
Tempering Kademlia with a Robust Identity Based System

Luca Maria Aiello, Marco Milanesio, Giancarlo Ruffo, RossanoSchifanella
Computer Science Department - Università degli Studi di Torino

Corso Svizzera 185, 10149 Turin, Italy
aiello.lucamaria@educ.di.unito.it
{milane,ruffo,schifane}@di.unito.it

Abstract

The lack of a trusted authority, responsible for peers’
identity verification or for authentication purposes, makes
actual P2P systems extremely vulnerable to a large spec-
trum of attacks. The main purpose of this paper is to
present Likir (Layered Identity-based Kademlia-like In-
fRastructure), a framework that includes an identity based
scheme and a secure communication protocol, built on top
of Kademlia, that may provide an effective defense against
well known attacks. This will be accomplished with the
adoption of a certification service, with the use of an au-
thentication protocol between nodes and with the introduc-
tion of credentials to make non-repudiable the ownership of
the contents and messages inserted in the DHT. For sake of
interoperability with other social networking services, Likir
enables identity management under the Identity 2.0 frame-
work. Under this perspective, the IBS (Identity-Based Sig-
nature) scheme is taken into consideration and analyzed as
well.

1 Introduction

Structured Peer-to-Peer (P2P) Systems provide many
services and competitive features, such as resilient dis-
tributed storage, high scalability and efficiency, and good
resistance against random node failures, making the P2P
based middleware largely suitable for a vast variety of dis-
tributed applications. Nevertheless, actual P2P systems are
extremely vulnerable to a large spectrum of attacks [22],
mainly due to the lack of a certification service responsible
for peers’ identity verification and for authentication pur-
poses.

Identity verification is critical for two reasons. First,
structured P2P systems are based on ID assignments to
nodes and objects. A random nodeId assignment is sub-
ject to manipulation by an adversary, and current assign-
ment techniques are trivially vulnerable. This problem is

amplified due to a heterogeneous user community, that may
want to access the application masking themselves behind
different identities. Second, users are motivated to use a
new application when they are allowed to log in with an
owned identity, rather than inventing a new user name and
a password to be kept in mind. We need a certified associa-
tion between a verifiable identity (e.g., OpenID or Google’s
account) and a nodeId, in order to provide a trusted P2P
service.

Literature on vulnerabilities of P2P networks have pro-
duced two main sets of solutions against different attacks:
the first asad hocheuristics focused on well known threats
(e.g., [10]); the latter as architectures based on a trustedcer-
tification authority [5] and complex public-key infrastruc-
ture (PKI), responsible for nodeId certification and distribu-
tion, that may result infeasible in practice. Our purpose is
the definition of a simple and robust identity-based verifica-
tion scheme, together with an authenticated communication
protocol built on top of Kademlia, one of the most popular
Distributed Hash Table (DHT).

An important aim of our proposal is non repudiation
of contents managed by the structured P2P layer. In fact,
Likir (Layered Identity-based Kademlia-like InfRastruc-
ture) forces an application with security constraints to ma-
nipulate objects after credentials verification, e.g., a node
inserting a content is asked to prove the association between
the presented ID and a verifiable identity. Other relevant
threats are avoided or, at least, largely mitigated: authenti-
cated message exchange protects the system against replay
attacks, man in the middle, and content forgery. Further-
more, every nodeId is associated to a given identity dur-
ing registration (or bootstrapping), allowing for Identity 2.0
Management, so that verification will need a human partic-
ipation that would result in an important mitigation of the
effectiveness of a Sybil attack.

Our proposal can be implemented using a traditional
Public Key Cryptography as well as an Identity Based Cryp-
tography scheme (see Section 4.6). Since it is extremely
important to maintain scalability and to worsen as little as

possible efficiency (i.e., in terms of node state and opera-
tions’ complexity), we complete our study with an empir-
ical analysis that compares overheads introduced by both
approaches.

The paper is organized as follows. Sections 2 and 3
present the state-of-art and the background wrt our pro-
posal. Section 4 exposes the proposed architecture and pro-
tocol, and it is followed by a discussion about security and
performance; additionally, a quantitative analysis of thefea-
sibility of the protocol is given in Section 5. Conclusions
and future works are given in Section 6.

2 Related Works

Recently, a lot of effort has been put on securing DHTs
[23] and the applications built on them. The usual robust-
ness and efficiency of a DHT-based system can be over-
whelmed by the malicious behavior of groups of peers that
do not follow properly the DHT protocol.

In [13] an exhaustive overview of the different behaviors
of peers in the KAD network is given, pointing out that node
identifiers are not necessarily persistent as was assumed be-
fore. In [14], authors consider the vulnerability of KAD
against Sybil Attack and show that a solution is to prevent a
peer from choosing its own ID and avoiding a peer to obtain
a large number of IDs. Thus, they sketch out a centralized
solution that makes it impossible for an attacker to obtain
arbitrary KAD IDs: a central agent binds the ID to a cellu-
lar phone number.

Sybil Attack is also the core of the work in [1] and [2].
In the first work, a resistant routing strategy is introduced
on a variant of Chord, assuring that lookups are performed
using a diverse set of nodes, and thus that at least a sub-
set of the nodes involved in the lookup process is not mali-
cious. As a consequence, the lookup process makes forward
progress, not only converging fast to the destination, but
also minimizing the number of trusted bottlenecks: when
choosing the next node in the path, the variant will take into
account the sources of information about the previous hops,
and strive to avoid relying on a single trusted bottleneck.
In [2] an admission control system for structured P2P sys-
tems is given. The system constructs a tree-like hierarchy
of cooperative admission control nodes, from which a join-
ing node has to gain admission via client puzzles. As the
burden of self-organization and admission control is placed
on the P2P nodes themselves, the computational load of
these activities must be low. Analysis shows that these costs
are vanishingly small for all nodes in the network. Admis-
sion Control System (ACS) defends against Sybil attacks
by adaptively constructing a hierarchy of cooperative ad-
mission control nodes. A node wishing to join the network
is serially challenged by the nodes from a leaf to the root of
the hierarchy. Nodes completing the puzzles of all nodes in

the chain are provided a cryptographic proof of the exam-
ined identity.

