

 International Journal of Computer Techniques - Volume1 Issue 2 Dec - 2014

ISSN : 2394-2231 http://www.ijctjournal.org/ Page 1

Abstract— Object oriented programming has become a very

important programming paradigm. Object oriented programming

languages supports the classes, Inheritance, Encapsulation and

polymorphism. This takes a detailed look at different types of

Inheritance. OOPs come into existence in 1960s through the Simula

[1] language. Inheritance is one of the cornerstones of OOP because

it allows the creation of hierarchical classifications. Using

inheritance, we can create general class that defines traits common

to a set of related items. This class may then be inherited by other,

more specific classes, each adding only those things that are unique

to the inheriting class. When a class inherits another, the members of

the base class become members of the derived class.

Index Terms—About Base class, Derived class, Inheritance,

Reusability, Private, Public, and Protected.

I. INTRODUCTION

Inheritance is the basic mechanism by which a derived class

can inherit the properties of base class. The derived class

inherits all behavior of base class. Inheritance provides the

reusability of code. Object-oriented programming allows

classes to inherit commonly used state and behavior from

other classes. Inheritance is the mechanism which allows a

class A to inherit properties of a class B. We say ``A inherits

from B''.The class B is referred to as the Base class and the

class A is called the Derived class or Subclass. The

relationships of objects or classes through inheritance give

rise to a hierarchy. Inheritance was invented in 1967 for

Simula.

Advantages of Inheritance:

1. It provides code reusability.

2. It reduces code redundancy

3. It reduces source code size and improves code

readability.

4. By using inheritance, code becomes easy to manage

and divided into parent and child classes

5. It supports code extensibility by overriding the base

class functionality within child class.

Manuscript received Dec, 2014.

 Manoj Kumar Sah, Asst. Prof. Dept. of Computer Science and

Engineering, Shobhit University, Gangoh, UP, India

(E-mail: eindiacse@gamil.com).

Vishal Gar, He is a student of B.Sc. Computer Science in Shobhit

University, Gangoh, UP, India (e-mail: vishalsiet022@gmail.com).

Disadvantages of Inheritance:

1. In inheritance, super class and sub class are tightly

coupled, If we change the code of super class it will

get affects to the all the sub classes.

2. In multiple inheritances, if both the super and sub

class have same function with same signature,

Ambiguity arises in sub class.

For Example, point and circle, we can define a circle

which inherits from point:

Class Circle inherits from Point

 {

 Attributes:

 int radius;

 methods:

 set Radius (int new Radius);

 get Radius ();

 }

Fig 1: Diagram Illustration

Diagram illustrates the Vehicle as a Base Class or Super

Class and the Motorized vehicle and Bicycle are two

Derived Class. In this diagram there are two more Derived

Class that are; Car and truck. These are the Derived Class of

Motorized vehicle as well as Vehicle but the Motorized

vehicle is referred as Base Class for the Derived Class Car

and truck.

Survey on Types of Inheritance Using

Object Oriented Programming with C++

Manoj Kumar Sah
1
, Vishal Garg

2

1 Assistant Professor, Dept. of Computer Science and Engineering

Shobhit University, Gangoh, UP, India.

2 Student of B.Sc. Computer Science

Shobhit University, Gangoh, UP, India.

Bicycle

Vehicles

Motor

Vehicles

Car Truck

International Journal of Computer Techniques - Volume1 Issue 2 Dec - 2014

ISSN :2394-2231 http://www.ijctjournal.org/ Page 2

II. TYPES OF INHERITANCE

In this paper we have considered the following types of

inheritance:

i. Single Inheritance

ii. Multiple Inheritance

iii. Hierarchical Inheritance

iv. Multilevel Inheritance

v. Hybrid Inheritance

1 Single Level Inheritance:

A derived class with only one base class is called single

inheritance. In single level inheritance the subclass inherits

variables and methods that are declared by the super class,

although some of these variables and methods may not be

accessible by the subclass.

Syntax:

Class A

 {

 Statements;

 };

Class B: Public A

 {

 Statements;

 };

Example

#include<iostream.h>

class A

{

public:

inta,b;

void student()

{

cout<<”Enter the value a”;

cin>>a;

cout<<”Enter the value b”;

cin>>b;

}

void print()

{

cout<<”a=”<<a;

cout<<”b=”<<b;

}

};

class B: Public A

{

public:

void sum()

{

cout<<”Sum:”<<(a+b);

}

};

void main()

{

B obj;

obj.student();

obj.print();

obj.sum();

 }

2 Multiple Inheritances: One important object-oriented

mechanism is multiple inheritances. Multiple inheritances

mean that one subclass can have more than one superclass.

