appended to the
prefix. Cunf uses the vector c(ρ) to additionally store //. This is done using
the lowest two bits of each pointer in c(ρ), which are are “abused” to store
whether ρ // ρ′ or ρ′ // ρ holds. Computing these two bits requires testing
logical conditions of the form c∩ H′ ⊆ H for any ρ′ ∈ c(ρ). This test is done
similarly to the aforementioned test, it also uses the lists s(H) and r(H).

As for compound conditions ρ built using ρ1 and ρ2, Cunf computes c(ρ)
as the intersection of c(ρ1) and c(ρ2), which relies on Prop. 4.

Certain enriched conditions ρ = 〈c, H〉 need not to be included in the
concurrency relation. It is safe, for instance, to leave c(ρ) empty if ρ is gener-
ating and f (c)• ∪ f (c) = ∅, or if H is a cutoff. We can also avoid computing
c(ρ) if ρ is reading or compound and f (c)• = ∅, even if f (c) 6= ∅.

7.1.4 Splitting the Concurrency Relation

Let ρ = 〈c, H〉 be an enriched condition. As mentioned in § 7.1.3, Cunf

constructs the list c(ρ) of enriched conditions ρ′ such that ρ ‖ ρ′. We found

1 Punf can actually also use the backwards exploration algorithm explained in § 3.5.
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that the performance of the tool benefits greatly in some cases by splitting
c(ρ) into two sets:

c1(ρ) := {〈c, H′〉 : ρ ‖ 〈c, H′〉}
c2(ρ) := c(ρ) \ c1(ρ).

In other words, c1(ρ) contains the concurrent pairs for the same condi-
tion c and c2(ρ) the others. This simple split helps in several places. Suppose,
for instance, that ρ is a new enriched condition that we have just added to
the prefix.

• If ρ is reading or generating (where H is a history for an event e),
Cunf uses the algorithm of § 7.1.3 to compute c(ρ). There, for any ρ′

in Xp, any 〈c′, H′〉 ∈ c1(ρ
′) is such that c′ ∈ •e, so all ECs in c1(ρ

′)
can be excluded from consideration in the intersection of vectors the
algorithm performs.

• Next, in the eager approach, we may use ρ to generate compound
conditions. For this, we now simply take all ρ′ = 〈c, H′〉 from c1(ρ)
and create a new compound condition ρ′′ = 〈c, H ∪ H′〉. Moreover, we
have that c1(ρ

′′) = c1(ρ) ∩ c1(ρ
′) and c2(ρ

′′) = c2(ρ) ∩ c2(ρ
′).

• Finally, Cunf uses new ECs ρ to search for PEs by means of the algo-
rithm in § 7.1.2. In order to find the sets Xp, Xc, Cunf can restrict the
search of ECs to c2(ρ) rather than c(ρ) in certain cases.

7.1.5 Strategies

Algorithm 1 is parametrized by an strategy, i.e., an order on the finite con-
figurations of the unfolding. Although this order is defined for finite con-
figurations, observe that Algorithm 1, and consequently Cunf, only uses
it on histories. Cunf implements three different strategies, and uses by de-
fault the ERV strategy. See § A.3.2 to learn how to instruct Cunf to use one
particular strategy.

1. Size strategy. The order ≺M, defined in (26), was introduced by McMil-
lan [McM93b]. Cunf stores the size of every history in the history
graph HE , so the implementation of this strategy is obvious.

2. Parikh strategy. [EH08, p. 64] Cunf first compares the sizes of both
histories, declaring them sorted if they are different. If not, it com-
pares lexicographically the Parikh vectors [EH08] of both configura-
tions. Such vector have also been computed and stored on each his-
tory, so at this point Cunf only needs to perform the lexicographic
comparison. Recall that this strategy is adequate but not total.

3. ERV strategy. [ERV02] This strategy is the order <F defined in [ERV02]
which, as explained in Ch. 3, it is adequate and total for contextual
unfoldings. It first compares the configurations with the Parikh strat-
egy. If this suffices to sort them, <F returns the result. If not, Cunf

computes and compares the Foata normal forms [ERV02] of both config-
urations. Unlike the size or Parikh vectors of histories, Foata normal
forms are computed every time they are needed. Code profiling over
numerous examples shows that the computational cost of doing this
is quite low. We note that Cunf implements the order <F as defined
in [ERV02] as well as the slight variation implemented in Mole, which
is also adequate and total, but different from <F.

The size and Parikh vectors of any history H is computed as soon as
the enriched event 〈e, H〉 in which it takes part is discovered as a PE. The
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marking mark(H) of the history is also computed at this stage, it will be
relevant for deciding whether the PE is a cutoff. The lists r(H), s(H) that
we mentioned in § 7.1.3 are also computed at this point during two linear
traversals of H.

7.2 prefix analysis : the tool cna

In Chapter 4, a SAT encoding of the coverability and deadlock-freeness prob-
lem has been presented. We implemented this encoding into the tool Cna

(Contextual Net Analyzer), distributed within the Cunf Toolset. The manual
of this tool is included in App. A.

Cna inputs unfoldings generated with Cunf and searches for reachable
markings of the original c-net that enable no transition (deadlocks) or mark
a set of given places (coverability). The tool constructs the propositional
formulas φmark,M

P or φdead
P presented in § 4.3.

We briefly recall the structure of φmark,M
P and φdead

P . Both formulas request
that satisfying assignments represent configurations of the unfolding, which
each of them additionally constraints to be those who cover the places in M,
for φmark,M

P , or those reaching a deadlocked marking, for φdead
P . In encoding

configurations, multiple at-most-one constraints are used to forbid symmet-
ric conflicts, and one acyclicity constraint is employed to forbid cycles of
asymmetric conflict.

Satisfying assignments to these formulas encode the (offending) firing
sequences searched by the tool. The tool relies on Minisat [ES03] to solve
the formula, and displays a firing sequence of the original c-net if one is
found. Notice that once the unfolding is built, it can serve to answer multiple
queries.

A number of optimizations and variants of the SAT encodings were pro-
posed in § 4.3. In this section, we empirically evaluate their impact on the
solving time. We have employed as benchmarks the set of safe nets referred
in § 7.3.

7.2.1 Stubborn Event Elimination and Subset Reduction

Over the set of ordinary nets considered in § 7.5, we found that removing
stubborn events reduces the accumulated SAT solving time by 27%. When
applied together with the subset optimization from § 4.7, this grows to 30%.
For c-nets, we measured a 14% reduction when stubborn events are removed
from the encoding without acyclicity constraints but only a 6% reduction
if additionally the subset optimizations are applied. Experiments over the
encoding with acyclicity were similar.

These experiments suggest that removal of stubborn events has a positive
impact on performance, while subset optimization has very limited, even
negative impact. For the following experiments, we applied only the stub-
born event optimization.
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7.2.2 AMO Constraint

We briefly discuss the At-Most-One (AMO) constraint, used in φ
sym
P , in Ch. 4

but also in γ
asym
Q , in Ch. 5. The constraint AMO(x1, . . . , xn) can be trivially

implemented by∧
1≤i<j≤n

(¬xi ∨ ¬xj).

However, this pairwise encoding is quadratic, and the SAT performance suf-
fered for examples with large conflict sets when this was used.

A survey of better encodings can be found in [Che10]. Cna employs a
k-tree encoding, that introduces O(n) additional variables and adds O(n)
clauses. The k-tree encoding on variables x1, . . . , xn is an AMO constraint
denoted by Tk

y (x1, . . . , xn) that we specify here for k = 2:

T2
y (x1, . . . , xn) :=


x1 → y if n = 1
T2

y1
(x1, . . . , xd n

2 e) ∧ T2
y2
(xd n

2 e+1, . . . , xn)∧ otherwise

(¬y1 ∨ ¬y2) ∧ (y1 → y) ∧ (y2 → y)

Here, y, y1, and y2 are new variables. The k-tree constraint Tk
y (x1, . . . , xn) is

satisfied by assignments that either satisfy no xi or satisfy one xi and also y,
for 1 ≤ i ≤ n. It

1. partitions the n variables in k groups,
2. constrains recursively each group,
3. ensures that at most one group has one satisfied variable (by means of

the associated new yi variables, for 1 ≤ i ≤ k), and
4. sets y if any group has one satisfied variable.

Constraining the k new variables yi can be done by means of the pairwise
encoding or by a new k′-tree encoding (with k′ < k). For k = 2, this encoding
can be optimized to yield 3n− 5 clauses and n− 1 new variables.

The base case, when n = 1, produces one clause with two literals; the
inductive case produces three with two literals each. Because the encoding
produces O(n) clauses, with two literals each, the number of literals gener-
ated by the encoding is also O(n).

We observed an overall improvement when replacing the pairwise with
the k-tree encoding. The accumulated SAT solving time on our benchmarks
under values of k = 2, . . . , 8 was minimal for k = 4. Experiments over c-nets
on the encoding suggested k = 4 as a good candidate, as well. We therefore
used 4-tree encodings in φ

sym
P for the following experiments.

7.2.3 Acyclicity Checking

Section 4.4 explained that φ
asym
P encodes cycle-freeness of configuration C

w.r.t. the relation R = <i ∪↗↗. We investigated three encodings suggested
in [CGS09]: transitive closure, unary ranks, and binary ranks. The latter
clearly outperformed the others. In the binary rank encoding, every event
is associated with a rank, i.e., an integer up to some bound r, that is repre-
sented by dlog2 re Boolean variables. A number of constraints ensure that
the rank of event e is less than the rank of event f if (e, f ) ∈ R. If n is the
number of events in P , the resulting SAT encoding is of size O(n log n) if
ranks are encoded in binary.

