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Abstract
A speech signal captured by a distant microphone is generally
contaminated by background noise, which severely degrades
the audible quality and intelligibility of the observed signal.
To resolve this issue, speech enhancement has been intensively
studied. In this paper, we consider a text-informed speech en-
hancement, where the enhancement process is guided by the
corresponding text information, i.e., a correct transcription of
the target utterance. The proposed deep neural network (DNN)-
based framework is motivated by the recent success in the text-
to-speech (TTS) research in employing DNN as well as high
audible-quality output signal of the corpus-based speech en-
hancement which borrows knowledge from the TTS research
field. Taking advantage of the nature of DNN that allows us
to utilize disparate features in an inference stage, the proposed
method infers the clean speech features by jointly using the ob-
served signal and widely-used TTS features derived from the
corresponding text. In this paper, we first introduce the back-
ground and the details of the proposed method. Then, we show
how the text information can be naturally integrated into speech
enhancement by utilizing DNN and improve the enhancement
performance.
Index Terms: speech enhancement, text-to-speech, deep neural
network

1. Introduction
The quality and intelligibility of a speech signal captured by
a distant microphone is generally degraded by acoustic inter-
ferences such as environmental noise, channel distortion and
reverberation. To resolve this issue, a considerable amount of
speech enhancement research has been done from various per-
spectives [1].

In the last decade, a great progress has been made in the
field of speech enhancement research by introducing statisti-
cal speech models, such as Non-negative Matrix Factorization
(NMF)-based model [2–4], Gaussian mixture model (GMM)
[5] and hiddenMarkov model (HMM) [6]. A common objective
of these methods is to accurately reproduce clean speech spec-
tra from noisy observed spectra based on the statistical speech
models. A natural and powerful extension of this type of ap-
proach has been recently introduced [7–10]. This approach, of-
ten referred to as corpus-/inventory-based approach, is greatly
inspired by unit-selection-based text-to-speech synthesis (TTS)
technologies [11]. The literatures [7–10] reported that very high
audible-quality enhancement is possible by first looking for
speech units in the training data that best matches to the under-
lying clean speech components in the target noisy speech, and
then generating enhanced spectra by concatenating the units.

This paper investigates another way to incorporate TTS
knowledge into speech enhancement. In contrast to the previ-
ous approaches [7–10], this work is motivated by model-based
TTS approaches [12, 13]. More specifically, as a first step to
tightly integrate enhancement and TTS technologies, this paper
considers an enhancement style referred to as a text-informed
speech enhancement, where the enhancement process is guided

by the corresponding text information, i.e., a correct transcrip-
tion of the target utterance. The proposed method is based on
deep neural network (DNN), which is successfully but sepa-
rately adopted in state-of-the-art TTS [12, 13], and speech en-
hancement algorithms [14–17]. In the proposed method, DNN
is trained to map the input features, which comprises both noisy
speech features and text features, to the output clean speech fea-
tures via highly nonlinear regression. It should be noted that the
style of the text-informed speech enhancement was firstly pro-
posed in [18] based on an NMF framework. In their algorithm,
first a TTS engine was used to generate a synthesized speech
signal based on the input text. Then, that signal was used to
guide NMF-based separation process. In general, this type of
speech enhancement algorithm is categorized as informed, user-
guided or user-assisted enhancement approaches as opposed to
blind approaches [19]. It has potential applications such as au-
dio postproduction, where it is quite common for audio engi-
neers to manually guide the enhancement process by feeding
certain guide signal to the system to obtain a satisfactory out-
put.

In this paper, first we briefly review DNN-based speech en-
hancement as well as state-of-the-art TTS algorithms. Then, we
describe the proposed method and clarify how it can be seen
as a natural extension of such technologies. In an experiment,
we show the effectiveness of the proposed framework in noisy
environments with channel distortions.

