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Abstract. Many existing video stabilization methods often stabilize
videos off-line, i.e. as a postprocessing tool of pre-recorded videos. Some
methods can stabilize videos online, but either require additional hard-
ware sensors (e.g., gyroscope) or adopt a single parametric motion model
(e.g., affine, homography) which is problematic to represent spatially-
variant motions. In this paper, we propose a technique for online video
stabilization with only one frame latency using a novel MeshFlow motion
model. The MeshFlow is a spatial smooth sparse motion field with motion
vectors only at the mesh vertexes. In particular, the motion vectors on
the matched feature points are transferred to their corresponding nearby
mesh vertexes. The MeshFlow is produced by assigning each vertex an
unique motion vector via two median filters. The path smoothing is
conducted on the vertex profiles, which are motion vectors collected at
the same vertex location in the MeshFlow over time. The profiles are
smoothed adaptively by a novel smoothing technique, namely the Pre-
dicted Adaptive Path Smoothing (PAPS), which only uses motions from
the past. In this way, the proposed method not only handles spatially-
variant motions but also works online in real time, offering potential for a
variety of intelligent applications (e.g., security systems, robotics, UAVs).
The quantitative and qualitative evaluations show that our method can
produce comparable results with the state-of-the-art off-line methods.
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1 Introduction

Most existing video stabilization methods stabilize videos offline [1–5], where the
videos have already been recorded. These methods post-process shaky videos by
estimating and smoothing camera motions for the stabilized results. Typically, to
stabilize the motion at each time instance, they require not only camera motions
in the past but also camera motions in the future for high quality stabilization.
There is an increasing demand of online video stabilization, where the video
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is stabilized on the spot during capturing. For example, a robot or drone often
carries a wireless video camera so that a remote operator is aware of the situation.
Ideally, the operator wants to see the video stabilized as soon as it appears on
the monitor for immediate responses. Offline stabilization are not suitable for
this application, though they produce strongly stabilized results.

Online stabilization is challenging mainly for two reasons. Firstly, the cam-
era motion estimation is difficult. Some online stabilization methods use gyro-
scope [6,7] for realtime motion estimation. However, gyro-based methods can
only capture rotational motion, leaving translational motion untouched. High
quality video stabilization requires handling of spatially-variant motion, which
is often due to parallax and camera translation, a common problem in general
scenes with depth changes. Spatially-variant motion is complicated. It cannot
be represented by a single homography [1,3]. Recent methods [4,5,8] divide
the video frame into several regions. However, this strategy is computationally
expensive and hinders realtime applications. Enforcing spatial-temporal coher-
ence during camera motion smoothing further complicates this approach.

Secondly, successful camera motion filtering often requires future frames.
Some online video stabilization methods [9–11] use the single homography model
and buffer some future frames. For example, the method of [10] requires a min-
imum of one second delay. The temporal buffer is needed to adaptively set
the smoothing strength so as to avoid artifacts caused by excessive smoothing.
Reducing this buffer for future frame will significantly deteriorate the results.

We design an online video stabilization method with minimum latency by
solving the two aforementioned challenges. Our method only requires past
motions for high quality motion filtering. We propose a novel motion model,
MeshFlow, which is a spatially smooth sparse motion field with motion vectors
defined only at the mesh vertexes. It can be regarded as a down-sampled dense
flow. Specifically, we place a regular 2D mesh on the video frame. We then track
image corners between consecutive frames, which yields a motion vector at each
feature location. Next, these motion vectors are transferred to their correspond-
ing nearby mesh vertexes, such that each vertex accumulates several motions
from its surrounding features. The MeshFlow is a sparse 2D array of motion
vectors consisting of motions at all mesh vertices.

With regards to the camera motion smoothing, we design a filter to smooth
the temporal changes of the motion vector at each mesh vertex. This filter is
applied to each mesh vertex. Thus, it can naturally deal with the spatially-
variant motion. The uniqueness of this filter is that it mainly requires previous
motions for strong stabilization. This is achieved by predicting an appropriate
smoothing strength according to the camera motion at previous frames. In this
way, it can achieve adaptive smoothing to avoid excessive cropping and wobble
distortions. We call this filter Predicted Adaptive Path Smoothing (PAPS).