Moreover, § 4.4 proposed a method to reduce the size of R. Table 5 shows
the size of the direct asymmetric conflict relation before and after this reduc-
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Table 5: Reduction of the asymmetric-conflict relation.

Before After Ratio after/before

Net Nodes Edges Nodes Edges Nodes Edges

bds_1.sync 192 271 27 52 0.14 0.19

bds_1.fsa 66 89 9 16 0.14 0.18

byzagr4_1b 3197 64501 2348 61088 0.73 0.95

dme7 2541 9856 1571 8557 0.62 0.87

dme8 3648 15232 2179 13314 0.60 0.87

dme9 5031 22572 2936 19908 0.58 0.88

dme10 6720 32320 3836 28726 0.57 0.89

dme11 8745 44968 4918 40301 0.56 0.90

key_3.sync 3 3 2 2 0.67 0.67

q_1.sync 189 4095 126 4032 0.67 0.98

rw_12.sync 3 3 2 2 0.67 0.67

rw_2w1r 1766 8877 915 7447 0.52 0.84

tion for six c-nets unfoldings with at least one cycle in R. More precisely, we
show the size of the largest SCC, in most examples there is in fact only one
non-trivial SCC.

In average, the proposed method eliminates 66% of the nodes and 26%
of the edges, seeming thus to be more effective at reducing the number of
nodes rather than the number of edges, which in turn becomes a reduction
in the number of variables rather than the number of clauses of the encod-
ing.

However, in some examples, the remaining SCCs are still rather large,
on the order of tens of thousands of events, and in these cases φ

asym
P neg-

atively impacts the solving time of the formula φmark,M
P or φdead

P where it
is included. We therefore implemented a two-stage approach. First we gen-
erate and solve all subformulas of φmark,M

P or φdead
P except φ

asym
P , which is

entirely omitted. This may of course produce a satisfying assignment that is
not a configuration, but if the formula is already unsatisfiable, then φmark,M

P
or φdead

P would also be unsatisfiable if φ
asym
P had been included. Only when

this first stage yields a false positive, a second stage with φ
asym
P is used to

obtain a definitive result. This approach was very successful: in over 100 dif-
ferent nets from various sources that we tried, only 2 (small) nets yielded a
false positive. The experiments presented in the following use this two-stage
approach.

7.2.4 SAT-solver Settings

Minisat allows the user to tweak certain aspects of the SAT-solving algo-
rithm. It is tempting to do so in order to exploit knowledge about the prob-
lem domain.

In φdead
P for instance, the chosen configuration C determines the mark-

ing m. The subformula φdis
P introduces one variable for each place of the

net. Minisat can be instructed to search a solution by actively choosing val-
ues only for a subset of variables, the so-called decision variables. By default,
all variables are decision variables. In φdead

P it is safe to exclude variables
associated to places from being decision variables, as their value is safely
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propagated from the values to variables for events. We tried removing these
variables from being decision variables, however the effect on the running
time was negative overall.

Similarly, we tried to exploit the causal structure of P by instructing Min-
isat to prefer deciding the values of events with few (resp. many) causal
predecessors first. This, too, tended to impact the solving time negatively.

Thirdly, we measured the impact of choosing the polarity of the variables
(i.e., whether Minisat first tries setting them to true or false). While this had
a positive impact on certain examples, other examples were very negatively
affected. Overall, the default settings of Minisat proved to be very good
and did not benefit from our adjustments.

7.3 benchmarks

A number of experiments are performed on the next three sections, all of
them over a set of benchmarks that are discussed now.

We have employed a set of 1-safe nets that have previously served as
benchmarks in the literature on Petri net unfoldings, e.g. [McM93b; MR97;
Hel99c; Kho03; Sch06]. Most of the examples were originally collected by
J. C. Corbett [Cor96], but the set also includes nets contributed by K. McMil-
lan [McM93b; McM95b], S. Melzer and S. Römer [MR97], S. Merkel [Mer97],
and M. Heiner, P. Deussen, K. Schmidt, C. Schröter (see [EH01]). In all pre-
ceding bibliographic references, and specially in [Cor96; MR97; Kho03], de-
tailed explanations about the models are offered, so we will not reproduce
them here again. See also [Bes96] for additional information.

These nets are not specifically geared towards using the contextual unfold-
ing approach, though read arcs occur naturally here, as we explain below.
They were already favourable for unfoldings, and have various characteris-
tics that allowed to test many aspects of our implementations, thus ensuring
their robustness.

For each net N in the set, we first obtained the c-net N′ by substituting
pairs of arcs (p, t) and (t, p) in N by read arcs. Evidently, the plain encoding
of N′ is N. Secondly, we obtained the PR-encoding N′′ of N′.

Some benchmarks have also been contributed by the author, although not
all of them are used for experiments reported in this manuscript. Most of
the nets are in fact parametric collections of nets, generated by an script in-
cluded in the distribution of the Cunf Toolset, see App. A. The parametric
collections include Dijkstra’s mutual exclusion algorithm [Dij65], described in
detail in § 7.7, Asynchronous Conway’s game of life [Gar70], on a square grid of
parametric dimension, and Asynchronous Random Boolean Networks, a gener-
alization of random Boolean networks [Ger04]. The last two collections have
not been used in this manuscript.

7.4 experiments with cunf

In order to experimentally evaluate the tool Cunf, we performed a series of
experiments with the benchmarks of § 7.3. Those put to test many features
of the implementation, thus improving the robustness of the tool. We were
interested in the following questions:

• Is the contextual unfolding procedure efficient?
• What is the size of the unfoldings, compared to Petri net unfoldings?



120 tools and experiments

t1 t2
tp1 p2

Figure 31: Pairs of independent readers

• How do the various approaches (lazy, eager, PR, plain encoding) com-
pare?

Concerning the second and third point, it is worth noting that we could
contrive examples to show arbitrarily large differences between various ap-
proaches. As far as the size of the final unfolding is concerned, Fig. 5, on
p. 9 already shows that contextual unfoldings may be up to exponentially
more succinct than Petri net unfoldings. As far as running time is concerned,
§ 3.10 contains examples that would distinguish the eager and the lazy ap-
proach in both senses.

To see how the running time of the contextual approaches can be superior
to the plain encoding, consider the net in Fig. 31, where transition t reads
from two places p1 and p2. Both places have an additional reading transition,
so they each have one (empty) generating history, two reading histories, and
one compound history. The contextual unfolding is isomorphic to the net it-
self. If one expands the context of transition t to k places like p1 and p2, then
the contextual approaches produce the prefix in time linear to k. The plain
encoding, on the other hand, will create an exponential number of events for
t, each corresponding to some set of transitions that have previously read
from t.

In order to abstract from such artefacts and get numbers from more real-
istic examples, we considered the benchmarks referred in § 7.3. Recall that
these nets are not specifically geared towards using contextual approaches,
although they had various characteristics that allowed to test many aspects
of the implementation.

Let N be any c-net in the benchmark, Np its plain encoding and Nr its
place-replication encoding. We first compared Mole [Sch] and Cunf on the
nets Np and Nr, which are ordinary nets, without read arcs. The object of this
exercise was to establish whether Cunf was working reasonably efficient on
known examples. Indeed, its running times were always within 70% and
140% of those of Mole, the differences due to minor implementation choices.
To abstract from these details, we used Cunf for all further comparisons.

We then used Cunf to produce marking-complete prefixes of N, Np, and
Nr, using both lazy and eager methods and the order ≺F from [ERV02].
Table 6 summarizes the results.2

The columns in the table are subdivided into three parts, corresponding
to the contextual net, its PR-encoding, and its plain encoding. For contex-
tual nets, we first give the number of events and conditions contained in
the marking-complete prefix (columns |E| and |B|, in thousands). These pre-
fixes include cutoff events, which means that the number for |E| is actually
somewhat larger than what is strictly required by Rmk. 8.

The column marked |Ecut| provides the percentage of such events; this
percentage could be subtracted from |E| to obtain the prefix that is strictly
necessary to characterize, e.g., coverability as in Ch. 4. Cunf does need to

2 Experiments performed using Cunf v.1.4, compiled with gcc 4.4.5. Our machine has twelve
64bit Intel Xeon CPUs, running at 2.67GHz, 50GB RAM and executes Linux 2.6.32-5.
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compute those cutoff events anyway, so their inclusion in the output prefix
hardly affects the running time.

The column |•e| gives the average preset size of an event. The four columns
mentioned so far are identical for the eager and the lazy approach. For the
eager approach, we then list the number of compound conditions (causing
additional memory overhead of the eager approach w.r.t. lazy) and the run-
ning time3 in seconds (tE) as well as (maximum virtual) memory consump-
tion in megabytes (mE). For lazy, we list running times (tL) and memory
consumption (mL) relative to the eager approach, i.e., a factor less than 1 means
a faster/less memory-consuming computation, and a factor larger than 1 a
slower/more memory-consuming one.

