DRAFT

Generic Constructors and Eliminators from Descriptions

Type Theory as a Dependently Typed Internal DSL

Larry Diehl

Tim Sheard

Portland State University
{Idiehl,sheard}@cs.pdx.edu

Abstract

Dependently typed languages with an “open” type theory introduce
new datatypes using an axiomatic approach. Each new datatype
introduces axioms for constructing values of the datatype, and an
elimination axiom (which we call the standard eliminator) for con-
suming such values. In a “closed” type theory a single introduction
rule primitive and a single elimination rule primitive can be used
for all datatypes, without adding axioms to the theory.

We review a closed type theory, specified as an AGDA pro-
gram, that uses descriptions for datatype construction. Descriptions
make datatype definitions first class values, but writing programs
using such datatypes requires low-level understanding of how the
datatypes are encoded in terms of descriptions. In this work we
derive constructors and standard eliminators, by defining generic
functions parameterized by a description. Our generic type theory
constructions are defined as generic wrappers around the closed
type theory primitives, which are themselves generic functions in
the AGDA model. Thus, we allow users to write programs in the
model without understanding the details of the description-based
encoding of datatypes, by using open type theory constructions as
an internal domain-specific language (IDSL).

Categories and Subject Descriptors
ming Languages.

D.3 [Software]: Program-

Keywords
eliminators.

Generic programming; dependent types; descriptions;

1. Introduction

Dependently typed languages such as COQ [The Coq Development
Team, 2008], AGDA [Norell, 2007], and IDRIS [Brady, 2011] intro-
duce datatypes axiomatically. These systems extend an open type
theory with new axioms that describe how to legally manipulate
values of a newly declared type.

Recently, there has been quite a bit of work on defining
datatypes within a closed theory (without axioms) using descrip-
tions. Descriptions make datatype definitions first class values in
a dependent type theory. This has several desirable consequences,
such as the ability to perform generic programming [Chapman

[Copyright notice will appear here once ’preprint’ option is removed.]

et al., 2010; McBride, 2011; Dagand, 2013] over described types,
as well as decreasing the number of constructs in the metatheory
via levitation [Chapman et al., 2010; Dagand, 2013].

For example, we might declare the type of vectors, length
indexed lists, in an open dependently typed language based on
Martin-Lof [1975] type theory. Declaring vectors (Vec) adds two
constructors (nil and cons) and one eliminator (elimVec) as ax-
ioms to the language.

nil : (A : Set) — Vec A zero
cons : (A : Set) (n : N) (a : A)
(xs : Vec A n) — Vec A (suc n)

elimVec : (A : Set) (P : (n : N) — Vec A n — Set)
(pnil : P zero nil)
(pcons : (n : N) (a : A) (xs : Vec A n)

— P n xs — P (suc n) (cons n a xs))
(n: N) (xs : Vec An) - Pn xs

In contrast, declaring a datatype like Vec in a closed type theory
using descriptions does not add constructors and an eliminator as
specialized axioms to the language. Instead, values of datatypes
built from descriptions can be introduced with a single primitive,
the initial algebra (init), and can be eliminated with a single
primitive, a dependently typed version of catamorphism (ind),
which takes an algebra (o) as its argument.

init : {I : Set} {D : Desc I} {i : I}
— E1D (uD) i - uDi

ind : {I : Set} (D : Desc I)
(P: ({1 :I)— uDi — Set)
(v : (i : I) (xs : E1L D (uD) i)
(ihs : Hyps D (u D) P i xs) — P i (init xs))
(1 :I)(x:pbi) >Pix

Without trying to understand these type signatures at the mo-
ment, recognize that:

¢ Both types are parameterized by a description, allowing them
to be used with any datatype defined using a description.

e Both types refer to the type E1 D, which interprets a description
as a pattern functor and is used to define the datatypes with an
initial algebra-style semantics.

Two unfortunate side effects of introducing and eliminating
described datatypes using algebras based on pattern functors are:

1. Users need to understand how E1 D gets interpreted as a type

in the language in order to program with values of said types,
exposing the low-level encoding.

2014/8/23

2. Function definitions defined with ind are particularly verbose,
due to the low-level encoding, but the functions follow a com-
mon pattern.

Rather than making users of the AGDA model learn the details
of description-based encodings when writing programs using de-
scribed datatypes, the major contribution of this paper is a generic
constructor (inj) and a generic eliminator (elim), which both have
an interface that hides the details of the description-based encod-
ing. The type of inj applied to a description of a datatype, and a
tag specifying constructor, is exactly the expected type signature of
a constructor defined axiomatically in an open language. Similarly,
the type signature of elim applied to a description of a type is ex-
actly the expected type signature of an eliminator defined axiomati-
cally in an open language. Moreover, inj and elim are examples of
generic programming, defined as generic wrapper functions around
the closed type theory primitives init and ind, which are them-
selves generic functions in the AGDA model.

In a sense we derive the standard constructors and eliminators
of type theory within a simple and sound system. We retain the
generic programming ability afforded by description based lan-
guages, but also hide implementation details when defining func-
tions over particular types by supplying the user with standard con-
structors and eliminators. Essentially, we use generic programming
to define type theory constructions as an internal domain-specific
language [Landin, 1966] within the AGDA model of closed type
theory.

The remainder of this paper proceeds as follows:

e Section 2 Reviews how to define datatypes using descriptions.

e Section 3 Reviews how to introduce values of described types
using the primitive initial algebra init.

Section 4 Contributes the novel generic constructor inj. To this
end, we highlight each Part; involved in defining a specialized
constructor in terms of init.

Section 5 Reviews how to eliminate values of described types
using the primitive dependent catamorphism ind. We also
demonstrate the verbosity of ind-based definitions.

Section 6 Contributes the novel generic eliminator elim. To
this end, we highlight each Partg involved in defining a spe-
cialized eliminator in terms of ind.

Section 7 Proves the correctness property that ind and elim
are extensionally equivalent functions. For technical reasons,
we actually prove that ind is equivalent to the helper function
elimUncurried instead.

e Section 8 Discusses related work.

All code presented in this paper has been checked with AGDA. !
To avoid clutter, in this paper we omit universe levels and assume
Set : Set. However, the accompanying source code contains a
version of the code stratified by universe levels.

2. Declaring Datatypes

The goal of this section is to review how to define the following
type declaration as a first-class value of our type theory.

data Vec (A : Set) : N — Set where
nil : Vec A zero
cons : (n : N) (a:
— Vec A (suc n)

A) (xs : Vec A n)

! The accompanying source code can be found at
https://github.com/larrytheliquid/generic-elim

Whereas such a declaration typically involves axiomatically
extending the type theory, the technology of descriptions [Chapman
etal., 2010; McBride, 2011; Dagand, 2013] lets us define datatypes
within a closed type theory. There are several ways to define the
datatype of descriptions Desc. For simplicity, in this paper we use
the encoding by McBride [2011].

2.1 Description Type

The datatype Desc of descriptions is used to represent user-defined
definitions of strictly-positive indexed families of inductively de-
fined types. Desc is parameterized by a type I, the index of the
encoded type family.

Throughout this paper it will be easier to first pretend like we
defined Vec with a single constructor, either nil or cons. This
makes it easier to understand later definitions where Vec contains
both constructors.

