
© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

Formal Methods in the
Aerospace Industry:

Follow the Money

ICFEM
15 November 2012

Dr. Darren Cofer
cofer@ieee.org

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

Rockwell Collins Africa
Johannesburg, South Africa

Asia
Bangkok, Thailand
Beijing, China
Hong Kong
Hyderabad, India
Kuala Lumpur, Malaysia
Manila, Philippines
Moscow, Russia
Osaka, Japan
Shanghai, China
Singapore
Tokyo, Japan

Australia
Auckland, New Zealand
Brisbane, Australia
Melbourne, Australia
Sydney, Australia

Canada
Montreal
Ottawa

Europe
Amsterdam, Netherlands
Frankfurt, Germany
Heidelberg, Germany
London, England
Lyon, France
Manchester, England
Paris, France
Reading, England
Rome, Italy
Toulouse, France

Mexico
Mexicali

South America
Santiago, Chile
Sao Jose dos Campos, Brazil
Sao Paulo, Brazil

Minnesota
Minneapolis

Missouri
Kansas City
St. Louis

New York
New York

North Carolina
Charlotte
Raleigh

Oklahoma
Midwest City
Tulsa

Oregon
Portland

Pennsylvania
Philadelphia
Pittsburgh

Texas
Dallas
Fort Worth
Richardson

Utah
Salt Lake City
Virginia
Sterling
Warrenton

Washington
Kirkland
Renton
Seattle

Washington, DC

California
Carlsbad
Cypress
Irvine
Los Angeles
Pomona
Poway
San Francisco
San Jose
Tustin

Florida
Melbourne
Miami
Orlando

Georgia
Atlanta
Warner Robins

Hawaii
Honolulu

Illinois
Chicago

Iowa
Bellevue
Coralville
Decorah
Manchester

Kansas
Wichita

Maryland
White Marsh

Massachusetts
Boston

Michigan
Ann Arbor
Detroit

InternationalDomestic

Africa
Johannesburg, South Africa

Asia
Bangkok, Thailand
Beijing, China
Hong Kong
Hyderabad, India
Kuala Lumpur, Malaysia
Manila, Philippines
Moscow, Russia
Osaka, Japan
Shanghai, China
Singapore
Tokyo, Japan

Australia
Auckland, New Zealand
Brisbane, Australia
Melbourne, Australia
Sydney, Australia

Canada
Montreal
Ottawa

Europe
Amsterdam, Netherlands
Frankfurt, Germany
Heidelberg, Germany
London, England
Lyon, France
Manchester, England
Paris, France
Reading, England
Rome, Italy
Toulouse, France

Mexico
Mexicali

South America
Santiago, Chile
Sao Jose dos Campos, Brazil
Sao Paulo, Brazil

Minnesota
Minneapolis

Missouri
Kansas City
St. Louis

New York
New York

North Carolina
Charlotte
Raleigh

Oklahoma
Midwest City
Tulsa

Oregon
Portland

Pennsylvania
Philadelphia
Pittsburgh

Texas
Dallas
Fort Worth
Richardson

Utah
Salt Lake City
Virginia
Sterling
Warrenton

Washington
Kirkland
Renton
Seattle

Washington, DC

California
Carlsbad
Cypress
Irvine
Los Angeles
Pomona
Poway
San Francisco
San Jose
Tustin

Florida
Melbourne
Miami
Orlando

Georgia
Atlanta
Warner Robins

Hawaii
Honolulu

Illinois
Chicago

Iowa
Bellevue
Coralville
Decorah
Manchester

Kansas
Wichita

Maryland
White Marsh

Massachusetts
Boston

Michigan
Ann Arbor
Detroit

InternationalDomestic

Headquartered in Cedar Rapids, Iowa
20,000 Employees Worldwide
2012 Sales of ~$4.8 Billion

Commercial & Military Avionics Systems
Flight Control Systems & Displays
Heads Up Displays
Navigation & Landing Systems
Defense Communications
Weapons Data Links
Cryptographic Equipment

Advanced Technology Center
Trusted Systems group

(Formal Methods researchers)

