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Developing a Fluid Intelligence Scale Through a Combination of Rasch
Modeling and Cognitive Psychology

Ricardo Primi
University São Francisco

Ability testing has been criticized because understanding of the construct being assessed is incomplete
and because the testing has not yet been satisfactorily improved in accordance with new knowledge from
cognitive psychology. This article contributes to the solution of this problem through the application of
item response theory and Susan Embretson’s cognitive design system for test development in the
development of a fluid intelligence scale. This study is based on findings from cognitive psychology;
instead of focusing on the development of a test, it focuses on the definition of a variable for the creation
of a criterion-referenced measure for fluid intelligence. A geometric matrix item bank with 26 items was
analyzed with data from 2,797 undergraduate students. The main result was a criterion-referenced scale
that was based on information from item features that were linked to cognitive components, such as
storage capacity, goal management, and abstraction; this information was used to create the descriptions
of selected levels of a fluid intelligence scale. The scale proposed that the levels of fluid intelligence
range from the ability to solve problems containing a limited number of bits of information with obvious
relationships through the ability to solve problems that involve abstract relationships under conditions
that are confounded with an information overload and distraction by mixed noise. This scale can be
employed in future research to provide interpretations for the measurements of the cognitive processes
mastered and the types of difficulty experienced by examinees.

Keywords: inductive reasoning, fluid intelligence, Rasch measurement, matrix reasoning

There has been significant development in cognitive psychology
and the psychometrics of intelligence testing over the last few
decades (Cornoldi, 2006; Deary, 2001; Whitely, 1980; Whitely &
Schneider, 1981). Cognitive task analysis of items that are com-
monly used in intelligence tests provides a better understanding of
how people represent and process information, which in turn
improves a test’s score for construct validity (Sternberg, 1981).
Psychometric model-based methods, including item response the-
ory (IRT), provide ways to construct scales that show links be-
tween test scores and the underlying construct that provide sub-
stantial additional interpretations (Embretson, 2006; Wilson,
2005). These methods have recently evolved into cognitive diag-
nostic assessment models such as that of Tatsuoka (2009).

Despite these developments, test construction procedure has not
yet satisfactorily incorporated these new methods (Embretson,
1994). Thus, the expectation for the future generation of tests is
that cognitive psychology should play an important role in con-
struct representation. By providing a rich theoretical basis for the
creation of purified tasks, it should lead to the development of
instruments with better theoretical grounding. This article presents
an illustration of these methods as they apply to the development
of a fluid reasoning test. First, a review of the psychometric and
cognitive neuroscience definitions of fluid intelligence is pre-
sented. A brief review of how fluid intelligence is measured
follows, with emphasis on the justification for new tests based on
modern methodology. Finally, an empirical study of test develop-
ment is presented.

Nature of Fluid Intelligence

According to Schneider and McGrew (2012), fluid reasoning
(Gf) refers to

the deliberate but flexible control of attention to solve novel “on the
spot” problems that cannot be performed by relying exclusively on
previously learned habits, schemas and scripts. Fluid reasoning is a
multi-dimensional construct, but its parts are unified in their purpose:
solving unfamiliar problems. Fluid reasoning is most evident in ab-
stract reasoning that depends less on prior learning. However, it is also
present in day-to-day problem solving. Fluid reasoning is typically
employed in concert with background knowledge and automatized
responses. (p. 111)

Fluid intelligence is central to understanding the construct of
intelligence. As it is the broad factor most related to the general
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factor g (Blair, 2006; Schneider & McGrew, 2012), it predicts
various important outcomes such as achievement and rate of
learning, especially with regard to complex subjects like math
(McGrew & Wendling, 2010; Primi, Ferrão, & Almeida, 2010),
and job performance in highly complex occupations (Gottfredson,
1997). Fluid intelligence has recently been shown to play an
important role in individual differences in creativity (Silvia &
Beaty, 2012). Fluid intelligence relates to the activity of the
prefrontal cortex, including related damages (Duncan, Burgess, &
Emslie, 1995; Duncan, Emslie, & Williams, 1996; Duncan, Sch-
ramm, Thompson, & Dumontheil, 2012; Kane, 2005); therefore, it
is potentially relevant for differential diagnosis of frontal lobe
lesions. Also, carefully controlled latent variable modeling studies
have revealed that the latent factor of fluid intelligence is central to
explaining the construct of executive functions, which is a core
part of any neuropsychological battery (Salthouse, 2005, 2011;
Salthouse, Pink, & Tucker-Drob, 2008).

Over the past four decades, the basic cognitive process un-
derlying fluid intelligence tasks has been the subject of studies
by cognitive psychologists (Bethell-Fox, Lohman, & Snow,
1984; Carpenter, Just, & Shell, 1990; Embretson, 1995, 1998,
2002; Marshalek, Lohman, & Snow, 1983; Mulholland, Pel-
legrino, & Glaser, 1980; Primi, 1995, 1998, 2002; Sternberg,
1977, 1978; Sternberg & Gardner, 1983), cognitive neurosci-
entists, and neuroimaging researchers (Burgess, Gray, Conway,
& Braver, 2011; Gray, Chabris, & Braver, 2003; Kane, 2005;
Prabhakaran, Smith, Desmond, Glover, & Gabrieli, 1997). Most
of the individual differences in fluid intelligence are shared
with working memory capacity (Ackerman, Beier, & Boyle
2005; Embretson, 1995, 1998; Engle, Tuholski, Laughlin, &
Conway, 1999; Kane, Hambrick, & Conway, 2005; Kyllonen &
Christal, 1990; Salthouse et al., 2008). According to Baddeley
and Hitch (1994), working memory capacity can be decon-
structed into memory buffers that are responsible for storing
speech-based information and visuospatial information (phono-
logical loops and a visuospatial sketchpad) and a central exec-
utive component that is responsible for the coordination of the
basic components and attentional control. The central executive
component has been broken down into a number of interrelated
functions, such as (a) the coordination of simultaneous mental
activities, (b) the monitoring of mental activities, (c) attentional
control and selective attention, (d) the activation of information
from long-term memory, and (e) rerouting or adaptive flexibil-
ity (Shimamura, 2000). What appears to be the basic cognitive
mechanism that explains this shared variance among fluid in-
telligence, central executive, and working memory is controlled
attention (Conway, Cowan, Bunting, Therriault, & Minkoff,
2002; Engle et al., 1999; Heitz, Unsworth, & Engle, 2005;
Kane, Bleckley, Conway, & Engle, 2001; Miyake, Friedman,
Emerson, Witzki, & Howerter, 2000; Oberauer, Süß, Schulze,
Wilhelm, & Wittmann, 2000; Salthouse, 2005, 2011; Salthouse
et al., 2008). Individual differences in the ability to deal with
complex intellectual tasks—where one must deal with various
encoded mental representations and their relationships simulta-
neously while there is a high likelihood that one mental repre-
sentation interferes with another—are central to fluid intelli-
gence.

