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Abstract

Denoising autoencoders have been previously shown to be competitive alternatives
to Restricted Boltzmann Machines for unsupervised pre-training of each layer of a deep
architecture. We show that a simple denoising autoencoder training criterion is equiv-
alent to matching the score (with respect to the data) of a specific energy based model
to that of a non-parametric Parzen density estimator of the data. This yields several
useful insights. It defines a proper probabilistic model for the denoising autoencoder
technique which makes it in principle possible to sample from them or to rank examples
by their energy. It suggests a different way to apply score matching that is related to
learning to denoise and does not require computing second derivatives. It justifies the
use of tied weights between the encoder and decoder, and suggests ways to extend the
success of denoising autoencoders to a larger family of energy-based models.

1 Introduction

This note uncovers an unsuspected link between the score matching technique (Hyviri-
nen, 2005; Hyvirinen, 2008) for learning the parameters of unnormalized density mod-
els over continuous-valued data, and the training of denoising autoencoders (Vincent
et al., 2008, 2010).

Score matching (SM) is an alternative to the maximum likelihood principle suitable
for unnormalized probability density models whose partition function is intractable. Its



relationship to maximum likelihood has been investigated by Lyu (2009) who formally
relates the Fisher divergence that yields score matching and the Kullback-Leibler diver-
gence that yields maximum likelihood. Interestingly, his formal analysis indicates that
score matching searches for parameters that are more robust to small-noise perturba-
tions of the training data (Lyu, 2009). Score matching has also been recast as a special
case under the more general frameworks of generalized score matching (Lyu, 2009;
Marlin et al., 2009) and minimum probability flow (Sohl-Dickstein et al., 2009), allow-
ing generalizations of score matching to discrete distributions (Hyvérinen, 2007b; Lyu,
2009; Sohl-Dickstein et al., 2009). The minimum probability flow paradigm is partic-
ularly interesting as it unifies several recent alternative parameter-estimation methods,
both for continuous and discrete data, under a single unified view'. Recently, Kingma
and LeCun (2010) investigated a regularized form of score matching which adds a spe-
cific regularization term to the original score matching objective. Its relationship to the
present work will be discussed in detail in Section 5.

Denoising Autoencoders (DAE) were proposed by Vincent et al. (2008) as a simple
and competitive alternative to the Contrastive-Divergence-trained Restricted Boltzmann
Machines (RBM) used by Hinton et al. (2006) for pretraining deep networks (Erhan
et al., 2010; Vincent et al., 2010). Previous studies have already pointed out connec-
tions between SM and Contrastive Divergence (Hyvérinen, 2007a; Sohl-Dickstein et al.,
2009), have connected SM to optimal denoising for Gaussian noise with infinitesimal
variance (Hyvérinen, 2008) and have shown that training Gaussian Binary RBM with
SM is equivalent to training a regular (non-denoising) autoencoder with an additional
regularization term (Swersky, 2010). The present study however is the first to recast
the training of a DAE as a form of regularized score matching. This connection yields
insights relevant to both research directions and suggests a novel parameter estimation
technique that has its roots in both DAE and SM.

We begin by a very brief presentation of the DAE architecture for continuous-valued
inputs in Section 2 and of the SM technique in Section 3. This allows us to introduce
our formalism and precise terminology. Then, in section 4, we connect the denoising
autoencoder objective to score matching. We conclude by a discussion on how our
findings advance our understanding of both approaches.

Notation

We are interested in techniques that learn the parameters ¢ of a model by minimiz-
ing some objective function J(#). For uniformity of notation, all distributions will be
represented by their probability density functions (pdf) on R¢. The pdf for discrete
distributions will be expressed with Dirac-deltas 9.

q(x) Unknown true pdf. x € R?.
D, = {xW, ... x™} Training set: i.i.d. sample from gq.

