
Proprietary + ConfidentialProprietary + Confidential

eBPF super powers
on ARM64 and Android

Powerful Linux Tracing
for Android

 Joel Fernandes <joelaf@google.com>
LinuxInternals.org
IRC: joel_ on OFTC
Twitter: joel_linux

mailto:joelaf@google.com

Proprietary + Confidential

About me:

Kernel team
- scheduler
- tracing

Proprietary + Confidential

Signals of interesting things in the kernel:

● static trace points (kernel trace events)
● dynamic trace points (kprobe)
● userspace dynamic trace points (uprobes)
● userspace static tracepoints (usdt+uprobes)
● perf HW events – PMC counters (cycles, cache misses)
● perf SW events (Ex: Sampling)

Proprietary + Confidential
How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste content in
from other source

Credit: Brendan Gregg

BPF lets you attach and observe them

Proprietary + Confidential

What’s BCC?

● BPF Compiler Collection
○ Compile, load, parse.

Kernel
lots of events -> ebpf program -> maps/rb

Userspace
bpf maps -> userspace

Proprietary + Confidential

Why BCC ?

● In kernel aggregation : No return to userspace or trace Postprocessing

Kernel
lots of events -> ebpf program -> maps/rb

Userspace
bpf maps -> userspace

Proprietary + Confidential

Why BCC ?

● More efficient sometimes compared to other techniques
○ For example, get a count of stacks

stackcount submit_bio

 submit_bio
 __block_write_full_page

 block_write_full_page

 blkdev_writepage

 __writepage

 write_cache_pages

 generic_writepages

 ...

 wb_workfn

 process_one_work

 worker_thread

 kthread

 ret_from_fork

 --

 kworker/u16:0 [16007]

 60

Proprietary + Confidential

Why BCC ?

● More efficient sometimes compared to other techniques
○ Perf way:

■ Record every stack trace to disk using perf record
■ Count them as a second stage

○ eBPF / BCC way
■ Build in-kernel histogram of stack trace.
■ Discard record
■ Return hist to userspace

Note: BCC uses the ever-amazing perf_events framework where it can.

Proprietary + Confidential

Note: Overhead does exist for high freq. events

This tool kprobes the finish_task_switch function

cpudist &

perf bench sched pipe -l 100000

 Total time: 4.288 [sec]

perf bench sched pipe -l 100000

 Total time: 4.020 [sec]

~6.6% Overhead

Proprietary + Confidential

Why BCC ?

● Stats that anyone can collect without out-of-tree kernel changes
● Large collection of tools

○ filetop
○ cachetop
○ cachestat
○ biosnoop
○ ext4slower
○ runqlen
○ runqlat
○ trace

● Open ecosystem of common recipes for linux tracing

Proprietary + Confidential

filetop: Displays File I/O summary every 5 seconds

filetop 5

Monitor file read/writes (at VFS level).
While filetop is running, create a contact in Android, and see:

TID COMM READS WRITES R_Kb W_Kb T FILE
6726 Binder:6152_8 29 0 112 0 R contacts2.db
6726 Binder:6152_8 26 44 104 88 R contacts2.db-wal
2107 servicemanager 16 0 63 0 R current
2107 servicemanager 14 0 55 0 R current
6166 Binder:6152_2 9 0 36 0 R contacts2.db-wal
6166 Binder:6152_2 8 0 32 0 R contacts2.db
5747 Profile Saver 3 0 16 0 R primary.prof
6479 Binder:6152_5 3 0 12 0 R contacts2.db

Demos of BCC tools on Android
How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste content in
from other source

Proprietary + Confidential

How to get BCC working for Android systems?

Problem:
- android device doesn’t have kernel headers,

clang or python to run BCC for ARM64.

- bionic doesn’t have a lot of things needed.

Proprietary + Confidential

How to get BCC working for Android systems?

Solution 1: Wrote a daemon to run on device and proxy
any and all eBPF request. Works great!

Host:
 BCC -> adb

Target:
 adbd -> BPFd -> kernel

Proprietary + Confidential

How to get BCC working for Android systems?

Solution 1: Wrote a daemon to run on device and proxy
any and all eBPF request. Works great!

Details of project are at:
https://github.com/joelagnel/bpfd
https://lwn.net/Articles/744522/

https://github.com/joelagnel/bpfd
https://lwn.net/Articles/744522/

Proprietary + Confidential

Solution 2: Wrote a tool called androdeb (my current favorite!)

● Packages a full arm64 filesystem using debian tools

● Packages kernel headers from a local kernel tree

● Builds BCC master on device

How to get BCC working for Android systems?

Proprietary + Confidential

Advantages of using androdeb instead of BPFd:

● Comes with trace-cmd, perf and all the open source friendly tools.

