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Abstract—For a wide selection of problems, charac-
terizing them as a group of sets allows us to derive de-
sired solutions by computing their minimal hitting sets.
For his approach at model-based diagnosis, for instance,
Raymond Reiter suggested to compute diagnoses as
minimal hitting sets of encountered conflicts between
behavioral assumptions, and defined a corresponding
MHS algorithm. In this paper, we show a new twist
to his idea that improves on the resources spent. The
focused search strategy of our RC-Tree algorithm is
finally able to avoid all the redundant computations
that occur in the original version.

I. Introduction

In case that we can characterize an emerging problem
via a set CS of sets Ci of individual components/facts,
deriving CS’ minimal hitting sets (MHS) often delivers
essential insights into the problem, and sometimes even
the desired solutions. For instance, in software debugging
we can exploit hitting sets of program slices for fault isola-
tion [1], or when hitting a set of landmarks, minimal hitting
sets can help in AI planning [2]. In the domain of Boolean
formulae, minimal hitting sets provide a convenient option
to directly translate formulae in conjunctive normal form
into their disjunctive counterparts (and vice versa).

The wide application area of MHSs resulted in a vast
selection of corresponding algorithms [3]. For his approach
at model-based diagnosis [4], for instance, Raymond Reiter
suggested to compute diagnoses as minimal hitting sets
of conflicting assumptions about a system’s components’
health as hinted at by contradictions between expected
and experienced behavior. His corresponding tree-based
MHS algorithm’s basic idea was to take some Ci ∈ CS,
and then fork a branch for each c ∈ Ci such that for
each such branch we iteratively search (and branch) for
another Cj ∈ CS not hit by the branching elements of
the respective path. A branch ends in leaf n if (a) all the
Cis in CS are hit by its selection sequence so that its set
of elements h(n) is a hitting set, or (b) some subset of
h(n) is known to be a hitting set so that we stop exploring
the branch at n. Implementing an iterative breadth-first
approach to explore the search space (which is exponential
in the size of

⋃
Ci∈CS), his algorithm is able to derive

all the minimal hitting sets for some initially given or

dynamically growing set CS, and for model-based diagnosis
purposes can even compute CS on-the-fly as discussed
in our preliminaries in Section II. Special pruning rules
ensure that all the final hitting sets present in the tree,
indeed, are minimal ones such that none of their subsets
is a hitting set. Greiner et al. proposed HS-DAG [5] (see
Section II) as a variation of Reiter’s idea that fixes a minor
fault in the original formulations regarding the presence
of non-subset-minimal Cis, and improves on the internal
data structure maintained for steering the search for the
minimal hitting sets. The basic idea regarding the latter
was to have paths reuse nodes n if their selection sequences
would actually result in the very same set of elements h(n)
already produced by some other selection sequence.

In our experiments for [6], we found that, even after 25
years, HS-DAG is still an attractive solution for diagnosis
purposes with similar performance as Wotawa’s HST [7].
Storing gained knowledge in a DAG, it can derive the
MHSs of a dynamically growing set of sets (and can
possibly even steer their computation [4], [5]). Aside for
computing minimal hitting sets of a static CS, e.g., for
software debugging [1], we can also use the algorithm to
diagnose, e.g., requirements in Pnueli’s “Temporal Logic
of Programs” [8], [9], that in turn could be implemented
by a diagnostic engine supervising a car’s control software
as suggested and thoroughly tested in [10]. However, there
can be a lot of redundancy in its search (see Section II),
i.e., different selection sequences coming to the same (inter-
mediate) “conclusion” in the form of an element set h(n).

During our work [11] on optimizations for Lin and
Jiang’s Boolean MHS algorithm [12] (see Section II), we
mused about the impact of its focused search strategy
(and the special data structure) on that algorithm’s per-
formance. Its strategy is to iteratively/recursively split the
search space into those solution options that contain some
chosen element e and those that do not - removing e
from further consideration in both “branches”. While it
shows superior performance [11] to HS-DAG, it requires
us to know the sets to hit a priori. For dynamic “live”
applications, thus there is the question of whether we
could combine HS-DAG’s flexibility with the Boolean al-
gorithm’s performance.