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

3

Outline

• Problem
– Verification of high-assurance complex systems

• Why use formal methods
– Cost, safety, certification

• Formal methods for verification
– Model checking

• Formal methods for certification
– DO-178C / DO-333

• What’s next
– Compositional reasoning

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

Domain – avionics

• Embedded systems with safety and security
requirements that are critical to operation of vehicle and
performance of the mission

• Commercial and military
• Manned and unmanned

4

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

Software in commercial aircraft

B787: 6.5M

Boeing’s new 787 Dreamliner…requires about
6.5 million lines of software code to operate its
avionics and onboard support systems.
This Car Runs on Code, IEEE Spectrum, 2/09

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

Software in military aircraft

Source: D. Gary Van Oss (USAF), “Avionics Acquisition, Production, and Sustainment: Lessons
Learned – The Hard Way,” NDIA Systems Engineering Conference, Oct 2002.

“Software providing essential JSF capability has
grown in size and complexity, and is taking longer
to complete than expected,” the GAO warned.
Pentagon: Trillion-Dollar Jet on Brink of
Budgetary Disaster, Wired 3/21/12

F-35

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

The use of formal methods is motivated by the
expectation that, as in other engineering
disciplines, performing appropriate mathematical
analyses can contribute to establishing the
correctness and robustness of a design.

7

FM : software ::
FEA : structure

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

Why use formal methods with avionics SW?
(A lesson in technology transition)
• Increase confidence?

– Complete examination of complex software and requirements
– “Our systems are already safe.”

• Satisfy certification objectives?
– DO-178C allows certification credit for formal methods
– Requirements/model verification is done by review (too cheap), and

formal source/object code verification is difficult (too expensive)

• Reduce cost?
– YES!
– Early detection/elimination of defects
– Automation of verification activities

Follow the money.

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

10

Formal Methods
for Verification

Formal Methods
for Certification

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

• Take advantage of
– Industry adoption of Model-Based Development tools
– Increasing power of formal methods analysis engines
– Moore’s Law

• Use formal methods to fight cost and complexity with
automation and rigor

MBD enhances the FM value proposition

Model-based development

Domain-specific (often) graphical design
environments for software development
– Early simulation and debugging
– Automated code generation
– DSL promotes higher level of abstraction

in design

4

input_sel

3

totalizer_cnt

2

persistence_cnt

1

failure_report

pc

trigger

input_a

input_b

input_c

DST_index

input_sel

triplex_input_selector

input_a

input_b

input_c

trip_lev el

persist_lim

MS

f ailreport

pc

tc

triplex_input_monitor

trip_level

trip_level1

persist_l im

persistence limit

[DSTi]

[C]

[B]

[status_c]

[status_b]

[status_a]

[A]

[trigger]

[DSTi]
[MS]

[MS]

[DST i][A]

[prev_sel]

[prev_sel]

[DSTi]

[trigger]

[trigger]

[status_c]

[status_b]

[status_a]

[A]

[A]

Index
Vector

[C]

[B]

[C]

[B]

[C]

[B]

f ailure_report

dst_index

Failure_Processing

mon_f ailure_report

status_a

status_b

status_c

prev _sel

input_a

input_b

input_c

f ailure_report

Failure_Isolation

Extract Bits
[0 3]

Extract Bits

DOC

Text

double

DST

Data Store
Read

8

dst_index

7

status_c

6

status_b

5

status_a

4

input_c

3

input_b

2

input_a

1

sync

persist_lim

totalizer_cnt<tc>

trip_lev el

persistence_cnt<pc>

sy nc<>

f ailreport

A
B

ST
R

A
C

T
C

O
N

C
R

ET
E

STATE Transition(char *str) {
int NEXT_SYMBOL;
for(; *str && state != INVALID; str++) {

NEXT_SYMBOL = *str;
switch(state) {
case START:

if(isdigit(NEXT_SYMBOL)) {
state = INT;

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

Barriers to use of FM

• “If formal methods are so great, why aren’t they more widely
used?”

