How to Make Zuse’s Z3 a Universal
Computer

Raul Rojas
September 5, 1997

Abstract

The computing machine Z3, built by Konrad Zuse from 1938 to
1941, could only execute fixed sequences of floating-point arithmetical
operations (addition, subtraction, multiplication, division and square
root) coded in a punched tape. We show in this paper that a single
program loop containing this type of instructions can simulate any
Turing machine whose tape is of bounded size. This is achieved by
simulating conditional branching and indirect addressing by purely
arithmetical means. Zuse’s Z3 is therefore, at least in principle, as
universal as today’s computers which have a bounded memory size.
This result is achieved at the cost of blowing up the size of the program
stored on punched tape.

Universal Machines and Single Loops

Nobody has ever built a universal computer. The reason is that a uni-
versal computer consists, in theory, of a fixed processor and a memory
of unbounded size. This is the case of Turing machines with their
unbounded tapes. In the theory of general recursive functions there
is also a small set of rules and some predefined functions, but there is
no upper bound on the size of intermediate reduction terms. Modern
computers are only potentially universal: They can perform any com-
putation that a Turing machine with a bounded tape can perform. If
more storage is required, more can be added without having to modify
the processor (provided that the extra memory is still addressable).



It is the purpose of this paper to show that Konrad Zuse’s Z3,
a computing automaton built in Berlin from 1938 to 1941, can be
programmed in principle as any other universal computer. This is a
surprising result, since the Z3 can only compute sequences of arith-
metical operations (addition, subtraction, multiplication and division)
stored in a punched tape. There is no conditional branching. Since
both ends of the punched tape can be glued together, the Z3 is a
machine capable of executing a single loop of arithmetical operations
using numbers stored in memory.

It is well known that any computer program containing conditional
branches and the usual instructions of imperative languages, like for
example FORTRAN, can be programmed using a single WHILE loop
[1]. Also, all conditional branches can be eliminated from the loop [2].
I showed in [3] that if the Z3 is extended with indirect addressing it
can simulate a Turing machine. We will adopt the techniques used in
those papers in order to show that a Turing machine can be simulated
by a single program loop of a machine capable of computing the four
basic arithmetic operations.

Our computing model is the following: there exist memory loca-
tions which we will denote by lower case letters. We can only refer
explicitly to memory addresses (there is no indirect addressing). Ini-
tially (for the sake of simplicity) we will restrict our programs for the
Z3 to a language containing only statements of the form

a="bopc,

where op represents one of the four basic arithmetic operations. Any
statement @ = b op ¢ can be “compiled” using the two registers of
the Z3 and four assembler instructions (which load the two argument
registers in the appropriate order):

LOAD b
LOAD ¢
op
STORE a

The store operation refers implicitly to the first register (accumulator)
of the processor. All computations are performed with floating-point
numbers. The mantissa has a precision of 16 bits for its fractional
part. The Z3 uses normalized floating-point numbers (i.e. with a
mantissa m such that 1 < m < 2). The special case of a zero mantissa



is handled with a special code (like in the IEEE standard). There is
also a “halt” instruction in the Z3 (when a number is displayed at the
console the machine stops). For more details on the architecture of
the Z3 see [4] and [5].

Simulating Branches

We show here how to simulate the operation of a CASE statement
using a technique introduced in [2]. Define the state of the machine
as the state of its memory. Assume that in a program P there are
n consecutive sections of code Py,..., P, and that the variable z €
{1,2,...,n} (a number stored in memory) is used to select which one
of these sections should perform the computation we are interested in.
The general strategy is to execute all n sections of code, one after the
other, but we will allow only the 2-th section to modify the memory
contents. In order to implement this idea we transform each section
of code Pj in equivalent code P;- according to the following recipe: At
the beginning of each section P; a comparison is made and if z = j
the auxiliary variable ¢ is set to zero, otherwise it is set to one. The
variable t can be interpreted as a flag for the “selected section” since
it will be only zero in P,. Now all original statements in the program

Py, ..., P, of the form a = b op ¢ are transformed to
u=~bopc
v=ax*xt
w=1-—1t
U=1wW*U
a=v+u

The expression computed by this piece of code is a = a *xt + (1 —
t)(b op c), that is the state of variable a will not be modified unless
the computation is performed within the z-th code section. When all
statements have been transformed in this way and the appropriate
initialization of ¢ has been introduced at the beginning of each code
section, we can execute the whole transformed program Pj,...,P)
from beginning to end. Most of the computations are superfluous,
since we execute all sections of code, but only P, modifies the contents
of the memory, as we demand from our CASE statement.