"'Specifically score matching (Hyvirinen, 2005), minimum velocity learning (Movellan, 2008), and
certain forms of contrastive divergence (Hinton, 2002; Welling and Hinton, 2002) are all recast as mini-
mizing the Kullback-Leibler divergence between the data distribution and the distribution obtained after
running, for infinitesimal time, a dynamic that would transform it into the model distribution (Sohl-
Dickstein et al., 2009).



qo(x) =137 6(|x —x|) Empirical pdf associated with D,,.
Smoothing kernel or noise model: isotropic
Gaussian of variance o2,
,X) = ¢y (X|x)qo(x) Joint pdf.
4 (X) = 370  qo(X|x)  Parzen density estimate based on D,
obtainable by marginalizing ¢, (X, x).
p(x;0) Density model with parameters 6.
Ji — Jo Means J;(0) and Jo(6) are equivalent
optimization objectives 2.
Eqx) [9(x)] = [, a(x)g(x)dx Expectation with respect to distribution g.
(u,v) = > u;v; Dot product between two vectors.
|ul]| = v/(u,u) Euclidean norm of vector u.
softplus(z) = log(1 + ¢*) Will be applied elementwise to vectors.
sigmoid(z) = == = softplus’(z) Will be applied elementwise to vectors.
I Identity matrix.
T Transpose of matrix W.
W, Vector for i*" row of W.
\W%

Vector for j*" column of W.

2 Denoising Autoencoders

Denoising Autoencoders (DAEs) are a simple modification of classical autoencoder
neural networks that are trained, not to reconstruct their input, but rather to denoise an
artificially corrupted version of their input (Vincent et al., 2008, 2010). Whereas an
over-complete regular autoencoder can easily learn a useless identity mapping, a DAE
must extract more useful features in order to solve the much harder denoising problem.
DAESs have proven to be an empirically successful alternative to Restricted Boltzmann
Machines (RBM) for pre-training deep networks (Vincent et al., 2008, 2010; Erhan
et al., 2010). Denoising autoencoders have also been used in different contexts in the
earlier works of LeCun (1987); Gallinari et al. (1987); Seung (1998).

In this study, we will consider the denoising version of a simple classical autoen-
coder that uses a single sigmoidal hidden layer. Since data points originate from a con-
tinuous real valued distribution it is natural to use a linear decoder with a squared recon-
struction loss®. We will be using tied weights whereby encoder and decoder share the
same linear transformation parameters. The considered corruption is additive isotropic
Gaussian noise. A detailed description of the architecture follows:

e A training input x € D), is first corrupted by additive Gaussian noise of covari-
ance 021 yielding corrupted input x = x + ¢, € ~ A (0, 0%I). This corresponds to

ZEquivalence will be asserted when J, = aJ; + 8 with @ > 0, 3 € R. Indeed a gradient-based
optimization algorithm, when starting from some initial 6 value, should land in the exact same minimum
whether optimizing .J; or J> (this may however require learning rate adjustment to compensate for scaling
factor ).

3as opposed to a linear+sigmoid decoder with a Bernoulli cross-entropy loss, which would be the
preferred choice for binary input.



s . - C1 s xl2
conditional density ¢, (X|x) = me 5oz %1%

e The corrupted version X is encoded into a hidden representation h € R through
an affine mapping followed by a nonlinearity:
h = encode(x) = sigmoid(Wx+b), where x € R% h € (0,1)%, Wisad, xd
matrix and b € R,

e The hidden representation h is decoded into reconstruction x* through affine
mapping: x* = decode(h) = WTh + c, where ¢ € R%

e The parameters # = {W b, c} are optimized so that the expected squared recon-
struction error ||x* — x||* is minimized, i.e. the objective function being mini-
mized by such a denoising autoencoder (DAE) is:

Ipaps(0) = Eq (xx) [Hdecode(eneode(i)) — XHQ}
= By |[Wsigmoid(Wx + b)) +e— x|’ . (1)

3 Score Matching

3.1 Explicit Score Matching (ESM)

Score Matching was introduced by Hyvérinen (2005) as a technique to learn the param-
eters 6 of probability density models p(x; 6) with intractable partition function Z(9),
where p can be written as

p(x;0) = exp(—FE(x;0)).