Imagine declaring a datatype with a single constructor. A con-
structor is a sequence of arguments that subsequent arguments may
depend on (i.e., a telescope), along with recursive arguments at
some type indices, and it ends with some type index. Respectively,
Arg, Rec, and End allow you to encode a dependent argument, a
recursive argument at some index, and ending the constructor defi-
nition at some index.

data Desc (I : Set) : Set; where

End : (i I) — Desc I
Rec : (i : I) (D : Desc I) — Desc I
Arg : (A : Set) (B : A — Desc I) — Desc I

Description of a Single Constructor For example, first recall the
type of the constructor nil of vectors.
nil : (A : Set) — Vec A zero

The constructor nil takes no arguments, so its description ends
immediately at index zero. The type of the description returned
is Desc N because the type we are encoding Vec is indexed by
natural numbers.

nilD : (A : Set) — Desc N
nilD A = End zero

Next recall the type of the constructor cons of vectors.

cons : (A :Set) (m : N) - A - VecAn

— Vec A (suc n)

The description of cons requires a dependent argument n :
N for the index, a non-dependent argument A for the value being
added to the vector, a recursive argument indexed by the natural
number n, and finally ends at index suc n.

consD : (A :
consD A =
Arg N A n — Arg A (A _ — Rec n (End (suc n))))

Set) — Desc N

Description of Multiple Constructors The datatype Desc can
also be used to describe an entire datatype, consisting of descrip-
tions of multiple constructors. This is achieved by making use of
the isomorphism between disjoint sums and dependent pairs whose
domain is some finite enumeration.

AWBZXYXBool (A b— if b then A else B)

This works fine for a datatype with two constructors (because
Bool is a two point domain), in general we will define an n-point
domain for a datatype with n constructors. By convention we name
such types and their constructors ending in the suffix T, for tag.

2014/8/23

data VecT : Set where
nilT consT : VecT

A datatype with multiple constructors is represented by an Arg
description whose first argument (e.g. VecT) is a datatype of tags —
one for each constructor — and whose second argument (e.g. VecC)
is a function that returns a description for each constructor tag. Note
that whereas we used Arg for arguments of constructors before,
now we are using Arg to represent the sum of all constructors. By
convention we use the suffix C for the sum of constructors of a
description, and the suffix D for descriptions.

VecC : (A : Set) — VecT — Desc N
VecC A nilT = nilD A
VecC A consT = consD A

VecD : (A : Set) — Desc N
VecD A = Arg VecT (VecC A4)

2.2 First-class Enumerations & Tags

When defining the description of vectors, we previously used a
custom tag type VecT to name each constructor. Descriptions are
primarily meant as a construction for representing user-defined
datatypes in a dependent type theory with a closed universe of
types. To prevent the need to extend the type theory with new tag
types constantly, we can instead define first-class enumerations and
tags. Enumerations are just a list of labels. A tag is an index into an
enumeration, pointing at a specific label.

Label : Set
Label = String

Enum : Set
Enum = List Label

data Tag : Enum — Set where
here : V{1 E} — Tag (1 :: E)
there : V{1 E} - Tag E — Tag (1 :: E)

Thus, the type of vector tags VecT can be defined as Tag applied
to the enumeration "nil" "cons" [1. We can also de-
fine the VecT constructors nilT and consT by using Tag construc-
tors to index into the enumeration of labels. The constructors here
and there are analogous to zero and suc.

VecE : Enum
VecE = "nil" "cons" :: []
VecT : Set

VecT = Tag VecE

nilT : VecT
nilT = here

consT : VecT
consT = there here

Elimination of Tags A tag can be eliminated with a case con-
struct (this is referred to as switch by Chapman et al. [2010]; Da-
gand [2013]), producing a value of the motive [McBride, 2002]
type P indexed by the tag. In addition to the tag being eliminated,
the case construct is given a list of branches, one of which the tag
will select.

case : {E : Enum} (P : Tag E — Set)
(cs : Branches EP) (t : TagE) - P t
case P (c , cs) here = ¢

case P (c , cs) (there t) =
case (At — P (there t)) cs t

Think of the cases being a right-nested tuple. The type of this
tuple is computed by the Set returning function Branches (Chap-
man et al. [2010]; Dagand [2013] refer to Branches as). There
is a branch for each label in the enumeration, and the type of each
branch depends on the tag representing the position of the label in
the enumeration.

Branches : (E : Enum) (P :
Branches [] P = T
Branches (1 :: E) P =

P here X Branches E (A t — P (there t))

Tag E — Set) — Set

Now we can redefine VecC with the case eliminator instead of
by pattern matching. Note that a right-nested product of Branches
always ends with the unit type T.

VecC : (A : Set) — VecT — Desc N
VecC A = case (A _ — Desc N)
(End zero

, Arg N A n — Arg A (A _ = Rec n (End (suc n))))

, tt)

3. Introduction with Algebras

The goal of this section is to review how to use the primitive
introduction rule for datatypes built using descriptions to define the
constructors of Vec.

nil : (A : Set) — Vec A zero
cons : (A : Set) (n : N) - A —>VecAn
— Vec A (suc n)

In a system where the datatype declaration Vec is an axiomatic
extension, the constructors cons and nil are defined for us. When
using descriptions to define Vec, we can instead introduce values
of type Vec using its initial algebra.

3.1 Fixpoint Type

A description is a first-class datatype declaration. To get back
the type encoded by the description, you apply the fixpoint type
constructor p to it. For example, below we define Vec by applying
W to its description VecD.

data p {I : Set} (D : Desc I) (i : I)
init : E1 D (uD) i —» pD i

: Set where

Vec : (A : Set) (n : N) — Set
Vec An=p (VecD A) n

3.2 Interpretation of Descriptions Type

To introduce values of type Vec, we use the init constructor of
p. The argument to init is E1 D (u D) i. Let’s understand E1
by first considering a description of Vec that only has the single
constructor nil or cons. If init introduces a value of a single
constructor datatype, then its arguments must be the constructor’s
arguments. Thus, think of E1 as a function that computes the type
of the arguments of our constructor. E1 computes the arguments as
aright-nested tuple, where Arg gets interpreted as a dependent pair
argument, Rec becomes a non-dependent recursive type argument,
and End ends the tuple by requiring a proof that the constructor has
the correct index.

ISet : Set — Set:
ISet I = I — Set

2014/8/23

El : {I : Set} (D :
El (End j) Xi=j =1

El (Rec jD) Xi=Xj xElDXi1i

El (Arg AB) Xi=L A (Aa—El (Ba) X i

Desc I) — ISet I — ISet I

Interpretation of a Single Constructor The nil constructor of
vectors has no arguments. Thus, E1 for nilD will only require a
proof that the index in the type is equal to the vector length zero.

For the remainder of the paper, we use a curved arrow (~) to
denote that the expression to the left of the arrow definitionally
reduces to the term on the right.

NilEl : (A : Set) (m : N) — Set
NilEl A n = E1 (nilD A) (Vec A) n

NilEl A n ~» zero = n

The cons constructor of vectors has an index argument, an argu-
ment for the value being added to the vector, a recursive argument,
and finally requires a proof that the index in the type is equal to the
successor of the index argument.