In summary, the main contribution of the paper consists of: (1) a compu-
tationally efficient motion model, MeshFlow, for spatially-variant motion repre-
sentation; and (2) an adaptive smoothing method PAPS, designed for the new
model for online processing with only one frame latency. We evaluate our method
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on various challenging videos and demonstrate its effectiveness in terms of both
visual quality and efficiency.1

2 Related Work

According to the adopted motion model, video stabilization methods can be
categorised into 3D [8,12,13], 2D [1,3,14], and 2.5D [2,15] approaches.

The 3D methods estimate camera motions in 3D space for stabilization.
Beuhler et al. [16] stabilized videos under projective 3D reconstruction. Liu
et al. [8] applied Structure from Motion (SfM) to the video frames and used
content preserving warps for novel view synthesis. Zhou et al. [13] introduced
3D plane constraints for improved warping quality. Smith et al. [17] and Liu
et al. [5] adopted light field camera and Kinect camera, respectively, in acquir-
ing of 3D structures. Methods [6,7] and [18] used gyroscope to estimate 3D
rotations. Some 2.5D approaches relax the full 3D requirement to some partial
3D information that is embedded in long feature tracks. Goldstein and Fat-
tal [15] used “epipolar transfer” to enhance the length of feature tracks while
Liu et al. [2] smoothed feature tracks in subspace so as to maintain the 3D con-
straints. Later, the subspace approach is extended for stereoscopic videos [19].
All these methods either conducted expensive and brittle 3D reconstruction or
required additional hardware sensors for stabilization. In contrast, our method
is a sensor-free approach that neither recoveries the 3D structures nor relies on
long feature tracks.

The 2D methods use a series of 2D linear transformations (e.g., affines, homo-
graphies) for motion estimation and smooth them for stabilized videos [1,20–22].
Grundmannetal. [3] employedcinematographyrules for camerapathdesign.Later,
they extended their approach by dividing a single homography into homography
array [14] such that the rolling shutter distortions couldbewell compensated.Wang
et al. [4] divided frames into triangles and smoothed feature trajectories with a
spatial-temporal optimization. Liu et al. [5] smoothed bundled paths for spatially-
variant motions. Bai et al. [23] extended the bundled-paths by introducing user
interactions. Liu et al. [24] proposed to replace the smoothing of feature tracks with
the smoothing of pixel profiles and showed several advantages over smoothing of
traditional feature tracks. Inspired from [24], we propose to smooth vertex profiles,
a sparse version of pixel profiles, for an improved robustness and efficiency, which
facilitates an online system with spatially-variant motion representation.

3 MeshFlow

In this section, we introduce the MeshFlow motion model. Figure 1 shows a com-
parison between the SteadyFlow [24] and our MeshFlow. Compared with the
SteadyFlow, which calculates dense optical flow and extracts pixel profiles at all
pixel locations for stabilization, our MeshFlow is computationally more efficient.

1 Project page: http://www.liushuaicheng.org/eccv2016/index.html.

http://www.liushuaicheng.org/eccv2016/index.html
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(a) A Pixel Profile in SteadyFlow [24] (b) A Vertex Profile in MeshFlow

Fig. 1. (a) Pixel profiles [24] collect motion vectors at the same pixel location in
SteadyFlow over time for all pixel locations. Motions of SteadyFlow come from dense
optical flow. (b) Vertex profiles only collect motion vectors in MeshFlow at mesh ver-
texes. Motions of MeshFlow come from feature matches between adjacent frames.

We only operate on a sparse regular grid of vertex profiles, such that the expen-
sive optical flow can be replaced with cheap feature matches. For one thing, they
are similar because they both encode strong spatial smoothness. For another,
they are different as one is dense and the other is sparse. Moreover, the motion
estimation methods are totally different. Next, we show how to estimate spacial
coherent motions at mesh vertexes.

t1t t t
)c()b()a(

Fig. 2. (a) A pair of matched features (red dots) between frame t and t − 1. (b) The
arrow indicates the motion of the feature point at frame t. (c) The motion is propagated
to the nearby vertexes. (Color figure online)

3.1 Motion Propagation

We match image features between neighboring frames. Figure 2 shows an exam-
ple. Suppose {p, p̂} is the p-th matched feature pair, with p at frame t and p̂ at
frame t − 1 (p and p̂ denote the image coordinates of features). The motion vp

at feature location p can be computed as: vp = p − p̂ (see the dashed arrow in
Fig. 2(a)). The mesh vertexes nearby the feature p should have a similar motion
as vp. Therefore, we define an eclipse that is centered at p (dashed circle in
Fig. 2(b)) and assign vp to the vertexes within the eclipse (see Fig. 2(c)). Specif-
ically, we detect FAST features [25] and track them by KLT [26] to the adjacent
frame. We place a uniform grid mesh with 16×16 regular cells onto each frame.2