We must only show now that it is in fact possible to perform the
computation
if (z=1) thent=0else t = 1.

We do this using the following piece of code (where e represents a
positive number much smaller than 1, for example 1,/1000).

d=2z—1
d=d+d
f=d—e
g=4d/f

The variable g is equal to zero only if 2 = i. When z # 7 the variable
g is equal to 1 plus a small fractional part. We want to get rid of these
extra bits after the integer part of the mantissa (those to the right of
the binary point). The way to do this is to compute

t= (2% +g) - 2%

respecting the implicit order. Remember that the Z3 represents num-
bers internally using 16 bits for the fractional part of the mantissa.
In the addition above the smaller number (the variable g) is shifted
16 places to the right, whereby the extra bits we want to eliminate
are lost. The subtraction “restores” the integer part of g to its ini-
tial state. In this and other programs all necessary constants (2'6 for
example), can be precomputed and stored before we start the CASE
statement. We assume that the processor is able to handle big enough
floating-point numbers so that no overflows arise.

Simulating a Turing Machine

A Turing machine (TM) is defined by a table of state transitions:
given the current state @) and the tape symbol at the current position
pos of the read/write head, we read from the table and find the new
state @', the symbol to be written o and the direction dir of motion
of the read/write head (+1 or —1). The new position of the head
is given by pos = pos + dir. Before simulating a Turing machine,
the memory of the Z3 is prepared. All necessary tables are loaded
at specific addresses and the initial contents of the TM tape too. All
necessary auxiliary constants are also loaded.

4



It is clear that any Turing machine can be simulated using the
following master loop:

e read tape symbol,

e look-up new state, output symbol, and direction of movement
e modify tape,

e update state and position of read/write head.

The simulation can be done using table look-up. For example, reading
the tape symbol amounts to the operation

s = memory(tape, pos),

where “tape” is the initial address of the simulated tape and “pos”
the current position. Only basic arithmetic is needed to compute the
position of entries in a table: A table starting at address T" can be
accessed at position k by computing 7' + &k and using the result as an
address. Thus, the only thing we need for the simulation of the Turing
machine using the Z3, and which is still lacking, is indirect addressing:
We want to use the results of arithmetic operations as addresses.

Assume that we want to implement the indirect addressing opera-
tion

a = (z)

where z is the result of an arithmetic operation with integers and
n, < x < ng. The integer constants n, and n; are the limits of the
memory segment that we want to address indirectly.

We can implement the above operation using a CASE statement
with one section for each integer between n, and n;. In each section ¢
of the CASE statement we load address a with the contents of address
1. Assume that n, = 10 and n, = 20. The code, before transforming
it to work as a CASE statement, would be:

Pyp: LOAD 10
STORE a
P]]Z LOAD 11
STORE a
Py: LOAD 20
STORE a



Now we apply a transformation similar to the one discussed above
using z as the CASE variable. The transformed program will select
the contents of address z and will store it in address a, since only
section P, will modify the contents of a.

Note that the whole CASE statement contains one load statement
for each consecutive memory address. We read all memory addresses
between n, and ny, but we only keep in a the one we are interested in,
namely address z. In the extreme case, when the indirect addressing
operation refers to the whole memory, we would need to read all ad-
dresses in order to implement a single indirect addressing. But since
the number of indirect memory references during one simulation cycle
of the Turing machine is constant, the size of the program that we
need is also constant (for a given memory size).