2. Conventional methods
2.1. DNN-based speech enhancement
Approaches covered in this subsection, sometimes referred to
as denoising autoencoder, perform enhancement by using a
learned nonlinear mapping function between corrupted speech
signals and clean speech signals as shown in the left part of
Fig. 1 [14–17]. The mapping function is essentially the DNN-
based regression model. Let us first denote the N -dimensional
input feature vector at the l-th hidden layer as xl. Then, a re-
gression function, fθl(·) (l = 1, . . . , L − 1), at the l-th hidden
layer in DNN is given as the following affine transformation
followed by a nonlinearity as:

fθl(xl) = xl+1 = s(Wlxl + bl). (1)

θl = {Wl,bl} corresponds to the parameters of the regres-
sion model. s(·) is called an activation function which typically
takes a form of the sigmoid function, hyperbolic tangent or rec-
tified linear unit (ReLU). As opposed to the hidden layers, a
transformation from the last (i.e., L-th) hidden layer to the out-
put nodes takes the following linear regression form:

gθL(xL) = y = WLxL + bL. (2)

As it was mentioned, the regression parameters have to be
learned prior to the test stage. In the training stage, the parame-
ters are optimized based on a collection of stereo data, consist-
ing of pairs of corrupted and clean speech represented for exam-
ple by the log-power spectra or Mel-filterbank features. Typical
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Figure 1: Diagram of the DNN-based enhancement and DNN-
based TTS

optimization criterion used in DNN-based speech enhancement
is minimum-mean square error (MMSE). In the test stage, the
learned model is fed with the observed corrupted speech feature
in order to generate the enhanced feature.

This type of method is reported to yield a very good en-
hanced signal, when the training and test cases are closely
matched [14–17]. Note that other types of deep neural net-
works such as bidirectional recurrent neural networks [17] can
be adopted to this framework.

2.2. DNN-based text-to-speech synthesis
The DNN framework was successfully adopted also in TTS
research, and was shown to outperform the conventional de-
cision tree-clustered context-dependent HMM-based approach
[12, 13]. As shown in the right part of Fig. 1, structure of the
DNN is essentially the same as the one in the previous section.

In the TTS case, the input features to the network are gen-
erated from the corresponding input text. Typical input features
would include binary answers to questions about linguistic con-
texts (e.g., is-current-phoneme-aa?) and numeric values (e.g.,
the number of words in the phrase, the relative position of the
current frame in the current phoneme, and durations of the cur-
rent phoneme). Hereafter, these input features will be referred
to as the “text features”.

In the training stage, such input text features are first paired
with their acoustic realizations. More specifically, the input
features are paired with features such as spectral (e.g., Mel-
cepstral, or line spectral pairs (LSP)) and excitation features,
and their time derivatives, which will be directly used as the
output features of the DNN. Then, the DNN is trained to learn a
highly complex mapping function between the input and output
features. In the test stage, such output features are inferred by
the DNN given the input text features, and further utilized to
generate speech parameters as in the conventional HMM-based
synthesizer.

Generated speech signals were evaluated by means of sub-
jective evaluation and were found to be better than the conven-
tional methods [12, 13].

3. Proposed method: DNN-based
text-informed speech enhancement

Although it has been quite difficult to utilize the text features
in a speech enhancement framework previously, DNN may al-

Figure 2: Text-informed speech enhancement based on a DNN

low us to naturally and effectively incorporate such features.
As shown in many literatures including TTS [12, 13], auto-
matic speech recognition (ASR) [20–22] and enhancement re-
search [23], the nature of DNN allows us to utilize disparate
features jointly in an inference stage. Taking advantage of such
characteristics, we here propose to incorporate the text features
into the enhancement based on the DNN framework.

Figure 2 shows a schematic block diagram of the pro-
posed text-informed speech enhancement method. The input
features of the DNN comprise the noisy speech features (e.g.,
log-power-spectra or Mel-filterbank features) and the text fea-
tures generated from the correct text transcription. In an actual
application, this correct transcription has to be given to the sys-
tem by a user. Note that, as opposed to the TTS case, now the
text features has to be time-aligned to the input noisy features
on a frame basis. Therefore, the text feature extraction mod-
ule in Fig. 2 has to perform the following two processing: (1)
extraction of the text features from the text, and (2) calculation
of time alignments between the input noisy speech features and
the phone sequence generated from the text by using a forced
alignment function [24] within an ASR system 1 . As the text
features, we consider the following 3 types of features used in
the conventional TTS [12,13].
(TF1) Binary answers to the set of phonetic questions [25] (e.g.,

is-current-phoneme-vowel?) about the current quin-
phone identity (i.e., identities about the current phoneme,
the previous phoneme, the next phoneme, the phoneme
before the previous phoneme, and the phoneme after the
next phoneme) 2.