Fluid Intelligence Measurement

In modern factor analysis literature (McGrew, 2009; Schneider
& McGrew, 2012) the broad fluid intelligence factor is defined by
three narrow factors as inductive reasoning (I), general sequential
reasoning (RG; deductive reasoning), and quantitative reasoning
(RQ). Inductive reasoning tasks such as analogies, classifications,
series, and geometric matrices, such as those that appear in Ra-
ven’s Progressive Matrices (Raven, Raven, & Court, 1998), one of
the most studied tests of fluid intelligence, are considered the
markers of fluid reasoning. Sequential reasoning involves deduc-
tive logic tasks, with conclusions being inferred from premises,
and quantitative reasoning involves induction and deduction tasks
with numbers and mathematical operations.

Most intelligence batteries contain one or more fluid intelli-
gence tests. For instance, the Woodcock-Johnson Battery (Wood-
cock, McGrew, & Mather, 2001) includes Concept Formation (I)
and Analysis Synthesis (RG); the Wechsler Intelligence Scales
(Wechsler Preschool and Primary Scale of Intelligence—Third
Edition, WISC–IV, and WAIS–IV; Weiss, Keith, Zhu, & Chen,
2013) have Matrix Reasoning (I), Picture Concepts (I), and Figure
Weights (RQ); the Stanford–Binet Intelligence Scale (SB5; Roid
& Pomplun, 2012) includes Object-Series/Matrices (I), Early Rea-
soning, Verbal Analogies/Verbal Absurdities, and Verbal and
Non-Verbal Quantitative Reasoning (RQ); the Differential Abili-
ties Scales (DAS-II; Elliot, 2012) has Matrices (I), Pictures Sim-
ilarities (I), and Sequential and Quantitative Reasoning (I and RQ);
the Kaufman Assessment Battery for Children (KABC-II; Singer,
Lichtenberger, Kaufman, Kaufman, & Kaufman, 2012) includes
Conceptual Thinking (I), Pattern Reasoning (I), Story Completion
(RG); and the Reynolds Intellectual Assessment Scales (Reynolds,
Kamphaus, & Raines, 2012) includes Odd-Item Out (I) and Verbal
Reasoning.

Given the diversity of tests already available, why develop a
new measure? One reason is that all of the available measures were
developed before the new cognitive and neuroscientific under-
standing of fluid intelligence was available. This research shed
light on specific features of cognitive tasks that will engage the
desired latent process underlying fluid intelligence. Essentially,
whenever an intellectual task involves an increased amount of
information that must be dealt with simultaneously and when there
is a high likelihood that one mental representation interferes with
the processing of another, core controlled attention executive pro-
cesses of working memory will be engaged, revealing individual
differences in fluid intelligence.

A fundamental definition of validity states that “a test is valid
for measuring a theoretical attribute if and only if variation in the
attribute causes variation in the measurement outcomes through
the response process that the test elicits” (Borsboom & Mellen-
bergh, 2007). This conception has been incorporated in the latest
version of the Standards for Educational and Psychological Test-
ing, because it relates to evidence of test score interpretation based
on the analysis of response process (American Educational Re-
search Association, American Psychological Association, & Na-
tional Council on Measurement in Education, 1999). Therefore, if
test items are built to inherit these features as part of the explana-
tion of their difficulty, the test will potentially have more construct
relevant variance built into it (Messick, 1980).
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A second point is that the objective definition of cognitive
complexity in terms of manipulable task features, called complex-
ity factors, is a key element for developing generalized scales that
transcend a particular test and understanding other tests of fluid
intelligence. Complexity factors are broad-level sources of vari-
ance of item difficulty. In IRT, item difficulty is positioned on the
same scale as a person’s abilities. One advantage of a common
metric for ability and item difficulty is that the explanations for the
variability in item difficulty are also explanations for the variance
of the ability scale (Andrich, 1990). This commonality is espe-
cially important because item variables that are supposed to relate
to specific aspects of cognitive complexity can be easily manipu-
lated in experimental studies that test the effects of these aspects
on item difficulty (Embretson & Reise, 2000; Primi, 1995, 1998,
2002). Although item variables are easily manipulated, the same is
not true for people. In these studies, “the relative difficulty of the
various underlying cognitive process are operationalized by vary-
ing item stimulus features” (Embretson, 1998, p. 383). Hence, the
explanation of item difficulty provides an operational definition of
the ability scale. Linking item variables to item difficulty param-
eters augments the construct validity of test score interpretations,
provided that these item variables are linked theoretically and
empirically to different demands on the underlying cognitive pro-
cesses (i.e., to cognitive complexity; Embretson, 1983, 1994). This
linkage traces back to Carroll’s (1993) concept of behavioral
scaling, or the “process of stating in behavioral terms what tests
results directly imply with regard to what examinees know or can
perform” (p. 299). Construct validity is enhanced by making
“reference to the level of cognitive processing involved in correct
response at a given item difficulty level” (Carroll, 1993, p. 304).

Because complexity factors—linked to construct interpreta-
tions—are in a higher level of abstraction, they can be useful for
analyzing several groups of intelligence tests that use the same
stimuli. Such analyses make it possible to create scales that are test
independent and thereby realize one of the important advantages of
IRT. In summary, item difficulty can be predicted by complexity
factors that, in turn, are more general and can be applied to
different tests that measure the same construct. Thus, these vari-
ables establish a basis for constructing common scales to describe
the level of cognitive processing that underlies items from similar
tests. Ultimately, these variables could be used to link different
tests on the basis of underlying task complexity.

A third point is that new tests, based on these modern methods,
contribute to overcoming a problem referred to as arbitrary met-
rics, which is defined as the lack of information on “how a one-unit
change on the observed score reflects the magnitude of change on
the underlying dimension” (Blanton & Jaccard, 2006, p. 28). One
consequence of this problem is the lack of a clear understanding of
clinically significant change in psychological interventions. By
having a scale with an objective metric of cognitive complexity
mapped onto component processes that were mastered while solv-
ing the items, one can reach a less arbitrary metric for test score
interpretation. Such an instrument would provide rich information
for diagnosis and monitoring change that would be more useful for
clinicians and researchers.

A fourth advantage of having a more objective scale of fluid
intelligence is that practitioners and researchers would be stim-
ulated to be aware of the core task features and complexity
factors that are central to the definition of the latent scale

formed by the items. An objective scale stimulates thinking
about what cognitive process a person has mastered, what kinds
of cognitive tasks will present difficulties when he or she is
faced with similar demands, or what a specific change in test
scores after an intervention would mean in terms of the under-
lying cognitive process. These considerations facilitate diag-
nostic practice, planning, and monitoring of interventions. An
objective scale is also important for analyzing other tests. Even
those that are not explicitly stated as measures of fluid intelli-
gence could be tapping similar cognitive functions if their tasks
vary in difficulty due to the complexity factors summarized in
the present research. Finally, this research provides an updated
test score interpretation for fluid intelligence tests, with refer-
ence to the underlying basic process of working memory and
executive functions, based on more recent literature on cogni-
tive psychology and neuropsychology.

