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BASICS OF RADIOACTIVE ISOTOPE GEOCHEMISTRY
INTRODUCTION

We can broadly define two principal applications of radiogenic isotope geochemistry.  The first is
geochronology.  Geochronology makes use of the constancy of the rate of radioactive decay.  Since a
radioactive nuclide decays to its daughter at a rate independent of everything, we can determine a
time simply by determining how much of the nuclide has decayed.  We will discuss the significance of
this time at a later point.  The other application is tracer studies.  These studies make use of the dif-
ferences in the ratio of the radiogenic daughter isotope to other isotopes of the element.  We can un-
derstand the utility of such studies without, for the moment, understanding why such differences in
isotope ratios arise.  These sorts of studies are analogous to tracer studies performed in biology.  For
example, biologists will inject an organism with a radioactive nuclide, such as one of carbon or
phosphorus, to investigate the organism’s metabolism and physiology.  Unfortunately, the time
scales of geology are too long for us to inject the Earth with a radioactive tracer to study its
physiology.  However, we can make use of natural tracers, the radiogenic isotopes, to investigate
fundamental Earth processes.  For example, Nd isotope ratios have been used to distinguish different
ocean water masses.  Radiogenic isotope ratios are also used in a more sophisticated way, namely to
understand evolutionary histories.  Table 4.1 lists the principal decay systems used in geology; these
are also illustrated in Figure 4.1.

THE BASIC EQUATIONS
The basic equation of radioactive decay is:

dN
dt = – lN

4.1
l is the decay constant, which we define as the probability that a given atom would decay in some
time dt.  It has units of time-1.  Let's rearrange equation 4.1 and integrate:

dN
N

N0

N

= – ldt
0

t

4.2

where N0 is the number of atoms of the radioactive, or parent, isotope present at time t=0.  Integrat-
ing, we obtain:

TABLE 4.1: Geologically Useful Long-Lived Radioactive Decay Schemes
Parent Decay Mode l Half-life Daughter Ratio
40K b+, e.c, b- 5.543 x 10-10y-1 1.28 x 109yr 40Ar, 40Ca 40Ar/36Ar
87Rb b- 1.42 x 10-11y-1 4.8 x 1010yr 87Sr 87Sr/86Sr
138La b- 2.67 x 10-12y-1 2.59 x 1011yr 138Ce, 138B a 138Ce/142Ce, 138Ce/136Ce
147Sm a 6.54 x 10-12y-1 1.06 x 1011yr 143Nd 143Nd/144Nd
176Lu b- 1.94 x 10-11y-1 3.6 x 1010yr 176H f 176Hf/177H f
187Re b- 1.64 x 10-11y-1 4.23 x 1010yr 187Os 187Os/188Os,  (187Os/186Os)
190Pt a 1.54 x 10-12y-1 4.50 x 1011yr 186Os 186Os/188Os
232Th a 4.948 x 10-11y-1 1.4 x 1010yr 208Pb, 4He 208Pb/204Pb, 3He/4He
235U a 9.849 x 10-10y-1 7.07 x 108yr 207Pb, 4He 207Pb/204Pb, 3He/4He
238U a 1.551 x 10-10y-1 4.47 x 109yr 206Pb, 4He 206Pb/204Pb, 3He/4He

Note: the branching ratio, i.e. ratios of decays to 4 0Ar to total decays of 4 0K is 0.117. 147Sm and 190Pt also produce
4He, but a trivial amount compared to U and Th.
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  ln N
N0

= – l t 4.3

This can be expressed as: N
N0

= e–l t or N = N0 e–l t 4.4

Suppose we want to know the amount of time for the number of parent atoms to decrease to half the
original number, i.e., t when N/N0 = 1/2.  Setting N/N0 to 1/2, we can rearrange 4.3 to get:

ln 1
2  = -lt1/2             or      ln 2 = lt1/2      

and finally: t1/2 = ln2
l

4.5
This is the definition of the half-life, t1/2.

Now the decay of the parent produces a daughter, or radiogenic, nuclide.  The number of daughters
produced, D*, is simply the difference between the initial number of parents and the number
remaining after time t:

D* = N0 – N 4.6
Rearranging 4.4 to isolate N0 and substituting that into 4.6, we obtain:

D* = Nelt – N = N(elt – 1) 4.7
This tells us that the number of daughters produced is a function of the number of parents present and
time.  Since in general there will be some atoms of the daughter nuclide around to begin with, i.e.,
when t = 0, a more general expression is:

D = D0 + N(elt – 1) 4.8
where D is the total number of daughters and D0 is the number of daughters originally present.  