2 We draw this mesh as 8 × 8 in all figures for the purpose of clearer illustration.
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1fMedian filter

Fig. 3. A grid accumulates multiple motion vectors from several nearby features. We
assign each grid a unique motion vector by applying median filter f1 to the candidates.
(Color figure online)

The eclipse covers 3 × 3 cells. Notably, according to literatures (such as works
on visual SLAM [27,28]) and our own experiments, FAST and KLT are known
as the most efficient way compared with other options (e.g., SURF, ORB etc.).

3.2 Median Filters

All matched features propagate their motions to their nearby mesh vertexes.
Therefore, a vertex may receive multiple motion vectors. Figure 3 illustrates an
example, where red dots denote feature points and a vertex (yellow dot) receives
several motions. We propose to use a median filter f1 to filter the candidates.
The filter response is assigned to the vertex. The median filter is frequently
used in optical flow estimation and has been treated as the secret of a high
quality flow estimation [29]. Here, we borrow the similar idea for sparse motion
regularization.

After applying f1 to all vertexes, we obtain a sparse motion field as illustrated
in the left part of Fig. 4. This motion field resembles the SteadyFlow, except
that it is only defined at sparse mesh vertices. This sparsity is the key to make
the spatially-variant motion estimation computationally lightweight. The motion
field needs to be smooth spatially for stabilization [24]. However, due to various
reasons, such as false feature matches and dynamic objects, the motion field is
noisy (yellow arrows in the left part of Fig. 4). We propose to use another median
filter f2 (covers 3 × 3 cells) to remove the noises, producing a spatially-smooth
sparse motion filed, MeshFlow, as shown in the right part of Fig. 4.

The two median filters provide the essential spatial smoothness to MeshFlow.
The strong spatial smoothness is particularly important in flow-based stabiliza-
tion [24]. Motion compensation on “noise flows” (inconsistent flows) often causes
render artifacts on discontinuous boundaries [24]. Therefore, the SteadyFlow
estimates dense raw optical flow [30] and upgrades it to a dense smooth flow
by regularizing small vibrations and excluding large inconsistencies (i.e., flow on
dynamic objects). Here, the two median filters achieve a similar effect: the first
filter emphasizes on removing small noises and the second one concentrates on
rejecting large outliers. More discussions are provided in Sect. 5.
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Median filter 2f spatial smooth sparse motion field

Fig. 4. A second median filter f2 is applied to enforce spatial smoothness (Color figure
online)

3.3 Vertex Profiles Generation

A vertex profile is generated by collecting all motion vectors at a vertex position
in MeshFlow sequentially over time. It is a one-dimensional array consisting
of motion vectors of all frames. Repeating the same procedure for all vertexes
provides vertex profiles.

3.4 Robust Estimation

The robustness of MeshFlow estimation can be improved by several operations.

Rich features. We hope to have rich features to cover the entire video frame
densely and uniformly such that every grid can receive several motion vectors.
When selecting good feature points for tracking [26], a global threshold on corner
response often produces few features in poorly textured regions (e.g., ground,
sky), because the threshold is biased by other highly textured areas [14]. There-
fore, we divide the image into small regions and adopt a local threshold.

Outlier rejection. Classical methods for outlier rejection, such as fitting a
global homography model by RANSAC [31], is not applicable in our application,
because we want to retain motions which do not reside in a global linear space.
We divide the image into 4×4 sub-images and reject outliers with a local homog-
raphy fitting by RANSAC. Large motion deviations caused by false matches or
dynamic objects can be rejected successfully while small variations due to depth
changes and rolling shutter effects [32,33] can be well maintained. A similar
approach is reported in [5]. Notably, both median filters and the RANSAC are
critical for the robust outlier removal. The former works locally while the latter
reject outliers in a more global fashion.

