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ABSTRACT

Recent years have witnessed growing interests in develop-
ing deep models for incremental learning. However, existing
approaches often utilize the fixed structure and online back-
propagation for deep model optimization, which is difficult to
be implemented for incremental data scenarios. Indeed, for
streaming data, there are two main challenges for building
deep incremental models. First, there is a requirement to
develop deep incremental models with Capacity Scalability.
In other words, the entire training data are not available
before learning the task. It is a challenge to make the deep
model structure scaling with streaming data for flexible mod-
el evolution and faster convergence. Second, since the stream
data distribution usually changes in nature (concept drift),
there is a constraint for Capacity Sustainability. That is, how
to update the model while preserving previous knowledge
for overcoming the catastrophic forgetting. To this end, in
this paper, we develop an incremental adaptive deep model
(IADM) for dealing with the above two capacity challenges
in real-world incremental data scenarios. Specifically, IAD-
M provides an extra attention model for the hidden layers,
which aims to learn deep models with adaptive depth from
streaming data and enables capacity scalability. Also, we ad-
dress capacity sustainability by exploiting the attention based
fisher information matrix, which can prevent the forgetting
in consequence. Finally, we conduct extensive experiments
on real-world data and show that IADM outperforms the
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state-of-the-art methods with a substantial margin. More-
over, we show that IADM has better capacity scalability and
sustainability in incremental learning scenarios.
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1 INTRODUCTION

Nowadays, a large amount of the streaming data, such as
traffic flows, sensor data, and query logs, have been accu-
mulated in many application scenarios. As a result, there
is a critical need for developing methods for incremental
learning [36]. Indeed, tremendous efforts have been made for
incremental learning in different application domains, such as
incremental recommendation [5], demand prediction [33], and
graphlet matching [7]. However, most existing incremental
learning methods are with shallow structures (e.g., linear or
kernel) [16, 39], which were not designed to learn complex
nonlinear functions.

Deep learning techniques have achieved a wide range of
successes with powerful nonlinear models, such as biomedical
detection [30], article analysis [35], and semantic represen-
tation [11]. However, existing deep models are trained in a
batch learning setting with the entire training data and are
not designed for incremental learning tasks. Therefore, there
is a need to perform Deep Incremental Learning (DIL). A
direct way to do DIL is applying the standard backprop-
agation training for the pre-fixed model with only single
instance at each round. Such an approach is simple but has
several limitations, particularly for solving the capacity of
the model. First, different from off-line learning requiring the
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entire training data available in prior, incremental learning
manages to optimize classifiers over the stream of data. This
requires the models should have flexible structures, which can
scale with the stream data for convergence and performance
improvement. This challenge is defined as the “Capacity S-
calability”. As to deep incremental models, it is significantly
more challenging at choosing a proper model structure (i.e.,
depth of the deep model) with the stream data, as shown in
Figure 1. Indeed, the learning process will converge slowly
if the model is too complex, while the capacity is restricted
if the model is simple. In addition, no validation data are
available in incremental settings, thus it is not realistic to
address this issue as batch learning.

Furthermore, it is notable that many data stream is e-
volving in nature. That is, the joint distribution between
the input feature and the ground truth will change as the
concept drift [12]. If we ignore the distribution change, the
performance of previous distribution will dramatically drop
down as the catastrophic forgetting phenomenon [29]. For
instance, in Figure 2, we can find that the knowledge learnt
from the previous distribution (𝑋1) will lost when informa-
tion relevant to the current distribution (𝑋2) is incorporated.
This challenge is defined as the “Capacity Sustainability”.
However, previous DIL methods rarely consider this crucial
problem. Recently, fisher information matrix is introduced
for preventing this problem [4, 19, 26], while these methods
concentrate on the life-long multi-task learning with obvious
task conversion. Moreover, these methods ignore that the
importance of different parts in the fisher information matrix
are also adapting with the evolution of the model structure
evolution. These two problems are concurrent, and impose
the challenge to exploit these methods for developing deep
incremental learning models.

To this end, in this paper, we design the “Incremental
Adaptive Deep Model” (IADM) framework, and propose a
novel end-to-end adaptable deep model considering both ca-
pacity scalability and sustainability challenges. Specifically,
IADM can evolve from a shallow network (fast convergence)
to deep model (large capacity) adaptively with the stream
data, which can effectively improve overall prediction perfor-
mance. Meanwhile, IADM is knowledgable about the past
and present data distribution with the adaptive fisher reg-
ularization. As a matter of fact, it can accurately reflect
whether the algorithm utilizes the model capacity efficiently.
Finally, we provide an extensive analysis for understanding
the performances of incremental learning algorithms on vari-
ous real-world streaming data. The results show that IADM
outperforms the state-of-the-art methods with a substantial
margin. Moreover, we show that IADM has better capacity
scalability and sustainability in incremental scenarios.