• The main barriers in the past have been:
1. Cost: building/maintaining separate analysis models
2. Fidelity: models don’t match real system
3. Usability: unfamiliar notations/tools
4. Scale: inadequacy of tools for industrial-sized problems

• MBD is eliminating the first three barriers
– Leverages existing modeling effort
– Automated translations and analysis
– Familiar notations for engineers (Simulink + Stateflow)

• Fourth barrier is also falling…
– Moore’s Law = more power available on desktop
– Exploit rapid advances in model checking (e.g., SMT)

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

{ KIND }

Problem: bridging the gap

• MBD captures design at sufficient detail and sufficient formality
• Powerful formal methods tools can analyze large models
• However…

– there are still a variety of models used in MBD environments
– and many good analysis tools with different strengths and

weaknesses

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

Automatic translation

Automatic
translation

Design feedback

Gryphon
translation
framework

• Supports a wide
variety of back end
tools and languages

• Straightforward to
add new tools (e.g.
Prover support
added in 4 days)

• Apply “the right tool
for the job”

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

Translator Framework

• Mechanism: Small source-to-source transformations in Lustre
– Deal with one language aspect at a time
– Define pre/post-conditions that describe when transformation can be

performed and its effect
– Refine Lustre specification until it resembles target language
– Create language-specific emitter to output target code

Lustre: intermediate
representation of AST

Target CodeTranslator

…

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

Transformations

• Different target languages use different combinations of
transformations
– May be 50+ transformations for a given target

• Transformations optimize final output for target language
– Strengths of selected analysis engine
– Speed/size/readability of source code
– Reduce analysis times from hours to seconds

Pretty
Print

Lustre Lustre Lustre

Lustre

Lustre

Lustre

Lustre C Code

Pretty
Print

Lustre Lustre Ada Code

Pretty
Print

Lustre PVS

Pretty
Print

Lustre Lustre

Lustre NuSMV

Pretty
Print

Lustre Lustre Prover

Lustre

RDV

Lustre
REPRNC

RDV

SCA

RNC IPS

RC

REN

FNH

PTL

IAS
RCRFBY

RACT

RNST

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

Application: Eliminate errors

PFD EICAS MAP …
PFD EICAS MAP …

WM WM

Window Manager
Display Application

ADGS-2100
Window Manager SW

(cockpit display)

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

ADGS-2100 model checking results

19

Requirement CTL Properties
R1: If a DU is available, then it
shall display some application

AG(LEFT_DU_AVAILABLE -> LEFT_DU_APPLICATION != BLANK)
AG(RIGHT_DU_AVAILABLE -> RIGHT_DU_APPLICATION != BLANK)

R2: If a DU is unavailable, then it
shall not attempt to display any
application

AG(!LEFT_DU_AVAILABLE -> LEFT_DU_APPLICATION = BLANK)
AG(!RIGHT_DU_AVAILABLE -> RIGHT_DU_APPLICATION = BLANK)

R3: The cursor will not be
displayed on a DU that is
unavailable

AG(!LEFT_DU_AVAILABLE -> CURSOR_LOCATION != LEFT_DU)
AG(!RIGHT_DU_AVAILABLE -> CURSOR_LOCATION != RIGHT_DU)

R4: The cursor shall not be
displayed on a DU whose
application is not MAP

AG(LEFT_DU_APPLICATION != MAP -> CURSOR_LOCATION != LEFT_DU))
AG(RIGHT_DU_APPLICATION != MAP -> CURSOR_LOCATION != RIGHT_DU)

Subsystem Simulink
Diagrams

Simulink
Blocks State Space Properties Errors found

GG 2,831 10,669 9.8 x 109 43 56
PS 144 398 4.6 x 1023 152 10
CM 139 1,009 1.2 x 1017 169 10
DUF 879 2941 1.5 x 1037 115 8
MFD 302 1,100 6.8 x 1031 84 14

Totals 4295 16,117 n/a 563 98

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

Application: Eliminate errors and save money

• AFRL CerTA FCS program
– Team: Lockheed Martin + Rockwell Collins

• Problem
– The cost of software V&V for UAVs has been identified as the

primary obstacle to their future development
– These costs are expected to grow rapidly as sophisticated adaptive

control systems are introduced

• Measure cost and quality improvements using model checking
for verification of UAV software
– Use RC model-checking tools to verify LM Aero advanced flight

control models
– Quantify the cost and quality achieved by formal verification vs.

test-based verification

It’s a contest!