For the PR-encoding and the plain encoding, the data for number of
events and conditions, running times, memory consumption, and average
preset size (only PR) is also given relative to the eager approach. We addition-
ally provide the percentage of cutoff events (|Ecut|). Notice that the number
of enriched events in lazy and eager equals the number of events in PR, cf.
the discussion on § 1.4. The ratio between number of events in contextual
and number of events in PR is thus the average number of histories per
event in the contextual approach. We make the following observations:

• We first look at the comparison between lazy and eager. It turns out
that in this set of benchmarks, many examples did not exhibit any
compound conditions (despite the presence of many read arcs), e.g.,
because reading actions took place sequentially, or multiple potential
readers happened to be in conflict with one another. In those exam-
ples, the differences between the two versions are due to the different
implementations of the possible extensions (see § 3.7) and the vari-
ous relations that must be maintained (see § 3.9), sometimes slightly
favouring one approach, sometimes the other.
Significant differences arise where (like in key_4) there are many com-
pound conditions; here lazy has some memory savings but performs
very badly. An effect to the contrary like in Fig. 17 (b), while in princi-
ple possible, did not manifest itself in our benchmarks.

• Compared with PR, the eager approach is consistently more efficient.
In several cases (such as elevator_4 or rw_2w1r), PR is orders of mag-
nitudes slower. This clear tendency is slightly surprising given that
the enriched contextual prefix has essentially the same size as the pre-
fix of the PR-encoding. We experimentally traced the difference to the
enlarged presets of certain transitions in the PR-encoding (see Fig. 9

in p. 21), causing combinatorial overhead and increasing the number
of conditions in the concurrency relation.4 Indeed, high running times
for PR seem to coincide with high numbers in the |•e| column for PR
(recall that this number is relative to the one for contextual).

• Both the eager approach and the plain unfolding handle all exam-
ples gracefully. The factors of the running times are between 0.7 and
4.2, meaning eager is between 40% slower and 4 times faster w.r.t.
plain. The prefixes produced by the contextual unfolding methods

3 Actually, the CPU time, as reported by the Unix time command.
4 Another interesting point here concerns the theoretical compexity of computing possible ex-

tensions. Deciding whether a given contextual prefix P can be extended with an occurrence
of transition t is NP-complete. The algorithm employed in Cunf, see § 7.1.2, is exponential in
|•t ∪ t| and polynomial in |P|. Thus larger presets should be accompained by exponentially
slower PE computations. However, we did not observe this theoretical explosion, and so, we
conclude that it must have remained small in comparison to the overhead of computing a larger
concurrency relation.
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are smaller than in the plain approach in half the cases. Interestingly,
these are not always the same as those on which they run faster: for
elevator_4 and rw_12.sync, the same number of events is produced
more quickly. Here, the read arcs are arranged in such a way that each
event still has only one history; the time saving comes from the fact
that the contextual approach produces fewer conditions and hence a
smaller concurrency relation. For key_4 and rw_1w3r, the contextual
methods produce smaller unfoldings but take longer to run, due some
overhead in the computation of the // relation.

To summarize, this set of benchmarks contained examples where lazy and
PR performed badly, whereas eager and plain handled all cases gracefully.
The eager approach was the fastest overall, and for all examples its run-
ning time was within factor 2 of the fastest approach for that example. The
prefixes produced by the contextual methods can be significantly smaller
than for their Petri net encodings, which make them suitable candidates for
subsequent analysis methods, such as those in Ch. 4.

7.5 experiments with cna

The tool Cna, presented in § 7.2, implements the techniques for deadlock
and coverability checking of Ch. 4. This section experimentally compares the
efficiency of the tool with that of other well-established deadlock-checking
methods based on unfoldings. The effects of using ordinary nets and c-net
are evaluated over the benchmark discussed in § 7.3.

In [KK07], Khomenko and Koutny compared three versions of their dead-
lock checking method, implemented in the tool Clp, against the methods
by McMillan [McM93b], Melzer and Römer [MR97], and Heljanko [Hel99c].
In their benchmarks, the first version of their algorithm5 outperformed the
other methods on almost all examples. We experimentally confirmed this
conclusion. Moreover, we learnt of an unpublished SAT-based tool by V. Kho-
menko which is said to be slower than Clp.6 We therefore compare our
technique with the first method of Clp.7

Table 7 presents the results on the aforementioned standard suite. We
used Mole [Sch] to produce finite complete prefixes of the Petri nets and
Cunf to do the same for c-nets.8 The running times for Mole and Cunf

are given in the respective columns, together with the number of events |E
and conditions |B| of the generated prefix. In ordinary Petri nets, the col-
umn labelled Clp shows the running times of Clp on the unfolding prefix
constructed with Mole. For both ordinary and contextual nets, the column
labelled SAT provides the running times of Minisat on the formulas pro-
duced by Cna, using the settings discussed in § 7.2. Times are given in
seconds, and represent averages over 10 runs; this was essential to obtain
running times that reasonably repeatable.

We do not provide the translation times to generate linear equation sys-
tems (for Clp) or SAT formulas (for Minisat). Those times would not be
very representative since both translators are potentially suboptimal. The
constraints generated by Cna are of linear size w.r.t. the unfolding prefix,

5 Column std in Tables 1 and 2 in [KK07].
6 According to the author, V. Khomenko.
7 All experiments have been performed using Cunf and Cna v.1.4, Mole v.1.0.6, both compiled

with gcc 4.4.5, version 301 of Clp, and Minisat v.2.2.0. Our machine has twelve 64bit Intel
Xeon CPUs, running at 2.67GHz, 50GB RAM and executes Linux 2.6.32-5.

8 The running times of Mole and Cunf are comparable on Petri nets, but Mole produces pre-
fixes in a format suitable for Clp.
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except for the acyclicity constraint, which is of size O(n log n). Optimized
times for Cna should arguably be of fractions of a second.

Compared to Clp, SAT checking performs well over Petri nets, solving
the problems twice as fast on aggregate. Concerning the comparison of SAT
checking between Petri nets and c-nets, another advantage of 13% for dead-
lock verification is obtained. More significantly, the time for generating c-net
unfoldings is 30% less than for Petri nets. This advantage is not huge, but
recall that these benchmarks are already favourable examples for Petri net
unfoldings and were not specifically designed to exploit the advantages of c-
nets. Contextual unfolding construction and verification performs very well,
for instance, on ftp_1.sync and furnace_4.sync, where unfoldings run
twice faster and deadlock checking one order of magnitude faster.

The two-stage approach was essential for performance: while the acyclic
constraints had a big impact only on a few examples (notably byzagr4_1b,
dme, and rw*), that effect would have nullified the advantage of smaller
unfoldings.

7.6 experiments with contextual merged processes

This section reports on experimental results comparing the sizes of CMPs,
merged processes (MPs), and complete unfolding prefixes for a number of
benchmarks from § 7.3. All these methods construct a representation of the
state space of the net. The goal here is comparing the relative compression
factors of these various representations. We do not yet have an implementa-
tion of the direct construction algorithm for CMPs, so we cannot compare
at this stage the times to construct them.

To elaborate the comparison, unfoldings and merged processes were con-
structed.9 For every net in the benchmark, we considered the equivalent
c-net and the PR-encoding of the c-net, constructed as explained in § 7.3.
We then constructed the unfoldings of the three nets, and merged them into
the corresponding merged processes. The following consistent setup was
used to produce both unfoldings and MPs.

• The total adequate strategy proposed in [KM11] was used to construct
unfoldings. This strategy is not implemented in Cunf, so other tools
were used to construct contextual unfoldings, as explained below.

• All configurations were allowed as cutoff correspondents, not only
the local ones. When constructing ordinary unfoldings, usually only
the local configurations are authorized to be the corresponding con-
figurations. Similarly, in § 3.2, the ≺-cutoff enriched events in Def. 4

on p. 34 were defined using only histories as corresponding configu-
rations. The idea of using general corresponding configurations origi-
nates from [Hel99b]. We are aware of only one unfolder, Punf [Kho],
that implements the approach10, which requires to integrate a SAT
solver in the unfolder. However, in existing direct construction meth-
ods for MPs, the SAT solver is already necessary for other purposes,
cf. Ch. 5, so using general configurations is rather natural and entails
no performance penalty. To make the comparison fair to merged pro-
cesses, we thus employ non-local corresponding configurations.

• The cutoff (mp-)events and post-cutoff (mp-)conditions has not been
counted.

9 All the benchmarks and tools referenced in this section are publicly available from
http://www.lsv.ens-cachan.fr/~rodriguez/experiments/pn2013/.

10 Together with the implementation of [Hel99b], which works after unfolding.

http://www.lsv.ens-cachan.fr/~rodriguez/experiments/pn2013/
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This setup has been used to facilitate the comparison with future exper-
iments on the direct construction algorithm of CMPs, and to avoid similar
problems in comparing experimental results as those explained in [KM11].

The marking-complete unfolding prefixes of the plain and PR encodings
have been constructed using Punf [Kho]. The plain and PR MPs have been
merged from the corresponding unfolding prefixes with Mci2mp, a tool
developed by V. Khomenko. Similarly, CMPs were merged from the cor-
responding contextual unfolding prefixes using Cmerge, a tool developed
by the author that essentially implements the merging operation of Def. 16

on events and conditions. The direct construction algorithms for MPs and
CMPs would yield the same results.