In summary, although various tests of fluid intelligence are
available, they do not possess an objective scale metric mapped
on cognitive complexity and core process underlying fluid
intelligence. The only test identified on the basis of these
principles was the Abstract Reasoning Test (ART; Embretson,
1998), which was created with the purpose of illustrating these
new methods. The goal in the present study was to illustrate the
application of the cognitive design system for test development
(Embretson, 1994, 1998) in the development of a scale for fluid
intelligence that combines cognitive psychology and Rasch
modeling. Although it was applied to a specific test presented in
this article, this method is expected to contribute to intelligence
testing in general because it demonstrates the development of
criterion-referenced norms for test score interpretations for the
underlying scale based on cognitive psychology and modern
psychometric methods, in addition to norm-referenced mea-
sures of individual differences. An objective complexity scale is
proposed that is general enough to represent any test of fluid
intelligence, provided that the test’s items are mapped onto the
complexity scale presented in this article. This study contrib-
utes to the construct validity of a more general spectrum of
interpretations of fluid intelligence test scores.

Method

Participants

The participants were 2,797 freshmen undergraduate students
from the University of São Francisco, a private university in a
small city in the state of São Paulo, Brazil. The ages ranged
from 17 to 66 years (M � 22.2 years, SD � 5.5 years), and the
distribution was positively skewed (skewness � 2.4); approx-
imately 65.4% of the participants had ages in the range of 17–21
years. The group included 1,622 women (58%) and 1,175 men
(42%). The participants came from 18 majors that required
between 4 and 6 years of study; in some cases, their diploma is
equivalent to a bachelor’s degree. These majors represented
nine general areas: medicine (4.4%), dental medicine (8.2%),
psychology (17.2%), business (24.2%), engineering (9.9%), law
(21.6%), education (4.2%), literature (2.9%), and tourism
(7.4%).
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Procedure

Data were collected for the present study as part of a basic
abilities-assessment program for freshmen students that was
financed by the university. The goal of the program was to
investigate the reasoning and basic knowledge abilities of first-
year students entering college. The program included the as-
sessment of logical reasoning, reading comprehension, general
literacy, moral judgment, and fluid intelligence. The partici-
pants were volunteers, and the testing was part of their regular
academic activities. The participants completed the tests in two
sections that lasted an average of 90 minutes each. After anal-
ysis of the data, the participants received a personal report that
informed them of their scores and explained what the scores
meant.

Test Development

A prototype task used for the measurement of fluid intelli-
gence involves geometric inductive matrix items (Marshalek et
al., 1983), such as Raven’s Progressive Matrices, which is
exemplified in the upper half of Figure 1. In earlier studies,
Primi (1995, 1998, 2002) and Primi, Cruz, Muniz, and Petrini
(2006) experimentally manipulated matrix item variables to
investigate the impact of these features on item complexity.
These earlier studies provided detailed examples of each item
feature and an explanation of the link with fluid intelligence
capacities. In summary, three main features were identified that
were considered the sources of item complexity in geometric
inductive matrix problems: (a) the amount of information due to
the increase in the number of elements or in the number of rules

Figure 1. Examples of fluid intelligence items used in the present study and a summary of sources of
complexity for geometric matrix items and their link with fluid intelligence capacities.
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relating these figures, (b) the complexity of these rules, and (c)
the perceptual complexity of the stimulus.

Amount of Information: Number of
Elements and Rules

The number of elements refers to the number of geometric
figures or attributes that exist in a specific matrix problem,
whereas the number of rules refers to the number of relationships
that exist among the different elements or attributes. Each matrix
cell of Item B10 in Figure 1 is composed of four geometric figures
(four elements), and, across the row, these figures change their
properties, such as shape, outline, and fill. Increases in amount of
information are supposed to interfere with the central executive,
which stresses the need for processing information while storing
the products of these processes and the eventual need for changing
strategies when the problems become highly complex.

Type of Rules: Content of the Relationship

The complexity of the type of rules refers to the nature or
content of the relationships or transformations that are applied to
elements or attributes. A summary of these rules was presented in
previous works (Primi, 1995, 1998, 2002). These rules are postu-
lated to possess different levels of complexity due to the differen-
tial demands on controlled and selective attention (abstraction
capacity). According to Carpenter et al. (1990), people induce
rules in a serial manner, trying simpler rules before more complex
ones. Therefore, more complex rules will be associated with a
greater information load, because a person must consider several
rules and remember the results of these earlier attempts before
arriving at a complex rule.

Perceptual Complexity: Element Salience

The third feature is perceptual complexity, which refers to the
likelihood of misleading cues that produce ambiguity. Perceptual
complexity refers to the amplification or diminishment of the
visual salience of the elements that must be grouped to solve the
problem (Hornke, 2002; Meo, Roberts, & Marucci, 2007; Pérez-
Salas, Streiner, & Roberts, 2012; Primi, 2002). For example, Item
B14 is a perceptually complex version of Item B10 in which the
elements are not aligned as in B10, which breaks the good conti-
nuity, and all of the geometric figures possess the same shape,
which facilitates grouping by similarity. For perceptually complex
items, the likelihood of forming irrelevant groups of elements
based on perceptual features is increased compared to that for
perceptually simpler items. This feature is therefore central in
creating interference and intensifying the need of controlled and
selective attention ability, because creating the correct grouping
requires that certain fragments of the perceptual field must be
selected and focused on while others must be ignored (abstraction).
The increased likelihood of creating irrelevant groupings implies
that more attempts to solve the problem also impose demands on
the cognitive functions of coordination, monitoring, and rerouting.

Item Design Variables and Cognitive Process of
Inductive Reasoning

The bottom part of Figure 1 presents the hypothetical theoretical
relationships between the complexity factors and the cognitive

process that underlie fluid intelligence. The processes summarized
so far were taken from experimental psychology studies that
manipulated the item features and tested their effects on item
complexity. Different types of arrows have been extended from
each factor to indicate the most probable components on which
effects are likely to be observed.

The first thing to note from this diagram is that all of the
complexity factors make demands on goal management, although
the specific operations that they require appear to differ depending
on the factor. The factor amount of information indicates the
relevant extent of information overload on the working memory
that must be considered. Once the limit of the storage capacity has
been reached, some effective type of sequential management be-
comes necessary; this implies the use of hierarchical strategies to
organize the flow of information in a limited space, thus involving
the goal management system. The type of rule and perceptual
complexity interfere at the moment when the elements or attributes
are perceptually grouped (encoded), which requires the efficient
use of selective attention. These variables can also overload the
goal management system when the likelihood of forming irrele-
vant groupings increases, especially for more perceptually com-
plex items. In the case of complex items, the storage capacity is
surpassed because of the increase in the number of attempts. The
role of goal management is the implementation and monitoring of
these attempts and the operation of discarding the irrelevant attri-
bute relationships that were encoded. According to this diagram,
complexity factors should not have a specific and independent
effect on a particular capacity; rather, all of the factors should
influence all capacities. The only exceptions include the amount of
information, which does not appear to have any effect on abstrac-
tion, and perceptual organization, which seems to affect abstrac-
tion in particular.