In Section III, we contribute to answering this question



and propose with RC-Tree a variant of Reiter’s basic idea
that avoids all redundant computations via implementing
a more focused search using a divide-and-conquer strategy
inspired by the Boolean algorithm. Actually, RC-Tree ex-
tends Greiner et al.’s HS-DAG such that via our reasoning
about and limitation of the solution space explored in
the individual sub-DAGs, we never construct any two
paths (selection sequences) with the same set of branching
elements. Being sound and complete also for non-minimal
Cis, we thus construct a tree. As reported in Section IV,
RC-Tree showed a node reduction of up to factor 4.15
in our tests, resulting in runtime gains and a memory
reduction by up to factors 3.80 and 2.85, respectively.
While the Boolean algorithm still often outperforms RC-
Tree, our algorithm is easy to implement on top of HS-
DAG and offers performance gains without compromising
on HS-DAG’s flexibility regarding on-the-fly computations,
i.e., when CS is computed by HS-DAG/RC-Tree itself or
is dynamically growing otherwise.

II. Preliminaries

First let us define a (minimal) hitting set and recap
HS-DAG [5] that was defined for some ordered (i.e., con-
sistently traversable) CS, whose Cis may be in arbitrary
order or—more favorably—sorted by their cardinality. For
our definitions, we assume that the elements ci ∈ Ci are
part of some component set COMP.

Definition 1. A hitting set for a set CS of sets Ci is a set
h ⊆ ⋃

Ci∈CS Ci ⊆ COMP s.t. ∀Ci ∈ CS : h ∩ Ci 6= ∅. h is
minimal, iff there is no h′ ⊂ h that is a hitting set for CS.

Algorithm 1. Let D be a growing node- and edge-labeled
DAG with some initial and unlabeled root node n0. Process
unlabeled nodes in D in breadth-first order as follows, where
for some node n, h(n) is defined to be the set of edge labels
on the path in D from root node n0 to node n (h(n0) = ∅).

1) (Closing) If there is a node n′ s.t. h(n′) ⊂ h(n)
and n′ is labeled with “X” (h(n′) is a hitting set),
then close n. Neither compute a label for n, nor
generate any successor nodes for n, but proceed
with the next node.

2) Iff for all Ci ∈ CS: Ci ∩ h(n) 6= ∅, then label n
with “X”. Otherwise label n with some Cj: Cj is
the first set in CS such that Cj ∩ h(n) = ∅.

3) (Pruning) Iff a priorly unused set Ci was used to
label node n, attempt to prune D. That is, for
nodes n′ labeled with some Cj ∈ CS such that
Ci ⊂ Cj do as follows:

a) Relabel n′ with Ci. Then, for any ci in
Cj \ Ci, the edge labeled ci originating
from n′ is no longer allowed. The node
connected by this edge and all of its de-
scendants are removed, except for those
nodes with another ancestor that is not
being removed. Note that this step may
eliminate the very node n currently being
processed.

b) Interchange the sets Cj and Ci in CS.
(Note that this has the same effect as
eliminating Cj from CS.)

If n was removed, proceed with the next unlabeled
node.

4) If n was labeled with some Ci ∈ CS, generate
for each ci ∈ Ci a new edge originating in n
and labeled with ci. If there is a node n′ in D
such that h(n′) = h(n) ∪ {ci}, then let the edge
labeled ci point to n′. Hence, n′ will have more
than one parent. Otherwise, generate a new node
m as destination for the edge. This new node m
will be processed (labeled and expanded) after all
new nodes ni in the same generation as n (s.t.
|h(ni)| = |h(n)|) have been processed.

5) If there is no further unlabeled node, return DAG
D.