Z(0)

E is called the energy function. Following Hyvirinen (2005), we will call score the
gradient of the log density with respect to the data vector: 1(x;6) = %gaé;(xm. Beware
that this usage differs slightly from traditional statistics terminology where score usu-
ally refers to the derivative of the log likelihood with respect to parameters, whereas
here we are talking about a score with respect to the data. The core principle of score
matching (Hyvérinen, 2005) is to learn 6 so that ¢)(x;0) = aloga#;(x"% best matches the
corresponding score of the true distribution, i.e. %. The corresponding objective

function to be minimized is the expected squared error between these two vectors, i.e.

2]
We refer to this formulation as explicit score matching (ESM).
Note that the score 1/(x; ) does not depend on troublesome Z(#). But since ¢ is un-

known, we do not have explicit regression targets %

_ Olog g(x)

Jesmq(0) = Eyx) O

%H@D(Xﬁ)

s x), Hyvirinen (2005) mentions
in passing that non-parametric methods might be used to estimate those, and we shall
later pay closer attention to this possibility.



3.2 Implicit Score Matching (ISM)

Hyvérinen (2005) instead proceeds by proving the following remarkable property:

1 dlog q(x) |” 8¢Z X; 0)
a) |5 Hw(XS 0) - Ix Ey(x) Hw 0)|° + Z +C4
Tzsa1q(0) Trsarg(6)
(2)
where ¥;(x;0) = ¥(x;0); = 810+&:{9) and (1 is a constant that does not depend

on 6. This yields an implicit score matching objective Jrsaz, that no longer requires
having an explicit score target for ¢ but is nevertheless equivalent to Jggys,. Hyvérinen
(2005) formally shows that, provided ¢(x) and ¥ (x;0) satisfy some weak regularity
conditions*, we have

JEsmq — Jrsmg 3)

3.3 Finite Sample Version of Implicit Score Matching

Since we only have samples D,, from ¢, Hyvérinen proposes to optimize the finite
sample version of J;gys, which, following our notation, we shall write Jrgarq,:

J1sma(0) = Egx)

et P +Zal‘“ X 0)]

1o~ (1 : 2 o (xM; 0)
= ﬁ; (5“¢(X();9){| +;T> “4)

1

J1smq, 18 asymptotically equivalent to Jrspq when n — oo and hence asymptoti-
cally equivalent to objective Jgga4. This can be summarized as

Jesmq ~ Jrsmg ~— nh_{IOlo J1sMqo- (5)

What happens in the transition from Jrgz, to finite sample version Jygazq, 1S how-
ever not entirely clear. Concerns regarding the stability of the resulting criterion were
raised by Kingma and LeCun (2010), who propose instead to optimize a regularized
version of Jrgnrg,:

Oni(x1); 0) ) ’ (6)

d
Jrsnrreg(0) = Jrsng, (0) + )‘Z ( ox:

i=1

where the strength of the additional regularization term is controlled by hyperparameter
A. The relationship between this criterion and the criteria we propose below will be
further discussed in Section 5.

*Namely: ¢(x) and ¢(x;6) are differentiable, E, ) {Hmc’g;j(x)

2
} is finite, and for any 6,

Eyx) {Hd)(x; 9)||2} is finite and 1im x| o0 ¢(X)2(x; 0) = 0
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4 Linking Score Matching to the Denoising Autoencoder
Objective

4.1 Matching the Score of a Non-Parametric Estimator

As previously stated, the possibility of matching the score ¥ (x; §) with an explicit tar-
get score for ¢ obtained through non-parametric estimation was mentioned but not pur-
sued in Hyvirinen (2005). We now examine this possibility more closely. Explicitly
matching 1 (x; §) with the score of Parzen windows density estimator ¢, (X) yields the
following objective:

2

‘ ] : (7

)
is finite. All regularity conditions are satisfied, so the same equivalence with ISM as in
Eq. 3 holds, i.e.