Contextual prefixes could not be computed with Cunf, so we constructed
them by compressing the PR ones with Stefan Schwoon’s tool PRCompress.
The tool a marking-complete contextual prefix P of a c-net N out of a
marking-complete prefix P ′ of the PR encoding Nr. It applies a folding oper-
ation to P ′, defined by the repeated iteration of the following steps:

1. All conditions that were created due to a consume-produce loop are
merged and their flow arcs replaced by a read arc;

2. The PR encoding Nr contains multiple replicas of certain places in N.
The tool next merges all conditions in the postset of any event if all
them are labelled with those replicas. More specifically, any set of con-
ditions is merged if, (i) it is contained in the postset of an arbitrary
event, and (ii) the conditions in the set are labelled by all place repli-
cas of any place in N. The resulting new conditions is labelled by the
place of N.

3. All events with the same label and the same preset are merged, and
so are their postsets.

The resulting c-net prefix P has the same reachable markings as P ′ and is
therefore marking-complete. Indeed, applying this operation to the prefix
shown in Fig. 5 (f), which is the unfolding of Fig. 5 (c), would yield the c-net
unfolding Fig. 5 (e).

Recall the following theoretical guarantees:

• The c-net unfolding prefix is never larger than the PR prefix.
• The plain/PR/contextual MP is never larger than the corresponding

unfolding prefix.

Table 8 compares the sizes of plain, PR and contextual unfolding pre-
fixes and MPs. The 4

th and 5
th columns from the left are, respectively, the

number of read arcs in the net and place replicas in its PR encoding.11 The
numbers of conditions and events for the plain and PR unfoldings are nor-
malised w.r.t. that of the contextual unfolding. Similarly, mp-conditions and
mp-events of the plain and PR MPs are normalised w.r.t. those of the CMPs.
The last three columns show the compression gains of CMPs w.r.t. plain
and contextual unfolding prefixes, and the gain of plain MPs w.r.t. plain
unfolding prefixes.

One can see that CMPs are the most compact of all the considered rep-
resentations.12 Comparing the three columns on MPs, on certain examples,
such as Dme and RW, the reduction in the number of mp-conditions is sub-
stantial, while the number of mp-events remains the same. Furthermore, on
some benchmarks, notably Key(4), CMPs have significant advantages over

11 More precisely, ∑p∈P,|p|>1(|p| − 1).
12 Though the PR MP of RW(1,2) has four mp-events fewer, it has many more mp-conditions.
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|Ê
|(c

)
|B̂
|
|Ê
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k=1
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k = 0 c1 = f ?
c1= f

l1,0 l4,0

l2,0

b0 := f k = 0? c0 := f

l5,0 l6,0c0=t
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c1=tb0= f
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∀j 6= 0, cj = t? b0 := t; c0 := t

Figure 32: The fragment of 2-Dijkstra that encodes thread 0. Note that ar-
rows from transition b0 := t; c0 := t are only partially depicted.

both plain and PR MPs. Interestingly, in this case the PR MP is significantly
larger than even the plain MP, which seems to be due to place replication
making the subsequent merging much less efficient. As CMPs do not suffer
from this problem, they come as a clear winner in such cases.

7.7 a case study : dijkstra’s mutual exclusion algorithm

In this section we analyze the performance of merged processes and unfold-
ings of contextual nets on a well-known concurrent algorithm for mutual
exclusion due to Dijkstra [Dij65]. We start with a condensed technical expla-
nation of the algorithm, see [Dij65] for more details.

Dijkstra’s algorithm allows n threads to ensure that no two of them are
simultaneously in a critical section. Two Boolean arrays b and c of size n, and
one integer variable k, satisfying 1 ≤ k ≤ n, are employed. All the entries
of both arrays are initialised to true, and k’s initial value is irrelevant. All
threads use the same algorithm, which runs in two phases. During the first,
thread i sets b[i] := false, and repeatedly checks the value of b[k], setting
k := i if b[k] is true, until k = i holds. At this point, thread i starts phase 2,
where it sets c[i] := false, and enters the critical section if c[j] holds for all
j 6= i. If the check fails, it sets c[i] := true and restarts in phase 1. After the
critical section, b[i] and c[i] are set to true. Note that more than one thread
could pass phase 1, and phase 2 is thus necessary.

We encoded Dijkstra’s algorithm into a c-net as follows. We denote by
n-Dijkstra the c-net that encodes Dijkstra’s algorithm running on n pro-
cesses. The entries of arrays b, c are represented by two places, e.g., bi=t and
bi= f . Variable k is encoded by n places of the form k=0, k=1, . . . , k=n−1.
Places l0,i, . . . , l6,i encode the instruction pointer of thread i. Figure 32 shows
the fragment of 2-Dijkstra that encodes thread 0. Roughly, each transition
represent one instruction of the original algorithm [Dij65], updating the in-
struction pointer and the variables affected by the instruction. Transitions
encoding conditional instructions, like k = 0?, or ∀j 6= 0, cj = t? employ
read arcs to the places coding the variables involved in the predicate.

MPs of n-Dijkstra, and in particular CMPs, exhibit a very good growth
with respect to n. Table 9 shows the figures, obtained under the same setting
as in § 7.6. While all unfoldings are exponential in n and |T|, all the MPs
are of polynomial size. The sizes of the plain and PR unfoldings seem to
increase by a factor of 5 for each process added. The contextual unfolding
reduces this factor down to 3. The plain and PR MPs seems to fit a polyno-
mial curve of degree close to 3. The CMP seems to grow linearly with n2,
i.e. linear with |T|, the number of transitions in the net. As it was the case
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Table 9: Unfolding and MP sizes of n-Dijkstra, its plain, and PR encodings.
Last row obtained through regression analysis, see the text.

Net Merged Processes Unfoldings

n |T| Ctx Plain PR Ctx Plain PR

2 18 31 42 40 35 54 54

3 36 64 113 121 131 371 364

4 60 105 220 278 406 2080 1998

5 90 155 375 582 1139 10463 9822

6 126 214 589 1198 3000 49331 44993

∝ n2 ∝ n2 ∝ n3 ∝ n3 ∝ 3n ∝ 5n ∝ 5n

for the family of c-nets n-Gen, discussed in § 5.3, PR MPs seem to be less
efficient than plain MPs on n-Dijkstra.

We note that this example exhibits some of the features explained in § 5.3.
For instance, process 0 can transition from l5,0 to l2,0 if there exists another
process i with ci = f . Thus, for n ≥ 3 there would be a choice between multi-
ple (i.e., n− 1) transitions in parallel to implement the check, a structure also
found in the n-Gen example. We note that such structures would also nat-
urally ensue from other mutual exclusion algorithms that typically involve
checking for the presence of some other event with a certain property.





8C O N C L U S I O N A N D P E R S P E C T I V E S

The study of asymmetric event structures has, not surprisingly, focused so
far on foundational aspects. The publication of [BCKS08] was a turning
point, making in principle possible the use of these structures in practical
verification. The question then was whether this is profitable.

This dissertation demonstrates that asymmetric event structures can be
rendered practical and outperform existing techniques on non-trivial classes
of systems. They have, we believe, a rightful place in research on concur-
rency, also from an efficiency point of view.

The manuscript makes theoretical and practical contributions to model
checking and fault diagnosis, focused on improving their scalability. In par-
ticular, the methods and tools proposed here open the way to using contex-
tual unfoldings for practical verification.

Unfolding-based verification conceptually takes place in two steps. First,
an unfolding of the system is constructed, carrying all information relevant to
deciding the verification question. Then the unfolding is analyzed, to actually
answer the verification question.

unfolding construction. For this step, we provide in Ch. 3 one con-
crete method for computing contextual unfoldings, and develop contextual
merged processes in Ch. 5. Both techniques aim at representing compactly
the state space of contextual Petri nets, achieving different degrees of com-
pression, and both were studied with a view to efficiency. Experimental
evaluation of these methods has been carried out, the results were reported
in Ch. 7.

For contextual unfolding construction, the main contribution presented
here is the eager approach to compute possible extensions. We proposed
to associate histories to conditions of the prefix and presented a concur-
rency relation on conditions enriched with such histories. We showed how
to characterize and compute possible extensions with this relation and gave
key results for computing the relation itself. This notion of concurrency was
then refined into asymmetric concurrency, providing not only a more uni-
form and simple characterization of possible extensions, but also a faster
algorithm for their computation.

We implemented the eager algorithm into the Cunf Toolset, a set of com-
petitive verification tools entirely developed during this thesis, striving to
make the implementation fast and robust. These tools have been tested and
profiled over a large set of benchmarks. Important implementation details
were reported in Ch. 7. Experiments show that not only are contextual un-
foldings more compact than ordinary ones, but they can be computed with
the same or better efficiency, in particular with respect to alternative ap-
proaches based on encoding contextual nets into ordinary nets.

Formal verification of concurrent systems faces diverse sources of state-
space explosion. Contextual unfoldings mitigate the combinatorial explo-
sion due to concurrency and concurrent read access. We have proposed con-
textual merged processes, which additionally cope with the explosion due
to sequences of choices. We proved a number of results which lay the foun-
dation for their construction and their use in model checking of reachability-
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like properties. Experiments showed that they can be orders of magnitude
more compact than contextual unfoldings.

unfolding analysis . Once a representation of the system is available,
either in the form of an unfolding or a merged process, formal verifica-
tion reduces to a particular analysis of the representation. Methods for an-
swering reachability and deadlock-freeness queries using both contextual
unfoldings and contextual merged processes were presented in Ch. 4 and
Ch. 5, and partially evaluated in Ch. 7. In both cases, the problem in ques-
tion was reduced to SAT. Additionally, a method was presented in Ch. 6 to
perform weak diagnosis of faults under fairness constraints using ordinary
unfoldings.