2 RELATED WORK

The exploitation of deep incremental learning has attract-
ed much attentions recently. Considering the heavy storage
memory, we can only acquire the real-time data or fixed
transitory period data, which expresses the requirements on

 

(a) Shallow Model
 

(b) Deep Model

Figure 1: Performance measure (Loss vs. Accuracy)
with different network structures on MNIST. (a) net-
work with 1 fully connected hidden layer; (b) net-
work with 5 fully connected hidden layers.

 

(a) Shallow Model
 

(b) Deep Model

Figure 2: Catastrophic forgetting phenomenon. In
detail, we construct 4 stages from MNIST dataset,
and each stage removes 1
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of the image (top left as

𝑋1, top right as 𝑋2, bottom left as 𝑋3, bottom right
as 𝑋4), which is submitted to the concept drift sce-
nario. It reveals that with the stream data, the pre-
vious stages will appear forgetting as the accuracy
decreasing for both shallow and deep models.

the scalability of the model capacity. Moverover, note that
joint distribution is evolving with the stream data, which
causes the forgetting of previous learned knowledge, thus
the capacity sustainability is also a challenge. These two
problems are always concurrent in deep incremental learning.
Incremental Learning Considering Scalability

Incremental learning aims to update the models from data
stream sequentially, and has achieved many successes in both
application and theory [17, 37]. However, previous models
are designed with linear function or kernel metric, which
are hardly to be extended to non-linear models with high
capacity. With the development of deep learning, it shows
that the incremental learning setting can be directly applied
in deep models with online backpropagation, yet with many
drawbacks, i.e., convergence limitation (gradient vanishing
and diminishing feature reuse). Thus, Lee et al. proposed a
dual memory architecture that process slow-changing global
patterns [27]; Zhou et al. proposed an incremental feature
learning algorithm to determine the optimal model complex-
ity based on the autoencoder [38]. However, they operate
sliding window approach with batch training stage, making



them unsuitable for the streaming data. Besides, considering
the limitations of the fixed model structure, which also can-
not be validated easily in the incremental setting. The most
relevant work to our approach is the [31], which proposes a
novel framework for deep models in the incremental setting,
and adapts the model capacity from simple to complex incre-
mentally, combining the merits of both incremental learning
and deep learning consequently. However, the weight delay
weight of the proposed Hedge Backpropagation (HBP) caus-
es lower layers to be difficult to train, making it difficult to
adaptively update parameters.
Incremental Learning Considering Sustainability

Concept drift caused by the distribution evolution is a well-
recognized research direction in incremental learning and has
wide applications [12, 14]. Previous methods always assume
that there are some useful knowledge for future prediction
in previous data, and only concentrate on the current task.
These methods can be divided into three categories: sliding
window based approaches, which maintain the nearest data
items and discard old items [21]; evolving based approaches,
which downweight previous data items according to time
series [20]; ensemble based approaches, which can adaptively
add or delete classifiers and dynamically adjust weights [2].
However, these methods ignore an important phenomenon
in incremental learning, that is the catastrophic forgetting,
which is the tendency for losing the learnt knowledge of
previous distribution. To mitigate the catastrophic forget-
ting, there are many attempts, including ensemble methods
combine multiple classifiers for final prediction [9]; rehearsal
methods mix data from earlier sessions [13]; dual-memory
models store memories in two distinct neural networks [13];
sparse-coding methods reduce the forgetting by learning s-
parse representation [8], readers can refer to the introduction
for further information [18]. Recently, many researches are
concentrate on utilizing the fisher information matrix and
have achieved excellent performance. Fisher information is
a way of measuring the amount of information that an un-
known parameter Θ of a distribution models the data 𝑋,
which is related to relative entropy and can be represented
as Kullback-Leibler divergence form. Kirkpatrick et al. pro-
posed the elastic weight consolidation to reduce catastrophic
forgetting in artificial neural networks [19]. Lee et al. pro-
posed to incrementally match the moment of the posterior
distribution of the neural network [26]. Lee et al. dynamically
decided the network capacity for lifelong learning [24]. While
these methods are multi-task methods, which require clear
task segmentation, and can not be directly applied to the
incremental learning setting.