. ~
s (6) = By |3 w5 0) — 250

dlog go(X)
ox

For o > 0, g, is differentiable, decreases to 0 at infinity, and E,_ %) [

JESMey ~— J1SM,- (8)
Note that this equivalence however breaks in the limit o — 0, because ¢, no longer

satisfies these regularity conditions, and Jgsa4. can no longer be computed (whereas
J1smq, remains well-behaved).

4.2 Denoising Score Matching (DSM)

Let us now consider a slightly different objective, that is inspired by both the Score
Matching principle and by the Denoising Autoencoder approach of using pairs of clean
and corrupted examples (x,X). For joint density ¢,(X,x) = ¢,(X|x)qo(x), we define
the following denoising score matching (DSM) objective:
0log g, (X[x) |*
—— || ©)
X

The underlying intuition is that following the gradient v of the log density at some
corrupted point X should ideally move us towards the clean sample x. Note that with
the considered Gaussian kernel we have

1 -
JDS]WqU<0) = ]qu(x,fc) [5 Hw(X; 9)

dlogg,(%|x) 1
— = —(x—Xx). 10
ox o? ( ) (19)
Direction %(x — X) clearly corresponds to moving from X back towards clean sample
x, and we want v to match that as best it can.
Now this alternate objective, inspired by denoising autoencoders, is equivalent to

explicit score matching. Formally,

Jesma, — Jpsmq, (11)

The proof is in the appendix, and does not depend on the particular form of ¢, (X|x)
or ¢(x) as long as log ¢, (X|x) is differentiable with respect to x.
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4.3 An Energy Function that Yields the Denoising Autoencoder Ob-
jective

Let us now choose for model p the form

1
) _ Bl
p(x;0) 70 exp(—E(x;0))
1 2 A
E(x;W,b,c) = — (c,x) — 5 [x]|” + Zj’:1 ioftplus (W, x) + bj). )
o
0
We then have
. _ Ologp(x;0)
¢Z(X79) B aXZ
. oE
dp
1 ! 0 W',X —+ b
= = (ci—xi—l—ZSoftplus ((W,x) +b;) { J8X,> J))
j=1 i

o

dp
1
= = (ci —x; + Z sigmoid ((W, x) + b,) Wﬂ)

Jj=1

1
= = (c; —x; + (W, sigmoid(Wx + b))),

which we can write as the single equation

1
Y(x;0) = —
o
Substituting Eq. 10 and Eq. 13 in the expression for Jpgar,, (Eq. 9) we get, for this
choice of Parzen kernel and density model,
2]

(W7 sigmoid(Wx + b) + ¢ — x) . (13)

_ Olog ¢, (%[x)
ox

o
Ipsmg, (0) = Egxx) §H¢(X;9)

_1 1 1 2
= K4 x5 3152 (WT sigmoid(Wx 4+ b) + ¢ — 5() — P(X —X) ]
1 . . ~ 2
— ﬁqu(x,i) [HWT sigmoid(WX + b) + ¢ — XH }
1
= —Jpags(0).
554/ DAE (9)
We have thus shown that
Jpsmq, — Jpans (14)



5 Discussion
Putting together equations 8, 11 and 14, we can write, for o > 0,

JISng ~ JES]\/[qg ~ ']DS]V[q(r ~ JDAEO" (15)

In summary, training the denoising autoencoder defined in section 2 is equiva-
lent to performing score matching (explicit or implicit) with the energy function of
Eq. 12 on Parzen density estimate ¢,. Such a training would typically use stochastic
gradient descent, whereby samples from ¢, are obtained by corrupting samples from
D,,. And it may be carried out with any of these four optimization objective formula-
tions®.