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

Redundancy Manager software for UAV

• Sensor fusion, failure detection,
and reset management for sets of
triply redundant sensors

• Mostly discrete logic: ideal
problem for model checking

4

input_sel

3

totalizer_cnt

2

persistence_cnt

1

failure_report

pc

trigger

input_a

input_b

input_c

DST_index

input_sel

triplex_input_selector

input_a

input_b

input_c

trip_lev el

persist_lim

MS

f ailreport

pc

tc

triplex_input_monitor

trip_level

trip_level1

persist_lim

persistence limit

[DSTi]

[C]

[B]

[status_c]

[status_b]

[status_a]

[A]

[trigger]

[DSTi]
[MS]

[MS]

[DSTi][A]

[prev_sel]

[prev_sel]

[DSTi]

[trigger]

[trigger]

[status_c]

[status_b]

[status_a]

[A]

[A]

Index
Vector

[C]

[B]

[C]

[B]

[C]

[B]

f ailure_report

dst_index

Failure_Processing

mon_f ailure_report

status_a

status_b

status_c

prev _sel

input_a

input_b

input_c

f ailure_report

Failure_Isolation

Extract Bits
[0 3]

Extract Bits

DOC

Text

double

DST

Data Store
Read

8

dst_index

7

status_c

6

status_b

5

status_a

4

input_c

3

input_b

2

input_a

1

sync

persist_lim

totalizer_cnt<tc>

trip_lev el

persistence_cnt<pc>

sy nc<>

f ailreport

Subsystem Subsystems
/ Blocks

Charts /
Transitions /

TT Cells

Reachable
State
Space

Properties Confirmed
Errors

Triplex voter
no FHT 10 / 96 3 / 35 / 198 6.0 * 1013 48 5

failure
processing 7 / 42 0 / 0 / 0 2.1 * 104 6 3

reset
manager 6 / 31 2 / 26 / 0 1.32 * 1011 8 4

Totals 23 / 169 5 / 61 / 198 N/A 62 12

triplex
monitor

failure
isolation

sensor
fusion

failure
processing
(logging)

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

IN P U T S
inp u t_ a 0 3 3 3 3 3
inp u t_ b 0 1 1 1 1 5
inp u t_ c 0 3 3 3 3 5
s ta tus _a 0 0 0 0 0 0
s ta tus _b 0 0 0 0 0 0
s ta tus _c 0 0 0 0 0 0

O U T P U T S
fa ilu re _re po rt 0 0 0 0 0 4
p ers is ten ce _c n t 0 1 2 3 4 0
to ta lize r_c n t 0 1 2 3 4 4

Redundancy Manager counterexample

Requirement: A sensor that does not miscompare
shall not be declared failed in the next frame.

Property: SPEC AG((!b_miscompare & !dst_b_failed) ->
AX (failure_report != b_failed));

Problem: Only one miscompare persistence counter

Counterexample:
Sensor b miscompares for 4 steps.

Sensor a miscompares
on next step.

Sensor a is declared
failed instead of
sensor b!
(failure report “4”)

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

• LM and RC teams start with
same set of requirements and
software models

• Both teams spent comparable
effort to add enhancements to
their verification framework
(support for new blocks,
graphical test case viewer, XML
test case generation)

• Measure effort to perform
verification and diagnose
results

• [FMICS 2007]

Testing vs. Model Checking

120.7X

0X

Errors foundEffort

Redundancy Manager
(verification effort)

LM: Test

RC: MC

RC effort
includes fixing

the errors found!

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

Certification

• Legal recognition by the regulatory authority that a product,
service, organization or person complies with the requirements
– Type certification: design complies with standards to demonstrate

adequate safety, security, etc.
– Product conforms to certified type design
– Certificate issued to document conformance

• Examples of certification evidence
– We used verification tool X to accomplish these objectives.
– These are the reasons why we think the tool is acceptable.
– We ran 1000 tests using the tool, and this is why we think these

1000 tests are sufficient.
– And (almost incidentally) here are the test results.

Convincing the relevant Certification Authority that all required steps
have been taken to ensure the safety/reliability/integrity of the system

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

Certification and civil aviation

• Software is not actually certified

• But certification of an aircraft does include “software
considerations”

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

DO-178B:
“Software Considerations in Airborne Systems
and Equipment Certification”

• Published in 1992
• Developed jointly by industry and

governments from North America and
Europe
– Published by RTCA in U.S.
– Published by EUROCAE in Europe as ED-12B

• Certification authorities agree that an
applicant can use guidance contained in
DO-178B as a means of compliance (but
not the only means) with federal
regulations governing aircraft certification

• What about military aircraft?