The minimal hitting sets of CS are reported via those
nodes labeled with “X”. That is, h(n) of such a node n
obviously hits all Ci ∈ C (see n’s labeling in Step 2), and
via the pruning rule it is ensured that there are only nodes
n labeled with Xsuch that h(n) is indeed a minimal hitting
set. Note that Step 3 is relevant only if (a) CS contains
some sets Ci and Cj such that Ci ⊂ Cj and we have that
(b) HS-DAG choses Cj in the various executions of Step 2
somewhen earlier than Ci. The latter could happen, for
instance, if the sets in CS are not considered in order of
growing cardinality since HS-DAG selects in Step 2 the
first Ci not hit by h(n). This issue is of specific interest
when computing CS on-the-fly and the theorem prover not
necessarily returning (subset-)minimal conflicts (see also
Definition 2).

Considering HS-DAG’s exploration concept, it is easy
to see that it does not avoid the computation of one and
the same set h(n) via multiple selection sequences. Thus,
before creating a new node, HS-DAG searches in Step 4
for a corresponding node that can be reused - which is the
reason why HS-DAG actually produces a DAG rather than
a tree. In Section III, we propose our RC-Tree algorithm
that aims at avoiding such redundancies in the first place.

For our experiments in Section IV, we used both,
artificially created CS examples, and “real” ones that
were collected from model-based diagnosis runs [4] when
diagnosing formal requirements as described in [8]. For the
latter, and following Reiter’s theory, we assume a diagnosis
problem to be defined by some observations OBS about a
system’s actual behavior, the system’s set of components
COMP (we use the same term here as for the elements
in some Ci by intention, the reason becoming clear with
Proposition 1), individual assumptions AB(ci) whether the
components ci ∈ COMP behave abnormally, and a system
description SD defining the system’s nominal behavior
via logic sentences ¬AB(ci) ⇒ NominalBehavior(ci). Iff
Φ = SD∪OBS∪{¬AB(ci)|ci ∈ COMP} is unsatisfiable, the
system is considered to be at fault, and for this case Reiter
suggested to compute diagnoses as the minimal hitting sets
of the set of resulting conflicts in the assumptions about
the individual ci ∈ COMP being healthy.

Definition 2. A conflict C for (SD, COMP, OBS) is a
set C ⊆ COMP such that SD∪OBS∪{¬AB(ci)|ci ∈ C} is
unsatisfiable. If and only if there is no C ′ ⊂ C, such that
C ′ is a conflict, then C is a minimal conflict.



Definition 3. A diagnosis for (SD, COMP, OBS) is a
subset-minimal set ∆ ⊆ COMP such that SD ∪ OBS ∪
{¬AB(ci)|ci ∈ COMP \ ∆} is satisfiable. ∆ is subset-
minimal, if and only if there is no ∆′ ⊂ ∆ such that
SD ∪OBS ∪ {¬AB(ci)|ci ∈ COMP \∆′} is satisfiable.

Proposition 1. (Theorem 4.4 in [4]) ∆ ⊆ COMP is a
diagnosis for (SD, COMP, OBS) if and only if ∆ is a
minimal hitting set for the collection CS of conflicts C for
(SD, COMP, OBS).

Please note that it is sufficient to verify that ∆ hits
all the minimal conflicts, since then the non-minimal ones
(that are supersets of the minimal ones) are hit by default.

Designed in the context of diagnosis problems, the HS-
DAG MHS algorithm actually supports us in computing
CS dynamically on-the-fly. That is, in Step 2 we can iden-
tify a new label (conflict) for a node n also via a theorem
prover as an (ideally subset-minimal) unsatisfiable core
in the assumption predicates ¬AB(ci) for a satisfiability
check of Φ = SD ∪ OBS ∪ {¬AB(ci)|ci ∈ COMP \ h(n)}.
As will be explained in more detail in Section IV, we
used such on-the-fly diagnosis computation runs to derive
“real” CS examples for evaluating RC-Tree and comparing
its MHS computation performance against that of the
Boolean MHS algorithm.