ConsEl : (A : Set) (n : N) — Set
ConsEl A n = E1 (consD A) (Vec A) n

ConsEl A n ~
TN (Am— A X Vec Am X (suc m = n))

Interpretation of Multiple Constructors Recall that multiple
constructors are represented as a tagged sum using a dependent
pair (Section 2.1). Thus, E1 for VecD will be the tagged sum re-
quiring either NilE1 or ConsEl.

VecEL : (A : Set) (n : N) — Set
VecEl A n = E1 (VecD A) (Vec A) n

VecEl A n ~ % VecT (case (A _ — Set)
(NilEl An , ConsEl A n , tt))

3.3 Definition of Constructors via the Initial Algebra

We are now ready to define the constructors nil and cons using
the initial algebra init, which is the goal of this section. We have
already seen VecEl, the type of the argument to init for vectors.
Thus a constructor is defined by applying init to a tuple. The first
argument is the tag choosing a particular constructor. Next comes
the tuple of proper arguments for the constructor. The tuple ends
with a proof that the index has the correct value.

nil : (A : Set) — Vec A zero
nil A = init (nilT , refl)
cons : (A : Set) (n : N) (x : A) (xs : Vec A n)
— Vec A (suc n)

cons A n x xs = init (consT , n , x , xs , refl)

4. Generic Constructors

The goal of this section is to contribute a novel generic constructor
for datatypes built from descriptions. The constructors nil and
cons are manually defined in Section 3 using the initial algebra
init as a primitive. Now we will define a generic constructor inj
that once and for all captures the pattern inherent in definitions of
constructors. This constructor may be used to define nil and cons
as follows.

nil : (A : Set) — Vec A zero
nil A = inj (VecD A) nilT

cons : (A : Set) (n : N) (x : A) (xs : Vec A n)
— Vec A (suc n)

cons A = inj (VecD A) consT

Importantly, our generic constructor is defined in terms of
the existing primitives and does not extend the metatheory. This
amounts to:

Part; 1. Currying constructor arguments.

Part; 2. Inserting an implicit proof that the constructor has the
correct index.

Defining inj may not seem impressive by itself, but it acts
as nice pedagogical step towards understanding how to define the
generic eliminator elim in Section 6.

4.1 Uncurried Interpretation Algebra Type

In order to implement Part; 1, we must first recognize the initial
algebra as an uncurried function. Recall the type of the initial
algebrainit : E1 D (u D) i — p D i.Rather than focusing
on the initial algebra, we can generalize the uncurried view of this
constructor by replacing p D with an arbitrary type family X : I
— Set.

UncurriedEl : {I : Set}
(D : Desc I) (X : ISet I) — Set
UncurriedEl D X =V {i} - E1 DX i — X i

Recognize UncurriedEl as an uncurried function by thinking
of E1L D X i as a product of n arguments A; X ... X Ay, an
argument requiring a proof of correct indexing (j = ¢), and X i
as the result type Z.

A1 X . XAy X (j=1)—> Z

Uncurried Algebra of a Single Constructor For example, apply-
ing UncurriedEl to the description of the cons constructor results
in the following type.

UncurriedEl (consD A) (Vec A) ~
V{n} — ConsEl An — Vec A n

4.2 Curried Interpretation Algebra Type

Now let’s define the curried version of the function. Recall that
the type E1 is a product of arguments, and UncurriedEl is a
function from that product to some other type family. In contrast,
CurriedEl is one large right-nested definition of function argu-
ments.

CurriedEl : {I : Set}
(D : Desc I) (X : ISet I) — Set
CurriedEl (End i) X = X i
CurriedEl (Rec i D) X = (x : X i) — CurriedEl D X
CurriedEl (Arg A B) X = (a : A) — CurriedEl (B a) X

Recognize CurriedEl as a curried function that demands n
constructor arguments as function arguments A; — ... = A,
and has the result type Z.

Al — ... A, —~ 7

Significantly, CurriedEl does not require a proof of correct
indexing (j = ¢). Thus, in addition to solving Part; 1 by currying
arguments, CurriedEl also solves Part; 2 by implicitly supplying
the correctness proof. Compare this to the alternative definition
CurriedEl’ that explicitly requires the correctness proof below.
The extra proof can be seen in the End constructor case.

CurriedEl’ : {I : Set}

(D : Desc I) (X : ISet I) (i : I) — Set

2014/8/23

CurriedEl’ (End j) X i =
j=i-oXi
CurriedEl’ (Rec j D) X i =
(x : X j) — CurriedEl’ D X i
CurriedEl’ (Arg A B) X i =
(a : A) — CurriedEl’ (B a) X i

Curried Algebra of a Single Constructor Below is an example
of applying CurriedEl to the description of the cons constructor.
Notice that all arguments are curried, and a proof of index correct-
ness is not demanded.

CurriedEl (consD A) (Vec A) ~~
(m : N) - A — Vec Am — Vec A (suc m)

4.3 Curry Interpretation Algebra Function

All we need now is a curry function that takes an UncurriedEl
and returns a CurriedEl. The definition of this function is unre-
markable, but its type clearly explains its intentions.

curryEl : {I : Set} (D : Desc I) (X :
— UncurriedEl D X — CurriedEl D X
curryEl (End i) X cn =
cn refl
curryEl (Rec 1 D) X cn =
Ax — curryE1 D X (A xs — cn (x , xs))
curryEl (Arg A B) X cn =
A a — curryEl (B a) X (A xs — cn (a , xs))

ISet I)

4.4 Generic Constructor

The moment has arrived, with the help of our curryE1 function we
can easily define the generic constructor inj.

inj : {I : Set} (D : Desc I) — CurriedEl D (un D)
inj D = curryEl D (u D) init

Unlike previous functions, this one is specialized to datatypes
defined with p rather than arbitrary type families X. This is the
function we set out to define at the beginning of this section.
Compared to values of some type introduced with init (Section
3.3), values introduced with inj have curried arguments and do
not need to supply a proof refl of correct indexing.

5. Elimination with Algebras

The goal of this section is to review how to use the primitive elimi-
nation rule for datatypes built using descriptions. We use the vector
concatenation function (which flattens a vector of homogenously-
sized vectors) as our example, defined below using the specialized
eliminator elimVec.

concat : (A : Set) (mn : N)

(xss : Vec (Vec A m) n) — Vec A (mult n m)
concat A m = elimVec (Vec A m)

(A n xss — Vec A (mult n m))

(nil A)

(A n xs xss ih — append A m xs (mult n m) ih)

This section develops the definitions necessary to understand
how to write concat by applying the primitive elimination rule for
described types to a suitable algebra.

5.1 Primitive Induction Principle

The type of the primitive elimination rule, ind, for datatypes built
from descriptions is given below. The algebra « is the important
argument, as it is the proof that that some property P holds for
any value of a described type. Whereas an eliminator has separate

branches for proofs about each constructor, ind requires a single
algebra argument that proves P for any constructor.

ind : {I : Set} (D : Desc I)
(P: (@l :I)— uDi — Set)
(v : (i : I) (xs : E1 D (uD) 1)

(ihs : Hyps D (u D) P i xs) — P i (init xs))
(1 :I)(x:pbi) >Pix

In order to prove P i (init xs) you get the following argu-
ments of o

1. (i : I) - The index of the type being eliminated.