S/Kademlia [3] is a secure key-based routing protocol
based on Kademlia [19] that has a high resilience against
common attacks by using parallel lookups over multiple dis-
joint paths, limiting free nodeId generation by using crypto
puzzles in combination with public key cryptography, ex-
tending the Kademlia routing table by a sibling list, reduc-
ing the complexity of the bucket splitting algorithm and al-
lowing a DHT to store data in a safe replicated way, and fi-
nally a lookup algorithm which uses multiple disjoint paths
to increase the lookup success ratio.
In [17] periodic routing table resets, unpredictable identifier
changes and a rate limit on routing table updates are given.
This is presented as a solution for making attackers unable
to entrench themselves in any position that they acquire in
the network; moreover, attackers are unable to fix an appro-
priate strategy for targeting some specific nodes. Authors
propose also a practical defense against the eclipse attack,
extending the Bamboo DHT1.
A distributed node ID generation scheme would limit the
rate in which an attacker can obtain IDs. The authors of
Pastry [20] require prospective nodes to generate a pri-
vate/public key pair such that the hash of the public key has
the firstp bits equal to zero [12]. They also suggest to bind
the IP address of the node with its ID and, to overcome the
possibility of an attacker to accumulate node IDs, to invali-
date node IDs periodically and using different setting for the
hash initialization. However, this would require legitimate
nodes to obtain new IDs every time this happens. Authors
show how the use of secure routing can be reduced by using
self-certifying application data.
Finally, an admission control framework suitable for differ-
ent flavors of peer groups and match them with appropriate
cryptographic techniques and protocols is presented in [18].

As explained in Section 4.7, in this paper we limit the
risk of a Sybil Attack, and, consequently, an Eclipse At-
tack, binding each node to a specific identity, and requir-
ing a user interaction in the authentication procedure during
bootstrapping. Moreover, each nodeId will be certified by a
Certification Service granting the traceability and the non-
repudiability of the messages.

A somehow similar approach to the presented work is the
one by Ryu et al. [16], in which an ID assignment protocol
based on identity-based cryptography is presented, showing
that the id-based cryptography is a suitable and affordable
technique that preserves scalability by introducing a neg-
ligible overhead. The described procedure has to be exe-
cuted for each node at each bootstrap and shows a weak
authentication method (i.e., based on a callback to the pre-
sented IP address). On the contrary, we introduce a proper
renewal mechanism for authenticating users’ identity and

1http://bamboo-dht.org/

nodes, in order to perform it only once during the first boot-
strap. Moreover Likir enables Identity 2.0 verification, redi-
recting the user to authenticate himself at an off-line identity
provider (e.g.,myopenid.com). Finally, our protocol makes
nodes interaction and message exchanges subject to the ver-
ification of users’ credentials, facing a wider spectrum of
attacks.

3 Background

The adversaries that we consider are participants in a
DHT system (with reference to Kademlia) that do not fol-
low the protocol correctly. We assume that a malicious node
is able to generate packets with arbitrary contents (includ-
ing forged source IP addresses) and, furthermore, to over-
hear or modify communications between other nodes. Ma-
licious nodes can conspire together, and a single user can
easily run several nodes on the same computer, carrying out
a large scale attack even without disposing of a huge quan-
tity of network bandwidth or without a considerable com-
putational power.
Routing Poisoning. Routing tables of active nodes are
maintained over time and renewed through a push-based
approach: unsolicited messages, such as the publication of
route tables of neighboring nodes or lookup messages sent
from unknown nodes, supply an information that is used
to update table’s entries. In this scenario it is possible for
a malicious peer to inject random routing data or to route
entries favorable to the attacker into victim nodes, and this
becomes more critical during bootstrapping: if the selected
bootstrap node is malicious, it can easily provide corrupted
or fake routing data to the joining node, without any risk of
being discovered.
Eclipse Attack. The Eclipse Attack is a form of routing
poisoning which aims to separate a set of victim nodes from
the rest of the overlay network, mediating most overlay traf-
fic and effectively eclipsing correct nodes from each other’s
view. Against this, the anonymous auditing technique is
proposed in [10]. When the Eclipse Attack is targeted
against the stored contents on DHT, making them inacces-
sible to lookups, then it is known asnode insertion attack:
a vast number of nodes marked with identifiers numerically
close to the keyk of the target content are initiated, receiv-
ing the most lookup requests fork and answering with fake
contents or not replying at all, effectively hiding the content.
Node insertion attack cannot be fought with anonymous au-
diting. It is important to notice that the eclipse attacks can
effectively take place only when attacker nodes are able to
assign their own nodeId without restrictions. It is possible
to prevent this attack ensuring that nodeIds are randomly
generated, or assigned by a trusted third party.
Sybil Attack. Since typically there exists no verifiable link
between the participating entity (human user or machine)

and its identity (the nodeId) it is possible for any entity to
show multiple identities to the system. The generation of
multiple identities under a single entity is called Sybil at-
tack and it undermines the redundancy property of a P2P
system, because it enables the gathering of a large number
of nodes on few machines, centralizing unsafely many keys’
responsibilities and content replicas. The Sybil entitiesare
usually exploited to increase the effectiveness of other at-
tacks (e.g., Eclipse, DDoS) without the need for huge com-
putational resources or without the help of other colluding
entities. A possible approach to locate Sybil nodes is pe-
riodically sending a different challenge to each node. This
challenge requires a high computational effort to be solved,
so that one machine cannot solve a challenge for each Sybil
node it hosts within a specified short time interval, even if
this approach is difficult in practice in an heterogeneous do-
main [8]. A central authority that assigns certified node id
only after a user registration process might limit this phe-
nomenon, because the time required to the creation of a new
node would be considerably longer.