As mentioned in the introduction, our reasoning as
presented in the next section was inspired by the focused
search of Lin and Jiang’s Boolean MHS algorithm [12] that
offers superior performance [11] compared to HS-DAG, at
the disadvantage of requiring CS to be known in advance.
For this algorithm, CS is encoded as a logic OR over the
individual Ci ∈ CS that get encoded as an AND over
corresponding negated propositions for all the components
contained in the individual Ci. In order to derive the
desired MHSs from the constructed Boolean formula C, a
recursive function H(C) containing five rules (considered in
ascending order) derives from C another Boolean formula.
The result still needs some subset-checks (or the use of
Boolean laws) in order to derive a canonical disjunctive
normal form, that is a logic OR over the MHSs. For the
interested reader we would like to note that, compared to
HS-DAG, these last steps have the same motivation as HS-
DAGs pruning step and its searches for nodes with the
same h(n) or MHSs that are not subset-minimal.

Assuming e an atomic proposition with ē denoting its
negation, and ⊥/> referring to e ∧ ē/e ∨ ē, the function
H(C) is defined as:

1) H(⊥) = >, H(>) = ⊥;
2) H(ē) = e;
3) H(ē ∧ C) = e ∨H(C);
4) H(ē ∨ C) = e ∧H(C);
5) H(C) = e∧H(C1)∨H(C2) for some arbitrary e ∈ C,

with C1 = {ci | ci ∈ C ∧ ē 6∈ ci} and C2 = {ci | ē 6∈
ci ∧ (ci ∈ C ∨ ci ∪ {ē} ∈ C)}.

Rule 5 encodes the algorithm’s general strategy of
iteratively forking two branches for (a) the set of solutions
containing split element e, and (b) the set of solutions that
do not contain e. For branch (a), we obviously can remove

n1 : {a, b, c, d, e}

∅

a

{a}

b

{a, b}

c

{a, b, c}

d

{a, b, c, d}

e

ΘC(n′) for the newly created nodes

Fig. 1. Focusing the search by blocking elements in sub-DAGs.

all those conjuncts in C hit by e from further search, as is
encoded in C1. For branch (b), we remove e from all the
conjuncts in C (resulting in C2) since e is not allowed to
be part of any solution derived in this branch. In [11], we
presented a variant optimized for a bounded search such
that we are interested only in minimal hitting sets that are
of smaller or equal size as the given bound (performance is
on par for an unbounded search). The main contributions
of our optimizations in [11] are that rule 5 chooses one of
the smallest Cis present and loops on it for choosing split
elements, as well as the introduction of sharp termination
criteria for cardinality bounds and replacing C by C1 in
rule 4. For our tests in Section IV, we used our best
implementation of that version.

III. A Strategy for Avoiding Redundancies

In this section, we show how to avoid the redundancies
in HS-DAG’s search (see Section II) by narrowing the
search focus for the branches in a sub-DAG when it is
guaranteed that this search space, i.e., the corresponding
sets for h(n), will be considered in other sub-DAGs.

In relation to the HS-DAG algorithm as described in
Alg. 1, our reasoning is as follows: when expanding a node
n in Step 4, i.e., when creating new edges originating in n,
we do not reuse nodes and derive for each of the derived
edges’ newly created destination node n′ a set Θ(n′) of
components ci ∈ COMP for which we will not branch in
the corresponding sub-DAG. This set Θ(n′) for node n′ 6=
n0 is the union of two subsets, Θ(n′) = ΘC(n′) ∪ Θ(n).
ΘC(n′) contains those components ci for which we created
outgoing edges from node n already, and Θ(n) is inherited
from its parent n in order to propagate our idea in a sub-
DAG. For the root node n0, we have Θ(n0) = ΘC(n0) = ∅.

In Figure 1, we illustrate the various ΘC(n′) when
creating outgoing edges from node n1 according to order of
the edge-label’s appearance in n1’s label C = {a, b, c, d, e}
when assuming Θ(n1) = ∅. If, e.g., Θ(n1) = {a}, then the
edge labeled a would not be created, and consequently a
would not be in ΘC(n′) for the other four edges/nodes.