Test Design

Two paper-and-pencil tests were composed. Forms A and B
each consisted of 16 items similar to the ones presented in Figure
1, all of which were selected from the 64-item pool studied by
Primi (2002). This earlier study contained two computerized
forms, each containing 32 items that were defined by the condi-
tions of an experiment that manipulated the complexity factors:
number of elements (2 or 4), number of rules (2 or 4), types of
rules (four categories discussed below), and perceptual complexity
(low or high). Thus, each form of 32 items corresponded to the
factorial combinations of these variables (2 � 2 � 4 � 2 � 32).
For the present study, a subset of items from this earlier study was
selected on the basis of its psychometric properties (dispersion of
difficulty and item–total correlations). These items were used to
compose two new paper-and-pencil tests to be used in the basic
abilities assessment program, rather than the computerized ver-
sions used earlier. Six items appeared on both forms to function as
anchor items. This equated the scores from Form A and Form B
and resulted in an item bank of 10 � 10 � 6 � 26 distinct items.
Hence, each form consisted of 10 unique items and six anchor
items.

Each item consisted of a 3 � 3 matrix with an empty cell and
eight response alternatives. Each of the problems was composed of
an organized set of geometric figures that obeyed either two or
four rules; the participant was required to discover these rules so
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that he or she could generalize from them and select the most
appropriate of the eight options offered to fit into the blank space.
Two examples of the items used in the current study are presented
in Figure 1.

The item structure was determined by the three variables:
amount of information (number of elements and number of rules),
type of rule, and perceptual complexity. An item consisted of
either two or four geometric figures, termed elements, and those
elements were related by either two or four rules. The rules
employed to relate the items were (a) quantitative pairwise pro-
gressions (i.e., the increase or decrease of some attribute from one
element to the next, such as size, shading, number series, or
shape); (b) figure addition and subtraction, in which the figure in
one cell was composed of a combination of two figures present in
two other cells; (c) the distribution of three values, in which the
elements were instances of a conceptual attribute, such as shading,
inclination, color, size, outline, and shape; (d) attribute addition, in
which an element was created by the combination of two attributes
from the other two elements; and (e) the distribution of two values,
in which element subparts appeared in only two of the three
elements in the three cells of the matrix row.

Two levels of perceptual complexity were also used: easy to
encode and difficult to encode. The manipulations employed to
produce these two levels have been detailed elsewhere (Primi,
1995, 1998, 2002); in summary, the manipulations were based on
gestalt principles of perceptual grouping, such as similarity and
good continuation, to increase the likelihood of forming irrelevant
groupings. For instance, by altering the relative positions of cor-
responding elements across a row, it is possible to increase the
complexity involved in forming relevant groups due to the inter-
ruption of natural perceptual continuity that would have facilitated
the grouping. These principles can also be used to create a per-
ceptual tendency to group elements according to the appropriate
conceptual rule (e.g., by harmonically aligning corresponding el-
ements in space) and thus increase the formation of groups based
on good continuity. Each easy-to-encode item was always accom-
panied by a difficult-to-encode complement that was consistent
with all of the other structural variables; that is, the number of
elements, number of rules, and type of rule involved.

The two examples in Figure 1 comprised four elements and four
rules, each of which involved the distribution of three rules. The
item on the left (B10) was easy-to-encode, and the item on the
right was B10’s difficult-to-encode congener.

The seven incorrect options were systematically created to be
increasingly more correct. Hence, the options were created in such
a way that there were one or two options from each of the
following categories: (a) two alternatives with only one incorrect
transformation, (b) two alternatives with two incorrect transforma-
tions, (c) two alternatives with more than two incorrect transfor-
mations, and (d) one alternative that was a copy of the cell to the
left of the blank space.

Earlier studies have investigated the correlation of the test with
external variables. The simple correlation was .62 with Raven’s
Advanced Progressive Matrices, .42 with general sequential rea-
soning, .46 with spatial visualization, and .36 with crystallized
intelligence. A latent variable modeling of a general factor using
Raven’s Advanced Matrices indicated that the loadings from the
Form A and B scales were .86 and .78, respectively (Prieto &

Velasco, 2006; Primi, 1998, 2002; Primi, Santos, & Vendramini,
2002).

Data Analysis and Statistical Models

The data analysis was performed in four steps. First, the clas-
sical psychometric statistics (item difficulties, item–total correla-
tions, and internal consistency reliabilities) were calculated. Sec-
ond, a full-information item factor analysis was performed with
TESTFACT software (Wilson, Wood, & Gibbons, 1991) to test the
unidimensionality assumption (Hambleton, Swaminatham, & Rog-
ers, 1991). This method analyzes response vectors instead of
correlation matrices and uses all of the information available from
the participant’s responses, not just the covariance among items, as
is the case in traditional methods of factor analysis (Embretson &
Reise, 2000).

Third, the IRT parameters of Rasch’s dichotomous and Rasch–
Master’s partial credit models (Wright & Masters, 1982; Wright &
Stone, 1979) were calculated to calibrate the item difficulties and
person measures by the use of unconditional maximum likelihood
estimation performed by WINSTEPS (Linacre, 2011). The model
fit was evaluated by two indices: information-weighted fit (infit)
and outlier-sensitive fit (outfit). Infit and outfit are indices that are
summary of the residuals “reported as mean-squares, chi-squared
statistics divided by their degrees of freedom, so that they have a
ratio-scale form with expectation 1 and range 0 to �infinity”
(Linacre & Wright, 1994a, p. 350). For large samples, fit indices
between 0.7 and 1.3 indicate a good fit. In general, fit indices in the
range of 0.5–1.5 are considered productive for measurement,
whereas values above 1.5 are considered unproductive for scale
construction (Linacre & Wright, 1994b).

The final step involved a multiple regression analysis to predict
item difficulty from item indicators of complexity. The dependent
variable was the item difficulty parameter bi, and the predictors
were variables related to the amount of information, including a
series of five dummy codes related to the type of rules (quantita-
tive pairwise progressions, figure addition and subtraction, distri-
bution of three values, attribute addition, and distribution of two
values) and perceptual complexity. This final step consisted of
mapping the item difficulty scale onto these objective variables of
item features that were, in turn, linked to underlying cognitive
processes. In this phase, the variables were tested for their capacity
to predict item difficulties.

Results

Classical Psychometric Properties

Table 1 shows the descriptive statistics for the total score. Each
item was scored either as 0 or as 1, and the total score varied from
0 to 16. The table also shows the frequency distribution of item
difficulty and the biserial correlations between the items and the
total scores. The item difficulties varied from .29 to .82, and the
majority of the biserial correlations were above .60, thus contrib-
uting to a respectable internal consistency reliability of .80 and .82.
These results indicate that the goals pursued were achieved; that is,
the two forms represented a wide range on the complexity contin-
uum and simultaneously presented good psychometric qualities.
The original test forms from which the items were selected con-
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stituted 32 items each and had test score internal consistency
coefficients of .84 and .85. Thus, despite the reduction in the
number of items, these new test forms were nearly as reliable as
the original, longer forms (Primi, 2002).