Our SAT encodings for reachability and deadlock are quite concise, due
to the aforementioned compactness of contextual unfoldings and merged
processes. The performance of modern SAT solvers is however only loosely
related to the encoding size. Optimizations were necessary to make the pre-
sented deadlock-checking method competitive compared to existing meth-
ods. Among all proposed ones, particular attention was put on the acyclicity
constraint, as it often dominates the size of the encoding. Once implemented
in the Cunf Toolset, the approach was compared with other unfolding-based
techniques, showing that the method is practical and outperforms existing
techniques on a wide number of cases.

Weak diagnosis explores the fair executions of the system that are com-
patible with a given observation and determines whether an unobservable
fault is inevitable. We stress that despite its name, weak diagnosis is actually
stronger than conventional diagnosis. Our results in Ch. 6 allow to decide
whether a given observation weakly diagnoses a fault. They require to build
two unfolding prefixes, one to represent all behaviors compatible with the
observation and another one to represent all fair behaviors. We then reduced
the weak diagnosis problem to a SAT instance generated out of these pre-
fixes.

perspectives . Along the manuscript, we have already mentioned ideas
for short-term future work extending of the results presented. We now
present additional ideas for extension and some more broader perspectives
of future work. The following are ideas for future work that follow up the
developments in this manuscript:

• The algorithm for direct construction of ordinary merged processes
proposed in [KM13] is based on a procedure for reachability checking.
The results in § 5.5 lay the foundation for reachability checking with
CMPs. The major ingredient for transferring [KM13] to the contextual
case is thus ready. An important problem yet to be solved is finding a
total strategy that has good encoding into SAT, as the one presented
in [KM13].

• While the SAT-based analysis techniques for unfoldings and merged
processes presented here exploit the compactness of these representa-
tions, they include a new acyclicity constraint which is not necessary
in ordinary nets. This constraint dominates the size of the encoding
and often reduces the performance of the solver. Improvements on it
may significantly speed up solving times.

• The step semantics considered in this work follow those proposed
in [MR95]. Other semantics have been proposed [JK91; JK95]. Study-
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ing the algorithmics of the resulting structures remains a possible line
of future work.

• Most of the time spent for the construction of an unfolding is em-
ployed in computing the concurrency relation. More efficient algo-
rithms for constructing concurrency relations thus have direct impact
on the unfolding time. The concurrency relation itself is used for two
purposes: (1) to find, ultimately, possible extensions, and (2) to up-
date the relation itself. However, there are pairs in the relation which
never contribute, even indirectly, to any of these purposes, and their
computation could be avoided — for the advanced reader, think of a
net with two isolated components which have large unfoldings. Algo-
rithms and data structures to compute only the necessary fragment of
the relation are likely to speed up unfolding construction.

• We intend to produce an implementation of the presented diagnosis
approach. While many of its ingredients are available by minor mod-
ifications of existing tools and verification infrastructure, e.g., [Sch],
a practical obstacle to overcome could be the sizes of the prefixes re-
quired in order to perform diagnosis.

Existing literature on unfoldings, including the works behind this disserta-
tion, have focused on finite nets with finite state space [EH08]. Moreover, the
algorithmics of unfoldings, and tools implementing them, have almost exclu-
sively focused on 1-safe nets [ERV02; ER99; EH08; KM13], as non-safeness
is a well known source of explosion for unfoldings [KKKV06]. An exception
to this is [AIN04], where the coverability problem of an unbounded Petri
net is solved using backwards unfoldings.

Leveraging on the efficiency of unfolding algorithms for safe nets, an inter-
esting perspective is the investigation of unfoldings for 1-safe, infinite Petri
nets. Since they are safe, their algorithmics are likely to be efficient. Because
they are infinite, certain verification questions could be reduced to them. For
instance, straightforward semantics could be given to non-recursive Boolean
programs with unbounded thread creation [CKS07], reducing safety proper-
ties to coverability queries on the net.

The coverability problem for these infinite nets is of course undecidable.
However, this should not prevent us from making an abstract interpretation
of them. Under reasonable assumptions, such as finite-enabling1, such nets
can readily be given unfolding semantics. Next, the coverability problem
could be overapproximated by a finite prefix constructed with a suitable
cutoff criteria. In the definition these criteria, the theory of canonical pre-
fixes [KKV03] will arguably provide a supporting framework.

Although read arcs seem not to play a central role in such extension, they
would arguably contribute to more compact unfoldings.

A second perspective would be related to partial-order reduction tech-
niques, also referred as model checking using representatives [Pel93]. These
techniques and unfoldings are often presented as two classes of approaches
to cope with the state explosion problem derived from concurrency. Al-
though they are applied to the similar problems, we are not aware of any
work comparing them. Understanding better the connections between the
two would not only be of interest for practitioners trying to decide which to
use for a particular problem, but arguably also for theoreticians seeking for
better representations of concurrent state spaces. We intend to carry out an
study in this direction.

1 That is, only finitely many transitions are enabled at any reachable marking.
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This is both a user guide and a tutorial of the Cunf Toolset. The Cunf Toolset
is a toolset for carrying out unfolding-based verification of Petri nets ex-
tended with read arcs, also called contextual nets (c-nets). Unfoldings fully
represent the state-space (reachable markings) of a c-net by a partial order
rather than by a set of interleavings; they are often exponentially smaller
than the reachablity graph, and never larger than it. Additionally, c-net un-
foldings can be exponentially more compact than those of corresponding
Petri nets. The toolset specifically contains one unfolding-construction tool
and one reachablity and deadlock-checking tool.

a.1 introduction

The Cunf Toolset is a set of programs for carrying out unfolding-based verifi-
cation of Petri nets extended with read arcs, a.k.a. contextual nets, or c-nets.
The package specifically contains the following tools:

1. Cunf: constructs the unfolding of a c-net;
2. Cna: performs reachability and deadlock analysis using unfoldings

constructed by Cunf.
3. Scripts such as pep2dot or grml2pep to do format conversion between

various Petri net formats, unfolding formats, etc.

Petri nets are a modelling language for concurrent systems. The reader
unfamiliar to the topic could perhaps start with [Wik13] or [Mur89].

Contextual nets are Petri nets where, in addition to the ordinary arrows be-
tween places and transitions, one may find read arcs. These allow transitions
to verify that tokens exist in a place before firing, but don’t consume them
when firing. Transitions can then be thought of reading a context required
to fire, hence the name. See Section 2 of [BBC+12] for a brief formalization
and [MR95] for more details.

Observe that every Petri net is a contextual net (without read arcs). Also
notice that for every c-net we obtain an equivalent Petri net after substituting
read arcs for pairs of consume-produce loops. We call this Petri net the plain
encoding of the c-net. An example of this encoding is shown in Fig. 33.

The unfolding of a c-net is another well-defined c-net of acyclic struc-
ture that fully represents the behavior (reachable markings) of the first, see
Fig. 33 (c) for an example. A c-net unfolding is at most as big as the reach-
ablity graph of the c-net.1 Because unfoldings represent behavior by partial
orders rathen than by interleavings, for highly concurrent c-nets, unfoldings
are often much (exponentially) smaller, which makes for natural interest in
them for the verification of concurrent systems.

C-net unfoldings bring additional advantages w.r.t. ordinary Petri net un-
foldings. The unfolding of a c-net can be exponentially smaller than the

1 The careful reader may notice that there are more events in Fig. 33 (c) than reachable markings
in Fig. 33 (b). This is a matter of presentation. (c) is actually the full unfolding [BBC+12] of
(b), while the term unfolding in this document refers to the finite marking-complete unfolding
prefix that one can build using a total adequate order [BBC+12]. In other words, (c) contains
some cut-off events (actually only 1) that, when removed, would yield a marking-complete
prefix not larger than the state-space of (b).
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Figure 33: (a) a c-net; (b) its encoding into a Petri net; (c) unfolding of (b)

unfolding of its plain encoding. For instance, Fig. 33 (a) is a c-net and (b) its
plain encoding. The unfolding of (b) is (c), but the unfolding of (a) is a c-net
isomorphic to (a). If (a) was generalized to n reading transitions (copies of t2),
we would still have an isomorphic contextual unfolding, but (c) would blow
up. See [BBC+12] for more details.

An unfolding is suitable for checking certain properties of the net giving
rise to it, such as reachability or deadlock-freeness. Checking these directly
on the net is computationally difficult (PSPACE-complete). Building the un-
folding is (for highly concurrent systems) efficient, and checking these prop-
erties using the unfolding is also easy — NP-complete. Together, unfolding
construction and unfolding analysis is almost always faster than verifica-
tion based on the reachability graph. Also notice that we can check many
properties once the unfolding is built.

Cunf implements the c-net unfolding procedure proposed by Baldan et
al. in [BCKS08]. The algorithms and data structures actually implemented
have been partially described in [RSB11b; BBC+12]. While the theoretical
results of [BCKS08], [RSB11b; BBC+12] allow for unfolding bounded c-nets
in general, Cunf can only unfold 1-safe c-nets (i.e., no reachable marking
puts more than one token on every place), and for the time being the tool
will blindly assume the input is 1-safe — the unfolding could be wrong if
this is not fulfilled. In [Rod10], and old and inefficient version of the tool is
described.