2. (xs : E1 D (u D) i) - The constructors (and their argu-
ments) of the type being eliminated.

3. (ihs : Hyps D (u D) P i xs) — P i (init xs)) -
The inductive hypotheses for all constructors.

McBride [2011] gives the definition of ind, but our work can
be understood without knowing the definition.

5.2 Inductive Hypothesis Type

Hyps computes the type of inductive hypotheses for a described
datatype. Its definition closely follows the definition of the interpre-
tation function of descriptions E1 (Section 3.2). They both compute
over a description, D, and in fact Hyps expects one of its arguments,
xs, to have the type computed by E1.

Hyps : {I : Set} (D : Desc I) (X : ISet I)
P:@{E:I) = Xi— Set)
(1 : I) (xs : E1 D X i) — Set
Hyps (End j) X Piq=T
Hyps (Rec j D) X P i (x, xs) =
Pjx X Hyps DX P i xs
P

Hyps (Arg A B) X

First, let’s understand Hyps by what it computes for the de-
scription of a single constructor like nil or cons. Hyps ignores
dependent arguments Arg and moves on, looking for recursive ar-
guments. When finding a recursive argument Rec, it asks for the
motive P instantiated at the recursive argument index, j, and value,
x. Finally, the tree of inductive hypotheses is terminated by the unit
type T once the description ends in End.

Inductive Hypotheses of a Single Constructor The nil con-
structor of vectors has neither dependent nor recursive arguments.
Thus, Hyps for nilD is simply the unit type. Recall that NilE1 is
the type that nil’s description gets interpreted as. The definition of
nilE and related types can be found in Section 3.2.

NilHyps : (A : Set)
(P: (n: N) - Vec An — Set)
(n : N) (xs : NilEl A n) — Set
NilHyps A P n xs = Hyps (nilD A) (Vec A) P n xs

NilHyps A P zero refl ~» T

On the other hand, the cons constructor of vectors requires an
inductive hypothesis for its recursive argument.

ConsHyps : (A : Set)
(P: (n: N) - Vec An — Set)
(n : N) (xs : ConsEl A n) — Set
ConsHyps A P n xs = Hyps (consD A) (Vec A) P n xs

ConsHyps A P (sucm) (m , x , xs , refl) ~
Pmx x T

2014/8/23

Inductive Hypotheses of Multiple Constructors Once again,
multiple constructors are represented by a tagged sum (Section
2.1). Hyps for VecD requires either the inductive hypotheses of
nil or the inductive hypotheses of cons, depending on which con-
structor Hyps is applied to.

VecHyps : (A : Set)
(P: (n:N) - Vec An — Set)
(n : N) (xs : VecEl A n) — Set
VecHyps A P n xs = Hyps (VecD A) (Vec A) P n xs

VecHyps A P n (nilT , xs) ~» NilHyps A P n xs
VecHyps A P n (consT , xs) ~» ConsHyps A P n xs

5.3 Definition of Vector Concatenation via an Algebra

Now we shall define the vector concatenation by applying the
primitive elimination rule for described types to an algebra. Below
concat is defined as ind applied to the description of vectors, then
the goal type as the motive, and finally the algebra concata. Note
that we define the return type of concat to be Concat, allowing us
to reuse the return type in later definitions.

Concat : (A : Set) (mn : N)
(xss : Vec (Vec A m) n) — Set
Concat A m n xss = Vec A (mult n m)

concat : (A : Set) (mn : N)

(xss : Vec (Vec A m) n) — Concat A m n xss
concat A m = ind

(VecD (Vec A m))

(Concat A m)

(concata A m)

Algebra Argument The algebra that defines concat takes as ar-
guments the index n, the constructors xss, and the inductive hy-
potheses ihs. Recall that the type of vector constructors xss :
VecEl (Vec A m) nis a dependent pair. The domain of the pair
is a vector tag VecT, and the codomain is the type of arguments cor-
responding to the constructor represented by the tag. We eliminate
the tag using case (Section 2.2), and then provide a branches for
the nil and cons constructors.

concatoae : (A : Set) (mn : N)
(xss : VecEl (Vec A m) n)
(ihs : VecHyps (Vec A m) (Concat A m) n xss)
— Vec A (mult n m)

concate A m n xss = case (ConcatConvoy A m n)
(nilBranch A m n , consBranch A m n , tt)
(proji xss)
(proj2 xss)

All definitions in this subsection are defined without dependent
pattern matching to illustrate the exclusive use of our type the-
ory’s primitives (ind, proji, case, etc). After we case analyze
the constructor tag in the first projection of xss, we need the de-
pendent second projection to reduce to the arguments of the con-
structor. This can be done by employing the convoy pattern [Chli-
pala, 2011], in which the special motive ConcatConvoy is passed
to case.

Convoy Motive Again, rather than eliminating the pair xss, we
eliminate the tag in the first projection using case. The motive
supplied to case thus takes the first projection as an argument. The
motive then asks for the type of the second projection (dependent
on the argument supplied to the motive) as the argument xss, in
addition to the remaining argument ihs, and then the motive ends
with the goal type Vec A (mult n m).

ConcatConvoy : (A : Set) (mn : N)
— VecT — Set

ConcatConvoy Amn t =
(xss : E1 (VecC (Vec A m) t) (Vec (Vec A m)) n)
(ihs : VecHyps (Vec A m) (Concat A m) n (t , xss))

— Vec A (mult n m)

Nil Branch The nil branch within the algebra’s case analysis
receives as arguments the index n, the single argument g, and a
value u of type unit as the inductive hypothesis. The argument q
is not a proper argument of the constructor, but instead the proof
n = zero, stating that the index n is equal to zero for the nil
constructor. One might expect to simply define the nil branch
of concat to return nil A. However, the type of the goal is Vec
A (mult n m) while the type of nil A is Vec A zero. We can
get the type of the goal to reduce to Vec A (mult zero m), and
then to Vec A zero, by applying our proof thatn = zero to the
equality coercion function subst.

nilBranch : (A : Set) (mn : N)
(xss : NilE1l (Vec A m) n)
(ihs : NilHyps (Vec A m) (Concat A m) n xss)
— Vec A (mult n m)
nilBranch A m n q u = subst
(An — Vec A (mult n m))
q (nil 4)

Cons Branch The cons branch is defined in much the same way.
Note that in AGDA an identifier is treated as single name unless
it contains a space. Thus, the argument n2-xs-xss-q below is a
single variable whose name reminds us of the tuple of constructor
arguments that it contains. Because we do not have access to pattern
matching, we need to project out each argument. For legibility, we
bind the names of the arguments below using a let statement.
Unlike nil, cons has proper arguments but its tuple also ends with
a proof — the proof thatn = suc n2. The inductive hypothesis of
concat is contained in the first projection of the ih-u argument,
and the second projection is again a value of type unit.

consBranch : (A : Set) (mn : N)
(xss : ConsEl (Vec A m) n)
(ihs : ConsHyps (Vec A m) (Concat A m) n xss)
— Vec A (mult n m)
consBranch A m n n2-xs-xss-q ih-u =
let n2 = proji n2-xs-xss-q
xs = proji (projz n2-xs-xss-q)
q = projz (projz (projz n2-xs-xss-q))
ih = proj: ih-u
in subst
(A n — Vec A (mult n m))
q (append A m xs (mult n2 m) ih)

5.4 You Made It!

Congratulations on making it through this section, you now know
how to define dependently typed functions using the primitive elim-
ination rule ind! Getting such function definitions right was a gru-
eling experience for the authors, and interactive theorem proving
doesn’t help much when dealing with types that are so heavily
encoded. You can relax knowing that the next section defines a
generic standard eliminator that supports programming with de-
scribed datatypes, instead of using this algebra-based approach.