Item Factor Analysis

A separate full-information item factor analysis was performed
by TESTFACT for each test form using the data from 1,339
participant for Form A and 1,308 participant for Form B. For Form
A, the mean of tetrachoric correlation for 120 item pairs was .47;
the eigenvalues for the first and second factors were, respectively,
8.09 and .99, and all of the item loadings on the first unrotated
factor were above .45. These results clearly indicate the existence
of a dominant factor that was responsible for the covariance among
the items. A model that contained two factors did not provide a
significant increase in the model fit (��2 � 13.5, df � 15, p �
.50). The results for Form B were slightly different than those for
Form A; the mean of tetrachoric correlation for 120 item pairs was
.42; the eigenvalues for the first and second factors were, respec-
tively, 7.44 and 1.05, and all of the item loadings on the first
unrotated factor were above .48. However, unlike for Form A, a
small but a significant increase in the model fit was found for Form
B when a second factor was extracted (��2 � 42.45, df � 15, p �
.001). The correlation between the first and the second factor with
an oblique promax rotation of factor loadings was .82, which
indicates that, even for Form B, it is still appropriate to assume a
unidimensional solution.

The full-information factor analysis results provided evidence
that the item sets were measuring the same construct. The unex-
pected results for Form B led to a further investigation of the factor
loading pattern in the two-factor solution, and the easy-to-encode

items were found to be separated from the difficult-to-encode ones.
This finding suggests that the two types of items may represent
specific separate, albeit highly correlated, components of the con-
struct being assessed. More evidence that these factors do not
violate unidimensionality comes from a second check conducted
via a principal components analysis of linearized residuals per-
formed by WINSTEPS. The variance of the second factor, in
eigenvalue units, was 1.29 and 1.27 for Forms A and B, respec-
tively. This accounted for nearly 8% of the total variance, which
was much less than the 45% to 50% of the variance that was
accounted for by the first dominant factor found in the full-
information item factor analysis. These values were below 1.4,
which has been indicated in simulation studies by Raiche (2005) to
be the minimum magnitude for considering a residual component
as a dimension that is differentiated from random noise.

Rasch and Partial Credit Analysis

Given the evidence that a single underlying factor is responsible
for the performance on the items, the next step was to locate each
item on the factor continuum (i.e., to estimate both the item
difficulty and the person’s location on the same continuum). The
analysis for this section was performed with WINSTEPS software
(Linacre, 2011). First, item and person parameters were examined,
centering on the items, and then the infit and outfit indexes were
examined to identify problems with model fit. Table 2 presents the
estimates of item difficulty and their standard errors (b for Rasch
and b1 and b2 for partial credit, which will be explained next) and
the infit and outfit indices.

For Form A, the infit indexes varied from .85 to 1.19 (M � .99,
SD � .08) and the outfit statistics varied from .71 to 1.37 (M �
1.04, SD � .18); 3 of the 16 items had an outfit above 1.2. For
Form B, the infit indexes varied from .88 to 1.14 (M � .99, SD �
.07) and the outfit statistics varied from .80 to 1.28 (M � 1.01,
SD � .15); 3 of the 16 items had an outfit above 1.2. The fit indices
revealed a good fit to the model. Only one item (Form A: 16)
showed an outfit greater than 1.3.

The item difficulties for Form A varied from 	1.67 to 1.41
(M � 0 and SD � .96), and the root-mean-square error of
approximation (RMSE) was .07. The resulting separation index,
GI � 13.67, is “a ratio scale index comparing the ‘true’ spread
of the measures with their measurement error. It indicates the
measure of spread of this sample of examinees (or test items) in
units of the test error in their measures” (Fisher, 1992, p. 238).
For Form B, the item difficulties varied from 	1.45 to 1.75
(M � 0 and SD � .99), and the RMSE was .07, resulting in a
separation index of 14.10. The Rasch item separation reliability
for both forms was high (.99). In conclusion, considering that
item difficulty generally varies from 	3 to 3, the difficulty
indexes were somewhat restricted in range, but they were still
quite distinct, stable, and replicable. This finding is important
because the relative difficulty order among the items is ex-
pected to be stable and clearly separated, thus defining a direc-
tion for the underlying variable.

The second aspect investigated in this step was the application
of the Rasch–Masters partial credit model (Wright & Masters,
1982). This test was composed so that each of the seven incorrect
options was located at a different distance from the correct answer.
This placement permitted the assignment of partial scores for these

Table 1
Descriptive Statistics for Total and Item Scores of Test Forms A
and B

Statistic Form A Form B

Descriptive statistics for total
scores

M 8.5 9.4
SD 3.9 3.7

 .82 .80

Descriptive statistics for items p rb p rb

M .54 .67 .59 .66
SD .16 .07 .17 .09
Min .30 .51 .29 .49
Max .80 .80 .82 .79

Frequency distributionsa f (%) f (%) f (%) f (%)

�.31 1 (6.3)
.31–.40 4 (25.0) 3 (18.8)
.41–.50 1 (6.3) 1 (6.3) 1 (6.3)
.51–.60 6 (37.5) 2 (12.5) 1 (6.3) 4 (25)
.61–.70 2 (12.5) 9 (56.3) 4 (25) 6 (37.5)
.71–.80 2 (12.5) 5 (31.3) 5 (31.3) 5 (31.3)
�.81 1 (6.3) 1 (6.3)

a Difficulty index (p) and biserial correlations between item scores and
total scores for rb.
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alternatives. In the analysis above, all seven options were consid-
ered incorrect, but some of them could have been considered
partially correct. The question of whether assigning a partial score
would increase reliability remained to be addressed.

For this analysis, each item was scored from 0 to 2. The score
2 was given for correct answers, the score 1 was given for partially
correct answers, and the score zero was given for completely
incorrect answers. For items that involved four rules, partial credit
was given for the alternatives with one, two, or three correct rules;
for items that involved two rules, partial credit was given for the
alternatives with one correct rule. Although items could have more
than one partially correct answer, not all of the answers functioned
in the same way or provided the same psychometric information.
Another approach is to provide information if it is possible to
observe a distinct region in the ability continuum in which its
probability of occurrence is greater than that of the alternative. If
this pattern is not observed, there is no useful information in the
alternative.

Plots of the empirical curves that displayed the probability of
each alternative as a function of ability were examined to inves-
tigate which alternatives were worth partial scoring. These plots
were obtained from the multiple choice distractor analysis proce-
dure provided by the RUMM 2010 software (Andrich, Lyne,
Sheridan, & Luo, 1997). The curves of each possible partially
correct alternative were analyzed for a pattern that indicated the
existence of useful psychometric information. The presence of
such a pattern resulted in an alternative that was effectively eligi-
ble for partial scoring.