Index poisoning and content pollution. Those peers re-
sponsible for keyk are asked to store all the pairs< k, v >,
and return them when requested. The valuev can be either
a content or a set of meta-data and references to the sources
of the requested content. An index poisoning based attack
[11] consists in inserting corrupted contents among the stor-
ages of a group of index nodes. A corrupted content might
be something not related to the key for which it was stored,
or even a fake information, like a reference to the wrong
source. An attacker can make a bogus content highly vis-
ible by flooding fictitious records under ‘strategic’ indexes
(e.g., among nodes responsible for hot keys), flushing le-
gitimately stored content. Credentials can be an effective
countermeasure against pollution: if the content is bound to
the identity of an owner, when a fake resource is found, it
is possible to trace back to content creator. If the applica-
tion implements a reputation system, it could be possible to
penalize or even ban a malicious node.

DDoS attack. A distributed denial of service attach con-
sists in inducing a large number of nodes of the overlay to
generate a huge amount of messages to be sent to a target
entity located internally or externally the P2P network. It
can be achieved with a redirect technique [9], carried out
through an index poisoning attack. In file-sharing systems,
the attacker can insert meta-data related to a very popular
content, pointing to the target IP address as a source of such
a file: the victim will be overflowed by connection requests
until the ‘polluted’ content will be kept in index nodes’ stor-
age. As it would be too costly to oblige replica nodes to ver-
ify the authenticity of each inserted content, it is necessary
to adopt a reputation system so that peers who have made
incorrect insertions are recognized as soon as possible and
banned from the network.

Man In The Middle. If a node can intercept and modify the
content of response messages, it may alter the data provid-
ing wrong information to the requester. Overlay networks
as eMule Kad use a buddy system to manage the nodes be-
hind the NAT: each of these nodes establishes a TCP con-
nection with a chosen buddy node, which acts as an appli-
cation gateway. Some studies [15] show that in the Kad
network at least half of the network is prone to a MITM at-
tack. To avoid this, communicating must be sure about the
integrity of messages and about the identity of the sender.
An authenticated channel between endpoints can instantly
exclude a third malicious entity.

Kademlia vulnerabilities. Kademlia [19] is a structured
P2P system featured by the use of a XOR metric for com-
puting distance between points in the identifier space. In
Kademlia every node has a random 160-bitnodeId and
maintains a routing table consisting of up to 160 k-buckets.
Every k-buckets contains at mostk entries with<IP ad-
dress, UDP port, NodeId> triples of other nodes, withk
as a redundancy factor for robustness purposes. Buckets are
arranged as a binary tree and nodes get assigned to buck-
ets according to the shortest unique prefix of their nodeIds.
Kademlia combines provable consistency and performance,
latency minimizing routing, and a symmetric, unidirectional
topology.

The Kademlia protocol is vulnerable to all the discussed
attacks, even if it can mitigate the harmfulness of some
of them. Nodes’ identifiers are not certified and they can
be generated at will on the local node, so it’s possible to
quickly instantiate a large number of Sybil nodes with arbi-
trary Ids in order to complete a node insertion attack. There
is no credential associated with contents maintained in stor-
ages and no control is performed by replica nodes over the
information stored in the DHT thus allowing the index poi-
soning and derivative attacks. There is no authentication
protocol between nodes. Nevertheless, k-buckets provide
resistance to certain DoS and index pollution attacks; in
fact, one cannot flush nodes routing state by flooding the
system with new nodes. Kademlia nodes will only insert the
new nodes in the k-buckets when old nodes leave the sys-
tem. Unfortunately, it is very easy to inject into a route ta-
ble information relating to contacts whose identifier is very
close to the victim node Id, because of the bucket splitting
procedure.

Finally, it is possible to affect the lookup procedure to
lead the searching node to contact a set of replica peers con-
trolled by the attacker. The Kademlia lookup procedure for
a keyχ starts selectingα nodes whose ids are the nearest to
the local id and sending to each of them aFIND-NODE(χ)
RPC. If a malicious node receives aFIND-NODE RPC, it re-
sponds withk triples that identify colluding nodes whose id
is claimed to be close to the lookup key. The searching peer
has no way for verifying messages and it will trust every

response.
Identity Based Signature (IBS). The IBS is a crypto-
graphic technique that allows to compute a key pair whose
public counterpart could be easily obtained from an ASCII
string. This new paradigm of cryptography allows a user
to verify a signature of another user from his identifier,
that could be his email address, his node’s IP address, his
OpenId2. URL, and so on.