With our “filter” Θ we obviously prevent some of the
sequences that might result in a specific minimal hitting set
∆. However, it is easy to see that we do not prevent them
all. That is, starting from root node n0, for some minimal
hitting set ∆ we can always take the “left-most” branch
possible (removing the edge-label ci from ∆). Due to the



exhaustive nature of HS-DAG (repeatedly searching in all
branches for some Ci that has not been hit so far), and
minimizing Θ when using the “left-most” branch possible
(i.e., such that there is no restriction regarding those ci
still left in ∆), this sequence has to be allowed. For the
most general case s.t. CS may contain some Cj ⊂ Ck ∈
CS not considered in order of ascending cardinality, this is
correct only, if we also adapt the pruning procedure (Step
3) accordingly. That is, if we replace via Step 3 some node-
label Ci with a subset Cj and remove the edges for those
elements not present in the subset Cj anymore, then we
have to update Θ and propagate the changes in the sub-
tree accordingly. Considering Figure 1, if we removed b
from n1’s label, then b should not be in ΘC for the target
nodes of the three rightmost edges. Ensuring that such
changes are propagated accordingly makes the algorithm
correct also for the case that CS contains non-minimal sets.

Formalizing our idea of reducing the “node labels”C ∈
CS (the“conflicts’), we derive the following algorithm from
HS-DAG, where Steps 1,2, and 5 are unchanged:

Algorithm 2. (RC-Tree) Let D be a growing node- and
edge-labeled tree with some initial and unlabeled root node
n0. Process unlabeled nodes in D in breadth-first order as
follows, where for some node n, h(n) is defined to be the set
of edge labels on the path in D from n0 to n (h(n0) = ∅).
Furthermore assume the sets Θ(n) and ΘC(n) to be subsets
of

⋃
Ci∈CS Ci, where Θ(n0) = ΘC(n0) = ∅.

1) (Closing) If there is a node n′ s.t h(n′) ⊂ h(n)
and n′ is labeled with “X” (h(n′) is a hitting set),
then close n. Neither compute a label for n, nor
generate any successor nodes for n, but proceed
with the next node.

2) Iff for all Ci ∈ CS: Ci ∩ h(n) 6= ∅, then label n
with “X”. Otherwise label n with some Cj: Cj is
the first set in CS s.t. Cj ∩ h(n) = ∅.

3) (Pruning) Iff a priorly unused set Ci was used to
label node n, attempt to prune D. That is, for
nodes n′ labeled with some Cj ∈ CS such that
Ci ⊂ Cj do as follows:

a) Relabel n′ with Ci. Then, for any ci in
Cj \ Ci, the edge labeled ci originating
from n′ is no longer allowed. The node
connected by this edge and all of its de-
scendants are removed, except for those
nodes with another ancestor that is not
being removed. Note that this step may
eliminate the very node n currently being
processed.
Now, for all children n′′ of n′ update
ΘC(n′′) to ΘC(n′′) \ (Cj \ Ci) and for all
descendants n′′′ of some n′′ propagate the
update accordingly. Then create for all n′′

and n′′′ all the edges that are not avoided
anymore (due to the updates to their Θs),
and process the new nodes in a breadth
first order (always choosing a node with
the smallest h(n)) as usual.

b) Interchange the sets Cj and Ci in CS.
(Note that this has the same effect as
eliminating Cj from CS.)

If n was removed, proceed with the next unlabeled
node.

4) If n was labeled with some Ci ∈ CS, generate for
each ci ∈ Ci \Θ(n) a new edge e originating in n
and labeled with ci. Generate a new node n′, where
Θ(n′) = ΘC(n′)∪Θ(n) with ΘC(n′) = {cj |cj ∈ Ci

and we already created an edge labeled cj from n}
as destination for the edge e. This new node n′

will be processed (labeled and expanded) after all
new nodes ni in the same generation as n (s.t.
|h(ni)| = |h(n)|) have been processed.

5) If there is no further unlabeled node, return tree
D.

Since we derived our algorithm from HS-DAG, a reader
might wonder right now why our algorithm results in a tree
rather than a DAG. The technical reason is that we do not
reuse nodes as edge destinations in Step 4 so that also the
corresponding check is missing in Step 4 of our RC-Tree.
The motivation for this, however, and thus the real reason,
is that in fact our algorithm would never construct any two
nodes with the same h(n) that we could merge as is done
by HS-DAG. Consequently, we (a) derive a tree instead of
a DAG, and (b) can save the corresponding search whether
there is already a DAG node with the same h(n) as it is
needed in HS-DAG. In the following, Lemma 1 catches this
observation formally and we offer a corresponding proof.