After this definition, a new data matrix was prepared for each
form that contained partial scorings. The partial credit analysis
developed by Wright and Masters (1982) was applied with
WINSTEPS software. The right side of Table 2 shows the results
of the analysis. Table 2 presents, for each item, the threshold
estimates b1, which indicates the point on the logit scale at which
the likelihood of scoring 1 becomes greater than scoring 0, and b2,
which indicates the point at which the likelihood of scoring 2

Table 2
Rasch Difficulty and Partial Credit Threshold Estimates With Indexes of Misfit for Items of Forms A and B

Form and
item

Rasch Partial credit

b SE Infit Outfit b1 SE b2 SE Infit Outfit

Form A
Anchor items

(4) 44sph 0.00 0.06 1.06 1.11 	0.44 0.08 0.23 0.06 0.97 0.97
(5) 22sph 	1.44 0.07 0.85 0.71 	0.60 0.11 	1.10 0.07 0.81 0.71
(7) 24sph 	0.72 0.07 0.97 0.97 	1.51 0.12 	0.23 0.06 0.84 0.81
(9) 22spd 	0.80 0.07 0.98 0.95 	0.32 0.09 	0.58 0.07 0.98 0.94
(15) 44spd 1.12 0.07 1.02 1.29 	0.46 0.08 1.29 0.07 1.04 1.05
(16) 24spd 1.41 0.07 1.02 1.37 	0.04 0.07 1.47 0.07 1.10 1.24

Unique items
(1) 22cph 	1.10 0.07 0.96 0.93 0.09 0.09 	1.02 0.07 0.94 0.88
(2) 22coh 	1.67 0.08 0.86 0.78 0.85 0.09 	2.01 0.08 0.87 0.82
(3) 24coh 	0.28 0.06 1.01 1.01 0.34 0.07 	0.32 0.06 1.06 1.07
(6) 44coh 	0.24 0.06 0.94 0.96 	0.90 0.09 0.10 0.06 0.87 0.84
(8) 44cph 0.20 0.06 0.95 0.94 0.71 0.07 	0.01 0.06 1.02 1.04
(10) 22cpd 	0.07 0.06 1.04 1.06 0.42 0.07 	0.15 0.07 1.12 1.26
(11) 22cod 0.62 0.06 0.97 0.95 	0.73 0.08 0.87 0.06 0.95 0.94
(12) 24cpd 1.41 0.07 1.03 1.08 0.75 0.06 1.20 0.07 1.05 1.08
(13) 44cpd 1.31 0.07 1.02 1.20 0.58 0.07 1.17 0.07 1.09 1.17
(14) 44cod 0.24 0.06 1.19 1.30 0.03 0.08 0.31 0.06 1.17 1.23

Form B

Anchor items
(5) 44sph 	0.32 0.07 0.97 0.89 	0.21 0.09 	0.05 0.06 0.97 0.89
(4) 22sph 	0.86 0.07 0.90 0.80 	0.33 0.10 	0.55 0.07 0.93 0.91
(7) 24sph 	0.40 0.07 1.14 1.24 	1.51 0.13 0.12 0.06 1.01 1.06
(9) 22spd 	0.51 0.07 1.01 0.99 0.00 0.09 	0.30 0.07 1.04 1.04
(11) 44spd 1.42 0.07 1.07 1.14 	0.68 0.08 1.74 0.07 1.04 1.03
(16) 24spd 1.75 0.07 0.99 1.15 0.19 0.07 1.91 0.07 1.05 1.07

Unique items
(1) 42coh 	0.57 0.07 1.03 1.21 	0.59 	1.80 	0.20 0.07 1.04 1.19
(2) 42cph 	1.28 0.08 0.88 0.83 	1.07 	0.68 	0.77 0.00 0.85 0.76
(3) 22cph 	1.45 0.08 0.90 0.83 	0.68 	1.30 0.85 0.75
(6) 24cph 	0.58 0.07 0.97 0.96 	0.60 	0.72 	0.21 0.07 0.95 0.92
(8) 44cph 	0.44 0.07 0.95 0.93 0.44 	1.04 	0.40 0.07 1.07 1.10
(10) 44coh 	0.69 0.07 0.98 0.92 	0.05 	0.80 	0.46 0.06 0.98 0.87
(12) 24cpd 0.45 0.06 0.98 0.98 	0.31 	0.70 0.74 0.06 1.00 1.00
(13) 42cod 1.21 0.07 1.13 1.28 	0.42 0.00 1.50 0.07 1.08 1.13
(14) 44cod 1.28 0.07 1.02 1.03 0.59 	0.15 1.31 0.07 0.96 0.96
(15) 22cpd 0.98 0.07 1.00 1.04 0.51 	1.80 1.03 0.07 1.16 1.19
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becomes greater than scoring 1. Table 2 also shows the standard
errors of the threshold estimates and the misfit indexes.

For Form A, the item infit indices varied from .81 to 1.17 (M �
.99, SD � .10), the outfit indices varied from .71 to 1.26 (M � 1,
SD � .16), and 3 of the 16 items showed an outfit greater than 1.2.
The RMSE was .04, and the item separation index was 13.9. For
Form B, the item infit indices varied from .85 to 1.16 (M � 1,
SD � .08), and the outfit indices varied from .75 to 1.19 (M � .99,
SD � .13). The RMSE was .05, and the item separation index was
11.7. For both forms, the item separation reliability was high (.99).

The use of the partial credit model improved the reliability of
individual person measures from .74 to .77. These results were
lower than the classical reliabilities reported in Table 1 because of
differences in the way that classical and Rasch reliabilities are
calculated (Linacre, 1997). Feldt’s (1980) test for the comparison
of two dependent reliability coefficients showed that the increases
in reliability obtained from the partial credit model were statisti-
cally significant (for Form A, t � 10.61, df � 1399, p � .001; for
Form B, t � 9.49, df � 1394, p � .001).

The upper portion of Figure 2 shows the scatter diagram posi-
tioning for students according to their Rasch logit and partial credit
logit scores. Before this graph was plotted, the theta measures on
the two systems and their standard errors were linearly equated via
the procedures proposed by Wright and Masters (1982).

Although the correlation between the two test scores was
high (r � .97, N � 2,797, p � .001) for a given Rasch logit, the
partial credit logit scores were more widely spread, especially at
the low end of the ability continuum. Due to this spread, the use
of partial scores contributed to a greater differentiation between
individuals. To test whether the students located at the low end
were more dispersed than the students located at the high end
when partial credit scores were used, the unstandardized resid-
uals were obtained from a regression analysis of the effects of
the scores from the Rasch logit scores on scores from the partial
credit logit. The participants were then split into two groups:
those with a Rasch logit score below the 16th percentile (low-
end group, n � 511), and those with a Rasch logit score above
84th percentile (high-end group, n � 570). The residuals of
these groups were examined. For the low-end group, the mean
of the unstandardized residuals was .10, and for the high-end
group, the mean of the unstandardized residuals was .11; how-
ever, the standard deviations were .51 and .36, respectively. The
Levene’s test of equality of variances was significant (F �
13.46, p � .001), which indicates that the residuals from the
low-end group were more dispersed than the residuals from the
high-end group. These results indicate that the prediction of
the partial credit logit scores from the Rasch logit scores was
less effective at the low end of the ability scale because the
partial credit provided more information for the differentiation
of these students than for the differentiation of the students at
the high end of the scale. The correlation between the Rasch
logit and partial credit logit scores was .81 (n � 511, p � .001)
for the low-end group and .95 (n � 570, p � .001) for the
high-end group.