Cna, whose name stands for Contextual Net Analyzer, checks for place
coverability or deadlock-freedom of a c-net by examining its unfolding. The
tool reduces these problems to the satisfiability of a propositional formula
that it generates out of the unfolding, and uses Minisat [ES03] as a back-
end to solve the formula. The algorithms used by Cna has been described
in [RS12b].

a.2 author and contact

The Cunf Toolset is developed and maintained by

César Rodríguez

LSV, ENS de Cachan
61, avenue du Président Wilson
94235 Cachan Cedex
France
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e-mail: cesar.rodriguez@lsv.ens-cachan.fr
Website : http://www.lsv.ens-cachan.fr/~rodriguez/

If you experience any difficulty using the tool, or found a bug, or just
wish to let me know that you are using it, send me an e-mail.

a.3 installation

The Cunf Toolset has only been tested in Linux and Mac OS X; it should run
well in other Unix systems. You can choose to install precompiled binaries
or compile and install from the source code.

Cna requires the Minisat solver to be installed in your machine, and
available in the $PATH. For your convenience, Minisat v.2.2.0 is distributed
with the precompiled binaries and can be found in the minisat/ folder of
the repository.

a.3.1 From Precompiled Binaries

From the following address, choose the latest version (1.6) of the bundle
with precompiled binaries that suits your machine, download, and unpack
it:

https://code.google.com/p/cunf/downloads/list

Then follow the next steps:

1. Copy all files in the bin/ folder to any folder in your computer pointed
by your $PATH.2

2. The folder lib/ptnet/ contains a Python module that should be cor-
rectly installed in your system for Cna and other Python scripts to
work. Copy it to, either,

• any folder pointed by your installation-dependent Python’s de-
fault Module Search Path,3

• or any folder pointed by (one of the paths in) the environment
variable $PYTHONPATH,

• or the same folder where you copied Cna and the other Python
scripts, as Python will first search for modules in that folder.

a.3.2 Compilation and Installation from the Source Code

First, get the source code. You have two options:

1. Download and unpack the boundle containing the source code of ver-
sion 1.6 of the tool, from

https://code.google.com/p/cunf/downloads/list

2. Clone the Git repository where the development takes place, running
the command:

git clone https://code.google.com/p/cunf/

2 In particular, the Minisat tool has to be somewhere where the system(3) C-library function will
find it.

3 To discover the actual search path that Python is using run the command:
echo ’import sys; print sys.path’ | python.

cesar.rodriguez@lsv.ens-cachan.fr
http://www.lsv.ens-cachan.fr/~rodriguez/
https://code.google.com/p/cunf/downloads/list
https://code.google.com/p/cunf/downloads/list
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Cunf is written in C, the source code is the src/ and include/ folders
of the tool repository. Cna is written in Python, and uses the ptnet Python
module, both are located in the tools/ folder.

The compilation is handled by make, the following targets are available:

all Compiles Cunf and Minisat, leaving the respective binaries in the files
src/main and minisat/core/minisat.

dist Builds all necessary files and creates the folder dist/, containing the
binaries and libraries ready to be installed — the same files that are
distribued from the boundle in § A.3.1.

Some compilation-time options can be tweaked in include/config.h,
here you have a description:

config_debug Define this macro to compile debugging code. Cunf will
perform extensive assertions aiming at finding bugs in the code and
corrupt data structures. It will additionally dump verbose debugging
information during the unfolding computation. Switching on the op-
tion will considerably increase Cunf’s running times.

config_mcmillan Define this macro to use McMillan’s adequate order
[McM95b] when Cunf picks possible extensions to extend the un-
folding prefix. One and only one of the macros CONFIG_MCMILLAN,
CONFIG_PARIKH, CONFIG_ERV or CONFIG_ERV_MOLE can be active. Recall
that this is not a total order.

config_erv Selects the ≺F total adequate order of [ERV02].
config_parikh Selects the Parikh order of [EH08, definition 4.46]. Al-

though this this is an adequate order, it is not total, and may produce
prefixes larger than any of the other available total orders. However, it
always produces prefixes smaller than when using CONFIG_MCMILLAN.

config_erv_mole Selects the adequate order used in the Mole unfolder
[Sch]. This is a minor, non-documented modification of the order≺F. It
makes possible to compare the unfolding prefixes computed by Cunf

and Mole. Refer to the function h_cmp, in src/h.c, for more details.
config_nodelist_step Defines the number of items to be allocated to-

gether whenever certain dynamic linked-lists need to grow. Among
other uses, these lists are used to store markings.

To generate the binaries, execute

$ make dist

and follow the steps in § A.3.1 with the folder dist. Observe that your
installed copy of Cna will not work before you install the ptnet module,
as indicated in § A.3.1. You can of course run Cna from the tools/ folder,
since Python first searches for modules in the same directory where the
executable is located.

a.4 getting started

In this section we explain the usage of the Cunf Toolset with a simple, well-
known example.

Figure 34 shows a c-net representing a variant of Dekker’s mutual exclu-
sion algorithm for two processes, represented by numbers 0 and 1 in the
figure. A process may fire try and set a flag to signal intention to enter the
critical section. It can then enter the critical section p3 if the other process is
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Figure 34: A variant of Dekker’s mutual exclusion algorithm for two pro-
cesses

not trying. Otherwise it may withdraw its intention and clear the flag. Read
arcs allow enter and withdraw to read the flag of the other process.

This c-net is distributed in the examples/ folder, included in the boundle
of § A.3.1 or the dist/ folder generated after compilation, see § A.3.2. The
file in question is

examples/dekker/dek02.ll_net.

For the purposes of this presentation, let us just give it a shorter name:

$ cp examples/dekker/dek02.ll_net dek02.ll_net

This file, as any other c-net in the examples/ folder, is formated in a sim-
ple modification of the PEP’s low-level Petri net format, which will be de-
scribed in § A.6. For historical reasons, this is the only input format of the
Cunf Toolset. The toolset comes, however, with scripts to translate the out-
put format of some graphical editors, like Coloane [LIP] or PIPE2 v2.5
[BLPK07], see § A.7 for more details.

a.4.1 Constructing Unfoldings with Cunf

Assume we wish to check if dek02.ll_net is deadlock-free, or whether mu-
tual exclusion is guaranteed. We first build its unfolding using Cunf, and
store it in the file u.cuf:

$ cunf -o u.cuf dek02.ll_net

By default Cunf outputs in CUF03 format (documented in § A.6). A number
of statistics about the computation of the unfolding and the size and shape
of the output are printed just before the tool terminates. We can distinguish
the following lines:

[...]
hist 12
events 8
cond 18
[...]
co(r) 5.25
rco(r) 0.50
[...]
pre(e) 1.75
ctx(e) 0.50
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pst(e) 1.75
cutoffs 6
[...]

The first line above is the number of histories generated by Cunf (you may
see [BBC+12] for a definition), and gives a rough idea of the size of the
internal object Cunf had to build in order to produce the unfolding. The
unfolding itself has the number of events (transitions) and conditions (places)
reported in the next two lines.

Cunf’s unfolding algorithm builds and maintains a concurrency relation
that the tool internally needs for constructing the unfolding. Explaining the
purpose of this relation is out of the scope of this manual (see [BBC+12]). It
is, however, important to say that computation of this relation often takes
most of the time consumed by the tool. In the line

co(r) 5.25

Cunf reports that every element over which the relation is defined was
related to an average of 5.25 other elements. In general, the higher this
number is, the slower Cunf’s unfolding algorithm proceeds. More details
in [BBC+12, section 7].

Next in the list is the average number of conditions in the preset, con-
text, and postset of every event. The last line reports the number of cut-off
(enriched) events present in the internal object constructed by Cunf.

a.4.2 Deadlock and Coverability Analysis with Cna

After the construction of the unfolding, we can proceed to its analysis. We
use now Cna to ask, for instance, about the presence of deadlocks:

$ cna -d u.cuf
answer : NO , the net is deadlock-free
clauses : 52
event variables : 4
reductions : bin 4-tree
sccs : [(4, 4, 4, 4)]
variables : 30

Option -d instructs Cna to look for deadlocks. By default, it will build and
solve a propositional formula associated to the unfolding, and will internally
invoke Minisat to solve it. If called with -n, Cna will instead dump the
formula and exit.

Option -c checks for coverability, in this case, of places p3/1 and p3/0:

$ cna u.cuf -c ’p3/1’ ’p3/0’
answer : NO , no rechable marking covers ’p3/0’ ’p3/1’
[...]

Observe that p3/i is marked iff process i is in the critical section. We may
also ask if it is possible to find one process trying to enter the critical section
while the other is already in, which is naturally possible:

$ cna u.cuf -c ’p1/0’ ’p3/1’
answer : YES, places ’p1/0’ ’p3/1’ are coverable
clauses : 39
event variables : 4
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reductions : bin 4-tree
sccs : [(4, 4, 4, 4)]
trace : ’try/1:e0’ ’enter/1:e3’ ’try/0:e1’
variables : 22

The trace indicates the firing sequence of the c-net (or the unfolding) that
makes possible to cover the requested places. The lines labelled by clauses
and variables inform about the size of the SAT formula fed to Minisat.

Notice that in this example, the construction of the CUF03 file is necessary
only once, while Cna can be applied many times. For most problems, the
former step is the bottleneck whereas Cna works very fast thanks to effi-
cient SAT solving techniques. For cases where only one coverability query
is needed, the option -t of Cunf checks whether a given transition is firable,
and stops computing the unfolding if the answer is yes. This can be used to
check if the set of places in the preset of a (intentionally inserted) transition
is coverable.