Lemma 1. For the algorithm as of Alg. 2 and any node n
in D, there is no other node n′ 6= n such that h(n′) = h(n).

Proof: (sketch) Let us assume that D offers two nodes
n and n′ s.t. h(n′) = h(n). Per definition of a set, a
component can appear only once in any Ci ∈ CS. Since
Step 4 creates for each element in Ci a single edge at
most, this means the paths (and sequences of edge labels)
to reach n and n′ have to differ. Now let us focus on
the first different branch in the sequences/paths. That is,
there is some node m′ (possibly n0) up until which both
sequences use the same edges (because of the common,
possibly empty, prefix), and where, due to the varying
suffixes, the sequences take different edges en (the sequence
leading to n) and en′ (the sequence leading to n′). Without
losing generality, assume that en was created before en′ .
This means that per construction in Step 4, the edge
label cn of en is blocked via ΘC when taking en′ . This
contradicts, however, the requirement for cn to appear
later when taking en′ , as then h(n′) cannot become equal
to h(n). Thus, there cannot be two nodes n and n′ in D
s.t. h(n′) = h(n).

Now we have to show that RC-Tree is complete and
sound.

Theorem 1. The algorithm as of Alg. 2 is complete. That
is, for any minimal hitting set ∆ for CS, D contains some
node n labeled “X” s.t. h(n) = ∆.

Proof: (sketch) We show that the construction is
exhaustive and that Step 3 does not remove any node n
from D s.t. h(n) is an MHS for CS.

Regarding Step 3, it is easy to see that it alters D only
such that D appears as if we had used Ci instead of Cj



in the first place. Since any MHS ∆ that hits Ci also hits
Cj due to Ci ⊂ Cj , and Step 3 being triggered only if we
encountered Cj before Ci, it is clear that Step 3 does not
remove any node n s.t. h(n) would be an MHS for CS that
contains both Ci and Cj . With Step 1 blocking supersets
of known hitting sets only, and Step 5 checking whether D
was fully expanded, we have to show that the combination
of Steps 2 and 4 is exhaustive: Considering Lemma 1, it
is easy to see that our algorithm constructs the following
path in D for some MHS ∆. Starting with n0, and a copy
∆′ of ∆, while ∆′ 6= ∅, choose for some encountered node
n the first edge e constructed from n s.t. e′s label ci is in
∆′ and remove ci from ∆′. Such an edge e has to exist
due to ∆ having to hit all Cjs in CS and the fact that our
choice of edges e prohibits that any ci ∈ ∆ appears in ΘC .
e will lead to some node n′ labeled with some Ci ∈ CS, as
otherwise ∆ could not be a minimal hitting set. Obviously,
whenever ∆′ becomes ∅, we reach node n∆ s.t. h(n∆) = ∆.

Theorem 2. The algorithm as of Alg. 2 is sound. That
is, for any node n′ in D that is labeled with “X”, h(n′) is
indeed a minimal hitting set for CS.

Proof: (sketch) The soundness of RC-Tree is ensured
by its breadth-first search as well as Steps 1 and 2. Step
1 blocks all supersets of any hitting set found from being
considered as an MHS. Step 2 labels those nodes n allowed
by Step 1 with the corresponding checkmark s.t. h(n)
indeed hits all Cis in CS. Since RC-Tree is complete (all
MHSs’ supersets get blocked via Step 1), it thus follows
that RC-Tree is also sound.

Note that, like for HS-DAG, the pruning step is relevant
only if CS contains some sets Ci and Cj s.t. Ci ⊂ Cj

and the Cis are not sorted in respect of their growing
cardinality. If the pruning step is not needed, we could also
drop a node’s Θ from memory whenever we computed Θ
for all of its children.