6. Generic Eliminators

The goal of this section is to contribute a novel generic eliminator,
elim, for datatypes built from descriptions. After partially applying
elim to an enumeration of constructor names, and a function from

2014/8/23

tags (indexing into each constructor name) to descriptions for each
constructor, the resulting type is precisely the interface of standard
eliminators in type theory! This eliminator can be used to define
concat as follows.

concat : (A : Set) (mn : N)

(xss : Vec (Vec A m) n) — Vec A (mult n m)
concat A m = elim VecE (VecC (Vec A m))

(A n xss — Vec A (mult n m))

(nil A)

(A n xs xss ih — append A m xs (mult n m) ih)

The function concat is defined in Section 5 by applying the
primitive elimination rule ind to an algebra. However, functions
defined in such a manner are verbose. Instead, now we can define
functions using our generic eliminator that once again can be de-
fined in terms of existing primitives without extending the metathe-
ory. This amounts to:

Partg 1. Currying constructor arguments in branches.

Partg 2. Inserting an implicit proof in each branch that the con-
structor has the correct index.

Partg 3. Performing case analysis to break up constructors into
branches.

Partp 4. Currying the outer function taking a product of branches.

In this section we will first focus on single-constructor datatype
descriptions, implementing Partg 1 and Partg 2. Multi-constructor
descriptions represented as sum types are discussed in Section 6.5,
and from that point on we focus on implementing Partg 3 and Partg
4.

6.1 Uncurried Inductive Hypothesis Algebra Type

In order to implement Partz 1 and Partg 2 we must recognize the
algebra argument to ind as an uncurried function. Below we define
UncurriedHyps to be a generalized type synonym for the type of
the algebra argument o to ind, where we replace the fixpoint p
D with an arbitary type family X : I — Set. This is analogous
to the generalization UncurriedEl of the initial algebra type in
Section 4. In fact, because we generalize UncurriedHyps to be
defined over arbitrary X rather than fixpoint p D, we require the
extra argument cn : UncurriedEl D X, which you can think of
as a constructor of X.

UncurriedHyps : {I : Set}
(D : Desc I) (X : ISet I)
(P: I) > X i — Set)
(cn : UncurriedEl D X)
— Set

UncurriedHyps D X P cn =V i —
(xs : E1 D X 1)
(ihs : Hyps D X P i xs)
— P i (cn xs)

Recognize UncurriedHyps as a kind of uncurried function
consisting of one regular argument (the index type) and two product
arguments (the constructors and inductive hypotheses). Think of
E1 D X i as a product of n arguments plus the proof of correct
indexing A1 X ... X A, X (j =1),Hyps D X P i xs asa product
of m inductive hypotheses plus unit B X ... X B, X T,and X i
as the result type Z.

I A x... XAy x(j=i) > B1X...XBpxT—=2Z

Uncurried Algebra of a Single Constructor For example, we
can use UncurriedHyps to define the type of consBranch from
Section 5.

ConsBranch : (A : Set) (m : N) — Set
ConsBranch A m = UncurriedHyps

(consD (Vec A m))

(Vec (Vec A m))

(Concat A m)

(A xs — init (consT , xs))

ConsBranch A m ~~
(n: N)
(xss : ConsEl (Vec A m) n)
(ihs : ConsHyps (Vec A m) (Concat A m) n xss)
— Vec A (mult n m)

6.2 Curried Inductive Hypothesis Algebra Type

Just like in Section 4, now we define the curried version of the
inductive hypothesis algebra. Instead of having an index function

argument I : Set, followed by the two tuple arguments xs
E1 D X iand ihs : Hyps D X P i xs, we uncurry both tuple
arguments.

CurriedHyps : {I : Set} (D :
(P: (i:1I) > Xi— Set)
(cn : UncurriedEl D X)

— Set

CurriedHyps (End i) X P cn =
P i (cn refl)

CurriedHyps (Rec i D) X P cn =
(x : Xi) - Pix
— CurriedHyps D X P (A xs — cn (x , xs))

CurriedHyps (Arg A B) X P cn =
(a : A)

— CurriedHyps (B a) X P (A xs — cn (a , xs))

Desc I) (X : ISet I)

Notice that CurriedHyps combines the definitions of E1 and
Hyps. This can be seen in the Rec branch, which asks for the (x :
X i) argument from E1 and the P i x argument from Hyps. You
can recognize CurriedHyps as a curried function that demands
index argument /, n constructor arguments as function arguments
A1 — ... = A, m inductive hypotheses as function arguments
Bi — ... = By, and has the result type Z.

I—-A —-..—-A,—-B —..—-B,—~Z7

This definition obviously curries arguments, implementing
Partz 1, but it also inserts an implicit proof of index correctness,
implementing Partg 2. In Section 4, we used the same kind of trick
to define CurriedEl to have an implicit proof instead of asking
for it explicitly as demonstrated by CurriedEl’. By analogy, we
could have defined a version of eliminators that required the user
to receive and use an explicit index correctness proof argument as
follows.

Set} (D : Desc I) (X :

CurriedHyps’ : {I : ISet I)

(P: (1i:1I)— Xi— Set)
(i: 1)

(cn : E1 DX i — X i)

— Set

CurriedHyps’ (End j) X P i cn =
(q:j=1) - P i (cn
CurriedHyps’ (Rec j D) X P i cn =
(x : Xj) =P jx
— CurriedHyps’ D X P i (A xs — cn (x , xs))
CurriedHyps’ (Arg A B) X P i cn =
(a : B
— CurriedHyps’ (B a) XPi (A xs — cn (a , xs))

2014/8/23

Notice that in Rec case of CurriedHyps the motive is applied to
a proof of refl implicitly, whereas in CurriedHyps such a proof
must be supplied as the explicit parameter q.

Curried Algebra of a Single Constructor Below we apply
CurriedHyps to the description of the cons constructor. This re-
turns the type of the cons branch in our eliminator-based definiton
of concat at the beginning of this section.

ConsElimBranch : (A : Set) (m :
ConsElimBranch A m = CurriedHyps
(consD (Vec A m))
(Vec (Vec A m)) (Concat A m)
(A xs — init (consT , xs))

N) — Set

ConsElimBranch A m ~~
(n : N)
(xs : Vec A m)
(xss : Vec (Vec A m) n)
(ih : Vec A (mult n m))
— Vec A (add m (mult n m))

This is precisely the expected type of the cons branch of an
elimVec-based definition of concat. Because the index proof is
implicitly applied, the return type can definitionally reduce from
Vec A (mult (suc n) m) toVec A (add m (mult n m)).