This scheme has developed from the initial idea of
Shamir [21], and subsequently revisited by Boneh and
Franklin [4] and Cocks [6]. It assumes that a generic userA

wants to sign a message, and that to another userB needs
to check it. The process is divided into four phases:
1) Setup: a trusted third party, the Private key Generator
(PKG) creates a pair of “master” keys; the public master key
MK+ and its private counterpartMK−. MK+ is made
available to all the users of the system.
2) Private key extraction: A presents his identity (IdA) to
the PKG, who produces a private keyK−

A
from MK− and

IdA; the new key is then sent toA.
3) Signature generation:using its private keyK−

A
, A cre-

ates a signatures on messagem, sending(m, s) to B.
4) Signature verification: B checks whethers is a genuine
signature onm usingIdA andMK+. If so it returns “true”,
“false” otherwise.
The ideas behind this process are based on pairing func-
tions and elliptic curves, whose presentation goes beyond
the goals of this work. The concept relevant to the proposed
framework is that every user can verify the signatures of all
the users whose identifier is known, but no one can compute
another user’s private key without the private master key.
This positive feature represents the biggest drawback of the
scheme, too, and it is knowns as thekey escrowproperty:
if an attacker takes possession of the master key, he could
easily generate all the private keys: the PKG is a genuine
single point of failure.

4 Protocol

Likir is layered on Kademlia and its architecture is based
on the presence of a Certification Service (CS). TheCS

can be a centralized or decentralized authority whose task is
to generate random nodeIds and to certify the link between
nodeIds and users’ identities by signing peculiar tokens. To
accomplish this, we suppose that a classic public key cryp-
tography scheme is used: in this section we assume that the
CS is a centralized authority owner of a public key known
to every Kademlia node, and holder of its private counter-
part. Similarly, we assume that each user who intends to
take advantage of the network services should be in posses-
sion of a key pair. In section 4.6 are presented the modi-

2http://openid.net/

fications to this scheme due to the introduction of the IBS
system support. The following notation is used throughout:

A,B : Likir nodes
NodeIdA : nodeA’s Kademlia identifier
UserIdA : nodeA’s user identifier
K+

A
,K−

A
: nodeA’s public and private key

K+

CS
,K−

CS
: CS public and private key

Sign(m, k) : messagem signed with the keyk
H(o) : hash code of the objecto

AuthIdA : nodeA’s authenticated id
AuthAB : authentication produced byA for B

ts, TTL : timestamp, time to live
a||b : concatenation of stringsa andb

Likir enhances the join procedure, the node interac-
tion protocol and the content storage procedure defined by
Kademlia. In a preliminary initialization phase a node ap-
plies to the Certification Service for a certified NodeId and
for bootstrap information; since the certified NodeId has an
extensive temporal validity, initialization is not executed at
every bootstrap but only periodically. After the initializa-
tion, the node performs the network join procedure to take
part to the overlay. In order to correctly interact with other
nodes, the newly joined one must follow a communication
protocol for incoming and outcoming messages; especially,
the node must produce special credentials related to every
content to be inserted in the DHT.

4.1 Initialization

NodeA must obtain its own certifiedid, in order to in-
teract with other peers. To this aim the node sends a request
to the CS containing an identifier and its public key:

NodeIdReq = UserIdA,K+

A

TheUserIdA is the identity by which userA presents him-
self to the network community. It is an identifier of a generic
account of userA and whose validity must be verifiable
by the sameCS. It may be assumed that theUserId is
an existing and verifiable identity, (e.g. an OpenID URL
or an email address), in which case theCS should initiate
an interaction with an external authority (e.g. an Identity
Provider, a mail server) to verify its effectiveness. Other-
wise the sameCS could be able to maintain user accounts
and verifying the identity with a password request.

The CS makes theUserId verification procedure
(whose steps depend on the nature of theUserId itself),
and then binds the user identity with his public key and with
aNodeId by producing the following token:

AuthIdA = Sign(NodeIdA||UserIdA||K
+

A
||expA,K−

CS
)

TheNodeId is randomly chosen;expA is a timestamp that
establishes the expiration date of the signedNodeIdA. The

CS keeps track of the association betweenUserId and
AuthId, so that all subsequentNodeIdReq received by
the same users receive in response the sameAuthId passed
earlier, unless it is expired or close to expiration. This is
a precaution to avoid theCS producing useless signatures.
Then, theCS sends to the client a response message struc-
tured as follows:

CS → A : AuthIdA, Sign(bootstrapList,K−

CS
)

ThebootstrapList is a list of triple< NodeId, IP, port >

that points to a set of nodes that theCS assumes active; by
contacting at least one of these nodes, the peer can join the
network. The way in which theCS obtains the entry of
bootstrap list is described in Section 4.5.

UserId , KA A

+

AuthId , Sign(bootstrapList, K)A CS

-
Check(UserId)A

NodeA CS

Bootstrap
node

Join procedure

Figure 1. Initialization and join procedures

4.2 Join

Once initialization step is completed, the node may initi-
ate the network join procedure as described by the Kadem-
lia protocol, namely sending a lookup request for its own
NodeId to one of the bootstrap contacts. However, once
obtained anAuthId, it is important that the nodes avoid
contacting the certification service, unless if necessary.Af-
ter making the first join using information obtained from
thebootstrapList, each node should get in a different way
a list of nodes to be contacted for subsequent join oper-
ations. For example a node can maintain its own list of
trusted bootstrap nodes, or the sameCS could periodically
insert a signedbootstrapList in the DHT, so that every ac-
tive node could download it before disconnection and use it
for its next join. Only if all the known nodes are off-line the
CS will be contacted again to request a newbootstrapList.
The node Initialization and the subsequent network join are
shown in figure 1.