As an aside, we’ll note that there is a simple linear approximation of this function for times short
compared to the decay constant.  An exponential function can be expressed as a Taylor Series
expansion:
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Figure 4.1.  Periodic Table showing the elements having naturally occurring radioactive isotopes
and the elements produced by their decay.
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el t = 1 + l t + (l t)2

2! + (l t)3

3! + 4.9
Provided lt << 1, the higher order terms become very small and can be ignored; hence for times tha t
are short compared to the decay constant (i.e., for t << 1/l), equation 4.8 can be written as:

D @ D0 + N lt 4.10
Let’s now write equation 4.8 using a concrete example, such as the decay of 87Rb to 87Sr:

87Sr = 87Sr0 + 87Rb(elt – 1) 4.11
As it turns out, it is generally much easier, and usually more meaningful, to measure to ratio of two
isotopes than the absolute abundance of one.  We therefore measure the ratio of 87Sr to a non-radio-
genic isotope, which by convention is 86Sr.  Thus the useful form of 4.11 is:

Sr87

Sr86 = Sr87

Sr86
0

+ Rb87

Sr86 el t – 1 4.12

Similar expressions can be written for other decay systems.
It must be emphasized that 87Rb/86Sr ratio in equation 4.12, which we will call this the “parent-

daughter ratio”, is the ratio at time t, i.e., present ratio.  If we need this ratio at some other time, we
need to calculate it using equation 4.4.

A SPECIAL CASE: THE U-TH-PB SYSTEM
The U-Th-Pb system is somewhat of a special case as there are 3 decay schemes producing isotopes

of Pb.  In particular two U isotopes decay to two Pb isotopes, and since the two parents and two
daughters are chemically identical, combining the two provides a particularly powerful tool.  

Lets explore the mathematics of this.  First some terminology.  The 238U/204Pb ratio is called µ, the
232Th/238U is called k.  The ratio 238U/235U is constant at any given time in the Earth and today is
137.88 (except in nuclear reactors and Oklo!).  Now, we can write two versions of equation 4.8

    Pb207 / Pb204 = Pb207 / Pb204 )0 + µ
137.88

(el235
t – 1) 4.13

and   Pb206 / Pb204 = Pb206 / Pb204 )0 +µ(e l 238t – 1) 4.14
These can be rearranged by subtracting the initial ratio from both sides and calling the difference be-
tween the initial and the present ratio ∆.  For example, equation 4.13 becomes

∆ Pb206 / Pb204 = µ(el238t – 1) 4.15
Dividing the equivalent equation for 235U-207Pb by equation 4.15 yields:

∆ Pb207 / Pb204

∆ Pb206 / Pb204 = el235 t – 1
137.88 (el238 t – 1)

4.16

Notice the absence of the µ term.  The equation holds for any present-day ratio of 207Pb/204Pb and
206Pb/204Pb we measure and thus for all pairs of ratios.  The left-hand side is thus simply the slope of a
series of data points from rocks or minerals formed at the same time (and remaining closed systems
since time t) on a plot of 207Pb/204Pb vs. 206Pb/204Pb.  This means we can determine the age of a system
without knowing the parent-daughter ratio.  The bad news is that equation 4.16 cannot be solved for t.
However, we can guess a value of t, plug it into the equation, calculate the slope, compared the calcu-
lated slope with the observed one, revise our guess of t, calculated again, etc.  Pretty laborious, but
making ‘educated guesses’ of t and using a computer, this is pretty easy.  If fact, using simple
minimization algorithms we can generally converge to a high degree of accuracy after a few
iterations.  