6.3 Uncurry Inductive Hypothesis Algebra Function

Shortly, we will be need a function that uncurries the inductive
hypothesis algebra. Once again, the definition is unremarkable and
the type explains it all.

uncurryHyps : {I : Set} (D : Desc I) (X : ISet I)
(P : (1 I) > X i — Set)

(cn : UncurriedEl D X)

— CurriedHyps D X P cn — UncurriedHyps D X P cn

uncurryHyps (End .i) X P cn pf i refl tt =
pt

uncurryHyps (Rec j D) X P cn pf i (x , xs) (ih , ihs) =

uncurryHyps D X P
(Nys — cn (x, ys)) (pf x ih) i xs ihs
uncurryHyps (Arg A B) X P cn pf i (a , xs) ihs =
uncurryHyps (B a) X P
(ANys = cn (a, ys)) (pf a) i xs ihs

6.4 Curried Induction Principle

Below we define the function indCurried. It is like the primitive
ind, except it takes a curried inductive hypothesis algebra instead
of an uncurried one.

indCurried : {I : Set} (D : Desc I)

(P: (G :I) - puDi — Set)

(f : CurriedHyps D (u D) P init)
1 : 1)

(x : pD 1)

— P ix

indCurried D P f i x =
ind D P (uncurryHyps D (u D) P init f) i x

In Section 4 we wrote a currying function curryEl. When
introducing values, we have the uncurried initial algebra init and
need to curry it to get generic constructors. When eliminating using
indCurried, the user supplies a curried algebra that we uncurry
and pass to the primitive elimination rule ind.

Because indCurried takes CurriedHyps as an algebra, it
implements Partg 1 and Partg 2. Thus, we would have the expected
eliminator interface when writing functions with indCurried over

singleton datatypes built from descriptions — those that do not
start with a sum of constructors and instead only have “single
constructor” with arguments.

6.5 Sum of Curried Inductive Hypotheses Type

Soon we will implement Partz 3 by defining a generic eliminator
that performs case analysis over datatypes described as a sum (con-
structors) of products (arguments). We can demand such a datatype
in sum-of-products form by parameterizing not by a description,
but by an E : Enum and a function C from tags of that enumera-
tion to descriptions representing the constructor choices. Below is
a function that computes the type of the curried inductive hypothe-
sis algebra for some particular constructor of a datatype, where the
particular constructor is specified by a tag.

SumCurriedHyps : {I : Set}
(E : Enum) (C : Tag E — Desc I)
— let D = Arg (Tag E) C in
(P: (i:I) = uDi — Set)
— Tag E — Set
SumCurriedHyps E C P t =
let D = Arg (Tag E) C in
CurriedHyps (C t) (u D) P (A xs — init (t , xs))

Recall from Section 2 that we defined datatypes like Vec in such
pieces anyway, namely VecE for the enumeration and VecC for the
function from tags to constructor descriptions. We can use these
two pieces to build a description starting with Arg, as seen in the
let bindings above.

Sum of Curried Algebras For example, we can use
SumCurriedHyps to define a version of ConsElimBranch that
works for any constructor of Vec as specified by a tag.

ElimBranch : (t : VecT)
(A : Set) (m : N) — Set

ElimBranch t A m = SumCurriedHyps VecE
(VecC (Vec A m)) (Concat A m) t

ElimBranch consT A m ~» ConsElimBranch A m

6.6 Uncurried Eliminator

Now we can implement Partg 3 by specializing an elimination prin-
ciple to sums-of-products style datatypes, again by parameterizing
our function by an enumeration and function from enumeration tags
to descriptions for each constructor.

elimUncurried : {I : Set}
(E : Enum) (C : Tag E — Desc I)
— let D = Arg (Tag E) C in
(P: ({:I) = puDi — Set)
— Branches E (SumCurriedHyps E C P)
— (1 :I) (x:pubi) - Pix
elimUncurried E C P cs i x =
let D = Arg (Tag E) C in
indCurried D P
(case (SumCurriedHyps E C P) cs)
ix

While indCurried takes a single curried algebra function
(CurriedHyps D (u D) P init), elimUncurried takes a prod-
uct (Branches E (SumCurriedHyps E C P)) of curried alge-
bra functions, one for each constructor. The implementation of
elimUncurried uses indCurried to perform induction, then in
the body of the induction uses case to eliminate the branches. Re-
call that when we defined concat in Section 5 with the primitive

2014/8/23

ind, we first performed the induction using ind and then per-
formed case analysis on the sum of constructors. Our new function
elimUncurried internalizes exactly this pattern.

6.7 Uncurried Branches Type

The elimUncurried function is nearly what we expect from a
standard eliminator. However, it still takes all branches of the elim-
inator as a product of arguments. We would like to curry this prod-
uct, thus implementing Partg 4. To do this we need a curried and
uncurried version of a function whose domain is Branches from
Section 2. Recall that Branches is merely a dependent product of
arguments, one for each element in an enumeration. Below is a type
synonym for a non-dependent function from Branches to some re-
sult type.

UncurriedBranches : (E : Enum)
(P : Tag E — Set) (X : Set) — Set
UncurriedBranches E P X = Branches E P — X

It is easy to recognize UncurriedBranches as a standard un-
curried function. Think of Branches E P as a product of n argu-
ments A; X ... X Ay, and X as the result type Z.

A1 X ... XAy — Z

6.8 Curried Branches Type

Defining a curried version of a function taking branches is straight-
forward. Unlike CurriedEl and CurriedHyps, CurriedBranches
does not insert an implicit proof of index correctness anywhere, so
it really is just a standard curried function.

CurriedBranches : (E : Enum)

(P : Tag E — Set) (X : Set) — Set
CurriedBranches [] P X =

X
CurriedBranches (1 :: E) P X =

P here — CurriedBranches E (A t — P (there t)) X

The only thing of interest in this definition is incrementing the
tag in the motive with there in recursive calls, because the motive
is dependent on the smaller enumeration E in the recursive call.

It is also easy to recognize CurriedBranches as a standard
curried function, dependent n curried argument A; X ... X A,, and
returning Z.

Al — ... Ay = 7

6.9 Curry Branches Function

Shortly, we will need a function that curries a function that takes
branches. Again, this function is not surprising and can be under-
stood from its type.

curryBranches :

{E : Enum} {P : Tag E — Set} {X : Set}

— UncurriedBranches E P X — CurriedBranches E P X

curryBranches {[]} f =
f tt
curryBranches {1 :: E} f =
A ¢ — curryBranches (A ¢cs — f (c , cs))

6.10 Generic Eliminator

At long last, we have come to the grand moment, the definition
of the generic eliminator elim! With a final flick of the wrist, we
apply curryBranches to the result of elimUncurried.

elim : {I : Set} (E : Enum) (C :
— let D = Arg (Tag E) C in
(P: (A :I) = pDi — Set)

Tag E — Desc I)

— CurriedBranches E
(SumCurriedHyps E C P)
(A :I) (x:pbi) = Pix)
elim E C P = curryBranches (elimUncurried E C P)

Note that the return type of elim is specified with
CurriedBranches. To see the curry/uncurry resemblence with
elimUncurried, recognize that the return type of elimUncurried
can equivalently be written with UncurriedBranches.