4.3 Nodes interaction

A nodeA can successfully send aRPC(join primitive in-
cluded) to a nodeB and obtain a proper response only if
bothA andB observe the following communication proto-
col:

I A → B : NodeIdA, N1

II B → A : NodeIdB, N2

III A → B : AuthIdA, AuthAB , RPC-REQ

IV B → A : AuthIdB, AuthBA, RPC-RES

We call this four way exchange asession betweenA

andB. RPC-REQ and RPC-RES fields are respectively the
request and response RPC defined in Kademlia;N1 and
N2 are randomly generated nonces. Messages sent at steps
I and II must be somehow marked differently (e.g. different
opcode), to distinguish the request from the response.

Authentication tokens are structured as follows:

AuthAB = Sign(NodeIdB ||N2||H(RPC-REQ),K−

A
)

AuthBA = Sign(NodeIdA||N1||H(RPC-RES),K−

B
)

Figure 2 shows the message flow between two nodes during
a session. In step III (and IV), the receiving node checks
signatures (inAuthId andAuth), expiration times validity,
equalities between nonces, and equalities betweenNodeId

in step I (and II), inAuth, and inAuthId.
Signature and expiration time validity checks onAuthId

demonstrate the existence of a valid and randomly gener-
atedNodeId, associated with anUserId and with a public
key; validity of signature inAuthId and equality check on
NodeId assures that the sender is the same entity certified
by AuthId and that the present node is the correct recipi-
ent of the message. Equality checks on nonces inAuth and
the ones received previously protect against replay attacks.
A’s verification ofNodeIdB included inAuthIdB assures
thatB is really the node thatA wanted to contact;B’s ver-
ification ofNodeIdA included inAuthIdA proves that the
RPC has been called by the same node that started the ses-
sion. Finally, both peers execute an integrity check on the
RPC hash to verify that no attacker has replaced the origi-
nal RPC with a bogus one. The reader should observe that
nonces are used against man in the middle attacks instead
of exchanging timestamps because we cannot assume that
hosts are synchronized to a common clock.

NodeId , N1A

NodeId , N2B

AuthId , Auth ,A AB RPC-REQ

NodeA

End session

End session

AuthId , Auth ,B BA RPC-RES
Check

Check

I

II

III

IV

NodeB

Figure 2. An example of node session

4.4 Content storage system

RPCs follow Kademlia’s definitions, except for the store
RPC. LetA be a node, owner of a contentObj. If A wants
to storeObj in the DHT it locates via lookup thek nodes
closest to the content key and then sends to them a store
message structured as follows (suppose thatB is a generic
replica node):

A → B : AuthIdA + AuthAB + StoreRPC

StoreRPC = k||Obj||Cred

Cred = Sign(UserIdA||k||H(Obj)||ts||TTL,K−

A
)

Cred binds theUserId to the key for which the content
was inserted and to the hash code of the content, so that is
subsequently possible to prove that the owner had inserted
the contentObj at the keyk. Cred includes also a times-
tamp and a time to live to specify the content submission
time and its persistence period. During the periodic content
spreading procedure, all replica nodes send store messages
keeping the original credentials associated with each con-
tent. A node performing a lookup for contents related to a
key χ receives all the objects marked withχ from replica
nodes responsible for that key; before passing the content
to the application, the node must verify the credentials sig-
nature and the object hash and must discard the object if the
check fails.

If the application ascertain that the content is somehow
polluted (e.g. the key that marks the content is not related
with it), it can benefit from the information included in the
credentials to penalize the owner of the content. This could
be simply accomplished by instructing the underlying node
to blacklist the cheater user in order to refuse all the in-
coming requests marked with the malicious node’sAuthId;
every Likir node allows the application to insert a new
identity to a local blacklist. The description of a reputa-
tion service that can manage feedbacks from the users and
the details concerning a possible revocation policy for the
identifiers of misbehaving users, are beyond the goal of this
paper. However, it is important to say that an effective repu-
tation manager, that can be external to the network, as well
as integrated in the application, can help to exclude more
rapidly the polluter from the whole network. Nevertheless,
the propagation of polluted content is largely limited due to
credentials’ verification.

4.5 Bootstrap list construction

The bootstrap node selection is a problem inherent to the
fully distributed nature of P2P networks. The bootstrap in-
formation acquisition process must prevent an attacker to
manipulate bootstrapping information to let a victim join
a malicious parallel network. Kademlia does not face the

bootstrap node selection problem. Using the support of the
Certification Service,Likir offers a practical solution to
this problem.

TheCS maintains a list of active peers in a cache, where
a generic entry stores the following information:

CacheEntry = (NodeId, IPaddress, UDPport, ts)

TheCS probes nodes in the cache, controlling a DHT node,
marked with a self signedAuthId, that runs a sequence
of FIND-NODE RPCs for random generated keys. TheCS

adds to its cache the pointers to the nodes that replied to the
FIND-NODE RPCs, then it can iterate the procedure until it
gathers enough contacts for cache replacing. Likir imple-
ments a least-recently cache replacement policy, except that
active nodes are never removed from the list: if the cache
is full then the least-recently seen node is pinged. If it fails
to respond, it is replaced with a newly discovered one. Oth-
erwise, if the least-recently seen node responds, it is moved
to the tail of the list, and the new contact is discarded.