Another method to evaluate the advantage of partial credit
scoring is to examine the information function. The information of
a test is the inverse of the square root of the measurement error,
and this information varies across ability levels (Hambleton et al.,
1991). For this comparison, the information was transformed into

local test score reliabilities, as suggested by Daniel (1999), be-
cause this reliability metric is more meaningful than the original
metric that was obtained from the information function. The lower
half of Figure 2 portrays the local test score reliabilities as a
function of ability and shows the means of these reliabilities for 15
groups of people. The total scores ranged from 1 to 15, as obtained
from the Rasch analysis (dotted gray line) and the partial credit
analysis (solid black line). It is evident that partial credit scoring
produced a great increase in test score reliability for the individuals
located at the lower end of the ability continuum. At the high end,
the two methods were almost equally efficient, although there was
a slight decrease in the efficiency of the partial credit scoring
method.

Construct Representation: Building a Fluid
Intelligence Scale

Once the prerequisite conditions were met, the final and most
important step was conducted to investigate whether the item
design features were able to predict item difficulty. As summarized
in Figure 1, three design features were thought to have an effect on
item complexity due to their demands on the cognitive components
of fluid intelligence: the amount of information, the type of rule,
and perceptual complexity.

The goal in the present analysis was to predict the Rasch
difficulty index on the basis of these independent variables using
multiple regression. All of the variables were entered into the
equation to investigate their unique effects. Four variables reached
the criteria of p � .10: perceptual organization, the amount of
information, and figure addition and subtraction. The structural
variables resulted in a multiple correlation coefficient of R � .930
and R2 � .865, which was statistically significant, F(18, 7) �
16.50, p � .0001. Table 3 presents the final parameters that were
obtained from the multiple regression. The table also shows the
matrix of correlations between the predictors and the difficulty
parameter. As previously reported, these results indicate that per-
ceptual organization had the strongest impact, increasing item
complexity by 1.482 logits. The amount of information was
slightly less important than perceptual organization, increasing
item complexity by .172 logits.

These results show a good fit between the cognitive model
and the observed item complexities. The three design variables,
particularly the first two, captured most of the variance in item
complexity, leaving only a small portion of the variance unex-
plained. Therefore, the item complexity and ability continuum
can be translated into objective quantifications of task complex-
ity factors that, in turn, can be linked to cognitive components
of fluid intelligence.1 Such linkage can potentially contribute to
the creation of criterion-referenced individual test scores that
describe which cognitive operations a person has demonstrated
depending on his or her measures on the fluid intelligence scale.

1 An example of the integration and a common scale of ability estimates,
normative references, item examples, and objective item complexity fea-
tures can be found in http://www.labape.com.br/gf/gf.html
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Discussion

Cognitive testing has been criticized because it has not yet
satisfactorily incorporated new knowledge available from cog-
nitive psychology and psychometrics into test construction.
This study contributes to the literature by applying Embretson’s
(1994) method of the development of a fluid intelligence scale.
Instead of focusing on the development of a test, this study
focused on the definition of a cognitive complexity scale for
fluid intelligence linking objective information about task dif-
ficulty for the purpose of fomenting criterion-referenced test
score interpretations based on concepts obtained from cognitive
psychological research. There are three major implications of

this study: One relates to the practical utility of IRT models in
test development, the second relates to the construct represen-
tation of fluid intelligence, and the third concerns the integra-
tion of cognitive psychology and psychometrics in intelligence
test interpretation.

Psychometric Implications

The first series of psychometric analyses has indicated that
these items are quite robust for defining a variable; even with a
small number of items, the two tests displayed similar or better
psychometric properties than other existing tests of fluid intel-
ligence, such as the old Raven’s Advanced Progressive Matri-

Figure 2. Scatter diagram of Rasch versus partial credit logits and local reliability for 16 levels of the ability
continuum with Rasch model and partial credit model.
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ces (Raven et al., 1998) and the new ART (Embretson, 1998).
Thus, this article shows that knowledge from cognitive psy-
chology about the determinants of item complexity is a useful
tool in guiding item production that results in an item set that
possesses good psychometric qualities. Additionally, the items
in the current set possessed better construct representation than
items from other studies, because the theory that was used in the
current study to predict item difficulty was based on the cog-
nitive processes that underlie fluid intelligence (Cornoldi, 2006;
Deary, 2001; Embretson, 2002, 2006; Hornke, 2002). Thus, this
article presents a method for developing items that have a solid
grounding in cognitive psychology and that are tuned to the
construct that they are supposed to measure. Additionally, this
article links the item difficulty scale to objective item structural
variables. This linkage has an interesting psychometric impli-
cation for equating different tests. If these item variables be-
come useful for predicting the item difficulties of the different
tests that assess fluid intelligence, they can be used as super-
ordinate common items with which to equate the ability esti-
mates from different tests. Thus, item complexity theory con-
sists of a method that changes the focus from development of
tests to a more general development of objective variables that
provide more fundamental scales for a construct. Of particular
importance was the demonstration that test score reliability can
be increased without lengthening the test if a partial credit

model is applied. The model used in this study contained a
systematic scoring technique that was based on a careful eval-
uation of the incorrect options.

Implications for Construct Representation
of Fluid Intelligence

The second step in the analysis investigated the use of item
features in the prediction of item complexity. The results were
similar to those obtained in a previous study; however, the mag-
nitude was greater in the current study (Primi, 2002). Whereas in
the previous study, perceptual complexity and the amount of
information accounted for .642 of the variance in item difficulty, in
the present study, these two variables, combined with a variable
that was associated with the type of rule, accounted for .865 of the
variance in item complexity. This is a noticeable difference, and it
is well above the amount that has been documented in the litera-
ture. For instance, Embretson (1998) accounted for .773 of the
variance and Hornke (2002) accounted for .40 of the variance. The
literature has demonstrated a consistent impact of these variables
on item complexity. This impact has important implications for the
construct representation of fluid intelligence. The effect of percep-
tual organization increased the item complexity by approximately
1.5 logits. Only the people who score above the median are
proficient in solving this type of item. What makes difficult-to-

Table 3
Summary of Results of Regression Analysis Predicting Item Difficulty From Structural Variables

Item design (structural) variables B SE � t p

Intercept 	1.836 .544 	3.375 .003
Perceptual organization 1.482 .171 .763 8.673 .000
Amount of information .172 .081 .295 2.135 .047
Quantitative pairwise progressions 	.489 .386 	.213 	1.266 .222
Figure addition and subtraction .837 .466 .312 1.797 .089
Distribution of 3 values 	.412 .241 	.189 	1.710 .105
Attribute addition .327 .312 .142 1.045 .310
Distribution of 2 values .309 .239 .141 1.292 .213