Therefore, to solve these crucial two challenges, we propose
an Incremental Adaptive Deep Model (IADM) with attention
mechanism. In detail, IADM utilizes an extra shallow atten-
tion network to learn the attention weights for the hidden
layers. As a result, IADM can concentrate on the shallow
layers with large attention weights firstly for fast convergence,
while acquiring high capacity by considering deep structure
with the increase of data. On the other hand, different from
only considering the fisher information matrix of last task,
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Figure 3: Illustration of the proposed IADM. Specif-
ically, with the stream data, we build independent
classifiers for the hidden layers, and utilize an extra
attention model to calculate the attention weight-
s for these classifiers for the final ensemble. Mean-
while, we also integrate the weights with the fisher
information matrix as the adaptive regularization for
relieving forgetting.

IADM incorporates the learned attention weight of each hid-
den layer into the corresponding parameters in fisher matrix.
Consequently, IADM can adaptively update both the deep
structure and fisher information matrix.

3 PROPOSED METHOD

3.1 Notations

In this paper, we consider the problem of incrementally train-
ing the deep model considering the concept drift with the
stream data. Specifically, our goal is to learn an adaptive
model f : R𝑑 → R𝐶 for specific task with sequence instances.
𝑋 = {𝑋1, 𝑋2, · · · , 𝑋𝑡, · · · , 𝑋𝑇 } denotes stream data with un-
bounded 𝑇 , where the instance stage 𝑋𝑡 comes with training
data 𝒟𝑡 = {x𝑡,𝑖,y𝑡,𝑖}𝑁𝑡

𝑖=1, 𝑁𝑡 ≥ 1 is the number of exam-
ples in stage 𝑡. Without any loss of generality, note that the
instance stage 𝑋𝑡 is set manually, i.e., real-time single in-
stance; a transitory period data (fixed time); a fixed number
of data. x ∈ R𝑑 is a d-dimensional instance representation,
y ∈ {0, 1}𝐶 , 𝐶 is the number of classes. The main challenge
in the incremental learning setting is that all the previous
training data are not available at the current time 𝑡 (only
the model parameters of the previous stages are accessible).

3.2 Capacity Scalability and Sustainability

We now develop a deeper understanding for the deep incre-
mental learning with concept drift, in which the capacity
scalability and sustainability problems are concurrent, while
previous methods have rarely considered.

It is notable that using deep incremental model faces sev-
eral issues. Previous methods always fix the structure of the
neural network in prior, and cannot be changed during the
training process. Therefore, it is a difficult task to determine



the deep model in advance, e.g., the depth, while in the in-
cremental setting, different depths are suitable for different
numbers of instances, e.g., from the Figure 1, shallow network
is with fast convergence, while with restricted learning capac-
ity. Correspondingly, deep network is with larger capacity,
yet the learning process will converge slowly. In conclusion,
our framework aims to exploit the fast convergence of shallow
network at the initial stage, and utilize the power of deep
representation gradually in the following stages.

On the other hand, considering the objective of the incre-
mental learning is to keep on learning with stream data, it
should be evaluated on both the past and present examples
of the learned model. However, in real application, the dis-
tribution usually change with the data collection sequence,
which is referred to as concept drift. From the Figure 2, in
the concept drift scenario, it reveals that the accuracy of the
model over different stages 𝑋𝑡 will continue to decrease over
future stages. Thus, there is additional crucial component
that need to be considered: catastrophic forgetting, which is
how much an algorithm forgets what it has learned in the past
data. Intuitively, we want to build a model that considers
both the ability of preventing forgetting and learning new
distribution instances, thus efficiently reflecting the model
capacity sustainability.

Without any loss of generality, with a given 𝜃, which is
the conditional likelihood distribution learned by the model.
A prediction can be defined as the sample obtained from the
likelihood distribution 𝑝𝜃(y|x). 𝐹𝜃, known as the “Empirical
Fisher Information Matrix” [1, 28] at 𝜃, is defined as: 𝐹𝜃 =

𝐸(x,y)∼𝒟
[︀
( 𝜕 log 𝑝𝜃(y|x)

𝜕𝜃
𝜕 log 𝑝𝜃(y|x)