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

• Primarily a quality document, not safety
– Demonstrate that software implements requirements
– and nothing else (no surprises)

• Requires auditable evidence of specific processes
– Software Planning
– Software Development
– Software Verification
– Software Configuration Management
– Software Quality Assurance
– Certification Liaison

Overview of DO-178B

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

Overview of DO-178B

• Five Software Levels (DAL in other contexts)
A: Catastrophic (everyone dies)
B: Hazardous/Severe (serious injuries)
C: Major (significant reduction in safety margins)
D: Minor (annoyance to crew)
E: No Effect (OK to use Windows)

• Objective based
– Specifies what is to be achieved, not how

• Different objectives and requirements for each SW level
– Higher level more objectives to be satisfied

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

Verification in DO-178B

• Verification = review + analysis + test
• Requirements-based testing
• Traceability among

– Requirements
– Test cases
– Code

• How do we know if we have done enough testing?
– Coverage metrics to determine adequacy of testing/requirements

• Two complementary objectives
– Demonstrate that the software satisfies its requirements.
– Demonstrate with a high degree of confidence that errors which

could lead to unacceptable failure conditions, as determined by the
system safety assessment process, have been removed.

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

Coverage metrics

• Defines structural coverage metrics
– Statement coverage (A, B, C)

• Every statement in the program has been invoked at least once

– Decision coverage (A, B)
• and every point of entry and exit in the program has been invoked at

least once, and every decision (branch) in the program has taken on all
possible outcomes at least once

– Modified condition / decision coverage (A)
• and every condition in a decision in the program has taken all possible

outcomes at least once, and each condition in a decision has been shown
to independently affect that decision's outcome.

• Coverage shortcomings could indicate
– Missing requirements
– Inadequacy of test cases
– Dead or deactivated code

Problem: discrete nature of software
Goal: provide complete evaluation of
software behavior

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

DO-178B Verification Objectives (Level A)

System
Requirements

High-Level
Requirements

Software
Architecture

Low-Level
Requirements

Source
Code

Object
Code

Design Description

A-2: 1, 2

A-2: 3. 4. 5

A-2: 6

A-2: 7

A-3.1 Compliance
A-3.6 Traceability

A-3.2 Accuracy & Consistency
A-3.3 HW Compatibility
A-3.4 Verifiability
A-3.5 Conformance
A-3.7 Algorithm Accuracy

A-4.1 Compliance
A-4.6 TraceabilityA-4. 8 Architecture Compatibility

A-4.9 Consistency
A-4.10 HW Compatibility
A-4.11 Verifiability
A-4.12 Conformance
A-4.13 Partition Integrity

A-5.1 Compliance
A-5.5 Traceability

A-5.2 Compliance

A-5.3 Verifiability
A-5.4 Conformance
A-5.6 Accuracy & Consistency A-6.3 Compliance

A-6.4 Robustness

A-6.5 Compatible
With Target

A-5. 7 Complete
& Correct

Reqts-based
Tests

A-7.2 Results Correct

A-4.2 Accuracy & Consistency
A-4.3 HW Compatibility
A-4.4 Verifiability
A-4.5 Conformance
A-4.7 Algorithm Accuracy

A-7.3 Cover

A-7.4 Cover

A-7.1 Procedures
Correct

A-7.5-7 Structural
Coverage

A-6.1 Compliance
A-6.2 Robustness

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

That was 1992…

• Any changes in software technology since then?

• New SW development technologies
– Object-oriented programming languages
– Model-based development (MBD)

• New verification technologies
– Formal methods (FM)

• More software!!