● Able to run BCC tools that can output lots of data (like bcc/trace!)

● Takes about 5 minutes to setup! (rootfs is downloaded from web).

Drawbacks of using androdeb instead of BPFd:

● Takes about 300MB space (can probably we trimmed to 200)

● Requires “adb root” to work.

How to get BCC working for Android systems?

Proprietary + Confidential

Details of androdeb are at:

https://tinyurl.com/androdeb
(Run BCC on Android in 5 minutes!)

How to get BCC working for Android systems?

https://tinyurl.com/androdeb

Proprietary + Confidential

What works in Upstream:

● BCC fixed for ARM64 platforms (Added October '17)

● Support to Compile for any architecture dynamically (Jan '18)

● BCC Support to compile eBPF on custom kernel tree path (Jan '18)

● Preliminary support for BCC communicating to remote targets (Jan '18)

● BPFd idea inception (https://lwn.net/Articles/744522/)

● Refactoring BCC to make it easier to add remote support merged (Feb ‘18).

● androdeb project created (March ‘18)

● Fixes to cachestat, and userspace sym lookup for Android (April ‘18)

Pending Upstream review:

● BCC remote support to talk to remote targets (Pushed April ‘18)

Status: Progress of BCC Journey on Android...
How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste content in
from other source

Proprietary + Confidential

hardirq: Total time spent in hard interrupt handlers
Example. Start and minimize an app a lot, watch the mali interrupts total time:

./tools/hardirqs.py 10

Tracing hard irq event time... Hit Ctrl-C to end.

HARDIRQ TOTAL_usecs

wl18xx 181

ufshcd 243

dw-mci 409

hisi-asp-dma 2671

mailbox-2 2842

timer 9978

xhci-hcd:usb1 12468

kirin 13720

e82c0000.mali 60635

How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste content in
from other source

Demos of BCC tools on Android

Proprietary + Confidential

cachestat: Page Cache Hits and Misses
cachestat 1

 TOTAL MISSES HITS DIRTIES BUFFERS_MB CACHED_MB

 165849 0 165849 0 2 1344

 114970 0 114970 0 2 1344

 269136 0 269136 0 2 1344

 253217 0 253217 0 2 1344

 14772 0 14772 0 2 1344

 280407 0 280407 0 2 1344

 268758 0 268758 0 2 1344

 8889 0 8889 0 2 1344

 264589 0 264589 0 2 1343

 276801 80 276721 0 2 1343

 18552 18552 0 0 0 387 <--- Did a “echo 1 > drop_caches”

 194915 183908 11007 0 0 1108

 68699 58350 10349 0 0 1327

 268413 3152 265261 0 0 1335

 13503 360 13143 0 0 1335

 267042 180 266862 0 0 1334

 269224 461 268763 0 0 1334

 12713 0 12713 0 0 1334

Demos of BCC tools on Android
How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste content in
from other source

Proprietary + Confidential

runqlen -C

cpu = 4

 runqlen : count distribution

 0 : 68 |**|

cpu = 5

 runqlen : count distribution

 0 : 49 |**|

cpu = 6

 runqlen : count distribution

 0 : 0 | |

 1 : 79 |********************* |

 2 : 10 |** |

 3 : 81 |********************* |

 4 : 149 |**|

Demos of BCC tools on Android
runqlen: Per-CPU Histogram of run queue lengths

How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste content in
from other source

Proprietary + Confidential

taskset -a -c 6 hackbench -P -g 2 -f 2 -l 10000000 &

 (Total of 8 tasks)

runqlen

Sampling run queue length... Hit Ctrl-C to end.

^C

 runqlen : count distribution

 0 : 1080 |**|

 1 : 98 |*** |

 2 : 11 | |

 3 : 64 |** |

 4 : 105 |*** |

 5 : 1 | |

 6 : 0 | |

Demos of BCC tools on Android
runqlen: Histogram of run queue lengths

How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste content in
from other source

Proprietary + Confidential

taskset -a -c 6 hackbench -P -g 14 -f 2 -l 10000000 &

runqlat

 usecs : count distribution

 0 -> 1 : 22 | |

 2 -> 3 : 68 | |

 4 -> 7 : 166 | |

 8 -> 15 : 23718 |**|

 16 -> 31 : 19301 |******************************** |

 32 -> 63 : 2887 |**** |

 64 -> 127 : 1684 |** |

 128 -> 255 : 2127 |*** |

 256 -> 511 : 2461 |**** |

 512 -> 1023 : 2927 |**** |

 1024 -> 2047 : 86 | |

 2048 -> 4095 : 42 | |

 4096 -> 8191 : 7 | |

 8192 -> 16383 : 2 | |

 16384 -> 32767 : 4 | |

 32768 -> 65535 : 5 | |

 65536 -> 131071 : 317 | |

 131072 -> 262143 : 1 | |

Demos of BCC tools on Android
runqlat: show run queue latencies

How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste content in
from other source