Pre-warping. Before MeshFlow estimation, we use a global homography Ft,
estimated using all matched features, to transform features p̂ from frame t − 1
to frame t. Clearly, Ft induces a global motion vector field Vt for all vertexes.
The local residual motions are calculated as ṽp = p − Ftp̂. The MeshFlow is
first estimated from these residual motions. Then, the final MeshFlow motion
is an addition of the global and the local motions: vp = Vt + ṽp. A similar idea
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is adopted in [5] for motion estimation and in [8] for view synthesis. For some
extreme cases where no features are detected, (e.g., a purely white wall), vertexes
are assigned with the global motion Vt.

4 Predicted Adaptive Path Smoothing (PAPS)

A vertex profile represents the motion of its neighboring image regions. We can
smooth all the vertex profiles for the smoothed motions. We begin by describing
an offline filter, and then extend it for online smoothing.

4.1 Offline Adaptive Smoothing

We can consider a vertex profile as the local camera path Ci. All vertex profiles
aggregate to multiple camera paths C that covers the whole frame. We want
to obtain the optimized paths P. As the MeshFlow itself enforces strong spatial
coherence, we do not enforce any additional spatial constraints during smoothing.
That is, each vertex profile is smoothed independently, like the SteadyFlow [24].

For an aesthetic path optimization, we want to avoid excessive cropping as
well as annoying distortions after stabilization. This can be achieved by leverag-
ing the temporal smoothness and the similarity of the original paths:

O(P(t)) =
∑

t

(‖P(t) − C(t)‖2 + λt

∑

r∈Ωt

wt,r‖P(t) − P(r)‖2) (1)

where C(t) =
∑

t v(t) is the camera path at time t
(
v(t) represents the MeshFlow

at time t, v(0) = 0
)
. The first term encourages the stabilized video staying close

to the original camera path so as to avoid excessive cropping and distortions.
The second term enforces temporal smoothness. Ωt denotes a temporal smooth-
ing radius, wt,r is a Gaussian weight which is set to exp(−‖r− t‖2/(Ωt/3)2), and
λt balances two terms. The energy function is quadratic and can be minimized
by the sparse linear solver. Similar to approaches [5,24], we solve it iteratively
by a Jacobi-based solver.

The adaptive weight λt for each frame is the most important component in
Eq. 1. Adaptive controlling the strength of smoothness can effectively suppress
some artifacts (e.g., large cropping, wobbling). It is a tradeoff between stability
and some side-effects. If all λt is set to 0, the optimized path is equal to the
original path such that the output video is identical to the input video with no
cropping and wobbling. In general, smaller λt leads to less copping and wobbling.

The method in [5] adopted an iterative refinement approach to search the
optimal value of λt for each frame. They proposed to evaluate the cropping and
wobbling numerically. Suppose that we have the values of cropping and wobbling
respect to all frames after the optimization by setting all λt = 1. Then, we check
these values at each frame to see if they satisfy some pre-requirements. For
example, at least 80% of visual content must be maintained after cropping. For
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any frame that does not satisfy the requirements, λt is decreased by a step and
the optimization is re-run for a second time. The procedure is iterated until all
frames satisfying the requirements. This dynamic parameter adjustment can find
the optimal values of λt but is not efficient obviously. Notably, wt,r in [5] is a
bilateral weight which leads to a quicker convergence than a Gaussian weight.

Though the above method is proven to be effective, it is designed for offline
applications. It requires both previous and future frames. The iterative refine-
ment for λt is impractical for the online scenario. Therefore, we propose to
predict a reasonable value of λt rather than applying iterative adjustment.

4.2 Predict λt

We want to use the current camera motion to predict a suitable λt. Therefore, we
need to find some indicators. Designing good indicators is non-trivial. By exten-
sively experiments, we suggest two empirically good indicators, translational
element Tv and affine component Fa, both extracted from a global homography
F between adjacent frames.

Translational element measures the velocity of the current frame. It is cal-
culated as Tv =

√
(v2

x + v2
y), where vx and vy represent motions in x and y

directions in F , respectively. If we oversmooth frames under high velocity, the
motion compensation often leads to large empty regions (black borders), result-
ing in excessive cropping. In iterative adjustment of λt, the cropping can only
be evaluated afterwards. The translational element allows the cropping being
evaluated beforehand.

Affine Component is computed by the ratio of the two largest eigenvalues of
the affine part of the homography. A single homography can not describe the
spatially-variant motion. For scenes with large depth variations, an estimated
homography is highly distorted [34]. The distortion can be measured by its affine
part. A similar idea is reported in [5] for distortion evaluation.