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

DO-178C

• In late 2004, RTCA & EUROCAE agree to create joint
committee to update DO-178B and develop DO-178C
– Start: 2005
– Finish: 2008

• Terms of Reference governing update
– Minimize changes to core document, yet…
– Update to accommodate 15+ years of SW experience

• Strategy: Address new technologies in “supplements”
– OO, MBD, FM
– Also tool qualification

• Other issues
– Air/ground synergy (DO-278)
– Rationale, consolidation, issues, errata (DO-248)

2010 2011

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

DO-333: Formal Methods Supplement

• Objectives
– No longer an “alternate method” (as in DO-178B)
– Provide basis for communication between applicants & certification

authorities
– Focus on verification (DO-178 section 6)
– Partial use is OK
– What should formal methods evidence look like?
– Define new objectives/activities/documentation (abstractions,

assumptions)
– Avoid common errors (check false hypotheses)

• Key issues
– Capturing assumptions used in analysis (constraints, assertions,

environment…)
– If analysis replaces unit testing, what constitutes “completeness” of

analysis? (analog of MC/DC coverage metric)
– How should formal analysis tools be qualified?

• Keep the bar high enough
– Applicants with sufficient expertise

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

NASA DO-333 Case Study project

39

Theorem Proving

Model Checking

Abstract Interpretation

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

40

What’s next?

Compositional
Reasoning

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

Vision: “Integrate, then Build”

• Build on success of formal verification of software components
• Extend to system level via software architecture models
• Goals: Early detection/elimination of bugs

– Cheaper to fix in design vs. integration
– High-assurance

• Hardware analogy…

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

Scale and Composition
• Architectural model should not capture implementation details

– Component descriptions, interfaces, interconnections
– Link to implementations

• Assume-guarantee contracts provide the information
needed from other modeling domains to reason about system-
level properties
– Guarantees correspond to the component requirements
– Assumptions correspond to the environmental constraints that were

used in proving the component requirements
– Contract specifies precisely the information that is needed to reason

about the component’s interaction with other parts of the system
– Supports hierarchical decomposition of verification process

• Add contracts to AADL model

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

AADL

44

system implementation Flight_Guidance_System.Flight_Guidance_System_Impl
subcomponents

FGP: process Flight_Guidance_Process.Flight_Guidance_Process_Impl;

connections
VNAVtoFGP: port VNAV -> FGP.VNAV;
ADtoFGP: port AD -> FGP.AD;
AHtoFGP: port AH -> FGP.AH;
NAVtoFGP: port NAV -> FGP.NAV;
FCItoFGP: port FCI -> FGP.FCI;
LSItoFGP: port LSI -> FGP.LSI;
FGPtoLSO: port FGP.LSO -> LSO;
FGPtoGC: port FGP.GC -> GC;

end Flight_Guidance_System.Flight_Guidance_System_Impl;

thread implementation Control_Laws.Control_Laws_Impl
end Control_Laws.Control_Laws_Impl;

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

s e t D e s i r e d S p e e d
b o o l e a n

2

m o d e
u i n t3 2

1

s e t E v e n t

s a fe t y C o n d i t i o n

c a n c e l

b r a k e P e d a l

c a r G e a r

c a r S p e e d

v a l i d i n p u t s

s a fe t y C o n d i t i o n

r e s u m e E v e n t

m o d e _ l o g i c

o n O f f

d e c e l

s e t

a c c e l

r e s u m e

s a f e ty C o n d i t i o n

m o d e

s e t D e s i r e d S p e e d

D e l a y = 1 S e c

D e l a y = 1 S e c

va l i d In p u t s
b o o l e a n

tr u e _ fa l s e

8

c a r S p e e d
d o u b l e

m i l e s _ p e r_ h o u r

7

c a r G e a r
u i n t3 2

e n u m e r a te d

6

b r a k e P e d a l
b o o l e a n
o n _ o f f

5

c a n c e l
b o o l e a n

t r u e _ f a l s e

4

a c c e lR e s u m e
b o o l e a n
o n _ o f f

3

d e c e l S e t
b o o l e a n
o n _ o f f

2

o n O f f
b o o l e a n
o n _ o f f

1

cruiseThrottle
double

miles_per_hour

1

throttleDelta
%_per_step

thottleDelta
%_per_second

1.00

isCruiseActive?