In the next section we experimentally investigate the ef-
fects of our optimizations in respect of run-time advantages
as well as reductions in the number of nodes constructed
for computing the minimal hitting sets. Taking a look also
at RC-Tree’s memory consumption allows us to inspect
the balance between constructing fewer nodes versus the
additional memory needed to maintain Θ.

IV. Experimental Results

As baseline, we used our Python implementation
(CPython 2.7.1) of HS-DAG from [6], and implemented
RC-Tree on top. A small change we made concerns the
worklist of nodes to be processed. That is, RC-Tree might
construct nodes with an |h(n′)| smaller than that of the
currently expanded node n, due to updates when Θ gets
changed in pruning Step 3. For an easily manageable
worklist, we thus group nodes by their |h(n)|, so that we
can easily retrieve a node with the smallest h(n) (without
the need to keep the list sorted in other ways). For HS-
DAG we did not experience any penalty for this grouped
list (a list of lists) compared to a monolithic one.

Our first, artificial, evaluation scenario was taken from
the evaluation of our optimizations to the Boolean algo-
rithm in [11] (named TSA1). Here, every ci ∈ COMP
is included in some Ci with a probability of 50 % (no
duplicate Cis in CS allowed). Figure 2 reports on the run-
time, node-amount and memory consumption (maximum
resident size) for |COMP| = 20, and a growing CS. We
aimed at approximately 120 points equally distributed
on the range of CS, resulting in 110 integer values for
|CS| ≈ 106i/120 and 0 ≤ i ≤ 120. For each |CS|, we derived
10 samples and report corresponding average values.

When computing all minimal hitting sets of some CS,
in terms of performance, we saw a run-time advantage
for RC-Tree for the majority of the |CS| range, with
performance on par otherwise. As reported in Fig. 2a, for
|CS| = 1000 we experienced a run-time reduction of 70.5
%, a node reduction of 71.7 % and a reduction regarding
max. RSS of approximately 63.3 %. The maximum average
reductions for any |CS| were 73.7 %, 75.9 % and 65.0 %
respectively.

In practice, sometimes a cardinality bound is estab-
lished for the desired minimal hitting sets, e.g., limiting
the search to triple faults when computing diagnoses as
of Proposition 1. Thus we were also interested in the
performance to be achieved when establishing such a
bound. For a bound of 3, as reported in Fig. 2b, we
saw virtually no difference between HS-DAG and RC-Tree
in respect of run-time and memory-consumption. Here
the additional computations and variables for Θ seem to
counterbalance the slight reduction in the number of nodes
(18.9 percent for |CS| = 10). Since the “pruning”-effect of
Θ should increase with the tree-depth, this is not entirely
unexpected for this low cardinality limit of 3, which is,
however, sometimes a reasonably low bound in practice.

Evidently, for the artificial CS examples, whenever the
Boolean algorithm outperformed HS-DAG for computing
CS’s minimal hitting sets, RC-Tree reduced the gap, but
was closer in performance to HS-DAG than to the Boolean
algorithm. For the bounded case, we saw virtually no
difference between HS-DAG and RC-Tree in respect of
run-time and memory-consumption. Here, the overhead for
maintaining Θ seems to counterbalance the slight reduc-
tion in the number of nodes (18.9 percent for |CS| = 10).

Our second, real-world, evaluation scenario is based
on conflicts created during specification diagnosis runs as
described in [8], where the desired diagnoses are the mini-
mal hitting sets of the derived conflicts (see also Prop. 1).
That is, for some specification length in {50, 100, ..., 300}
we derived 10 random specifications ϕ in Linear Temporal
Logic (LTL) [9] as suggested in [13] with N = b|ϕ|/3c
variables and a uniform distribution of LTL operators.
We injected triple faults as described in [8] in order to
derive ϕm from ϕ. Using the encoding from that paper we
retrieved then an assignment for τ ∧ϕ∧¬ϕm that defines a
variable trace τ of length k = 100 and loop-back time step
l = 50. We then solved the diagnosis problem E(ϕm, τ) for
a cardinality limit of 3 and recorded the conflicts derived.