𝜕𝜃

⊤
)
]︀
, where 𝒟 is the instance

domain. It is notable that the log-likelihood log 𝑝𝜃(y|x) is the
same as the negative of the cross-entropy loss function in deep
model for simplicity. Thus, 𝐹𝜃 can be seen as the expected loss
of gradient covariance matrix. 𝐹𝜃 has 3 key properties [28]:
1) is equivalent to the second derivative of the loss near a
minimum; 2) can be computed from first-order derivatives
alone and is thus easy for large models; 3) is guaranteed to be
positive semi-definite. On the other hand, let 𝐷𝐾𝐿(𝑝𝜃‖𝑝𝜃+△𝜃)
be the KL-divergence [34] between the conditional likelihood
of the model at 𝜃 and 𝜃+△𝜃, when△𝜃 → 0, the second-order
Taylor approximation of KL-divergence can be written as
𝐷𝐾𝐿(𝑝𝜃‖𝑝𝜃+△𝜃) ≈ 1

2
△𝜃⊤𝐹𝜃△𝜃, which is also equivalent to

computing distance in a Riemannian manifold [25]. Since 𝐹𝜃 ∈
R𝑑𝜃×𝑑𝜃 and 𝑑𝜃 is usually with millions for neural networks, it
is practically infeasible to store 𝐹𝜃. To handle this problem,
according to [19], we assume parameters to be independent
of each other (only using the diagonal parameters of 𝐹𝜃),
which results in the following approximation:

𝐿 = 𝐿𝑡 +
𝜆

2

∑︁
𝑖

𝐹𝜃𝑡−1𝑖
(𝜃𝑡𝑖 − 𝜃*𝑡−1𝑖) (1)

where 𝐿𝑡 is the loss for 𝑡−th stage only, 𝜃𝑡𝑖 is the 𝑖−th entry
of 𝜃 at stage 𝑡, 𝜆 represents how important the last stage
compares to the new one. It is notable the fisher regularization
will try to keep the important parameters close to the learned
parameters of previous stage.

3.3 Incremental Adaptive Deep Model

In this section, we address the incrmental adaptive deep
model (IADM) in an unified framework. IADM ingenious-
ly illustrate both the capacity scalability and sustainability
problems in designing, i.e., attention based model expansion
for capacity scalability, and weighted fisher regularization
for capacity sustainability. Specifically, we adopt an addi-
tional shallow network to learn the attention weights for the
classifiers built by the middle hidden layers, then fuse the
multiple weighted hidden classifiers for the final prediction.
Besides, for the fisher information matrix in different stages,
we embed the learned attention weights to the corresponding
elements in the fisher information matrix, which matches the
moments of overall posterior distributions in an incremental
way. Basically, our framework consists of two modules: 1)
capacity scalability by evolutive deep network: IADM build-
s the adaptive model with extra attention weights for the
hidden layers. Thus, we can exploit the shallow networks at
the initial stage, and the deep representation at later stage;
2) capacity sustainability by weighted fisher regularization:
IADM embeds hierarchical attention weights into fisher in-
formation matrix of different stages, which aims to match
the the posterior distribution on all stages incrementally.
Evolutive Deep Network

Without any loss of generality, the deep neural network
is with L hidden layers, i.e., the fully connected network is
with L fully connected layers, the CNN is with L hidden
blocks, here we assume that the maximum capacity of the
network is with L hidden layers considering the existing
computing ability. Different from the original network using
the final feature representation ℎ𝐿 for prediction, in IADM,
as shown in Figure 3, the final prediction is the weighted
combination of outputs learnt using the middle hidden layer
feature representations from {ℎ1, ℎ2, · · · , ℎ𝐿}. Following is
the prediction function using attention based pooling:

𝑓(x) =

𝐿∑︁
𝑙=1

𝛼𝑙𝑓𝑙

𝑓𝑙 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(ℎ𝑙Θ𝑙) ∀𝑙 = 1, 2, · · · , 𝐿
(2)

where 𝑓𝑙 is the classifier using 𝑙−th hidden layer feature
representations ℎ𝑙, Θ𝑙 is the parameters for 𝑓𝑙. 𝛼𝑙 = 𝑔(𝑓𝑙), 𝑔(·)
is a shallow neural network (i.e., fully connected network) for
calculating the weights for each output of the hidden layers,
which aims to discover the relationships among hierarchical
classifiers. At the end of every round, the weights 𝛼𝑙 are
normalized as

∑︀
𝛼𝑙 = 1. Therefore, the loss is:

𝐿𝑡(𝑓(x),y) = ℓ𝑡(

𝐿∑︁
𝑙=1

𝛼𝑙𝑓𝑙(x),y) (3)

the loss function can be any convex function here, and we
utilize the cross-entropy loss for simplicity. During the incre-
mental learning procedure, we need to learn the 𝑔(·),Θ𝑙,𝑊𝑙,
𝑊𝑙 is the parameters for learning ℎ𝑙. Different from the
original backpropagation, where the error derivatives are
backpropagated from the last output layer. In Eq. 3, the
error derivatives are backpropagated from each classifier 𝑓𝑙,



i.e., 𝑊 𝑡+1
𝑙 ← 𝑊 𝑡

𝑙 − 𝜂∇𝑊𝑙ℓ𝑡(
∑︀𝐿

𝑙=𝑗 𝛼𝑙𝑓𝑙(x),y). We compute
the gradient of the final prediction with respect to each depth
parameters. Note that the summation can be started at 𝑙 = 𝑗
in deep network, because the shallower blocks can be regard-
ed for the basic feature extraction. Consequently, with the
intuition that shallow models converge faster than deep mod-
els [6], using the attention mechanism will concentrate on the
shallower layers with larger 𝛼 at the initial stage, while with
the increase of the data, larger 𝛼 is learned for the deeper
layers, which conforms to the capacity scalability. This gives
an effective approach to learn the optimal network depth
automatically in sequence.
Weighted Fisher Regularization

Here, we believe that the distribution of instances will
not change drastically in a transitory stage 𝑋𝑡, i.e., users’
interest will not change in a short time when following an
online news stream. Furthermore, even for more complicated
situations, we can adopt the drift detection algorithm to
split the data stream into epoches in which the underlying
distribution is relatively smooth. Thus, we regularize over
the conditional likelihood distribution 𝑝𝜃(y|x) of every stages
using the fisher information matrix, as Eq. 1, for the forgetting
measure. Intuitively, using 𝐹𝜃 facilitates the network to learn
parameters such that considering both the new and previous
distributions.

It can be found that Eq. 1 only consider the fisher infor-
mation matrix of the last stage, but has not considered all
the previous stages. Thus there still will be a phenomenon of
interval forgetting. This can be enforced either with multiple
separate penalties, or as the sum of the quadratic penalties
over different stages. While in incremental setting, with the
network structure evolution with the attention mechanism,
in other words, different layers of the network have different
importance. Similarly, different parts of the fisher informa-
tion matrix have different importance in sequential stages.
Therefore, to incrementally matching the posterior distribu-
tion of the neural network trained on all stages, we embed
the attention weights to the corresponding parameters of the
fisher regularization, and the adaptive regularization can be
represented as following:

𝑅 =
1

𝑇

𝑇∑︁
𝑡=2

∑︁
𝑖

𝛼𝑡−1 ⊙ 𝐹𝜃𝑡−1𝑖
(𝜃𝑡𝑖 − 𝜃*𝑡−1𝑖)

2 (4)

where 𝛼𝑡 = [𝛼𝑡,1, 𝛼𝑡,2, · · · , 𝛼𝑡,𝐿]
⊤, ⊙ means multiplying the

𝛼𝑙 to the parameters of the corresponding layer in the fisher
information matrix. This continuous averaging leads that the
stages learned in previous are with less influence than the
stages in recent.

Thus, considering both the Eq. 3 and Eq. 4 comprehen-
sively, the whole loss function can be represented as:

𝐿 = ℓ𝑡(

𝐿∑︁
𝑙=1

𝛼𝑙𝑓𝑙(x),y) +
𝜆

𝑇

𝑇∑︁
𝑡=1

𝛼𝑡−1 ⊙ 𝐹𝜃𝑡−1
(𝜃𝑡 − 𝜃*𝑡−1)

2 (5)

Furthermore, when 𝜃𝑡−1 is at a local minimum, gradients
would be nearly zero, making 𝐹𝜃𝑡−1 very small. Theoretically,

the regularization is negligible, which would result in cat-
astrophic forgetting. However, experimentally we observed
that this can be circumvented by using a very high value
(≈ 104) for the hyperparameter 𝜆.