We introduced the kernel-smoothed empirical distribution ¢, to show a connection
between score matching and a simple denoising autoencoder. Interestingly, the reg-
ularized score matching criterion Jrsarrey (Eq. 6) that Kingma and LeCun (2010) re-
cently introduced with the very different motivation of curing possible instabilities, was
derived by approximating® what amounts to Jrsus,,. From this perspective our four
g--based criteria in Eq. 15, including the denoising autoencoder, may be seen as al-
ternative approximation-free forms of regularized score matching. A key difference is
that, as is done with denoising autoencoder training, we would optimize stochastic ver-
sions of these approximation-free regularized criteria by corrupting training examples
(i.e. sampling form ¢, ), whereas Kingma and LeCun (2010) optimize an approximation
of Jrsnyg, » centered on the training samples only (i.e. sampling from gy). Also, whereas
J1sMreg, like the other ISM criteria, requires computing second derivatives, the stochas-
tic version of our novel Jpgarg, criterion does not, and thus appears much simpler to
implement.

Note that the energy function in Eq. 12 is particular in that its scaling, which we
may call its temperature, is chosen to match the corrupting noise level o2. This is
required only to establish the last equivalence with the specific DAE we considered.
But regarding the generic objectives Jrsarg, — Jesmq, — Jpsmg,. their o may in
principle be chosen irrespective of the form or temperature of whatever energy function
is to be learnt. Interestingly, the energy function in Eq. 12, that we designed to yield
the equivalence with our denoising autoencoder objective, happens to be very similar
to the free energy of a Restricted Boltzmann Machine with binary hidden units and
Gaussian visible units (Welling et al., 2005; Bengio et al., 2007; Swersky, 2010). The
mayjor difference is that this latter free energy does not have a global temperature scaling
of the whole expression’. We designed Eq. 12 to exactly yield the denoising version
of the classic autoencoder described in Section 2. But with tied weights, it may be
preferable to allow for an extra positive scaling parameter « for the reconstruction, so
that there at least exists an equivalent reparametrization of the model for scaled input

>Note however that while these ¢,-based objectives are formally equivalent, their stochastic gradient
descent optimization, based on sampling a limited number of corrupted examples, is likely to behave
differently for each objective.

%A first order Taylor expansion and a diagonal Hessian approximation are used.

"Specifically, in the free energy of a Gaussian-binary RBM, the softplus terms are not divided by o2
nor scaled in any way.



data®. This is easily obtained in the energy function by multiplying the sum of softplus
terms in Eq. 12 by a. We may even allow an arbitrary rescaling factor «; for each
hidden layer dimension independently by multiplying each softplus term by its own
rescaling parameter «;, which yields the following more flexible energy function:

dp
1 1 9
E(x;W,b,c,a,0,) = o (e x) — 5 [Ix[” + E’ 1 ajsoftplus ((W;, x) + by)
0 1=

Here we have also included, as model parameter, a o, (where m stands for model)
distinct from the noise o of the training objective’.

Our ¢,-based objectives Jrsnrg, » JEsMg,» OF Jpsirg, can be used as alternatives to
the finite sample objective Jrsng, (Eq. 4) advocated in Hyvirinen (2005) for learning
unnormalized densities. Note that Jrsazq, 1S a special case of Jrgy,, obtained in the
limit of o — 0. Also, since Kingma and LeCun (2010) showed that it may be preferable
to use a regularized criterion (that they derived form smoothed empirical distribution
q-), it is likely that our g,-based criteria may, for ¢ > 0, yield better generalization
performance than the Jjg,/,, advocated in Hyvirinen (2005)'°. It seems that o could
allow one to choose an optimal bias-variance tradeoff for the finite-sample estimation
of the true score matching gradient of interest Vg Jpsnq = VoJrsarg. While VoJrsnrg,
is an unbiased estimator of it, Vo Jrsnrg, = VeJesmg, = VeJpsig, Will generally be
biased when o > 0 but are also likely to have a lower variance.