In Figure 3, we show the results for an unbounded and
a bounded (|MHS| ≤ 3) search for minimal hitting sets for
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(a) Unbounded MHS computation of all minimal hitting sets of CS.
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(b) Bounded MHS computation of all minimal hitting sets ∆ of CS such that |∆| ≤ 3.

Fig. 2. Performance results for artificial CS such that components in COMP (|COMP| = 20) are in Ci ∈ CS with a probability of 50 percent.
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Fig. 3. Performance results using conflicts from LTL specification diagnosis.

those conflicts. While we observed a run-time reduction
of 58.6 % for |ϕ| = 300 in the unbounded case, the
computation of Θ seemed to entail a slight performance
drawback (1.5 milliseconds instead of 1.3 ms) for small
samples with |ϕ| = 50. Nevertheless, we saw a significant
reduction in the number of nodes, i.e., a reduction of 56.5
% for |ϕ| = 300. This was, however, accompanied by an
increase in the memory consumption from 40.6 MiB to
53.0 MiB (1 MiB=10242 bytes vs. 1 MB=10002 bytes),
presumably related to managing Θ. An implementation
optimized for low memory consumption could however
drop the set Θ after the construction of a subtree and
recompute it if needed during a pruning/reconstruction
step. The Boolean algorithm outperformed both, HS-DAG
and our variant.

In the bounded case, we saw virtually no difference in
the run-time, and the reduction in the number of nodes
(41.2 % for |ϕ| = 300) was outweighed regarding memory
consumption by the needs for Θ, so that with 34.7 % we
had a similar memory penalty for |ϕ| = 300 as in the
unbounded case (30.6 %).

Summing up the reported results, we see an attractive
performance advantage for our RC-Tree against HS-DAG,
specifically for an unbounded MHS search. For very small
cardinality limits like 3 the (still noticeable) effects from
the node reduction can be diminished by the needs for
maintaining Θ. Thus in such a case we might end up
with virtually no difference in the run-times, and might
occasionally even experience a penalty in the memory



consumption (for the LTL samples we had a penalty, while
there was none for the random samples).

(Minimal) conflicts stemming from LTL diagnosis have
a special property. That is, considering an LTL specifica-
tion’s parse tree, derived minimal conflicts contain“chains”
of the operators from some parse tree node to the root node
(i.e. if a sub-formula is part of a minimal conflict, so are
all its superformulae). Therefore, all conflicts share at least
one element (the parse tree’s root) or even more, e.g., if the
formula starts with G (always), F (eventually!) or GF/FG.
We argue that they are therefore especially susceptible to
the optimizations presented in this paper and thus chose
to report on randomly generated CSs as well.

V. Discussion and Conclusions

With RC-Tree we propose an algorithm that fuses HS-
DAG’s flexibility regarding dynamic, live scenarios with
the performance of the Boolean MHS algorithm that we
experienced in previous experiments [14], [11]. The moti-
vation behind our reasoning is the same as Wotawa’s for
HST [7], i.e., we aimed to avoid the inspection of combi-
nations h(n) in a sub-DAG iff h(n) would be considered in
other reasoning branches anyway. However, our underlying
reasoning and the implementation differ significantly. That
is, our expansion is still based on a pruned version of a
node’s label (conflict), rather than a range within bounds
propagated (and altered) when constructing HST’s tree. In
some sense, our reasoning is more similar to a specific sce-
nario in our Boolean algorithm variant that we presented
in [11]. This variant revised Rule 5 (see Section II) s.t. we
consecutively choose as e the elements in a single Ci (for
specific details please refer to Lemma 2 in [11]). Those
consecutive decisions regarding the split elements reflect
the structure of Θ in the various branches for RC-Tree.

In terms of performance, our algorithm RC-Tree could
achieve reductions in the run-time, node number, and
memory consumption by 73.7 / 75.9 / 65.0 percent, re-
spectively by factors 3.80 / 4.15 / 2.85, for the random
samples in the unbounded search, compared to HS-DAG.

Future work will investigate the memory penalty occa-
sionally experienced for low bounds and the impact of the
more complicated pruning rule 3(a).
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