To reveal the relationship between the two proposed indicators and λt, we
collect 200 videos with various camera motions and scene types from publicly
available data sets [2,3,5,8,14,15]. We run the iterative adjustment algorithm
for λt on these videos and record the corresponding values. In particular, the
two indicators might be correlated. To better sketch their independent impact to
λt, we use videos with quick camera motions to train the translational element
while videos contain large depth variations are adopted for affine component.

The result is plotted in Fig. 5. Note that Ft is normalized by the image width
and height. By observing the distributions, we fit two linear models:

λ′
t = −1.93 ∗ Tv + 0.95 (2)

λ′′
t = 5.83 ∗ Fa + 4.88 (3)

The final value of λt is chosen as max(min(λ′
t, λ

′′
t ), 0). A lower λt can satisfy

both requirements. Notably, the translational element and affine component are
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Fig. 5. (a) The plot of λt and values of translational elements Tv using 50 videos with
quick camera motions (e.g., quick rotation, fast zooming). (b) The plot of λt and values
of affine component Fa using another 50 videos containing large depth variations.

two indicators that we found empirically, which works well in practice. There
might be some other alternatives. For example, more sophisticated method could
be attempted for distortion evaluation, such as applying SfM to explicitly eval-
uate depth variations. Here, we keep our method simple and effective. Given
λt for every frame, we run Eq. 1 to smooth vertex profiles. The optimization of
Eq. 1 is efficient and can be further accelerated by the parallel computing.

4.3 Online Smoothing

The aforementioned approach is offline, though it can run in real time. Note
that, processing an already captured video in a real time speed (e.g., 100 fps) is
not identical to online stabilization. The online processing not only requires the
real time speed, but also constrains the usage of future frames. Figure 6 shows
our system setting. The green rectangle shows the current frame being displayed
to the audiences. The red rectangle shows the incoming frame, which is about
to show (turn into green) in the next run. The white rectangles are the past
frames.

We define a buffer to hold previous frames. At the beginning, the buffer size is
small, it increases gradually to a fixed size frame by frame and becomes a moving
window that holds the latest frames and drops the oldest ones. Each time, we
smooth the motions in the buffer by minimizing over the following energy:

O(P(ξ)(t)) =
∑

t∈Φ

(∥∥P(ξ)(t) − C(t)
∥∥2 + λt

∑

t∈Φ,r∈Ωt

wt,r

∥∥P(ξ)(t) − P(ξ)(r)
∥∥2

)

+ β
∑

t∈Φ

∥∥P(ξ)(t − 1) − P(ξ−1)(t − 1)
∥∥2 (4)

where Φ denotes the buffer. When an incoming frame arrives, we run the opti-
mization of Eq. 4 (except the first two frames). The ξ indexes the optimization
at each time. For each ξ, we obtain P(ξ)(t) for all frames in the buffer. Only
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Fig. 6. The system is delayed at the time 0. At the time 1, we begin to display. The
stabilization is started at the time 3 when there is at least one historical frame. The
ξ indexes the optimization conducted at each time. The third term in Eq. 4 enforces
similarities between paths in the current optimization ξ and paths obtained in the
previous optimization ξ−1, which is indicated by the dashed lines. (Color figure online)

the result of the last one will be used to warp the incoming frame. All frames
prior to that have already been stabilized and displayed. We can not change the
paths of the displayed frames. We can only change the path of the current frame.
Therefore, we add a third term to encourage the paths obtained at the current
optimization ξ, up to P(ξ)(t − 1), to be similar to their previous optimized solu-
tions obtained at the optimization ξ − 1, i.e. P(ξ−1)(t − 1). The dashed line in
Fig. 6 shows the paths enforced with similarity constraints. The β is a balancing
weight which is set to 1.

Notably, Eq. 4 does not need any future motions (not even one) for optimiza-
tion. However, our system has a one frame latency. Because no matter how fast
the optimization runs, it occupies some time. In other words, the user is viewing
a frame, at the mean time, the next incoming frame (the newest frame) is being
processed simultaneously at the background. Any frames beyond the newest
frame haven’t been captured yet. The system is online as long as the processing
time is less than the displaying time. For example, a video with framerate 30 fps.
Its displaying time is 33.3 ms per frame. The processing time should be faster
than 33.3 ms per frame for online performance. Curiously, if we enforce 0 frame
latency, the processing time approaches 0, which is theoretically impossible. In
practice, one frame latency is hard to be observed.