Among the three equivalent score matching objectives based on ¢, objective Jpgarq,
appears particularly interesting as a novel alternative formulation. It was motivated by
both the SM principle and the DAE principle. From DAE it borrows the idea of learning
to denoise artificially corrupted samples, and from SM it borrows the idea of learning
a score function derived from an unnormalized density. Jpgr,, may prove simpler and
more efficient in practice than the mathematically equivalent Jrgsaz,, , as it does not
require computing second derivatives.

Our result is also a significant advance for DAEs. First, we have defined a proper
energy function for the considered DAE through Eq. 12. This will enable many pre-
viously impossible or ill-defined operations on a trained DAE, for example deciding
which is the more likely among several inputs, or sampling from a trained DAE us-
ing Hybrid Monte-Carlo (Duane et al., 1987). Second, whereas using the same weight
matrix (“tied weights”) for the encoder and decoder is justified for RBMs, the encoder-
decoder framework does not constrain that choice. Previous work on DAEs (Vincent
et al., 2008; Erhan et al., 2010; Vincent et al., 2010) explored both options, often find-
ing tied weights to yield better empirical results. Within the SM framework presented
here, using tied weights between encoder and decoder now has a proper justification,

81f for example one multiplies the input values by 100, one can obtain the same hidden representation
as before by dividing W by 100. But because of the tied weights this means that the reconstruction would
also be divided by 100 (i.e. there is no equivalent reparametrization), unless it can be compensated by an
additional scaling of the reconstruction by a parameter a.

9We would however have to set o,,, = o to recover a recognizable denoising autoencoder objective.

101t is also noteworthy that the experimental results of Vincent et al. (2008, 2010) on DAE showed that
the best models, judged by their ability to extract useful features, were obtained for non negligible values
of the noise parameters. Moreover this way of controlling the model’s capacity worked much better than
either reducing the hidden layer size or than traditional weight decay.

9



since it follows naturally from differentiating the energy. Third, this framework opens
the door to new variants that would naturally fall out from other choices of the energy
function.
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Appendix

Proof that JESMqU — JDSMqU (11)

The explicit score matching criterion using the Parzen density estimator is defined in
Eq. 7 as

1 . dlog ¢, (x 2
s (6) = By |5 w5 6) — 252 ]
which we can develop as
1 ~
esin, €)= Ene) [0 0)I%] - 5(6)+ Co (16)

WheI‘e 02 — |: H 8log q(T

S) = Eu KW’E?@)@%;?@H

} is a constant that does not depend on 6, and

= [ (o0, [ meouxiiax) ix

_ /x <¢(5<; ), /X qu)%dx> d%

= [ (om0 [t P ) o
) //qo o X‘X< % )’8logg;(x]x)>dxdi
_ //qg % x < 6),810gg;<x|x)>dxdi

= E, & Kl/}(i; 0), %gg—;(xmﬂ '

Substituting this expression for S(6) in Eq. 16 yields

1
Tesin,(0) = Eyis) [F 10O

1
_qu(x,fc) |:<¢(X7 0)7 80%;(X’X)>:| + 02' (17)
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We also have defined in Eq. 9,

L[ oo Ologge(X[x)|
Ipsirg, (0) = Egq (x%) [§ Hw(x; 0) — T ox )
which we can develop as
Lo 2
Ipsug, (0) = Eq ) |5 IW(x:0)]
. 0log ¢, (x|x
~Eg, ) Kw(x; 0), %H +Cy (18)
X
~ 2
where C3 = Eg_ (x %) {% %‘;f"'x) } is a constant that does not depend on 6.

Looking at equations 17 and 18 we see that Jgsarg, (6) = Jpsug, (0) + Co — Cs.
We have thus shown that the two optimization objectives are equivalent.
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