4.6 IBS support

Likir can profitably replace the classic public key cryp-
tography with the IBS paradigm to sign messages. Since the
UserId must be sent in every communication session, the
recipient of an RPC (request or response) always knows the
user name of the sender. Using IBS is therefore possible to
noticeably streamline the protocol overhead by omitting the
information about the user public key in theAuthId; this
is because theUserId includes also the information of the
public key. Suppose a scenario where there is aPKG (that
could be an integral part of theCS) and where every system
user has obtained from it a private key tied to his own user
id; even theCS would have its own id and a related key
pair. TheCS should no longer certify the binding between
aUserId a public key and aNodeId, but it could just cer-
tify the binding between aNodeId and aUserId Using
IBS, theNodeIdReq message and theAuthId related to a
nodeA becomes:

NodeIdReq = UserIdA

AuthIdA = Sign(NodeIdA||UserIdA||exp,K−

CS
)

4.7 Security Considerations

In this section we discuss howLikir strongly limits dan-
gerousness of attacks described in Section 3.
Routing attacks. In Kademlia, the sender contact of ev-
ery incoming message is added to the route table if there
is enough room in the buckets. The contacts with a nodeId
close to the local id are always added to the route table due
to the splitting procedure. Combined usage ofAuthId and

Auth makes the communication between nodes authenti-
cated, so the attacker can inject only its own contact into
the target route table, and because the ids are randomly cho-
sen by theCS, the attacker cannot generate its id “ad hoc”.
Routing attacks (including eclipse) are unfeasible. More-
over, it is unfeasible for an attacker to hide a content marked
with a given keyk by way of a node insertion attack, be-
cause the malicious node cannot register a substantial num-
ber of nodes with ids close tok: in fact, he cannot control
id generation by his own.

Kademlia’s lookup vulnerability is corrected by authen-
ticated message exchange and random id generation. If the
maliciousFIND-NODE RPC receiver responds with a set of
references to invalid nodes (i.e. devoid ofAuthIds), the
victim node is not able to contact any of them because the
authentication protocol fails in signature verification. If the
attacker responds with a set of valid colluding nodes, its
attack results ineffective because the colluders’ ids are scat-
tered along the keyspace, so the lookup procedure proceeds
properly.
Sybil attack. Every user can have multiple identities (e.g.
many email addresses), so a user can bind each of his iden-
tities to a different node by sending manyNodeIdRequest

to theCS, and then he can run all those nodes on the same
machine. So the Sybil attack is not completely wiped out
with this scheme. Nevertheless, each node corresponds to a
different user account and the node initialization requires a
verification procedure for that account. If the user authen-
tication procedure requires a human interaction it would be
difficult for an attacker to create many different nodes in
an automated way, actually lowering the risk of Sybil At-
tacks. For this reason, we strongly suggest to adopt OpenId
verification methods, that redirect the user agent to an iden-
tity provider, and that returns to the CS when the submitted
identity has been correctly authenticated.
Storage attacks.Every storage entry in the DHT is bound
with its Cred, created by the content owner with an un-
forgeable signature. A node performing a lookup opera-
tion returns to the application only those results that are
bound with someCred, and that has been previously ver-
ified. Therefore, the consumer application (or the human
user himself) can interact with a reputation system to reward
or penalize the owner of the consumed object depending
on the quality of the content. The underlying node can be
then instructed to exclude from network traffic those nodes
whose reputation is too bad. The use ofCred can con-
trast attacks like index poisoning, content pollution or even
DDoS attacks based on redirection by punishing the mali-
cious users who attempt these attacks.
Man in the middle. An attacker who’s able to intercept
and alter the messages flowing between two nodes has no
way to act as one of the endpoints or to fool correct nodes
into accepting forged messages.AuthId andAuth cannot

be modified since they are signed, and the RPC cannot be
altered or replaced because the Authenticator contains the
RPC hash code. An attacker cannot effectively replay an in-
terceptedAuth because it includes a nonce which validity is
limited to a node interaction session; moreover authentica-
tors are addressee-specific, because they include the recip-
ient node id. Finally, the nonce based two-way authentica-
tion scheme grants protection against common interleaving
attacks as Oracle session attacks, parallel attacks and offset
attacks.

5 Evaluation

In this section we propose a quantitative analysis of the
Likir protocol in order to evaluate the feasibility of the pro-
posed approach in a large-scale distributed environment.
Compared to Kademlia, Likir shows an overhead that af-
fects both the number and the size of messages exchanged
between nodes, besides the computational cost introduced
by cryptographic operations. In particular, any interaction
between nodes involves the dispatch of two additional mes-
sages for the nonce exchange (messages I and II) and the
addition ofAuthId andAuth to the request and response
RPCs (messages III and IV). Moreover, a node must pro-
duce a signature for each sent RPC (two signatures when
the content is submitted by its owner, because of the pro-
duction of credentials) and verify two signatures for each
received RPC. In the following, we will state the costs in
terms of messages size (Section 5.1), computational cost
due to cryptographic primitives (Section 5.2) and network
latency (Section 5.3).

5.1 Spatial Analysis

The size of every Likir message is greater than the size
of ordinary Kademlia RPC, due to the addition of the signed
tokens.AuthId, Auth andCred are composed by different
data; the whole set of elements that composes these tokens,
together with their size, is listed in Table 1.

NodeId : 20 bytes
UserId : 128 bytes

K+ : 128 bytes
exp : 8 bytes

Signature : 128 bytes
Nonce : 16 bytes
Hash : 20 bytes

ts : 8 bytes
TTL : 8 bytes
key : 20 bytes

Table 1. Protocol elements size

Every message contains at least anAuthId and anAuth,
which constitutes the message header. In addition to this,

the STORERPC request includes aCred associated to the
object to be stored and theFIND-VALUE RPC response pay-
load contains aCred attached to every content returned
to the querier. Because the number of contents perFIND-
VALUE response is variable due to the availability of ob-
jects corresponding to the requested key stored in the replica
nodes, the overhead for such RPC is not constant; we define
n as a variable representing the number ofCred perFIND-
VALUE response. If an IBS scheme is used, theAuth does
not include the public key of the sender, thus streamlining
the spatial overhead for every RPC. Table 2 shows the over-
head for every RPC, when RSA and IBS schemes are used.
It is worth to notice that the additional header size is smaller
than 1KB in the worst case, and theFIND-VALUE payload
dimension overhead is linear with the number of retrieved
contents.