Multiple inheritances allows us to combine the features of

several existing classes as a starting point for defining new

classes.Multiple inheritance in languages with C++ style

constructors impairs the inheritance problem of constructors

and constructor chaining, thereby creating maintenance and

extensibility problems in these languages.

Syntax:

Class A: Access specifierBAccess specifier C,…….…,Bn

{

Statements;

};

Example:

#include<iostream.h>

#include<conio.h>

class student

{

 protected:

 int rno,m1,m2;

 public:

 void get()

 {

 cout<<"Enter the Roll no :";

 cin>>rno;

 cout<<"Enter the two marks :";

 cin>>m1>>m2;

 }

};

class sports

{

 protected:

 int sm;

 public:

 void getsm()

 {

 cout<<"\nEnter the sports mark :";

 cin>>sm;

 }

Teacher

Student

Father

Base Class

Derived

Direction of Arrow

 International Journal of Computer Techniques - Volume1 Issue 2 Dec - 2014

ISSN : 2394-2231 http://www.ijctjournal.org/ Page 3

};

class statement : public student, public sports

{

 int tot, avg;

 public:

 void display()

 {

 tot=(m1+m2+sm);

 avg=tot/3;

 cout<<"\n\n\tRoll No : "<<rno<<"\n\tTotal : "<<tot;

 cout<<"\n\tAverage : "<<avg;

 }

};

void main()

{

 statement obj;

 obj.get();

 obj.getsm();

 obj.display();

 getch();

}

3 Hierarchical Inheritances:

When the properties of one class are inherited by more than

one class, it is called hierarchical inheritance. In the

hierarchical inheritance the Base class will include a the

features that are common to the Subclasses. A Subclass can

be constructed by inheriting the properties of the Base class.

In the above diagram there is a Base Class named Students

and 3 Derived Class as we can in the diagram. There are3

another derived class also derived from the Base Class

Medical.

Syntax:

class A

 {

 };

 class B : public A

 {

 };

 class C : public A

 {

 };

class D:public B

 {

 };

 class E: public B

 {

 };

 class F: public C

 {

 };

 class G: public C

 {

 };

Example:

#include <iostream.h>

#include<conio.h>

class Side

{

protected:

int i;

public:

void set_values (int x)

{ i=x;}

};

class Square: public Side

{

public:

int sq()

{

return (i*i);

}

};

class Cube:public Side

{

public:

int cub()

{

 return (i*i*i);

}

};

 void main ()

{

Square s;

s.set_values (10);

cout << "The square value is " << s.sq();

Cube c;

c.set_values (20) ;

cout << "The cube value is " << c.cub() ;

Students

Art Medical Engineering

Zoology

Biology

Botany

International Journal of Computer Techniques - Volume1 Issue 2 Dec - 2014

ISSN :2394-2231 http://www.ijctjournal.org/ Page 4

getch();

}

4 Multilevel Inheritances:

It is a type of inheritance in which a class is derived from

another derived class is called multilevel inheritance.

In multilevel inheritance, the members of Base Class are

inherited to the Derived Class and the member of Derived

Class is inherited to the grand Derived Class.

Syntax:

Class A

{

Statement1;

Statement2;

};

Class B

 {

 Statement3;

 Statement4;

 };

Class C: Public B

 {

 Statement5;

 Statement6;

 };

Example:

#include<iostream.h>

class A

{

protected:

int x;

public:

void showA()

{

cout<<"enter a value for x:"<<endl;

cin>>x;

}

};

class B:public A

{

protected:

int y;

public:

void showB()

{

cout<<"enter value for y:";

cin>>y;

}

};

class C:public B

{

public:

void showC()

{

showA();

showB();

cout<<"x*y ="<<x*y;

}

};

void main()

{

C ob1;

ob1.showc();

}

5 Hybrid Inheritance: Hybrid Inheritance is a method

where one or more types of inheritance are combined together

and used. Since .NET Languages like C#, F# etc. does not

support multiple and multipath inheritance. Hence hybrid

inheritance with a combination of multiple or multipath

inheritance is not supported by .NET Languages.