Proprietary + Confidential

Usecase: Using dynamic tracepoints (kprobes)
Function we’d like to trace has prototype:

long do_sys_open(int dfd, const char __user *filename, int flags, umode_t mode);

trace 'do_sys_open "%s", arg2' -T

TIME PID TID COMM FUNC -

19:45:44 2220 2250 storaged do_sys_open /sys/block/sda/stat

19:45:44 2220 2250 storaged do_sys_open /sys/block/sda/stat

19:45:48 2132 2132 servicemanager do_sys_open /proc/4113/attr/current

19:45:49 2352 2437 DeviceStorageMo do_sys_open /system/framework/arm/boot.art

19:45:49 2352 2437 DeviceStorageMo do_sys_open ../system@framework@boot.art

19:45:49 2352 2437 DeviceStorageMo do_sys_open /system/framework/arm64/boot.art

19:45:49 2352 2437 DeviceStorageMo do_sys_open ../system@framework@boot.art

19:45:55 2132 2132 servicemanager do_sys_open /proc/2480/attr/current

19:45:55 2132 2132 servicemanager do_sys_open /proc/2480/attr/current

Trace Multitool : A swiss army knife
How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste content in
from other source

Proprietary + Confidential

Usecase: kernel tracepoints (although I’d stick to trace-cmd for TPs)

trace 't:block:block_rq_complete "sectors=%d", args→nr_sector'

PID TID COMM FUNC -

0 0 swapper/0 block_rq_complete sectors=64

0 0 swapper/0 block_rq_complete sectors=0

0 0 swapper/0 block_rq_complete sectors=8

0 0 swapper/0 block_rq_complete sectors=0

0 0 swapper/0 block_rq_complete sectors=80

0 0 swapper/0 block_rq_complete sectors=0

Trace Multitool : A swiss army knife
How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste content in
from other source

Proprietary + Confidential

Example: Get a historgram of size parameter passed to __kmalloc
argdist -i 1 -H 'p::__kmalloc(size_t size):size_t:size'

 size : count distribution

 0 -> 1 : 0 | |

 2 -> 3 : 0 | |

 4 -> 7 : 1 | |

 8 -> 15 : 217 |**|

 16 -> 31 : 21 |*** |

 32 -> 63 : 178 |******************************** |

 64 -> 127 : 20 |*** |

 128 -> 255 : 5 | |

 256 -> 511 : 7 |* |

 512 -> 1023 : 8 |* |

 1024 -> 2047 : 2 | |

 2048 -> 4095 : 0 | |

 4096 -> 8191 : 12 |** |

Demos of tools: argdist
How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste content in
from other source

Proprietary + Confidential

Current solution: Monitor futex functions in kernel and identify sleepers/wakers

Problem: futex isn’t only used for locking.

● How to detect futex is a lock?
- Analyzing the userspace stack

- Problem: Very userspace-specific
- Can we monitor anything about futex usage?

- timing?
- parameters?

● How to provide more information about which lock?

Open discussion: Lock Contention detection tool
How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste content in
from other source

Proprietary + Confidential

Open ideas for new tools relevant to Scheduler/Power
How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste content in
from other source

● Write new tools relevant to OSPM … Ideas ?

○ Calculating average power calculated from EM and cpufreq events

○ Identifying other common problems..

■ Is load balancing running often enough and doing the right thing?

■ Is EAS not hurting performance sensitive tasks?

■ Are we wasting too much power by not going to deeper idle enough?

○ Scheduler workload characterization for unit tests (BCC has a ‘sched-time’)

■ Seems to be “ballpark” characterization (doesn’t account for every

sleep/wakeup, just models dependencies correctly….)

Proprietary + Confidential

Resources
How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste content in
from other source● Androdeb: https://tinyurl.com/androdeb

● BPFd project: https://github.com/joelagnel/bpfd
● LWN article: https://lwn.net/Articles/744522/
● Brendan Gregg’s eBPF page: http://brendangregg.com/perf.html#eBPF

Thanks
● Brendan Gregg, Alexei Staravoitov and Sasha

Goldstein for encouragement.
● Todd Kjos for help with androdeb.
● Android kernel team for encouragement and ideas.
● OSPM team

Questions?

https://tinyurl.com/androdeb
https://github.com/joelagnel/bpfd
https://lwn.net/Articles/744522/
http://brendangregg.com/perf.html#eBPF