4 EXPERIMENTS AND DISCUSSION

4.1 Datasets and Configurations

Previous incremental datasets considering concept drift are
always with limited size, which cannot be adopted for deep
models efficiently. Therefore, We first experiment on 1 syn-
thetic (Hyperplane [10]) and 2 constructed image incremental
datasets (Incremental MNIST [23], Incremental CIFAR10 [22]),
then give the analysis on 1 real-world datasets as action recog-
nition (Incremental UCF101 [32]), all the datasets are stream
data with concept drift as [12]. In detail, Hyperplane: It
is generated uniformly in a 10 dimensional hyperplane with
30,000 instances in total over 3 different stages for binary
classification, which is a benchmark synthesis dataset for
regression scenario; Incremental MNIST: The standard
MNIST dataset is split into 4 stages considering concept
drift, i.e., the instances in each stage remove 1
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of the images;

Incremental CIFAR10: We extend CIFAR-10 dataset into
3 disjoint stages with more complex concept drift setting,
the first stage is the raw data, and remaining two stages add
gaussian noise with different level of intensity, i.e., (0.1, 0.02)
for second stage and (0.3, 0.04) for third stage; Incremental
UCF101: To validate the real application, we further eval-
uate on the real-world action recognition dataset, UCF101
is an action recognition dataset of realistic action videos,
collected from YouTube, having 101 action categories, and
can be grouped into 25 groups, where each group can consist
of 4-7 videos of an action. For the incremental setting, we
select the 5 longest groups.

For synthetic and UCF101 dataset, we randomly sample
30% of the examples at each stage for testing, remaining
for training; for MNIST and CIFAR10 datasets, they have
standard testing sets. To comprehensively evaluate IADM,
for the synthetic and MNIST datasets, we adopt the fully
connected network, and utilize the representative DCNN
architecture for remianing 2 datasets, i.e., resnet18 [15]. The
images are randomly flipped before passing into the network
and no other data augmentation is utilized. The base learning
rate is set to 0.001 and optimize with Adam. When the
variation between the objective values of Eq. 5 is less than
10−5 in iterations, we consider IADM converges. We run
the following experiments with the implementation of an
environment on NVIDIA K80 GPUs server.

Finally, 5 criteria, i.e., average Accuracy, average Precision,
average Recall, average F1, average AUC are taken to measure
the performance, e.g., let 𝑎𝑐𝑐𝑘,𝑗 be the accuracy evaluated
on the held-out set of the 𝑗−th stage (𝑗 ≤ 𝑘) after training
the network incrementally from stage 1 to 𝑘, the average
accuracy at stage 𝑘 is defined as: 𝐴𝑘 = 1

𝑘

∑︀𝑘
𝑗=1 𝑎𝑐𝑐𝑘,𝑗 as [4],

the higher of the 𝐴𝑘, the better of the classifier. Similarly,
other average criteria can also be calculated. To validate
the capacity scalability, we calculate the evolution of the



Table 1: Comparison results of IADM with both compared methods on 3 benchmark datasets an 1 real-world
dataset. The best performance for each criterion is bolded. ↑ / ↓ indicate the larger/smaller the better.

Methods
Average Accuracy ↑ Average Precision ↑

Hyperplane MNIST CIFAR10 UCF101 Hyperplane MNIST CIFAR10 UCF101

Adwin 0.684 0.504 0.619 0.771 0.681 0.497 0.612 0.760
DNN-SGD 0.607 0.819 0.601 0.702 0.607 0.822 0.602 0.702
ODLD 0.616 0.817 0.655 0.847 0.616 0.820 0.656 0.846

DNN-Base 0.615 0.828 0.630 0.556 0.614 0.830 0.621 0.554
DNN-L2 0.608 0.826 0.611 0.571 0.607 0.826 0.664 0.568
DNN-EWC 0.638 0.874 0.622 0.717 0.639 0.874 0.621 0.711
Mean-IMM 0.611 0.863 0.654 0.684 0.612 0.863 0.654 0.684
Mode-IMM 0.654 0.876 0.655 0.619 0.653 0.874 0.651 0.620
DEN 0.645 0.717 0.646 0.749 0.644 0.713 0.647 0.749

IADM 0.687 0.892 0.680 0.927 0.687 0.892 0.674 0.926

Methods
Average Recall ↑ Average F1 ↑

Hyperplane MNIST CIFAR10 UCF101 Hyperplane MNIST CIFAR10 UCF101

Adwin 0.684 0.642 0.625 0.796 0.682 0.441 0.618 0.758
DNN-SGD 0.614 0.866 0.687 0.668 0.601 0.811 0.610 0.669
ODLD 0.621 0.864 0.725 0.788 0.612 0.809 0.662 0.806