Using an analogous approach we can store a number to the address
represented by an arithmetical result z (indirect addressing in STORE
operations). We can, for example, update the simulated tape of the
TM using this approach.

It is clear that we have been helped here by the fact that the
program is stored in a punched tape which is external to the memory.
The punched tape is allowed to be as large as necessary to read the
sections of memory that we need to address indirectly (state tables
and tape of the TM). Given a maximal memory size, the size of the
punched tape needed is bounded.

This proves that Zuse’s Z3 can, in principle, do any computation
that any other computer with a bounded memory can perform.

The Halting Problem

The attentive reader will have noticed that the master loop of the
simulation never stops. Algorithms, however, must stop after a finite
number of steps. Fortunately, there is an additional feature of the Z3
which provides the solution for this problem.

Whenever an undefined operation is performed, the Z3 stops and
a lamp is set on the console. This is the case, for example, for the
operation 0/0. Thus we define state Qo = 0 of the simulation as the
“halting state” (for all other states Q; is a positive integer) and the
computation 0/Q is performed at the beginning of the master loop (Q
is the current state). If the simulation reaches state (Jy the machine



stops.

If Zuse had not thought of trapping undefined operations, we would
have been unable to stop the master loop. In that case, a possible way
out could be considering those cycles in which nothing is altered as
the “halting state” of the machine, but the operator would have some
problems identifying this situation.

Conclusions

The main result of this paper is intriguing because it looks so artificial.
From the theoretical point of view it is interesting to see that limited
precision floating-point arithmetic embedded in a WHILE loop can
compute anything computers can compute. It could be argued that
whenever we expand the memory (to accommodate more tape posi-
tions for a Turing machine) the program in the punched tape has to be
expanded also (to cover the new memory addresses). If we think of the
punched tape as part of the processor (when simulating a Universal
Turing Machine), then we are extending the processor when we en-
large the program in the punched tape. This is undesirable. However,
in real computers, there is also a limit for the size of the memory we
can manage (given by the addressable space, i.e. the number of bits
in the address registers). If we expand the memory we need more ad-
dressing bits and the processor has to be expanded (going for example
from 16-bit to 32-bit registers).

The result of this paper seems counterintuitive, until we realize
that operations like multiplication and division are iterative compu-
tations in which branching decisions are taken by the hardware. The
conditional branchings we need are embedded in these arithmetical
operations and the whole purpose of the transformations used, is to
lift the branches up from the hardware, in which they are buried, to
the software level so that we can control the program flow. The whole
magic of the transformation is making the hardware branchings visible
to the programmer.

A possible criticism is that the approach discussed in this paper
produces a terrible slowdown of the computation. From a purely the-
oretical point of view this is irrelevant. From a practical point of view
it is clearly the case that nobody would program the Z3 in this way,
in the same way that nobody solves real-world problems using Turing



machines.

We can therefore say that, from an abstract theoretical perspective,
the computing model of the Z3 is equivalent to the computing model
of today’s computers. From a practical perspective, and in the way the
73 was really programmed, it was not equivalent to modern computers.

I am of course aware that these conclusions are curious enough to
re ignite the whole discussion about the invention of the computer.

References

[1] D. Harel, “On Folk Theorems”, Communications of the ACM, Vol.
23, N. 7, 1980, pp. 379-389.

[2] O.Ibarra, S. Moran, L.E. Rosier, “On the Control Power of Integer
Division”, Theoretical Computer Science, Vol. 24, 1983, pp. 35-52.

[3] R. Rojas,“Conditional Branching is not Necessary for Universal
Computation in von Neumann Computers”, Journal of Universal
Computer Science, Vol. 2, N. 11, 1996, pp. 756-767.

[4] R. Rojas, “Konrad Zuse’s Legacy: the Architecture of the Z1 and
23", Annals of the History of Computing, Vol. 19, N. 2, 1997, pp.
5-16.

[5] R. Rojas, Die Rechenmaschinen von Konrad Zuse, Springer-
Verlag, Berlin, 1997.