<Init = 0.0>

z

1

StepsPerSec

<U=10.0>
<L=-10.0>

<U=100.0>
<L=0.0>

NO THROTTLE
double

0.0

double

carSpeed
double

miles_per_hour

3

desiredSpeed
double

miles_per_hour

2

mode
uint32

enumerated

1

d e s ir e d S p e e d
d o u b l e

m i l e s _ p e r _ h o u r

3

c ru i s e T h ro t t l e
d o u b l e

p e r c e n ta g e

2

m o d e
u i n t3 2
e n u m e r a te d

1

[c a rS p e e d]

[c a rS p e e d]

S e t T h r o t t l e

m o d e

d e s i r e d S p e e d

c a r S p e e d

c r u i s e T h r o t t l e

S e t D e s i r e d S p e e d

m o d e

c a r S p e e d

s e tD e s i r e d S p e e d

d e s i r e d S p e e d

M o d e L o g i c

o n O f f

d e c e l S e t

a c c e lR e s u m e

c a n c e l

b r a k e P e d a l

c a r G e a r

c a r S p e e d

v a l i d In p u ts

m o d e

s e tD e s i r e d S p e e d

G o t o

[c a rS p e e d]

va l i d In p u t s
b o o l e a n

t r u e _ fa l s e

8

c a rS p e e d
d o u b l e

m i l e s _ p e r _ h o u r

7

c a r G e a r
u i n t3 2

e n u m e r a te d

6

b ra k e P e d a l
b o o l e a n
o n _ o f f

5

c a n c e l
b o o l e a n

t r u e _ fa l s e

4

a c c e l R e s u m e
b o o l e a n
o n _ o f f

3

d e c e l S e t
b o o l e a n
o n _ o f f

2

o n O ff
b o o l e a n
o n _ o f f

1

cruiseThrottle
double

percentage

3

desiredSpeed
double

miles_per_hour

2

mode
uint32

enumerated

1

isBrakePressed?[brakePosition]

CruiseController

onOff

decelSet

accelResume

cancel

brakePedal

carGear

carSpeed

validInputs

mode

cruiseThrottle

desiredSpeed

validInputs
boolean

true_false

7

carSpeed
double

miles_per_hour

6

carGear
uint32

enumerated

5

cancel
boolean

true_false

4

accelResume
boolean

true_false

3

decelSet
boolean

true_false

2

onOff
boolean

true_false

1

Composition of Subsystems

– Combines heterogeneous
evidence

– Assume/guarantee reasoning
– Well suited for theorem

proving

Typical Model-Based Design

– Models are organized in a
hierarchy several (many) levels
deep

– Much of the complexity is in the
leaf models

– Leaf models can often be verified
through model checking

Compositional reasoning follows architecture

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

46

Compositional reasoning
• Given

– Assumptions for system
– Assumptions/Guarantees for components (A, P)

• Prove
– System guarantees (requirements)

• Assume-Guarantee Reasoning Environment (AGREE)
– Automatic translation of model structure, contracts, and verification

conditions
– Verify via k-induction model checker (KIND/U. Iowa, Yices/SRI)

Example (to prove)
AS AA
AS PA AB
AS PA PB AC
AS PA PB PC PS

Contract compliance:
G(H(A) P) A

B

C
Assumption: Input < 20
Guarantee: Output < 2*Input

Assumption: Input < 20
Guarantee: Output < Input + 15

Assumption: none
Guarantee: Output = Input1
+ Input2

Assumption: Input < 10
Guarantee: Output < 50

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

HACMS motivation…

48

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

High Assurance Cyber-Military Systems

• Develop a complete, formally proven architecture for
UAVs (and other embedded systems) that provides
robustness against cyber attack

• Develop compositional verification tools for
combining formal evidence from multiple sources,
components, and subsystems

• Prototype these technologies on an open research
platform and transfer them to a military platform to
demonstrate their practicality and effectiveness

• Team includes Boeing, NICTA, Galois, Univ. of MN

ROCKWELL COLLINS HAS ASSEMBLED A TEAM OF THE WORLD’S LEADING AUTHORITIES ON SOFTWARE VERIFICATION AND HIGH
ASSURANCE DEVELOPMENT TO CREATE A REVOLUTIONARY NEW WAY OF BUILDING ROBUST AND SECURE MILITARY VEHICLES

SMACCM: $18M/4.5 year project funded by DARPA
Information Innovation Office
Objective: Produce a clean-slate, formal methods–
based approach to the development of network-
enabled military vehicles to build systems that
provide the highest levels of dependability and are
resistant to emerging cyber threats