(TF2) Duration of the current phoneme and relative position of
the current frame in the current phoneme.

1Such forced alignment is carried out quite regularly for example in
the ASR acoustic model training stage.

2Regarding the phoneme before the previous phoneme and the
phoneme after the next phoneme, only a broad phonetic category was
described in the feature vector.
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Figure 3: Forced alignment result of the input text “some
maps...” and the input noisy signal saying “some maps...”.

(TF3) The number of phonemes in the current syllable and the
position of the current phoneme in the syllable.

Figure 3 shows an example of the result of the forced align-
ment of the input text “some maps...” and the input noisy signal
saying “some maps...”. With the forced alignment, we can ob-
tain exact position and duration of the phonemes contained in
the utterance “some maps...”. Now, if we would like to extract
the text features of the frame marked with �, we immediately
know that the current quinphone is m-m-ae-p-s, and thus (TF1)
should indicate this identity in a binary-value vector form. Like-
wise, (TF2) should contain the information about the duration
of the phoneme “ae”, i.e., 180 ms, and current frame position
within this phoneme, i.e., 90 ms. (TF3) should essentially con-
tain 4 and 2, because the current phoneme “ae” is in the syllable
“m-ae-p-s” consisting of 4 phonemes, and is the second one in
the syllable.

The output features of the DNN of the proposed method
consists of clean speech feature such as clean log-power-
spectra, clean Mel-filterbank features, or ones typically used in
a DNN-based TTS system. To synthesize the output waveform,
we can combine the enhanced feature with the phase informa-
tion taken from the observed noisy speech. In case that the
output feature is Mel-filterband features, we can first convert
them back to the linear frequency scale, form a Wiener filter
and perform noise reduction. In case that the output feature is
log-power spectra, we can either directly convert it back to the
waveform with the noisy phase, or form a Wiener filter and per-
form noise reduction.

4. Experiment
To show the effectiveness of the proposed method, we evalu-
ate its performance in comparison with the conventional DNN-
based speech enhancement (i.e., denoising autoencoder) intro-
duced in Section 2.1.

4.1. Experimental conditions
We used Aurora-4 database to carry out a large scale evalua-
tion in noisy conditions with channel distortions. Aurora-4 is
based on the Wall Street Journal 5k task, comprising about 14
hours of speech for the training set including 83 speakers. To
generate the training data, 6 different types of noise (street traf-
fic, train stations, cars, babble, restaurants, airports) were artifi-
cially added to clean speech or speech containing channel dis-
tortion, at randomly selected SNRs between 10 and 20 dB. To
train the DNN of the conventional and the proposed method,
noisy training data and the corresponding clean speech data
were used. Note that for monitoring the convergence of the
DNN learning process, we randomly extracted 5% of the train-
ing data for a so-called validation set, and used the remain-
ing 95% of the data for the actual training. Since the training
data contains various speakers, the trained DNN would become

Figure 4: Log Mel-filterbank feature of (a) clean speech, (b)
noisy observed speech, (c) signal estimated by the conventional
method, (d) signal estimated by the proposed method (prop-2),
in case of “babble” noise

speaker independent.
For testing the algorithms, we used the development set of

Aurora-4 which contains the same types of noise but with SNRs
of between 5 and 15 dB. The sampling frequency of the data was
16kHz.

4.2. Details regarding the features and parameters

For both the conventional and the proposed methods, we con-
sidered the standard feed-forward DNN structure. The network
was first descriminatively pretrained [26], where we train the
whole network every time we add one more hidden layer. And
then, it was fine-tuned with back-propagation with the MMSE
criterion. To examine the effect of the depth of the network, the
number of hidden layers was changed from 1 to 5. The number
of nodes in hidden layers was set to 2048 and that of the output
node was set to 40, which corresponds to the vector dimension
of the static log Mel-filterbank feature of the current frame.