DNN-Base 0.616 0.867 0.699 0.536 0.613 0.821 0.638 0.507
DNN-L2 0.615 0.864 0.720 0.576 0.601 0.820 0.669 0.546
DNN-EWC 0.663 0.891 0.686 0.651 0.615 0.873 0.614 0.657
Mean-IMM 0.645 0.881 0.690 0.779 0.587 0.861 0.652 0.634
Mode-IMM 0.656 0.890 0.688 0.742 0.653 0.874 0.650 0.556
DEN 0.658 0.803 0.680 0.681 0.636 0.704 0.641 0.692

IADM 0.713 0.901 0.714 0.880 0.696 0.891 0.683 0.900

Methods
Average AUC ↑ Forgetting↓

Hyperplane MNIST CIFAR10 UCF101 Hyperplane MNIST CIFAR10 UCF101

Adwin 0.684 0.721 0.789 0.832 N/A N/A N/A N/A
DNN-SGD 0.610 0.901 0.808 0.813 0.183 0.145 0.184 0.297
ODLD 0.621 0.899 0.778 0.904 0.159 0.156 0.167 0.153

DNN-Base 0.616 0.906 0.794 0.722 0.181 0.143 0.194 0.444
DNN-L2 0.608 0.903 0.813 0.732 0.175 0.077 0.128 0.428
DNN-EWC 0.640 0.930 0.790 0.823 0.145 0.067 0.203 0.282
Mean-IMM 0.612 0.924 0.808 0.802 0.103 0.064 0.138 0.212
Mode-IMM 0.655 0.931 0.809 0.761 0.034 0.047 0.137 0.231
DEN 0.645 0.841 0.803 0.843 0.120 0.153 0.123 0.247

IADM 0.687 0.940 0.822 0.954 -0.011 0.043 0.111 0.073

parameter 𝛼. Moveover, to validate the capacity sustainability,
we calculate the performance about the forgetting profile of

different learning algorithms as [4], i.e., the 𝐴*−𝑚𝑒𝑎𝑛(𝐴)
𝐴* , 𝐴*

is the optimal accuracy with the entire data.

4.2 Compared methods

Considering IADM is related to the deep incremental learn-
ing with concept drift, several state-of-the-art methods are
compared, i.e., DNN-SGD, Adwin [3], ODL [31]. Besides, in
our experiments, IADM can be degenerated into catastrophic

forgetting setting, therefore, several modified forgetting meth-
ods, i.e., DNN-Base, DNN-L2, DNN-EWC [19], IMM [26],
DEN [24] are also compared, each stage is regarded as a
task in these methods. In detail, the compared methods are:
Adwin: A concept drift method, using adaptive online slid-
ing windows according to the rate of change observed from
the data; DNN-SGD: Base DNN with online backpropaga-
tion; ODLD: A online deep learning framework learns DNN
models of adaptive depth from a sequence of training data
in an incremental learning setting; DNN-Base: Base DNN
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Figure 4: Evolution of weight distribution over various stages. Top row is MNIST, bottom row is CIFAR10.
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Figure 5: Accuracy performance of different models and stages. The top row is the results of first stage about
different methods over sequential stages, the bottom row is the results of different stages about IADM over
sequential stages.

with 𝐿2-regularizations; DNN-L2: Base DNN, where at each
stage t, Θ𝑡 is initialized as Θ𝑡−1 and continuously trained
with 𝐿2-regularization between Θ𝑡 and Θ𝑡−1; DNN-EWC:
Deep network trained with elastic weight consolidation for
regularization, which remembers old stages by selectively
slowing down learning on the weights important for those
stages; IMM: A incremental moment matching method with
two extensions: Mean-IMM and Mode-IMM, which incremen-
tally matches the posterior distribution of the neural network

trained on the previous stages; DEN: A deep network ar-
chitecture for incremental learning, which can dynamically
decide its network structure with a sequence of stages, and
learns the overlapping knowledge among stages.

4.3 Performance Measure

We report the results of all the datasets about the 5 criteria
and the forgetting profile in Table 1. From the results, it can
be obviously found that our IADM approach can achieve



Table 2: Comparison for fisher regularization, which drops different ratio of low energy parameters in the
fisher information matrix. The best performance are bolded.