— UncurriedBranches E
(SumCurriedHyps E C P)
(1 :1I) (x:uwDi) - P ix)

g

— Branches E (SumCurriedHyps E C P)
— (@ : I) (x:uDi) > Pix

In Section 5 we had to do a lot of work to define simple
dependently typed functions like concat using the algebra-based
primitive elimination rule ind. In this section we did just as much
work, if not more, to define the generic eliminator elim. However,
this need only be done once and now defining any concrete function
like concat can be done very tersely using elim, just as the
example at the beginning of this section demonstrates.

For pedagogical reasons, we presented the definiton of concat
in terms of ind by combining several smaller definitions. This
somewhat hides the verbosity of an ind-based definition, so we
have provided an additional example that illustrates the difference
between definitions using ind versus elim. You can find a defini-
tion of vector append (adding two vectors) using elim in Figure
3. Now you can appreciate elim by comparing Figure 3 with the
much more verbose definition of append using ind in Figure 4.

7. Correctness

The goal of this section is to prove that the primitive elimination
rule ind is extensionally equivalent to our generic eliminator elim.
This amounts to proving:

Soundness

Yai...an. Ja.

ind (Arg (Tag E) C) Paix =elmEC Pay ...anizx
Completeness

Ya. Jay...an.

ind (Arg (Tag E) C) Paix =elmEC Pay ...anizx

However, the return type of elim is a CurriedBranches type,

which computes to a type taking n function arguments, one for each
constructor branch, and ending with the motive.

Ai = .. = Ay = (i:)(x:pDi) - Pix

We only get this expanded type if elim is applied to a concrete de-
scription, otherwise CurriedBranches will not unfold. Because
of this techninal annoyance, we will prove the equivalence between
ind and the helper function elimUncurried instead, which takes
all branches of the eliminator as a single tuple argument.

7.1 Soundness

Formally, the type of soundness of elimUncurried with respect to
ind is defined below. Note that the existential type (3) is shorthand
for a dependent pair type (X) whose domain type is inferred.

2014/8/23

Soundness : Set
Soundness = {I : Set}
(E : Enum) (C : Tag E — Desc I)
— let D = Arg (Tag E) C in
(P:(i:I) = uDi — Set)
(P : Branches E (SumCurriedHyps E C P))
(1 :I) (x: pD i)
R
— ind D P a i x = elimUncurried EC P B i x

Soundness states that any function defined by elimUncurried
applied to a tuple of constructor branches (B) — each containing
curried arguments and implicit proofs of index correctness — can
equivalently expressed by ind applied to a suitable algebra (o). In
Figure 1 we state and prove soundness informally as a theorem,
omitting all but the key function arguments for legibility.

7.2 Completeness

Formally, the type of completeness of elimUncurried with re-
spect to ind is defined below.

Completeness : Set

Completeness = {I : Set}
(E : Enum) (C : Tag E — Desc I)
— let D = Arg (Tag E) C in

(P: ({1 :I) - uDi— Set)

(o : UncurriedHyps D (u D) P init)
(1 :I (x:puDi)

— 3IAp

— ind D P o« 1 x = elimUncurried EC P B i x

Completeness is the converse of Soundess. It states that any
function defined by ind applied to a suitable algebra (e), can equiv-
alently be expressed by elimUncurried applied to a tuple of con-
structor branches (B). In Figure 2 we state and prove completeness
informally as a theorem, once again omitting all but the key func-
tion arguments.

The proof of completeness in Figure 2 uses the following two
lemmas. It also uses the definition of the function toBranches,

which can be found in the accompanying source code. The toBranches

function just translates an UncurriedHyps algebra to Branches
E (SumCurriedHyps E C P).

Lemma (ToBranches).

case o toBranches = curryHyps
Proof. By induction on the tag indexing into the enumeration of
constructors argument. O
Lemma (CurryHypsldent).

uncurryHyps o curryHyps = id

Proof. By induction on the description argument. O

8. Related Work

Our work focuses on internalizing the definition of constructors and
eliminators in terms of existing primitives that use algebras.

8.1 Generic Programming using Descriptions

There has been a lot of work on performing generic program-
ming over datatypes defined using descriptions. In some sense, this
was the original purpose of the description technology. For exam-
ple, Chapman et al. [2010] define a generic catamorphism (a non-
dependent ind), and a generic free monad construction. Ornaments
[McBride, 2011] support the definition of new description-based

datatypes in terms of their relationship with existing datatypes, and
support the conversion between the two. Free conversion between
data means that one can reuse functions defined over old types
when defining new, more specifically indexed, dependent types,
solving a major reuse issue with dependently typed programming.
Dagand [2013] implements a generic “deriving” mechanism, sim-
ilar in purpose to deriving in HASKELL [Jones, 2003], that de-
rives functions such as decidable equality over a class of datatypes
that support such functions. Dagand [2013] also generically defines
constructions [McBride et al., 2006], such as case analysis and in-
jectivity of constructors, that are used when elaborating dependent
pattern matching to eliminators.

Chapman et al. [2010] introduced descriptions in a paper that
also introduced the technique of levitation. Levitation is a tech-
nique to reduce the number of type theory primitives, hence the
size of a core type theory, by defining certain datatypes that would
normally be primitive in terms of descriptions (including descrip-
tions themselves, hence the name “levitation”). While both levita-
tion and a closed type theory based on descriptions were introduced
at the same time, the closed type theory can also be defined with-
out levitation. Hence, our present work of generic type theory con-
structions is orthogonal to whether or not the closed type theory
primitives have been levitated.

Dagand and McBride [2012] describe using ornaments to define
new functions from old ones, such that the relationship between the
two is freely captured. This work uses an alternative, more expres-
sive, description type that makes it possible to define datatypes as
computations over their index rather than using the equality type
to constrain what the indices must be. We have not extended the
present work to computational descriptions, but this should be pos-
sible in the same way that Dagand [2013] defines generic opera-
tions over computational descriptions that are restricted to a uni-
verse of “tagged descriptions” representing sum-of-products style
datatypes.

An alternative way to encode datatypes is to support sum types
directly in descriptions and use those rather than their isomorphic
dependent pair equivalents. Foveran [Atkey, 2011] is an example
of a language that encoded sum types directly. Our work could
be extended to use descriptions that support primitive sum types.
A function like elim would still need to be parameterized by an
Enum-like collection of all constructors, such that the primitive sum
description could be computed from the Enum in the same way that
we use the enumeration to build an Arg description.

8.2 Metatheory of Descriptions

Dagand [2013] defines an elaboration procedure to translate data
declaration syntax to descriptions. As part of the metatheory of this
work, Dagand defines and proves a soundness theorem that any
high level datatype declaration elaborates to a well-typed term in
the kernel type theory. Dagand defines and proves completeness as
the extensional equivalence between COQ’s Fix-based definitions
and ind-based definitions. This is done at the level of the metathe-
ory of COQ’s Fix-based definitions, which Giménez [1995] defines
in terms of underlying eliminators. Although Dagand does not de-
scribe the proof in all of its low-level “symbol-pushing” detail, con-
verting from eliminator-based definitions, to ind-based definitions
is very similar to what we have described. The difference is that, in
our work, this conversion is internalized, as we define eliminators
in terms of ind within the existing type theory, rather than prove an
equivalence to eliminators defined at the level of the metatheory.