RPC
Likir RSA Likir IBS

Request Response Request Response
PING

596 596 468 468
FIND-NODE

FIND-VALUE 596 596 + 312· n 468 468 + 312· n

STORE 908 596 780 468

Table 2. RPC Spatial Overhead (in bytes)

5.2 Cryptographic Microbenchmark

The node interaction protocol instructs both sender and
receiver to generate and to verify signatures. Table 3 shows
the number of cryptographic primitives to be performed by
a node during a whole session, for every RPC. We refer to
gen as the signature generation, and tocheck as the sig-
nature verification. The SHA-1 hashing operations are not
considered due to the non-influential cost. The receiver
must perform a check for any received request and must
produce a signature for every sent response, independently
of the RPC performed. Conversely, the operations required
to the sender depend on the RPC type. In particular, the
sender of aFIND-VALUE RPC should verify the signature
of theCreds associated to then received contents included
in the response.

RPC Sender Receiver
PING

gen + check

gen + check
FIND-NODE

FIND-VALUE gen + (n + 1) · check

STORE 2 · gen + check

Table 3. RPC Cryptographic Overhead

Used in this analys, we have built an initial implementa-
tion in C in order to quantify the cost of cryptographic oper-
ations in a real platform. We use the GNUopenSSLlibrary
for all standard cryptographic operations, 1024-bit RSA for

signing and SHA-1 for hashing. We adopt thePairing-
Based Cryptography(PBC) library3 for all identity-based
primitives. In particular, we usedBoneh-Lynn-Shacham
(BLS) scheme. All experiments are conducted using a In-
tel Quad-Core Xeon 2.5 GHZ with 4 GB RAM, running
the Linux Ubuntu 7.01 operating system. Each test is per-
formed 1000 times and the average value is presented in
Table 4 along with the standard deviationσ. Note that the
σ estimation for theFIND-VALUE RPC considers aǫ value
that represents the standard deviation component due to the
n checks performed.

Operation
Likir RSA Likir IBS

Cost σ Cost σ

gen 2.026 0.164 17.695 0.045
check 0.1 0.014 26.5 0.051

PING 4.244 0.214 88.372 0.126
FIND-NODE 4.634 0.218 88.624 0.156

FIND-VALUE
4.634+

0.218+ǫ
88.624+

0.156+ǫ
check · n check · n

STORE 6.834 0.256 106.009 0.175

Table 4. RPC Cryptographic Costs (in ms)

From the results, the additional cryptographic costs are
affordable for a real system in both RSA and IBS schemes.
It is worth noting that there are evident differences between
RSA and IBS, mainly for thecheck primitive; anyway this
gap does not compromise the feasibility of the IBS ap-
proach.

5.3 Computational Effort

As depicted previously, the Likir protocol introduces an
additional cost due to the exchange of a nonce value be-
tween the participant nodes. In order to quantify the impact
of this further message, we deploy the Likir middleware in
a couple of nodes running on thePlanetLab4 network. Ac-
cordingly, we select two nodes (i.e.,planetlab1.di.unito.it
andplanetlab1.cs.ubc.ca) and we executed all RPCs mea-
suring the overall session time. Each test is performed 500
times and the results show the average values.

In Figure 3 we show the comparison between the session
time for the basic Kademlia and the Likir with IBS or RSA
support. As expected, for all RPCs the overhead introduced
by the Likir protocol is about 2 times for the RSA scheme
and 2.5 times for the IBS. This gap is basically due to the
nonce exchange.

As described above, the number of receivedCredsn can
affect the overall performance mainly due to the additional
checks required. Therefore, in the following we will exam-
ine the behavior of theFIND-VALUE RPC according to then
parameter. Figure 4 shows that the RSA approach is slightly

3http://crypto.stanford.edu/pbc/
4http://www.planet-lab.org/

 0

 100

 200

 300

 400

 500

 600

 700

ping find-node find-value (n=1) store

R
P

C
 S

es
si

on
 T

im
e

(in
 m

ill
is

)

RPC

Likir IBS
Likir RSA
Kademlia

Figure 3. RPC Session Overhead

affected by then variation while the IBS scheme introduces
a linear degradation whenn grows. Anyway, an improve-
ment to the IBS scheme could be gained by the adoption
of an aggregate signature [7] scheme by means of a group
of signatures that can be verified in a single step. This can
(significanlty) reduce the cost of the signature verification
phase, even if this alternative needs further analysis due to
the different pairing system used.

 0

 500

 1000

 1500

 2000

 2500

 3000

1 25 50 75 100 125 150

R
P

C
 S

es
si

on
 T

im
e

(in
 m

ill
is

)

n

Likir IBS
Likir RSA
Kademlia

Figure 4. FIND-VALUE RPC Session

5.4 Discussion

In relation to the high level of security that the proposed
architecture guarantees, the cost of theAuth signature pro-
duction for the outgoing messages is affordable.

If a certain percentage of “corrupted” messages could be
accepted as valid, it would be possible to set up the nodes
to verify the signatures of inbound messages to sample. A
more detailed study about the relationship between the per-
centage of corrupt messages on the overlay network, the sig-
nature control frequency and the percentage of corrupt mes-
sages that succeed in avoiding the verification could show
what is the optimal control threshold for systems subjected
to any degree of risk.