Syntax:

Class A

{

Statements;

};

Class B: Public A

{

Statements;

};

Class C: Public B

{

Statements;

};

Class D: Public B

{

Statement;

};

Example:
#include<iostream.h>

#include<conio.h>

class base

{

 International Journal of Computer Techniques - Volume1 Issue 2 Dec - 2014

ISSN : 2394-2231 http://www.ijctjournal.org/ Page 5

int a;

public:

base()

{

cout<<”Enter a: “;

cin>>a;

}

int show()

{

cout<<”a = “<<a<<endl;

return(a);

}

~base()

{

cout<<”Destructor of base class is executed”;

}

};

class derived1:public base

{

int b;

public:

derived1():base()

{

cout<<”Enter b: “;

cin>>b;

}

int show1()

{

cout<<”b = “<<b;

return(b);

}

~derived1()

{

 cout<<”Destructor of derived1 class is executed”;

}

};

class derived2:public derived1

{

int a,b,c,sum;

public:

derived2():derived1()

{

cout<<”Enter c: “;

cin>>c;

}

void show2()

{

a=show();

b=show1();

cout<<”c = “<<c<<endl;

sum=a+b+c;

cout<<”Sum of given numbers: “<<sum;

}

~derived2()

{

 cout<<”Destructor of derived2 class is executed”;

}

};

class derived3:public derived1

{

int a,b,c,sum;

public:

derived3():derived1()

{

cout<<”Enter c: “;

cin>>c;

};

void show3()

{

cout<<”c = “<<c;

a=show();

b=show1();

sum=a+b+c;

cout<<”Sum of given numbers: “<<sum;

}

~derived3()

{

cout<<”Destructor of derived3 class is executed”;

}

};

void main()

{

cout<<”Getting data for first object”;

{

derived3 d3;

d3.show3();

}

cout<<”Enter data for second object”;

{

derived2 d2;

d2.show2();

}

getch();

}

III. RESULTS:

 C++ Supports

Object Oriented Hybrid

Static / Dynamic Typing Static

Inheritance Multiple

Method Overloading Yes

Operator Overloading Yes

Generic Class Yes

Dynamic Binding Yes (Static by Default)

International Journal of Computer Techniques - Volume1 Issue 2 Dec - 2014

ISSN :2394-2231 http://www.ijctjournal.org/ Page 6

IV. CONCLUSION:

Here, in this paper we have to study the above five types of

inheritance. We have to find that inheritance is central

concepts in C++ that allows deriving a class from multiple

classes at a time. Inheritance helps the programmer to reuse

the code in many situations if it needed. Using this concept the

programmer can create as many derived class from the base

class. In inheritance we can extend the base class logic as per

our business requirement. If we have mouse programming and

we want to extend some functionality in mouse programming

as mouse pointer should be red, then by use of inheritance we

can easily implement this mouse programming in such a way

that its pointer or cursor color becomes red. Inheritance helps

in company to extend business Logic.

A. References

[1] Bjarne Stroustrup, the C++ Programming Language,

Person Publication.

[2] Kim B. Bruce. Foundations of object-oriented

languages: types and semantics. MIT Press,

Cambridge, MA, USA, 2002.

[3] Kyle Loudon, C++ Pocket Reference 1st Edition,

O’reilly Publication.

[4] E Balagurusamy, Object oriented Programming with

C++, 6th Edition, New Delhi: Tata McGraw-Hill

[5] The C++ Standard Library: A Tutorial and

Reference (Jousts, 2000)

[6] Advanced C++ Programming Styles and Idioms

(Coplien, 1992)

[7] Yashavant Kanetkar, Test your C++ Skills, 1st

Edition, BPB Publication.

Author Profile :

. [1] Mr. Manoj Kumar Sah, He received his M. Tech. in year 2014

(Computer Science and Engineering) from Indian School of Mines (I.S.M.

Dhanbad), Jharkhand, India. His interests are Wireless Sensor Network,

Data Base Management System and Algorithm. Now he is working as Asst.

Prof in Dept. of Computer Science and Engineering, Shobhit University,

Gangoh, UP, India.

[2] Mr. Vishal Garg, He is a student of B.Sc. Computer Science in

Shobhit University, Gangoh, UP, India (e-mail: vishalsiet022@gmail.com).

Base Class

Member

Access

Specifier

Types of Inheritance

public protected private

public public protected private

protected protected protected private

private Not

accessible

-HIDDEN

Not

accessible

-HIDDEN

Not

accessible

-HIDDEN