Network-enabled
UAVs are vulnerable

to cyber-attack

SECURE MATHEMATICALLY-ASSURED
COMPOSITION OF CONTROL MODELS

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

Target: Unmanned Air Vehicles

50

Security vulnerabilities that can lead
to safety hazards

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

NASA AFCS
(Assurance of Flight Critical Systems)

535353

SysML-AADL
translation

Lute:
Structural
verification

AGREE:
Compositional

behavior verification

OSATE:
AADL modeling

Enterprise
Architect

Eclipse

KIND

SysML

Lustre

AADL

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

54

Composition of
heterogeneous evidence
• Avionics system requirement

• Relies upon
– Guarantees provided by

components & design patterns
– Structural properties of model
– Resource allocation feasibility
– Probabilistic system-level

failure characteristics

LS

PALS Rep

Platform

synchronous
communication

one node
operational

timing
constraints

not
co-located

Avionics
System

leader transition
bounded

A
SS

U
M

PT
IO

N
S

G
U

A
R

A
N

TE
ES

Under single-fault assumption, GC
output transient response is bounded
in time and magnitude

RT sched
& latency

Error
model

Behavior

Structure

Resource Probabilistic

Principled mechanism for
“passing the buck”

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

55

Compositional reasoning for FCS (example)

55

ibd [SysML Internal Block] Flight_Control_System_Impl [Flight_Control_System]

AD_L AD_R

AH_L AH_R

CSA

FD_L FD_R

FM_L
FM_R

NAV_L
NAV_R

THROT_L THROT_RYOKE_L YOKE_R

Flight_Control_System

Flight_Control_System_Impl

AD_L AD_R

AH_L AH_R

CSA

FD_L FD_R

FM_L
FM_R

NAV_L
NAV_R

THROT_L THROT_RYOKE_L YOKE_R

THROT_L
THROT_R

YOKE_L YOKE_R

FCI

FCI : Flight_Crew_Interface

THROT_L
THROT_R

YOKE_L YOKE_R

FCI

GC_L GC_R

CSA

AP : Autopilot_System

GC_L GC_R

CSA

AD

AH

VNAV

NAV

LSI

GC

FCI

LSD

FGS_L : Flight_Guidance_System

AD

AH

VNAV

NAV

LSI

GC

FCI

LSD
AD

AH

VNAV

NAV

LSI

GC

FCI

LSD

FGS_R : Flight_Guidance_System

AD

AH

VNAV

NAV

LSI

GC

FCI

LSD

FGSRtoAP

YOKER2FCIYOKEL2FCI

THROTL2FCI

AP2CSA

NAVLtoFGSL

FMLtoFGSL

AHLtoFGSL

ADLtoFGSL

THROTR2FCI

FGSLtoAP

FGSLtoFGSR

FGSRtoFDR

ADRtoFGSR

AHRtoFGSR

FMRtoFGSR

NAVRtoFGSR

FCItoFGSL

FGSRtoFGSL

FCItoFGSR

FGSLtoFDL

• Want to prove a transient response
property

– The autopilot will not cause a sharp
change in pitch of aircraft.

– Even when one FGS fails and the other
assumes control

• Given assumptions about the
environment

– The sensed aircraft pitch from the air
data system is within some absolute
bound and doesn’t change too quickly

– The discrepancy in sensed pitch
between left and right side sensors is
bounded.

• And guarantees provided by
components

– When a FGS is active, it will generate
an acceptable pitch rate

• As well as facts provided by
architecture

– Leader selection: at least one FGS will
always be active (modulo one
“failover” step)

transient_response_1 : assert true ->
abs(CSA.CSA_Pitch_Delta) < CSA_MAX_PITCH_DELTA ;

transient_response_2 : assert true ->
abs(CSA.CSA_Pitch_Delta - prev(CSA.CSA_Pitch_Delta, 0.0))

< CSA_MAX_PITCH_DELTA_STEP ;

© Copyright 2012 Rockwell Collins, Inc.
All rights reserved.

Conclusions

• Model-based development has been key to our adoption of
formal methods

• Current work is expanding the size and scope of
systems/models that can be analyzed

• There are many good reasons to use formal methods for
verification and certification…

• But follow the money