Geochronology
Geochronology is one of the most important applications of isotope geochemistry.  Let's rewrite

equation 4.12 in more general terms
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R = R0 + RP/D! (elt – 1) 4.17
where R0 is the initial ratio and RP/D is the parent/daughter ratio at time t.  Measurement of geologic
time is based this equation, or various derivatives of it.  First lets consider the general case.  Given a
measurement of an isotope ratio, R, and a parent-daughter ratio, RP/D, two unknowns remain in
equation 4.17: t and the initial ratio.  In general, we can calculate neither from a single pair of
measurements.  In the special case where the initial concentration of the daughter is very small, we
can neglect R0 or, if R >> R0, simple assumptions about R0 may suffice.  But in the general case, we must
measure R and RP/D on a second system for which we believe t and R0 are the same.  Then we have two
equations and two unknowns and subtracting the two equations yields

∆R = ∆RP/D!(elt – 1) 4.18
which eliminates R0 from the equation and allows us to solve for t.  This can be rearranged as:

∆R
∆RP/D

= el t – 1 4.19

In practice, one measures many pairs and solving for ∆R/∆RP/D by regression (indeed, geochronologists
would not generally accept an age based on only two measurements),  t may be then be solved for as:

t =
ln ∆R

∆RP/D
+ 1

l
4.20

For a given value of t, equation 4.17 has the form y = a + bx, where y is R, a is R0, b is elt - 1, and x is
RP/D.  This is, of course, an equation for a straight line on a plot of R vs. RP/D with slope b = elt - 1, and
intercept a = R0.  Thus on such a plot, the slope of the line depends only on t (since l is a constant for
any given decay system).  A line whose slope depends only on t is known as an isochron.  Note that on
a plot of 207Pb/204Pb vs. 206Pb/204Pb, a line may also be an isochron, since its slope depends only on t.

Regression is simply a statistical method of calculating the slope of a line.  Regression treatment
yields both a slope and an intercept.  The latter is simply the initial ratio since, as may be seen from
4.17, R = R0 when RP/D = 0.  The geochronological information is contained in the slope, since i t
depends on t, but important information can also be obtained from the value of the intercept, the
initial ratio, since it gives some information about the history prior to time t=0 of the system being
investigated.

There are two important assumptions, or conditions, built into the use of equation 4.20:
(1) that the system of interest was at isotopic equilibrium at time t = 0.  Isotopic equilibrium in this

case means the system had a homogeneous, uniform value of R0;
(2) that the system as a whole and each analyzed part of it was closed between t = 0 and time t

(usually the present time). By ‘closed’ we mean there has been no transfer of the parent or the
daughter element into or out of the system.

Violation of these conditions is the principal source of error in geochronology.  Other errors arise
from errors or uncertainties associated with the analysis.  If the range in variation in isotope ratios is
small, the analytical errors can be the limiting factor in the determination of an age.  Note that both
R and RP/D must be known accurately.  Finally, of course, we must also know l accurately.  This is
generally only a problem when working with a new (one with which little previous work has been
done) decay system, in which case the first task is to determine l accurately.

The requirement of a closed and initially homogeneous system above, suggests a meaning for the
nature of the event dated by radiogenic isotope geochemistry, and a meaning for time  in the first
paragraph.  In general, the event is the last time the system was open to complete exchange of the
parent and daughter elements between the various subsystems we sample and analyze, i.e., the l a s t
point in time that the system had a homogeneous, uniform value of R.  Since the rate at which
chemical reactions occur increases exponentially with temperature, this event is generally a thermal
one: i.e., the last time the system was hot enough for such exchange between subsystems to occur.
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Exactly what temperature is implied can vary widely, depending on the nature of our samples and
the particular decay system we are using.  Minerals such as biotite and hornblende will lose Ar a t
temperatures of a few hundred degrees.  On the other hand, minerals such as pyroxene can remain
closed to Sm and Nd exchange up to nearly 1000° C.  The ‘closure’ temperatures of various isotope sys-
tems in various minerals can be used to advantage: in some cases, an analysis of a variety of decay sys-
tems on a variety of sample types has recorded entire cooling histories.

