ON A CONJECTURE ON RAMANUJAN PRIMES

SHANTA LAISHRAM

ABSTRACT. For n > 1, the nth Ramanugjan prime is defined to be the smallest
positive integer Ry with the property that if > Rj, then 7(z) — w(5) > n
where m(v) is the number of primes not exceeding v for any v > 0 and v € R.
In this paper, we prove a conjecture of Sondow on upper bound for Ramanujan
primes. An explicit bound of Ramanujan primes is also given. The proof uses
explicit bounds of prime 7w and 6 functions due to Dusart.

1. INTRODUCTION

In [3], J. Sondow defined Ramanujan primes and gave some conjectures on the
behaviour of Ramanujan primes. For n > 1, the nth Ramanujan prime is defined
to be the smallest positive integer R, with the property that if x > R,, then
m(xz) — (%) > n where m(v) is the number of primes not exceeding v for any v > 0
and v € R. It is easy to see that R, is a prime for each n. The first few Ramanujan
primes are given by Ry = 2, Ry = 11,R3 = 17, Ry = 29, R; = 41,.... Sondow
showed that for every € > 0, there exists Ny(€) such that R, < (2 + €)nlogn for
n > No(e). In this note, an explicit value of Ny(e) for each € > 0 is given. We
prove

Theorem 1. Let € > 0. For e < 1.08, let Ny = No(e) = exp(£log 2) where c is

given by the following table.
ce | (0, 2] (&, 4 [(4,.6]](6,.8] [ (:8,1] [ (1,1.08]
c 4 5 6 7 8 9

For e > 1.08, let Nog = Ny(e€) be given by

ce [ (108, 1.1] [ (1.1,1.21] [ (1.21,1.3] | (1.3,2.5] | (2.5,6] | (6, 00)
No| 169 101 74 48 6 2

f—

Then
R, < (2+¢€)nlogn for n> No(e).

Sondow also showed that ps, < R, < ps, for n > 1 and he conjectured ([3,
Conjecture 1]) that R, < ps, for all n > 1, where p; is the ith prime number. We
derive the assertion of conjecture as a consequence of Theorem 1. We have

Theorem 2. Forn > 1, we have
Pan < Rn < P3n-

We prove Theorems 1 and 2 in Section 3. In Section 2, we give preliminaries
and lemmas for the proof which depend on explicit and sharp estimates from prime
number theory.
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2. LEMMAS

We begin with the following estimates from prime number theory. Recall that p;
is the ith prime prime and 7(v) is the number of primes < v. Let 0(v) = _  logp
where p is a prime. -

Lemma 2.1. Forv € R and v > 1, we have
(a) p; >ilogi fori>1,i€Z.
(b) v(1 — O980TE8) < f(v) < (1 4 OG00TE8) for v > 10544111,
c v < x(y) < 1/(_’_12762)'
( ) logrv—1 VZESQS ( )V;1 logv logv

The estimate (a) is due to Rosser [2] and the estimates (b) and (c) are due to
Dusart [1, p. 54]. O
From Lemma 2.1 (b) and (c¢), we obtain

Lemma 2.2. Hence for x > 2-10544111, we obtain

(1) () — W(m> > 21(3)ch (1 ~0.020364

) =: F(z) for x > 2-10544111
log

T T 1 0o
— —) > — — =: >
m(x) 7r(2) Z Slogz = 1) {1 log 2 (51 logg)} Fi(z) for x > 5393

where §1 = .2762 +log 2 and 02 = 1.2762(1 — log 2).
Proof. For x > 2-10544111, we obtain from Lemma 2.1 (b) that

w(e) () > 20 OE)

2 log x
" (1 _ 0.006788) (1 Lo 006788)

log log 3

%

log

x 0.006788 log
— (1- 2+
2logx log x log 5

> _® 1 0.006788 (2+1)
2logx log
which imply (1). For > 5393, we have from Lemma 2.1 (¢) that
x x 5 1.2762
m(x) —7m(=) > 2 (1—|— )
2 logx — 1 log & log 5

10g2 -1 1.2762
1+
logx —-1) “logZ 5 log §
2
log:r -1 log 5 01— log 5

implying (2). O

For the proof of Theorem 1 for € < .4, we shall use the inequality (1). Then we
may assume n < No(.4) for € > .4 and we use (2) to prove the assertion.
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3. PROOF OF THEOREMS 1 AND 2

For simplicity, we write €; = £,logy n := loglogn and
1 +log(2 +2
(3)  fo(n) :=logn+logyn+log(l+¢€1) and fi(n) := 0821 lo(;gé + 61).