For the input feature of the conventional method, 40-order
Log Mel-filterbank feature and its 1st and 2nd derivatives were
used 3. Following the common practice in speech processing,
the feature of the current frame was spliced with features within
5 left and 5 right context frames to form an input feature vector
consisting of 11 frames. As the speech feature of the proposed
method, we used the same speech feature as the conventional
method. As the text feature, we used (TF1), (TF2) and (TF3)
features summarized in Section 3. The feature (TF1), (TF2),
and (TF3) comprises 329-dimentional binary-value vector, 2-
dimentional numeric-value vector, and 5-dimentional numeric-

3We also tried log-power-spectral features, and obtained similar re-
sults
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Figure 6: Cepstral distance (dB) of the unprocessed signal, the conventional method (5-layer case), and each of the proposed methods
(5-layer case) under each noise condition without channel distortion (upper panel) and with channel distortion (lower panel). The best
score at each condition is marked with a bold font.

Figure 5: Cepstral distance of the conventional method, and
proposed methods as a function of the number of hidden lay-
ers. Cepstral distance between clean speech and unprocessed
observed speech was 4.07 dB.

value vector, respectively. Numeric features in the text features
as well as the speech features were normalized to have zero
mean and unit variance before feeding them to the network. To
examine the effectiveness of the text features in more details,
we prepared 3 variations of the proposed method, where “Prop-
1”, “Prop-2” and “Prop-3” correspond to the ones taking the
input feature of the speech feature + (TF1) + (TF2) + (TF3),
the speech feature + (TF1) + (TF2), the speech feature + (TF1),
respectively. The forced alignment in the text feature extraction
module was carried out using a GMM-HMM ASR recognizer
trained on the multi-condition data.

4.3. Results

Figure 4 shows the log-Mel filterbank feature of (a) clean
speech, (b) corresponding noisy speech observed in babble
noise, (c) signal estimated by the conventional method, (d) sig-
nal estimated by the proposed method (prop-2 with 5 hidden
layers). First of all, it is clearly shown that an appropriate in-
ference of clean speech was achieved by the proposed method.
Although the conventional method also works quite reasonably
even in severe noisy conditions, estimation errors are clearly
visible for example as remaining energy in silence regions, and
some overly suppressed speech components. On the other hand,
the proposed method could manage to suppress the remaining
noise very effectively, as well as somewhat recover the missing

speech features.
Figure 5 shows the cepstral distance between the clean log

Mel-filterbank features and the enhanced signals as a function
of the number of hidden layers. Note that the cepstral distance
between the clean log Mel-filterbank features and the unpro-
cessed observed signal was 4.07 dB. We can first confirm that
all the variations of the proposed methods outperform signifi-
cantly the conventional method, in each condition. From the
figure, it can be also seen that the deeper network structures are
more beneficial for the enhancement.

Figure. 6 shows the details of the cepstral distance at each
noisy and channel distortion condition. It can be seen that, al-
though the test signal contains 7 different types of noisy con-
ditions including clean condition and 2 types of channel dis-
tortions, in all cases the proposed methods outperformed the
conventional method.

Audible quality of the enhanced signal is also improved, but
the resultant signal still contains some remaining noise and ar-
tifacts. Such noise and artifacts can be reduced or removed for
example by changing the network topology, estimating other
features than log Mel-filterbank features, or reconstruct the en-
hanced signal in a different manner. Such investigations are
within the scope of our future work. It should be also noted that,
although the learned DNN is speaker independent, the signal
directly reconstructed from the enhanced feature clearly main-
tained the corresponding speaker identity.

5. Conclusions
A speech signal captured by a distant microphone is generally
contaminated by background noise, which severely degrades
the audible quality and intelligibility of the observed signal.
Among numerous studies on speech enhancement, recently it
was found that the knowledge in TTS research field could po-
tentially benefit speech enhancement technology greatly espe-
cially when high audible-quality is desirable. Toward a rigorous
integration of speech enhancement and TTS technologies, this
paper investigated a way to incorporate text information into
the enhancement processing, by utilizing the DNN framework.
It exploits auxiliary text features that are provided by a user
to guide the enhancement process. In the proposed method,
speech features and text features are jointly used as an input
feature of DNN, and are mapped to the output clean speech
features via highly nonlinear DNN regression. It was shown
that the estimated log Mel-filterbank features are quite close to
that of the reference clean speech, and improved the quality of
speech enhancement.
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