Notice the line starting with reductions. Cna applies several optimiza-
tions to the SAT encoding it produces. The word bin means that it is using
binary rankings to encode certain acyclicity constraint; 4-tree says that Cna

used 4-trees to encode the absence of symmetric conflicts (technical details
in [RS12b], [RS12a]). Run the tool without arguments to obtain a full list
of all the optimizations available, and information about them. This infor-
mation is available in § A.5.2. The effect of almost all them is described
in [RS12a].

a.4.3 More on Dekker’s Algorithm

How the unfolding grows as we add more processes to our model of the
Dekker’s algorithm?

First, observe that when the 2-process example in Fig. 34 is generalized
to n processes, O(2n) markings are reachable in these c-nets — for a net
of size O(n2). Several instances of the protocol are distributed in the folder
examples/dekker/. We can easily run Cunf on some of them and retain the
unfolding size:

$ for i in 10 20 30 40 50; do
cunf examples/dekker/dek$i.ll_net | grep events

done

events 120
events 440
events 960
events 1680
events 2600

We see that the numbers roughly follow an square progression on the num-
ber of processes involved, i.e., linear on the number of transitions of the
c-net.

a.4.4 Producing Graphics of C-nets and Unfoldings

The Cunf Toolset is distributed with a number of scripts capable of produc-
ing images depicting a c-net or an unfolding. These scripts actually rely on
the tool dot from the Graphviz project [Gra] to actually produce the image.
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8 transitions
18 places

flag=0/1:c17 p0/1:c16

flag=0/1:c15 p0/1:c14

flag=0/0:c13 p0/0:c12

flag=0/0:c11 p0/0:c10p3/1:c9

exit/1:*e7

p3/0:c8

exit/0:*e6

flag=1/1:c7

withdraw/1/0:*e5 withdraw/0/1:*e4

p1/1:c6

enter/1:e3

flag=1/0:c5 p1/0:c4

enter/0:e2

p0/1:c3

try/1:e0

p0/0:c2

try/0:e1

flag=0/1:c1 flag=0/0:c0

Figure 35: The unfolding of Fig. 34.

Say that we want to see the c-net dek02.ll_net which we unfolded in the
previous sections. We first generate a dot script out of the net, using the tool
pep2dot, included in the src/ directory of the source code (and also in the
precompiled distribution):

$ src/pep2dot dek02.ll_net > dek02.dot

Then use dot tool, like this:

$ dot -T pdf < dek02.dot > dek02.pdf

The file dek02.pdf depicts the c-net. Similarly, if we wish to see the unfold-
ing, we could type:

$ tools/cuf2pep.py < u.cuf > u.ll_net
$ src/pep2dot u.ll_net > u.dot
$ dot -T pdf < u.dot > u.pdf

The first command has converted the cuf file in to a ll_net file, and subse-
quent commands are like before. The cuf2pep.py script is also included in
the precompiled distribution. The resulting PDF is shown in Fig. 35. Regular
arrows are in black, and read arcs are depicted in red. The initially marked
conditions are the four top ones, and cut-off events have an asterisk in the
name.

Actually, the make machinery included in the source code already knows
how to produce PDF or even JPEG images of the c-nets or unfoldings —
pretty much in the same way it knows how produce an object file out of a
C source file. You just need to type make followed from the desired file. For
instance, we can obtain a JPEG image of the c-net with:

$ make dek02.jpg
P2D dek02.ll_net
DOT dek02.dot
rm dek02.dot

The tool make reports that it first converts the PEP ll_net file into a dot
script (P2D), and then converts the dot script into PDF (DOT). This will pro-
duce the file dek02.jpg.
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The same is true for building unfoldings. To build the unfolding of a net
abc.ll_net you just need to make the file abc.unf.cuf:

$ make dist
$ make dist/examples/dijkstra/dij03.unf.cuf
UNF dist/examples/dijkstra/dij03.ll_net
time 0.013
mem 2
[...]

Of course, more complex transformations can be achieved. For instance, we
could generate a PDF depicting the unfolding of a c-net without explicitly
generating the cuf file:

saiph:cunf$ make dist/examples/dijkstra/dij02.unf.pdf
UNF dist/examples/dijkstra/dij02.ll_net
time 0.001
mem 0
[...]
C2P dist/examples/dijkstra/dij02.unf.cuf
P2D dist/examples/dijkstra/dij02.unf.ll_net
DOT dist/examples/dijkstra/dij02.unf.dot
rm dist/examples/dijkstra/dij02.unf.ll_net

dist/examples/dijkstra/dij02.unf.dot
dist/examples/dijkstra/dij02.unf.cuf

Observe that make make is removing, in the last line, all intermediate files it
has generated — because you did not ask for any of them. The file generated
by the previous command is shown in Fig. 36.

If you wish to know other transformation rules make knows, have a look
to the end of the file defs.mk, located at the root of the repository.

a.4.5 Finding More Examples

More examples are distributed in the examples/ folder in the bundle of
§ A.3.1 or the (generated) dist/examples/ folder in the source code:

examples/dijkstra/ This folder contains c-nets that model Dijkstra’s
mutual exclusion algorithm [Dij65] for a number of processes vary-
ing between 2 and 6. These nets have been generated using the script
tools/mkdijkstra.py, included in the source code (but not the bun-
dle of precompiled binaries).

examples/corbett/ This is a superset of the of the popular benchmarks
compiled by Corbett [Cor96]. An short description of them can be
found in [Kho03, pp. 29–31]
The nets are distributed in four sub-folders. The folder cont/ contains
contextual nets, and plain/ contains the plain encodings of the nets
in cont/. Similarly, the folder pr/ contains the Place-Replication encod-
ing [VSY98] of the same c-nets. The folder other/ contains ordinary
Petri nets.

The folder tools/ of the source code contains a number of scripts (all
them have names starting by mk) to generate several families of nets, other
Dijkstra’s or Dekker’s mutual exclusion models. This folder is not distributed
with the bundle of precompiled binaries.



144 the cunf tool user’s manual , v1 .6

57 transitions
100 places

l3/1:c99

l2/1:c98 l2/0:c97

b[1]=F:c96 l1/1:c95

c[1]=T:c94b[1]=T:c93 l0/1:c92c[1]=T:c91b[1]=T:c90 l0/1:c89c[0]=F:c88

c[0]=F? goto l2/1:*e55

l5/0:c87

c[1]=F? goto l2/0:*e56

l6/1:c86

c[1]:=T; b[1]:=T:*e53

l6/0:c85 l6/1:c84

c[1]:=T; b[1]:=T:*e51

l4/0:c83

c[0]:=F:+e41

c[1]=T:c82

forall j!=0, c[j]=T? goto l6:*e50

l1/1:c81

k=0 && b[k]=T? goto l3/1:*e52

c[0]=T:c80

forall j!=1, c[j]=T? goto l6:e32

l1/0:c79

k=0? goto l4:e33

b[0]=F:c78 l1/0:c77

l2/1:c76

c[1]:=T:e31

l2/0:c75

c[0]:=T:+e40

c[0]=T:c74

forall j!=1, c[j]=T? goto l6:e30

b[0]=T:c73

b[0]:=F:*e49

l0/0:c72

c[1]=F:c71l5/1:c70l6/0:c69

c[0]:=T; b[0]:=T:e29

c[1]=T:c68 b[1]=T:c67

b[1]:=F:*e54

l0/1:c66

l4/1:c65

c[1]:=F:*e48

c[0]=F:c64

c[0]=F? goto l2/1:e26

l5/0:c63

forall j!=0, c[j]=T? goto l6:e28 c[1]=F? goto l2/0:e27

l6/1:c62

c[1]:=T; b[1]:=T:+e39

l2/1:c61l2/0:c60 b[1]=F:c59 l1/1:c58

k=1? goto l4:e25

l3/0:c57l4/0:c56

c[0]:=F:e24

c[1]=F:c55l5/1:c54

forall j!=1, c[j]=T? goto l6:e23

c[1]=F:c53

c[1]=F? goto l2/0:*e46

l5/1:c52

c[0]=F? goto l2/1:*e47

c[1]=T:c51

b[1]=T:c50

k=1 && b[k]=T? goto l3/0:*e45 b[1]:=F:e21

l0/1:c49c[0]=T:c48b[0]=T:c47 l0/0:c46

b[0]=F:c45l1/0:c44

l4/1:c43

c[1]:=F:e20

l4/1:c42

c[1]:=F:+e38

l6/1:c41

c[1]:=T; b[1]:=T:e19

l6/0:c40l6/0:c39

c[0]:=T; b[0]:=T:*e44

k=0:c38

k=0? goto l4:e22

l1/0:c37

c[1]=T:c36

forall j!=0, c[j]=T? goto l6:*e42

l1/1:c35

k=1? goto l4:e17

c[0]=T:c34

forall j!=1, c[j]=T? goto l6:e16

l1/0:c33

l3/0:c32

k=1? k:=0:+e37

l2/1:c31

c[1]:=T:e14

l2/0:c30

c[0]:=T:+e36

b[1]=F:c29

l1/1:c28

k=1? goto l4:e18

c[1]=T:c27

forall j!=0, c[j]=T? goto l6:e15

b[1]=T:c26

b[1]:=F:+e35k=1 && b[k]=T? goto l3/0:e13

l0/1:c25

l6/1:c24

c[1]:=T; b[1]:=T:e10

c[1]=F:c23

c[1]=F? goto l2/0:e11

l5/1:c22

c[0]=F? goto l2/1:e12 forall j!=1, c[j]=T? goto l6:e9

c[0]=T:c21b[0]=T:c20

b[0]:=F:*e43

l0/0:c19

l4/1:c18

c[1]:=F:e8

l6/0:c17

c[0]:=T; b[0]:=T:+e34

k=1:c16

k=1? goto l4:e7

l1/1:c15

c[0]=F:c14l5/0:c13

forall j!=0, c[j]=T? goto l6:e6

l3/1:c12

k=0? k:=1:e5

l4/0:c11

c[0]:=F:e4

b[1]=F:c10

l1/1:c9

k=0 && b[k]=T? goto l3/1:e3

b[0]=F:c8

l1/0:c7

k=0? goto l4:e2

l0/1:c6

b[1]:=F:e0

l0/0:c5

b[0]:=F:e1

c[1]=T:c4

b[1]=T:c3

k=0:c2

c[0]=T:c1

b[0]=T:c0

Figure 36: The unfolding of examples/dijkstra/dij02.ll_net.