The introduction of a centralized control in a completely
distributed system is another potential weakness of the sys-
tem. However, it is worth noting that theCS intervenes
only in the node registration procedure; besides, the expira-
tion time specified in theAuthId could reasonably be con-
sidered valid for months, or even for several years. TheCS

is essential only for those users who have yet to make the
registration process, or whoseAuthId is expired; all other
nodes can join the system using a list of previously known
nodes as bootstrap list. Thus, despite its presence, theCS is
not a single point of failure and the overlay remains a fully
distributed environment which is almost independent from
the central control.

6 Conclusion and Future Work

LeveragingLikir functionalities, every content in the
system will be associated with its owner’s identity in a
non-repudiable way. Moreover, IDs will be certified and
randomly selected preventing routing and storage attacks.
In such a way, the previously identified weaknesses are
strongly mitigated. Finally, applications’ interoperability
with other Web 2.0 services is granted by integrating au-
thentication through external identity providers. A Java API
has been implemented and it will be released very soon.
Further performance and scalability tests, conducted in a
real network environment, are under way. As future work,
we plan to improve Likir architecture by providing the Cer-
tification Service distribution, in order to completely re-
move the dependence of the system on a central authority.
Moreover, Likir security properties will be methodically an-
alyzed in a more formal way.

Acknowledgments

This work has been partially supported by the Italian
Ministry for University and Research (MIUR), within the
framework of the “PROFILES” project (PRIN).

References

[1] Sybil-Resistant DHT Routing, volume 3679 of LNCS.
Springer, 2005.

[2] H. R. al. Limiting sybil attacks in structured peer-to-peer
networks. Technical Report NAS-TR-0017-2005, Network
and Security Research Center, Department of Computer Sci-
ence and Engineering, Pennsylvania State University, Uni-
versity Park, PA, USA, 2005.

[3] I. Baumgart and S. Mies. S/Kademlia: A Practicable Ap-
proach Towards Secure Key-Based Routing. InProc. of
P2P-NVE 2007 in conjunction with ICPADS 2007, Hsinchu,
Taiwan, volume 2, Dec. 2007.

[4] D. Boneh and M. Franklin. Identity-based encryption from
the weil pairing.SIAM J. Comput., 32(3):586–615, 2003.

[5] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S.
Wallach. Secure routing for structured peer-to-peer over-
lay networks. InOSDI ’02: Proceedings of the 5th sym-
posium on Operating systems design and implementation,
pages 299–314, New York, NY, USA, 2002. ACM.

[6] C. Cocks. An identity based encryption scheme based on
quadratic residues. InProc. of the 8th IMA Int. Conf. on
Cryptography and Coding, pages 360–363, London, UK,
2001. Springer-Verlag.

[7] B. L. D. Boneh, C. Gentry and H. Shacham. Aggregate and
verifiably encrypted signatures from bilinear maps. InEu-
rocrypt ’03, LNCS 2656, Springer-Verlag, pages 416–432,
2003.

[8] J. Douceur. The sybil attack, 2002.
[9] D. Dumitriu, E. Knightly, A. Kuzmanovic, I. Stoica, and

W. Zwaenepoel. Denial-of-service resilience in peer-to-peer
file sharing systems.SIGMETRICS Perform. Eval. Rev.,
33(1):38–49, 2005.

[10] A. S. et al. Eclipse attacks on overlays: Threats and de-
fenses. InProc. of the 25th IEEE InfoCom 2006, Barcelona,
Spanien, April 2006. IEEE Computer Society.

[11] J. L. et al. The index poisoning attack in p2p file sharing
systems. InINFOCOM, 2006.

[12] M. C. et al. Secure routing for structured peer-to-peer over-
lay networks. SIGOPS Oper. Syst. Rev., 36(SI):299–314,
2002.

[13] M. S. et al. Analyzing peer behavior in KAD. Technical Re-
port EURECOM+2358, Institut Eurecom, France, Oct 2007.

[14] M. S. et al. Exploiting kad: possible uses and misuses.SIG-
COMM Comput. Commun. Rev., 37(5):65–70, 2007.

[15] M. S. et al. A global view of kad. InIMC ’07: Proc. of the
7th ACM SIGCOMM, pages 117–122, New York, NY, USA,
2007. ACM.

[16] S. R. et al. Leveraging identity-based cryptography for node
id assignment in structured p2p systems. InProc. of AINAW
’07, pages 519–524, Washington, DC, USA, 2007. IEEE
Computer Society.

[17] T. C. et al. Induced churn as shelter from routing-table poi-
soning. InProc. of NDSS 2006, San Diego, California, USA,
2006.

[18] Y. K. et al. Admission control in peer groups, 2003.
[19] P. Maymounkov and D. Mazières. Kademlia: A peer-to-peer

information system based on the xor metric. InIPTPS 2002,
pages 53–65, 2002.

[20] A. Rowstron and P. Druschel. Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer
systems.LNCS, 2218:329–??, 2001.

[21] A. Shamir. Identity-based cryptosystems and signature
schemes. InProc. of CRYPTO 84 on Advances in cryp-
tology, pages 47–53, New York, NY, USA, 1985. Springer-
Verlag New York, Inc.

[22] E. Sit and R. Morris. Security considerations for peer-to-
peer distributed hash tables. InIPTPS ’01: Revised Papers
from the First International Workshop on Peer-to-Peer Sys-
tems, pages 261–269, London, UK, 2002. Springer-Verlag.

[23] R. Steinmetz and K. Wehrle, editors.Peer-to-Peer Systems
and Applications, volume 3485 ofLNCS. Springer, 2005.