Equation 4 is quadratic. Similarly to Eq. 1, we optimize it by a Jacobi-based
solver. The optimization is efficient. In our implementation, the buffer size is
set to 40 frames. If a video has framerate about 30–50 fps, we roughly hold one
second of past motions in the memory.

4.4 View Synthesis

After each optimization, the last frame in the buffer is warped towards the
stabilized position, i.e. P(ξ)(t), by a sparse update motion field for mesh vertices.
The update motion is computed as, U = P−C. Specifically, every vertex has an
update motion vector. Therefore, we obtain an update motion mesh, i.e. a vector
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per mesh vertex. The image content is warped according to the mesh warp [35].
Notably, the warping can be computed in parallel as well.

5 Discussions and Validation

In this section, we would like to validate the effectiveness of our proposed motion
model in several aspects. When comparing with previous methods, we would like
to exclude 3D methods [8,13,16] and single homography-based 2D methods [1,3,
20,21], because the former requires computationally expensive 3D reconstruction
and is fragile for consumer videos while the latter can not represent spatially-
variant motion and renders limited stability. Therefore, we focus on 2D or 2.5D
methods which can handle spatially-variant motions. In general, these methods
can be classified into three categories, smoothing long feature tracks [2,4,15],
smoothing multiple 2D models [5,14,23] and smoothing dense flows [24].

If long feature tracks are provided (normally, average track length longer than
50 frames), the underlying 3D structure can be extracted from the tracks [2,19],
and smoothing feature tracks gives strong results. However, long feature tracks
are hard to obtain in consumer videos. Both the track length and the number of
tracks drop quickly when there are quick camera swings, rotations or zoomings.
For the robustness, our model does not rely on long feature tracks.

The second category proposes to smooth multiple parametric models esti-
mated between neighboring frames for stabilization. The advantage is that they
only require simple feature matches between two consecutive frames. Therefore,
the robustness is largely improved. The drawback is that estimating these more
advanced models are computationally expensive. They are not fast enough to
achieve real-time performance.

The SteadyFlow belongs to the third category. It shows that the pixel pro-
files can well approximate the long feature tracks, which densely cover the entire
video both spatially and temporally. While a feature track might start or end
at any frame of the video, all pixel profiles begin at the first frame and end at
the last frame, which is a much desired property for smoothing. Our MeshFlow
resembles the SteadyFlow, and our vertex profiles resemble the pixel profiles.
Our vertex profiles are a sparse version of pixel profiles. The SteadyFlow esti-
mates pixel profiles by computing dense optical flow between neighboring frames.
Then, the discontinuous motions in the flow, (e.g., motions on the boundary of
different depth layers or on dynamic moving objects), are excluded by an iter-
ative flow refinements, yielding a spatially smooth optical flow. We argue that
the SteadyFlow overkills the problem. We can estimate sparse smooth flows by
feature matches. Figure 7 shows a comparison between the SteadyFlow and the
MeshFlow. We choose a dynamic video with a moving foreground. We show the
raw optical flow calculated by [30] (Fig. 7(a)), the SteadyFlow (Fig. 7(b)) and
our MeshFlow, interpolated into dense flow for visual comparison (Fig. 7(c)). As
can be seen, our MeshFlow is quite similar to the SteadyFlow. The MeshFlow
enjoys the merits of the SteadyFlow while the computation is much cheaper.
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(a) raw optical flow [30] (b) SteadyFlow [24] (c) our interpolated Meshflow

Fig. 7. (a) The raw optical flow calculated by [30]. (b) The SteadyFlow [24]. (c) Our
MeshFlow interpolated into a dense field for visual comparison.

6 Experiments

We run our method on a laptop with 2.3 GHz CPU and 4G RAM. For frames
with resolution 720 × 480, our un-optimized code can process a frame in 20 ms,
without any acceleration of parallel computing. Specifically, we spend 6 ms, 1 ms,
10 ms and 3 ms to extract features, estimate MeshFlow, smooth vertex profiles
and rendering frames, respectively.