Methods
Hyperplane MNIST

20% 40% 60% 80% 20% 40% 60% 80%

DNN-EWC 0.634 0.643 0.646 0.610 0.874 0.873 0.869 0.854
IADM 0.649 0.669 0.660 0.645 0.886 0.887 0.889 0.859

Methods
CIFAR10 UCF101

20% 40% 60% 80% 20% 40% 60% 80%

DNN-EWC 0.654 0.656 0.656 0.661 0.777 0.638 0.722 0.644
IADM 0.661 0.677 0.662 0.679 0.900 0.892 0.887 0.877

the best performance on all the datasets with different per-
formance measures, which reveals that the IADM approach
is a high-competitive method handling both the capacity
scalability and sustainability challenges. For a more intuitive
measurement of forgetting, we study the degree of forgetting
among different models, which defines the forgetting for a
particular task as the difference between the maximum knowl-
edge gained about that task throughout the learning process
and the knowledge we currently have about it, the lower the
better. It shows that IADM is with the least forgetting. The
𝑁/𝐴 in Adwin because it is unable to get the intermediate re-
sult in the training process, thus the forgetting profile cannot
be calculated. Negative value in forgetting profile means not
only without forgetting, but also has the positive influence
for the future classification.

To validate the effectiveness of learned fisher information
matrix, we conduct more experiments comparing fisher regu-
larization based methods. In detail, we drop the low energy
parameters with low values in the fisher information ma-
trix from 20% to 80%, 20% as the interval and record the
performance after removing the low energy parameters in
Table 2. From the results, it reveals that the performance
will still be competitive instead after removing the low en-
ergy parameters similar to the dropout in the traditional
deep learning, which further illustrates the effectiveness of
the important parameters calculated by the adaptive fisher
information matrix.

4.4 Capacity Adaptation

In this section, we evaluate the weight distribution (param-
eter 𝛼) learnt by IADM over different stages. We extract
data from different stages at intervals of 25%, and analyse
the mean weight distribution in different stages in Figure
4 on the MNIST and CIFAR10 dataset. The block 1 in CI-
FAR10 network is used for the basic feature extraction as
mentioned before. From the results, it reveals that in the
initial phase (first stage), the maximum weight locates at
the shallow classifier. In the second stage, slightly deeper
classifiers have picked up some weight, and in the following
stages, deeper classifiers get more weight. Thus, the weight
evolution shows that IADM has the ability to perform model

selection. Meanwhile, different stages are with different depth
indicates that IADM learns more discriminative features with
more data, in other words, IADM uses the deeper classifiers
to learn better features.

4.5 Evaluation of Forgetting

Due to page limitation, we report the performance of first
stage for different datasets in top row of Figure 5, and the
performance of different stages of IADM in the bottom row.
For compare methods, note that the DEN utilized the times-
tamp to save the model of each stage for prediction, while
the testing data are always unpredictable of the source stage
in real applications as our setting, so we only use the latest
model of the DEN for testing. From the top row, it reveals
that the methods without considering the forgetting regu-
larization (e.g., DNN-SGD, ODLD), the performance will
steady decline, while IADM shows stable performances on
almost all the datasets with slowly forgetting, and superior
to other fisher regularization based method with the adaptive
attention mechanism, IMM methods need to add multi-task
layer for further adjustment after training all stages training,
which leads to decreasing performance in the early stage
(i.e., using SGD for training), and rising at the end (the last
point is the results using fine-tuned IMM methods). From
the bottom row, it reveals that at the transition of different
stages, the performance of previous stages will not fall rapidly,
which shows that IADM can prevent forgetting efficiently.
Considering that the background of the examples in the first
stage of the UCF101 dataset is very easy to be classified,
thus the initial accuracy is very high.

5 CONCLUSION

In this paper, we investigated how to develop deep models
for incremental learning. Indeed, there are two major concur-
rent challenges for building deep incremental models. First,
if the entire training data are not available before learning
the task, it is necessary to make the deep model structure
scaling with streaming data for flexible model evolution and
faster convergence. In other words, we need to develop deep
incremental models with capacity scalability. Second, due to
concept drift in streaming data, it is important to update the



model while preserving previous knowledge for overcoming
the catastrophic forgetting. Here, we aim to deal with these
two challenges in one unified framework. Along this line,
we developed an incremental adaptive deep model (IADM),
which has a carefully designed attention model for the hidden
layer and enables capacity scalability by learning deep models
with adaptive depth from shallow to deep. Moreover, IAD-
M has the ability in embedding the attention weights into
fisher information matrix, which can incrementally match
the the posterior distribution of the neural network trained
on all stages and prevent the forgetting in consequence. Fi-
nally, experiments on numerous real-world data showed the
effectiveness of IADM for incremental learning.
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