a.5 command-line syntax

a.5.1 Cunf

Cunf expects an optional list of command-line options followed by the
name of the input file to be provided as command-line arguments:

cunf [OPTIONS] NETFILE

Run the tool without arguments to obtain the list of available options. They
are the next:

-t name Optional. Stop the unfolding construction as soon as the transi-
tion NAME is unfolded for the first time, and output the unfolding prefix
currently built. The prefix will include exactly one occurrence of the
transition, if it has been found, or zero occurrences — and it will be a
marking-complete, cf. [BBC+12].

-d depth Optional. DEPTH is a natural number. Don’t include in the un-
folding prefix enriched events whose history has a depth greater or
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equal than DEPTH. The depth of a history H is the maximum natural n
for which there exist events e1, . . . , en in H such that e1 ↗ e2 ↗ . . . ↗
en, where↗ is the asymmetric conflict relation, as defined in [BBC+12].

-o file Optional. Write the unfolding prefix to the file FILE. If not pro-
vided, Cunf will obtain the path to write the unfolding from the input
file. It will strip the string ll_net from the INPUT file and will concate-
nate the string unf.dot.

-f format Optional. FORMAT shall be one of cuf, dot, or fancy. See § A.6.2.

a.5.2 Cna

Run Cna without arguments to obtain help about its command-line syntax.
The tool expects a mandatory CUF file and an optional OUTFILE where it will
write its textual output (standard output if not given):

cna [CUF] [OUTFILE] [OPTIONS]

Here is the list of OPTIONS it accepts:

-h , –help Show a help message and exit.
-d , –deadlock Optional. Default: no. Tell whether or not a deadlocked

marking is reachable. At least one of -d or -c must be given.
-c place [place ...] , –cover place [place ...] Optional. De-

fault: no. Tell whether or not the list of PLACEs are coverable. You may
consider quoting place names if they contain spaces. At least one of
-d or -c must be given.

-r reduc [reduc ...] , –reduce reduc [reduc ...] The default
is: 4-tree bin. Use REDUCtions of the propositional formula generated
by the tool that improve running time of the SAT solver. The following
options are available:

k-tree (where 1 < k < 10) Use k-trees to implement the at-most-one
constraints in the encoding of symmetric conflicts. If none of the
options ‘seq’, ‘log’, or ‘pair’ is present, 4-tree will be used.

seq Use the sequential encoding of [Sin05] for symmetric conflicts.
log Use the logaritmic encoding of [FPDN05] for symmetric conflicts.
pair Use pairwise encoding for symmetric conflicts.
stb Use elimination of stubborn events, see [RS12a] for a detailed,

technical description of the optimization.
sub Reduce the symmetric and disabled constraints to certain maximal

sets.
nocy Do not produce constraints to check for cycles in the asymmet-

ric conflict relation.
bin Generate acyclicity constraints using ranks with binary encoding,

see [CGS09]. If none of the options ‘nocy’, ‘trans’, or ‘unary’ is
present, ‘bin’ will be used.

unary Generate acyclicity constraints using ranks with unary encod-
ing.

trans Generate acyclicity constraints encoding transitive closure.
sccred Reduce the SCCs before generating the acyclicity constraints.

-n file , –dont-solve file Dump the propositional formula to FILE
and exit, instead of running the solver and displaying the result.
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a.6 file formats

a.6.1 The ll_net Format

Cunf accepts a c-net as input, represented in a slightly modified version of
the PEP’s low-level format. We describe here this modification. We assume
the reader is familiar with the PEP’s low-level format [PEP; BG].

The input file should be formated in the low-level net syntax extended
with one additional section, which specifies the context relation. The new
section contains a list of read arcs, each one specified in the same way as
either the place-transition arcs in section PT or the transition-place arcs in
section TP. The new section is headed by the keyword RA, standing for Read
Arcs.

Sections in the low-level net format must be placed in certain order. The
new RA section must appear after the section TP (transition to place arcs)
and before the (optional) section PTP (phantom transition to place arcs). Fig-
ure 37 shows an example, together with the graphical representation of the
c-net.

PEP
PetriBox
FORMAT_N2
PL
"P0"M1
"P1"M1
"P2"
"P3"
"P4"
"P5"
TR
"T0"
"T1"
"T2"
"T3"
TP
1<3
2<4
3<5
4<6
PT
1>1
2>2
3>3
3>4
4>4
RA
2<1

T0

T1

P1

P2

P3

T3

P5 P4

T2

P0

Figure 37: Example of the ll_net format with read arcs, and graphical rep-
resentation of the encoded c-net.

a.6.2 Unfolding Formats

Cunf can write its output, the unfolding of the input c-net, in several for-
mats. By default, it will write a cuf file, but other formats can be selected
with the option -f:
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dot For historical reasons, Cunf is able to write dot scripts, suitable for the
dot tool. Scripts to produce dot input out any cuf or file are included
in the source and precompiled distributions.

fancy This also produces a dot file, but every event in the resulting graph-
ical representation of the unfolding is annotated by the histories that
Cunf had to construct. This is right now the only way of extracting
information about the history-enriched unfolding prefix that Cunf

constructs — apart from compiling the tool with CONFIG_DEBUG and
parsing the debugging output.

cuf The default output format, called CUF03, is binary and similar to the
MCI format of PEP. C and Python code for dealing with CUF03 files is
available in the repository.
The standard reference defining the CUF03 format is the comment in
the the line 263 of the file

src/output.c,

just before the function write_cuf. All technical details of the file for-
mat are explained there.

a.7 producing input for cunf

Most of the c-nets on which the Cunf Toolset has been used has been gener-
ated programmatically. It is the case, for instance, of the dekNN.ll_net nets
in § A.4.

Sometimes it is interesting, however, to draw a c-net and perform some
analysis on it. The Cunf Toolset has currently no graphical user interface,
and there is no plan for it to be available in the future. The Cunf Toolset is
however integrated in the Cosyverif [Cos] tool, which includes a graphical
interface and which will internally invoke the Cunf Toolset in several mouse
clicks. There is also plans to include the Cunf Toolset as a verification engine
of Tapaal [DJJ+12].

a.7.1 Graphically

A simple way of producing c-nets for Cunf is using the Coloane graphical
editor [LIP]. This is the same editor used in the Cosyverify tool, but can
be installed as an stand-alone program. Once you have edited your c-net in
Coloane, see Fig. 38 (observe that you can also introduce read arcs), right-
click on the model name in the Projet Explorer window, and then click on
Export. Export the c-net in GRML format.4

Once your file, say net.grml (the extension is important), is in GRML for-
mat, use the script grml2pep.py to convert the file into ll_net format. If
you read § A.4.4, you will be unsurprised to know that the make machinery
of the Cunf Toolset sources also knows about GRML files. You can, alterna-
tively, type:

$ make net.ll_net

or even directly

$ make net.unf.cuf

4 The dialog could incorrectly display GML, instead of GRML.
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Figure 38: The Coloane graphical editor can export c-nets for the
Cunf Toolset.

a.7.2 Programmatically

A Python module for reading and writing a number of c-net and Petri net
formats is distributed with the Cunf Toolset. Cna actually uses it to read
cuf files and many scripts in the tools/ folder of the sources use it to carry
out various operations. All tools/mk* scripts use this module, cf. § A.4.5.

We briefly illustrate its use with a simple example. The following code
produces the c-net in Fig. 39

import sys
import ptnet

# creates the net object
n = ptnet.net.Net ()

# creates three places, two initially marked
p1 = n.place_add (’p1’, 1)
p2 = n.place_add (’p2’, 1)
p3 = n.place_add (’p3’)

# and two transitions
t1 = n.trans_add (’t1’)
t2 = n.trans_add (’t2’)

# sets arrows and read arcs
t1.cont_add (p2)
t1.pre_add (p1)
t2.pre_add (p1)
t1.post_add (p3)
t2.post_add (p3)
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# writes the c-net in ’pep’ format,
# see source code to know about other formats
n.write (sys.stdout, ’pep’)

2 transitions
3 places

p3

p2

t1

p1

t2

Figure 39: A c-net programmatically produced with the ptnet Python mod-
ule.
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