6.1 Online Video Stabilization

We tried our method on various video sources. Figure 8 shows some examples.
In each column, we show a capturing device and a sample video frame. The first
example is a video captured by a general hand-held webcam. The second example
is a micro UAV with real-time video transmissions. It often suffers from turbu-
lence during the flight due to its small size and light weight, rendering videos
with lots of vibrations and strong rolling shutter effects. The third example is a
sport camera. It captures videos under wide view angles, which are transmitted
through wifi in real-time. We show that our method can handle wide view angle
lens as well. The last example is a tablet with the videos captured by its build-
in camera. For all these examples, we show a side by side comparison which
demonstrate original frames and the prompt stabilized results.

Fig. 8. Our experiments on various devices. Each column shows a capturing device
and the corresponding sample frame.
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6.2 Compare with Previous Methods

To compare our method with the previous methods, we slightly modify our
programme to make it work on existing pre-captured videos. To imitate online
processing, at each frame, our program reads in a frame from the video and
processes it immediately, then saves it before processing the next frame. To eval-
uate the quality, we follow the approach of [5] which introduces three objective
metrics: cropping ratio, distortion and stability. For a good result, these metrics
should be close to 1. For completeness, we briefly introduce these metrics.
Cropping ratio measures the remaining area after cropping away black bound-
aries. A larger ratio means less cropping and hence better video quality. A
homography Bt is fitted at each frame between input and output video. The
cropping ratio for each frame can be extracted from the scale component of the
homography. We average all ratios from all frames to yield the cropping ratio.
Distortion score is estimated from the anisotropic scaling of Bt, which can be
computed by the ratio of the two largest eigenvalues of the affine part of Bt. The
idea is borrowed for λt prediction in Sect. 4.2. Each frame has a distortion score,
among which we choose the worst one as the final score for the whole video.
Stability score estimates the smoothness of the final video. Slightly different
from the method in [5], we use the vertex profiles extracted from the stabilized
video for evaluation. We analyze each vertex profile in the frequency domain.
We take a few of the lowest frequencies (2nd to 6th) and calculate the energy
percentage over full frequencies (DC component is excluded). Averaging from
all profiles gives the final score.
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Fig. 9. Comparison with 10 publicly available videos in terms of three metrics.

We choose 10 publicly available videos and compare our method with the
methods [2,5,15] and [24] in terms of the objective metrics. The result is reported
in Fig. 9. The stabilized videos of these methods are either collected from their
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project pages or provided by the corresponding authors. For videos that we do
not find the result, we leave it blank.

It is slightly unfair for our method to compare with these offline approaches.
We show that we can produce comparable quality. In general, our stability is
slightly lower compared with the other methods. Because we only use the previ-
ous 40 frames for stabilization. We can buffer more previous frames for improved
stability if they can fit into the memory. If some latency is allowed [9], we can
even obtain future frames for improvements. The first several frames of the video
have a relatively lower stability compared with other frames, as they are stabi-
lized with a even smaller buffer. Specifically, the first frame is not stabilized and
we begin to stabilize when there are at least three frames in the buffer. The
stability increases gradually when more and more frames are hold in the buffer.
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Fig. 10. Comparison with two offline video stabilization systems on datasets [5].

We further compare our method with two well-known commercial offline
systems on a publicly available video data sets [5]. The two systems are Youtube
Stabilizer developed according to methods [3,14] and Warp Stabilizer at Adobe
After Effects built upon method [2]. The data sets group videos into several
categories according to different scene types and camera motions, including (1)
Simple, (2) Quick rotation, (3) Quick Zooming, (4) Large Parallax, (5) Crowd
and (6) Running. The result is reported in Fig. 10. Similarly, it is not that fair to
compare our method with these offline systems. We show our method is effective
and robust to many challenging consumer videos.

7 Limitations

Our method can not handle videos containing large near-range foreground
objects [36]. This is the common challenge faced by many previous meth-
ods [2,3,5,8,14,15,24]. Our method may also fail when features are insufficient
for motion estimation under some extreme cases. Other types of features can be
attempted for improvements [37,38].

8 Conclusions

We have presented a new motion model, MeshFlow, for online video stabilization.
The MeshFlow is a sparse and spatially smooth motion field with motion vectors
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only located at mesh vertices. By smoothing vertex profiles, motion vectors col-
lected at mesh vertexes in MeshFlow over time, we can stabilize videos with spa-
tially variant motion. Moreover, a Predicted Adaptive Path Smoothing (PAPS)
is proposed to shift the method online with minimum latency. The experiment
shows that our method is comparable with the state-off-the-art offline meth-
ods. The effectiveness is further validated by different capturing devices, which
demonstrates potentials for practical applications.
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