The process accomplishing isotopic homogenization of a ‘system’ is usually involves diffusion, the
rate of which, like other reaction rates, increases exponentially with temperature.  Diffusion rates
will vary depending on the element and the properties of the material through which the element
diffuses.  We can nevertheless make the general observation that the greater the length scale, the
greater will be the time (or the higher the temperature required) for isotopic homogenization to be
achieved.  For the same temperature and duration of a thermal event, diffusion will more readily
achieve isotopic homogenization on a small scale than on a large one.  Thus, if our samples or subsys-
tems are 'whole rocks' collected meters or perhaps kilometers apart, the event dated will generally
be a higher temperature one than an event dated by analysis of individual minerals from a rock spec-
imen whose scale is only a few centimeters.

Calculating an Isochron
Statistics books generally give an equation for linear least squares regression assuming one depen-

dent and one independent variable.  The independent variable is assumed to be known absolutely.
The idea of least squares regression is to minimize the squares of the deviations from the regression
line.  The quantity to be minimized is the sum of the squares of deviations:

where y is the observed value, a + bx is the predicted value, and e is the difference between the
observed and predicted value, i.e., the deviation.
The use of the squares of the deviations mean that large deviations will affect the calculated slope
more than small deviations.  By differentiating equation 4.21, it can be shown that the minimum
value for the left side occurs when the slope is:

where x-   and y-   are the means of x and y respectively, and xi and yi are the ith pair of observations of x
and y respectively.  We can see from 4.22 that the regression slope is the cross product of the devia-
tions of x and y from the means divided by the square of the deviations of x from the mean of x.  A
more convenient computational form of 4.22 is:

   
b =

xiyiSi
– yxn

xi2Si
– x2n

=
x iyiSi

– ySi
xSi

/n

xi2Si
– x2n

4.23

The intercept is then given by: a = y-   - bx-  4.24

e2S
i= 1

n
= (y – a – bx)2S

i= 1

n
4.21

b = (xi – x)(yi – y)S
(xi – x)2S

4.22
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The error on the slope is:

While it is true that R is a function of RP/D in a geologic sense and hence may be considered the de-
pendent variable, in practice both R and RP/D are measured quantities and neither is known abso-
lutely: both have errors of measurement associated with them.  These must be taken into account for a
proper estimate of the slope and the errors associated with it.  In some cases, the errors in measure-
ment of x and y can be correlated, and this must also be taken into account.  The so-called two-error re-
gression algorithm takes account of these errors.  This is, however, considerably less straightforward
than the above.  The approach is to weight each observation according to the measurement error (the
weighting factor will be inversely proportional to the analytical error – so that observations with
larger errors are less important than those with small ones).  A solution has been published by York
(1969).  The regression slope is:

   

b =

Zi
2(yi – y)∑

i

xi – x
w(yi)

+
b(yi – y
w(xi)

–
ri(yi – y)

ai

Zi
2(xi – x)∑

i

Xi – x
w(yi)

+
b(yi – y
w(xi)

–
bri(yi – y)

ai

4.27

where w(xi) is the weighting factor for xi (generally taken as the inverse of the square of the error),
w( yi) is the weighting factor for yi , ri is the correlation between the error of measurement of xi and yi,
a = "

w(xi)w ( yi) , x-   = SZixi/SZi,  y-" = SZiyi/SZi (weighted means), and Z is:
  

Z =
ai

2

w(yi) + w(xi) – 2bria
Note that the expression for b contains b.  This requires an iterative solution: not something you want
to do in your head, but reasonably easy with a computer.  For example, the first estimate of b could be
made using equation 4.23.  The difference between this method and the standard one is not great, so
convergence is generally quick.  The intercept is calculated as in equation 4.24.  Calculating the errors
associated with a and b is reasonably hairy, but approximate solutions are given by:

   
sb = 1

Zi(xi – x)2∑
i

4.28

   
sa =

sb

Zi∑
i

4.29
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sb = yi
2 – y2nS – (xi yi)S – yxn 2

xi
2 – x2nS

1
n – 2 xi

2 – x2nS
4.25

The error on the intercept is:

sa = yi
2S – y2n – (xi yi)S – yxn 2

xi
2 – x2nS

1
n + x2

xi
2 – x2nS

1
n – 2 4.26


