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Abstract. For n ≥ 1, the nth Ramanujan prime is defined to be the smallest
positive integer Rn with the property that if x ≥ Rn, then π(x) − π(x

2
) ≥ n

where π(ν) is the number of primes not exceeding ν for any ν > 0 and ν ∈ R.
In this paper, we prove a conjecture of Sondow on upper bound for Ramanujan

primes. An explicit bound of Ramanujan primes is also given. The proof uses

explicit bounds of prime π and θ functions due to Dusart.

1. Introduction

In [3], J. Sondow defined Ramanujan primes and gave some conjectures on the
behaviour of Ramanujan primes. For n ≥ 1, the nth Ramanujan prime is defined
to be the smallest positive integer Rn with the property that if x ≥ Rn, then
π(x)− π(x2 ) ≥ n where π(ν) is the number of primes not exceeding ν for any ν > 0
and ν ∈ R. It is easy to see that Rn is a prime for each n. The first few Ramanujan
primes are given by R1 = 2, R2 = 11, R3 = 17, R4 = 29, R5 = 41, . . .. Sondow
showed that for every ε > 0, there exists N 0(ε) such that Rn < (2 + ε)n log n for
n ≥ N 0(ε). In this note, an explicit value of N 0(ε) for each ε > 0 is given. We
prove

Theorem 1. Let ε > 0. For ε ≤ 1.08, let N 0 = N 0(ε) = exp( cε log 2
ε ) where c is

given by the following table.

ε ∈ (0, 2
11 ] ( 2

11 , .4] (.4, .6] (.6, .8] (.8, 1] (1, 1.08]
c 4 5 6 7 8 9

For ε > 1.08, let N 0 = N 0(ε) be given by

ε ∈ (1.08, 1.1] (1.1, 1.21] (1.21, 1.3] (1.3, 2.5] (2.5, 6] (6,∞)
N 0 169 101 74 48 6 2

Then

Rn < (2 + ε)n log n for n ≥ N 0(ε).

Sondow also showed that p2n < Rn < p4n for n > 1 and he conjectured ([3,
Conjecture 1]) that Rn < p3n for all n ≥ 1, where pi is the ith prime number. We
derive the assertion of conjecture as a consequence of Theorem 1. We have

Theorem 2. For n > 1, we have

p2n < Rn < p3n.

We prove Theorems 1 and 2 in Section 3. In Section 2, we give preliminaries
and lemmas for the proof which depend on explicit and sharp estimates from prime
number theory.
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2. Lemmas

We begin with the following estimates from prime number theory. Recall that pi
is the ith prime prime and π(ν) is the number of primes ≤ ν. Let θ(ν) =

∑
p≤ν log p

where p is a prime.

Lemma 2.1. For ν ∈ R and ν > 1, we have

(a) pi > i log i for i ≥ 1, i ∈ Z.
(b) ν(1− 0.006788

log ν ) ≤ θ(ν) ≤ ν(1 + 0.006788
log ν ) for ν ≥ 10544111.

(c) ν
log ν−1 ≤

ν≥5393
π(ν) ≤

ν>1

ν
log ν

(
1 + 1.2762

log ν

)
.

The estimate (a) is due to Rosser [2] and the estimates (b) and (c) are due to
Dusart [1, p. 54]. �

From Lemma 2.1 (b) and (c), we obtain

Lemma 2.2. Hence for x ≥ 2 · 10544111, we obtain

π(x)− π(
x

2
) ≥ x

2 log x

(
1− 0.020364

log x

)
=: F (x) for x ≥ 2 · 10544111(1)

and

π(x)− π(
x

2
) ≥ x

2(log x− 1)

{
1− 1

log x
2

(
δ1 −

δ2
log x

2

)}
=: F1(x) for x ≥ 5393

(2)

where δ1 = .2762 + log 2 and δ2 = 1.2762(1− log 2).

Proof. For x ≥ 2 · 10544111, we obtain from Lemma 2.1 (b) that

π(x)− π(
x

2
) ≥

θ(x)− θ(x2 )

log x

≥
x
(

1− 0.006788
log x

)
− x

2

(
1 + 0.006788

log x
2

)
log x

=
x

2 log x

(
1− 0.006788

log x

(
2 +

log x

log x
2

))
≥ x

2 log x

(
1− 0.006788

log x
(2 + 1)

)
which imply (1). For x ≥ 5393, we have from Lemma 2.1 (c) that

π(x)− π(
x

2
) ≥ x

log x− 1
−

x
2

log x
2

(
1 +

1.2762

log x
2

)
=

x

2(log x− 1)

{
2−

(
1 +

log 2− 1

log x
2

)(
1 +

1.2762

log x
2

)}
≥ x

2(log x− 1)

{
1− 1

log x
2

(
δ1 −

δ2
log x

2

)}
implying (2). �

For the proof of Theorem 1 for ε ≤ .4, we shall use the inequality (1). Then we
may assume n ≤ N 0(.4) for ε > .4 and we use (2) to prove the assertion.
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3. Proof of Theorems 1 and 2

For simplicity, we write ε1 = ε
2 , log2 n := log log n and

f0(n) := log n+ log2 n+ log(1 + ε1) and f1(n) :=
log2 n+ log(2 + 2ε1)

log n
.(3)

Let x ≥ (2 + 2ε1)n log n with n ≥ N 0(ε) =exp( c
2ε1

log 1
ε1

) =: n0(ε1). Then log x ≥
f0(n) + log 2 for n ≥ n0(ε1).