€
2

Let x > (2 + 2e1)nlogn with n > No(€) =exp(g¢- log é) =:ng(€e1). Then logz >
fo(n) +log?2 for n > ng(ey).

First we consider ¢; < .2. We observe that F(z) is an increasing function of x
and 2ng(.2) log(ng(.2)) > 2 - 10544111. Therefore we have from (1) that

m(z)—7(Z) 146 0.020364
(4) 2> - =:G(n).
n L+ fi(n) fo(n) +log2
G(n) is again an increasing function of n. If G(ng(e1)) > 1, then 7(x) — 7(3) > n
for all x > (2 + 2¢1)nlogn when n > ng(e1) and hence R,, < (2 + 2¢;)nlogn for
n > no(e1). Therefore we show that G(ng) > 1. It suffices to show
0.020364(1 1 log(2 + 2
B (1+e€) > f(n) = 08y 1o + log(2 + 2¢7)
fo(n) +log2 logng
for which it is enough to show
< logy no + log(2 + 2€1) + 0.020364(1 + €1)
- logng ’

€1

€1

Since logng = ilogé = %logé with ¢ = 2,2.5 when ¢; < %, %,

we need to show

respectively,

(c1 —1)log i -
logy &= +loger +log(2 + 2¢1) + 0.020364(1 +€1) —

The left hand side of the above expression is an increasing function of é and the
inequality is valid at é = 11,5 implying the assertion for ¢; < .2.

Thus we now take .2 < € < .49. We may assume that n < ng(.2). Since
x > (24 2€1)ng logng > 5393, we have from (2) that

T g U (0w

Note that the right hand side of the above inequality is an increasing function of n
since n < ng(.2). We show that the right hand side of the above inequality is > 1.
Since n > ng(e1), it suffices to show

1 1+¢ d2
logno(er + log 1o — fi(no)) — Folno) (51 - fo(no)>

log no

1+e 1)
=¢1 logng + 1 — logy ng — log(2 4 2¢1) — ! Toa 2 <51 - >
L+ fi(no) = opng fo(no)
is > 0. Since ng(e1) = exp(2 log +) where ¢ = 3,3.5,4if 2 <e; < .3,3< e < 4
and .4 < €1 < .49, respectively, we observe that the right hand side of the above
equality is equal to

1 1 1+¢€ ( do )
c1 — 1)log — +1—1log, — —log(2¢c1 + 2c1€1) — 01 —
(1= 1) g61 82 €1 82 te1) 14 fi(ng) — &2 ! fo(no)

log no
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This is an increasing function of i We find that the above function is > 0 for
€1 € {.3,.4,.49} implying R, < (2 + 2¢1)nlogn for n > ng(e1) when ¢ < .49.
Further we observe that ng(.49) < 339. As a consequence, we have

R, < 2.98nlogn for n > 339.
and
m(x) — w(g) > 339 for z > 2.98 - 3391log 339 > 5885.

Let n < 339. We now compute R,, by computing m(z)—n(5) for ps, <z < 5885.
Recall that R, > pon for n > 1. We find that nﬁgn < 2.98,3,3.05,3.08 for
n > 220,219,171,169, respectively. Clearly —£2— < 2 4 ¢ for n > Ng(e) when

nlogn
€ < 1.08. Thus R, < 3nlogn for n > 219 and Rgn < 3.08nlogn for n > 169. For
€ > 1.08, we check that the assertion is true by computing R,, for each n < 169.
This proves Theorem 1.
Now we derive Theorem 2. From the above paragraph, we obtain R,, < 3nlogn
for n > 219. By Lemma 2.1 (a), we have ps, > 3nlog3n for all n > 1 implying
the assertion of Theorem 2 for n > 219. For n < 219, we check that R,, < ps3, and

Theorem 2 follows. O
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