Correlation matrix between all variables in the regression

1 2 3 4 5 6 7

1. b (item difficulty parameter) —
2. Perceptual organization .787��� —
3. Amount of information .393� 	.032 —
4. Quantitative pairwise progressions .038 .042 .008 —
5. Figure addition and subtraction .241 .033 .306† .778��� —
6. Distribution of 3 values 	.146 	.040 	.060 	.332� 	.259 —
7. Attribute addition .229 .042 .394� 	.300† 	.234 .491�� —
8. Distribution of 2 values .153 .134 	.269† 	.332� 	.259 .218 .285†

Note. For each item, the amount of information was indexed as the number of geometric figures (1 point for
2 elements and 2 points for 4 elements) plus the number of rules involved (1 point for 2 rules and 2 points for
4 rules) plus one point if two rules were applied to a single element. The possible values for the amount of
information were 2, 3, and 4. An extra point was given if more than one rule was mixed in the same geometric
figure, because the rules must be mentally separated to be processed; this requires more mental resources than
if they were separated over two different geometric figures. The type of rule was represented by nine
dummy-coded variables, each indicating whether a particular type of rule was present in the item (quantitative
pairwise progression, figure addition, distribution of three values, attribute addition and distribution of two
values). These variables were not summed, because they represented a qualitative attribute that indexed the
content of the rules that were related to the geometric figures. The presence of a rule did not necessarily indicate
more complexity because some of the rules were simpler than others. Perceptual organization was represented
by a dummy code that indicated the presence or absence of a perceptually complex configuration (0 or 1).
† p � .10 and p � .05. � p � .05. �� p � .01. ��� p � .001.
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encode items complex, and what cognitive processes underlie item
solving?

It has become increasingly evident that fluid intelligence is
linked to the process of executive controlled attention of work-
ing memory (Conway et al., 2002; Engle et al., 1999; Kane,
2005 Miyake et al., 2000; Oberauer et al., 2000; Salthouse,
2005, 2011; Salthouse et al., 2008). A fundamental feature of
tasks that demand controlled attention is the existence of a
condition of interference; that is, the presence of conflicting
information that competes for attentional focus (Kane et al.,
2001). Difficult-to-encode items meet this condition because of
two features: the break of good continuity among the geometric
figures and the presence of irrelevant similarities that make the
constituent elements less salient (Pérez-Salas et al., 2012). The
first feature makes the geometric figures more mixed and pro-
vides interference. For instance, when a person must form two
groups of related figures, in the moment at which he or she
analyses one group to induce the relationships among the fig-
ures in that group, the other group of figures will be in the same
visual field. The presence of the second group potentially
interferes with the focus of attention, thus demanding central
executive resources for active maintenance of the relevant
figures and for blocking the irrelevant figures. The second
feature makes the creation of an incorrect group of figures more
likely and thus demands central executive resources for block-
ing these activated representations and for managing the addi-
tional processing required to find the correct solution. In con-
trast, easy-to-encode items have groups of figures that are
clearly separated in the visual field. These figures are more
visually salient and possess markedly different attributes, such
as shape and colors, which diminishes the demands made on the
central executive.

It is interesting to note the greater magnitude of the effect of
perceptual complexity compared with the effect of the amount of
information. This difference suggests that an increase in interfer-
ence and irrelevant information has a greater debilitating effect on
performance than does the increase in relevant information. Based
on these results, it is possible to hypothesize that the deactivation
of inferred relationships that have proved to be irrelevant, which is
linked to a basic process of inhibition, consumes many more
resources from the central executive than does the processing of
relevant information. In summary, these results indicate that these
variables affect item complexity because they increase the amount
of controlled and effortful processing requirements that make up
the central feature of fluid intelligence tasks, as demonstrated by
Salthouse et al. (2008).

Intelligence Test Score Interpretation: Integration
Norm and Criterion-Referenced Interpretations

One important contribution for test construction is the linking
between cognitive processing comprehension of fluid intelli-
gence and objective item features aligned with the theta scale,
which can further interpretation of criterion-referenced test
scores based on the precepts of cognitive psychology and neu-
ropsychology. Traditionally, the results of intelligence tests are
interpreted with a normative reference that compares a person
with the expectations of a normative group. This approach
provides information concerning the location of a person rela-

tive to a group of similar people but does not by itself provide
much information about a person’s performance capacity—a
problem that has been criticized under the name of arbitrary
metrics (Blanton & Jaccard, 2006; Embretson, 2006). The lack
of information about capacity stems in part from a lack of
studies that have evaluated the cognitive processes involved in
intelligence tasks and that would support validity evidence for
response process (Borsboom & Mellenbergh, 2007). This arti-
cle is an attempt to develop a scale that integrates cognitive
psychology in the production of a criterion-referenced interpre-
tation of what a person is able to perform and the nature of the
person’s ability in terms of item complexity factors mapped
onto cognitive components of the task response process, for
various levels of the scale. Only a few other studies have
attempted this type of application for cognitive tests, including
a study on behavior scaling by Carroll (1993) and one on
item-referenced meaning by Embretson and Reise (2000). For
instance, an average ability level is characterized by capability
to coordinate and monitor simultaneous processing and storage
activities to organize a logical sequence of steps and infer up to
four relationships simultaneously, provided that the elements
are organized in such a way that the likelihood of irrelevant
relationship formation is reduced. An above average ability
(upper quartile) is characterized by capability to use the same
process but with more than four steps and with less organized
information, which will eventually lead to relationships that
would have to be discarded. Upper quartile ability also indicates
capability of making an analytical decomposition of visual
patterns and a reorganization of more abstract visual concepts
possible, as well as ability to maintain this abstract representa-
tion in face of interference. This type of test score interpretation
is less arbitrary and, when integrated with normative and
criterion-related information, can be very helpful; for instance,
in diagnosis and in appreciating clinically significant changes.
Imagine an intellectually high-functioning person who has a
neurological condition that has impaired his fluid capacity in
such a way that his score decreased from a normative superior
quartile to an average score. With such information, it would be
possible to better describe his impairment.

In future studies assessing fluid intelligence, the scale developed
here can be employed to provide an interpretation for test scores in
terms of cognitive processes, thus contributing to the understand-
ing of cognitive psychological functioning in relation to psycho-
metric measures. Considering the recent literature linking working
memory, executive functions, and fluid intelligence, it is possible
to reconsider fluid intelligence tests as important measures of
executive functions in a neuropsychological battery. The links
among test scores, task parameters, and cognitive process associ-
ated to executive function can improve the understanding of test
scores by providing more substantial information on the construct
being assessed. This could be particularly useful when fluid intel-
ligence tests are used in neuropsychological diagnosis and moni-
toring of interventions.

It is also expected that new tests of cognitive abilities will
gradually integrate the methodologies discussed here, providing
test users with criterion-referenced measures in addition to norm-
referenced information. These methodologies will make possible a
deeper understanding of human intelligence by integrating the
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advances of cognitive psychology with intelligence testing toward
new cognitive diagnostic models.
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