First we consider ε1 ≤ .2. We observe that F (x) is an increasing function of x
and 2n0(.2) log(n0(.2)) > 2 · 10544111. Therefore we have from (1) that

π(x)− π(x2 )

n
≥ 1 + ε1

1 + f1(n)

(
1− 0.020364

f0(n) + log 2

)
=: G(n).(4)

G(n) is again an increasing function of n. If G(n0(ε1)) > 1, then π(x)− π(x2 ) > n
for all x ≥ (2 + 2ε1)n log n when n ≥ n0(ε1) and hence Rn < (2 + 2ε1)n log n for
n ≥ n0(ε1). Therefore we show that G(n0) > 1. It suffices to show

ε1 −
0.020364(1 + ε1)

f0(n) + log 2
> f1(n) =

log2 n0 + log(2 + 2ε1)

log n0

for which it is enough to show

ε1 ≥
log2 n0 + log(2 + 2ε1) + 0.020364(1 + ε1)

log n0
.

Since log n0 = c
2ε1

log 1
ε1

= c1
ε1

log 1
ε1

with c1 = 2, 2.5 when ε1 ≤ 1
11 ,

1
5 , respectively,

we need to show

(c1 − 1) log 1
ε1

log2
1
ε1

+ log c1 + log(2 + 2ε1) + 0.020364(1 + ε1)
≥ 1.

The left hand side of the above expression is an increasing function of 1
ε1

and the

inequality is valid at 1
ε1

= 11, 5 implying the assertion for ε1 ≤ .2.

Thus we now take .2 < ε1 ≤ .49. We may assume that n < n0(.2). Since
x ≥ (2 + 2ε1)n0 log n0 > 5393, we have from (2) that

π(x)− π(x2 )

n
≥ 1 + ε1

1 + f1(n)− 1
logn

{
1− 1

f0(n)

(
δ1 −

δ2
f0(n)

)}
.

Note that the right hand side of the above inequality is an increasing function of n
since n < n0(.2). We show that the right hand side of the above inequality is > 1.
Since n ≥ n0(ε1), it suffices to show

log n0(ε1 +
1

log n0
− f1(n0))− 1 + ε1

f0(n0)
logn0

(
δ1 −

δ2
f0(n0)

)
=ε1 log n0 + 1− log2 n0 − log(2 + 2ε1)− 1 + ε1

1 + f1(n0)− log 2
logn0

(
δ1 −

δ2
f0(n0)

)
is > 0. Since n0(ε1) = exp( c1ε1 log 1

ε1
) where c1 = 3, 3.5, 4 if .2 < ε1 ≤ .3, .3 < ε1 ≤ .4

and .4 < ε1 ≤ .49, respectively, we observe that the right hand side of the above
equality is equal to

(c1 − 1) log
1

ε1
+ 1− log2

1

ε1
− log(2c1 + 2c1ε1)− 1 + ε1

1 + f1(n0)− log 2
logn0

(
δ1 −

δ2
f0(n0)

)
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This is an increasing function of 1
ε1

. We find that the above function is > 0 for

ε1 ∈ {.3, .4, .49} implying Rn < (2 + 2ε1)n log n for n ≥ n0(ε1) when ε1 ≤ .49.
Further we observe that n0(.49) ≤ 339. As a consequence, we have

Rn < 2.98n log n for n ≥ 339.

and

π(x)− π(
x

2
) ≥ 339 for x ≥ 2.98 · 339 log 339 > 5885.

Let n < 339. We now compute Rn by computing π(x)−π(x2 ) for p2n < x ≤ 5885.

Recall that Rn > p2n for n > 1. We find that Rn

n logn < 2.98, 3, 3.05, 3.08 for

n ≥ 220, 219, 171, 169, respectively. Clearly Rn

n logn < 2 + ε for n ≥ N 0(ε) when

ε ≤ 1.08. Thus Rn < 3n log n for n ≥ 219 and Rn < 3.08n log n for n ≥ 169. For
ε > 1.08, we check that the assertion is true by computing Rn for each n < 169.
This proves Theorem 1.

Now we derive Theorem 2. From the above paragraph, we obtain Rn < 3n log n
for n ≥ 219. By Lemma 2.1 (a), we have p3n > 3n log 3n for all n ≥ 1 implying
the assertion of Theorem 2 for n ≥ 219. For n < 219, we check that Rn < p3n and
Theorem 2 follows. �
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