Besides defining elim in terms of ind, we also prove the exten-
sional equivalence of both functions as a soundness and complete-
ness theorem. We also expect these theorems to be similar in nature
to the proof by Dagand [2013] in terms of the work by Giménez
[1995].

2014/8/23

Theorem.

V3. a. ind a = elimUncurried 8

Proof.
ind o = elimUncurried 3
ind o = indCurried (case) (by def elimUncurried)
ind @ = ind (uncurryHyps (case 3)) (by def indCurried)
ind (uncurryHyps (case 3)) = ind (uncurryHyps (case f3)) (solve v := uncurryHyps (case 3))
O
Figure 1: Soundness of elim
Theorem.
Va. 3B. ind a = elimUncurried
Proof.
ind o = elimUncurried 8
ind @ = indCurried (case [3) (by def elimUncurried)
ind @ = ind (uncurryHyps (case 3)) (by def indCurried)
ind @ = ind (uncurryHyps (case (toBranches «))) (solve 3 := toBranches)
ind @ = ind (uncurryHyps (curryHyps «)) (by lemma ToBranches)
ind @ = ind (by lemma CurryHypsldent)
O

Figure 2: Completeness of elim

8.3 Algebras Defined with Curry

Throughout this paper we have emphasized the verbosity of func-
tions defined in terms of the primitive elimination rule ind.
McBride [2011] gives examples of functions defined more tersely
in terms of ind by sprinkling in uses of the curry function. We
believe that while this makes functions easier to read, they are still
difficult to write, even when defining them interactively due to
pervasive definitional expansion of encoded constructions.

9. Conclusion & Future Work

Closed dependently typed languages that define datatypes from
descriptions offer tremendous generic programming capabilities.
However, when programming over particular datatypes within the
model of a closed language, it can be useful to not worry about the
details of the encodings of description-based datatypes. Thanks to
our our generic constructor (inj) and generic eliminator (elim),
users can now optionally program in the IDSL of type theory,
without needing to be aware of description-based encodings.

Besides the generic constructors and eliminators we presented
here, we have used the same techniques to generically implement
type formers. This is made possible by representing datatype pa-
rameters and indices explicitly as telescopes. We have also mod-
ified the generic constructor and eliminator to be parameter and
index aware. Additionally, we have added a distinct implicit argu-
ment constructor for telescopes and descriptions, allowing users of
our IDSL to specify which type parameters, type indices, and con-
structor arguments should be rendered as implicit arguments. These
extensions can be found in the accompanying source code, linked
in the introduction.

Acknowledgments

We are indebted to everyone involved with the EPIGRAM [McBride,
2005] language project, from which descriptions sprung, and more
broadly everyone involved with defining descriptions. We would
also like to thank Nathan Collins for discussing some of this devel-
opment with us and helping us settle on some terminology. Finally,
we are grateful for feedback from anonymous reviewers. This work
was supported by NSF/CISE/CCF grant #1320934.

References

R. Atkey. A type checker that knows its monad from its elbow.
blog post, Dec. 2011. URL http://bentnib.org/posts/
2011-12-14-type-checker.html.

E. C. Brady. Idris — systems programming meets full dependent
types. In Proceedings of the 5th ACM workshop on Program-
ming languages meets program verification, pages 43-54. ACM,
2011.

J. Chapman, P.-E. Dagand, C. McBride, and P. Morris. The gentle
art of levitation. In Proceedings of the 15th ACM SIGPLAN
International Conference on Functional Programming, 1CFP
’10, pages 3-14, New York, NY, USA, 2010. ACM. ISBN
978-1-60558-794-3. . URL http://doi.acm.org/10.1145/
1863543.1863547.

A. Chlipala. Certified programming with dependent types, 2011.

P-E. Dagand. A Cosmology of Datatypes. PhD thesis, University
of Strathclyde, 2013.

2014/8/23

append : (A : Set) (m : N) (xs :
append A = elim VecE (VecC A) (A m xs — (n
(A n ys — ys)
(Am x xs ih n ys — cons A (add m n) x (ih n ys))

Vec Am) (n :

N) (ys :
: N) (ys :

Vec A n) — Vec A (add m n)
Vec A n) — Vec A (add m n))

Figure 3: Definition of vector append using our generic elim

Set) (m : Vec Am) (n :

N) (ys :

append : (A : N) (xs :
append A = ind (VecD A) (A m xs — (n :
(A m t-c — case
(At — (c : E1l (VecC A t) (Vec A) m)
(ih :
(n : N) (ys :
)

N) (ys :
Vec A n) — Vec A (add m n))

Hyps (VecD A) (Vec A) (A m xs — (n :
Vec A n) — Vec A (add m n)

Vec A n) — Vec A (add m n)

N) (ys : Vec An) — Vec A (addmn)) m (t , ¢))

(A\ qihnys — subst A m — Vec A (add m n)) q ys)

, (A m2-x-xs-q ih-u n ys —
let m2 = proj; m2-x-xs-q
x = proji1 (projs m2-x-xs-q)

q = projs (projz (projs m2-x-xs-q))
ih = proj: ih-u
in
subst A\ m — Vec A (add m n)) q (cons A (add m2 n) x (ih n ys))
)
, tt
)
(proji t-c)
(proj2 t-c)

Figure 4: Definition of vector append using the primitive ind

P-E. Dagand and C. McBride. Transporting functions across or-
naments. In Proceedings of the 17th ACM SIGPLAN Interna-
tional Conference on Functional Programming, ICFP ’12, pages
103-114, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-
1054-3. . URL http://doi.acm.org/10.1145/2364527.
2364544.

E. Giménez. Codifying guarded definitions with recursive schemes.
In Types for proofs and Programs, pages 39-59. Springer, 1995.

S. L. P. Jones. Haskell 98 language and libraries: the revised
report. Cambridge University Press, 2003.

P. J. Landin. The next 700 programming languages. Communica-
tions of the ACM, 9(3):157-166, 1966.

P. Martin-L6f. An intuitionistic theory of types: Predicative part.
Studies in Logic and the Foundations of Mathematics, 80:73—
118, 1975.

C. McBride. Elimination with a motive. In Selected papers from
the International Workshop on Types for Proofs and Programs,
TYPES ’00, pages 197-216, London, UK, UK, 2002. Springer-
Verlag. ISBN 3-540-43287-6. URL http://dl.acm.org/
citation.cfm?id=646540.759262.

C. McBride. Epigram: Practical programming with dependent
types. In Advanced Functional Programming, pages 130-170.
Springer, 2005.

C. McBride. Ornamental algebras, algebraic ornaments. 2011.

C. McBride, H. Goguen, and J. McKinna. A few constructions on
constructors. In Types for Proofs and Programs, pages 186-200.
Springer, 2006.

U. Norell. Towards a practical programming language based on
dependent type theory. Chalmers University of Technology,
2007.

The Coq Development Team. The Coq Proof Assistant Reference
Manual, 2008. URL http://coq.inria.fr.

2014/8/23

