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Abstract

Targeted training set attacks inject adversarially
perturbed instances into the training set to cause
the trained model to behave aberrantly on spe-
cific test instances. As a defense, we propose
to identify the most influential training instances
(likely to be attacks) and the most influenced test
instances (likely to be targets). Among prior in-
fluence estimation methods, TracIn shows the
most promise but still performs poorly. We there-
fore propose a cosine similarity influence esti-
mator, COSIN, which improves upon TracIn by
focusing on gradient direction over magnitude.
In experiments on vision, NLP, and speech do-
mains, COSIN identifies up to 100% of adver-
sarial instances in poisoning and backdoor train-
ing attacks. Our source code is available at
https://github.com/ZaydH/cosin.

1. Introduction
In targeted training set attacks, an attacker corrupts the
training data used by a machine learning system in order to
influence the learned model and its prediction on a partic-
ular input (or set of inputs). For example, a business may
wish to influence a sentiment classifier so that their product
is always viewed positively while a competitor’s is always
viewed negatively. Recent work has shown that deep learn-
ing systems can be manipulated like this using only a few
examples (Shafahi et al., 2018; Wallace et al., 2021).

Defending against such attacks remains a challenge. Certi-
fiably robust learning approaches (Steinhardt et al., 2017;
Jia et al., 2021; Levine & Feizi, 2021; Weber et al., 2021)
prevent a small number of examples having an outsized in-
fluence on the model, which helps avoid training set attacks
but also interferes with learning legitimate yet rare events.
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Another approach is to directly identify the manipulated
examples (Chen et al., 2019; Gao et al., 2019; Wang et al.,
2019; Peri et al., 2020), but prior work is typically limited
to detecting specific attacks or working in specific domains.

Since training set attacks are only effective when they in-
fluence the model, a natural strategy is to identify the most
influential training examples. If an attack’s target is known
(or can be determined), the search narrows to examples that
influence that target. Several influence estimation methods
exist, including influence functions (Koh & Liang, 2017),
representer point (Yeh et al., 2018), and methods that aggre-
gate gradients throughout the training process (Hara et al.,
2019; Pruthi et al., 2020; Chen et al., 2021).

In this paper, we explore how influence estimation methods
can be adapted to find targeted training set attacks. Our
contributions are as follows:

1. We compare influence functions, representer points,
and training gradient methods and find the latter much
more effectively identifies targeted training set attacks.

2. We propose a modified training set influence estimator,
COSIN, which (1) scores all examples in each train-
ing checkpoint, instead of just those in the associated
minibatch(es); and (2) normalizes by the gradient mag-
nitudes when computing dot products, so influence is
determined by gradient direction or alignment – not
magnitude.

3. We evaluate COSIN on datasets from vision, NLP, and
speech with poison and backdoor attacks and find that
COSIN vastly outperforms previous methods for influ-
ence estimation and poison detection.

2. Problem Formulation
Threat Model The attacker adds a small set of adversarial
training examples, Dadv, to clean examples Dcl, forming
the full training dataset, Dtr := Dadv ∪ Dcl. We assume
training uses an iterative, first-order optimization algorithm,
denoted A, (e.g., gradient descent, Adam) that runs for
T iterations starting from initial parameters θ0. In each iter-
ation t ∈ [T ], A uses the loss gradient of random minibatch
Bt ⊂ Dtr to update model parameters θt−1 to θt.

https://github.com/ZaydH/cosin
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Attacker’s Objective & Knowledge The attacker’s objec-
tive is to influence the training process such that for some
target test example, ztarg := (xtarg, ytarg),1 the learner mispre-
dicts the instance as having label yadv ̸= ytarg. Backdoor at-
tacks insert the same, fixed adversarial trigger (e.g., change
one specific pixel to maximum value) to all examples in Dadv
and change these perturbed examples’ labels to yadv. The
same adversarial trigger is also added to the target example’s
feature vector xtarg. Data poisoning only perturbs training
examples with the target example’s features, xtarg, remain-
ing pristine. Clean-label poisoning attacks leave labels
unchanged when crafting Dadv from a set of seed instances.

Attacker knowledge of the learning environment varies. In-
line with previous work (Zhu et al., 2019; Huang et al., 2020;
Wallace et al., 2021), poisoning attacks a specific pretrained
model – excluding randomly initialized linear layers. The
backdoor attacks are model-agnostic and here are trained
from scratch as in (Liu et al., 2018; Weber et al., 2021). The
attacker never knows the training minibatch sequence.

Our Objective Let T ⊂ {1, . . . ,T} denote a sub-
set of the training iterations where |T | ≪ T , and let
P := {(ηt,θt−1) : t ∈ T } be serialized, periodic training
parameters where ηt is iteration t’s learning rate and θt−1 is
the iteration’s starting model parameters. Provided P and
test example zte := (xte, yte), our goals are two-fold: (1) de-
tect if zte = ztarg, and if so, (2) use zte to identify Dadv. We
then retrain to render the attack ineffective.

3. Influence Estimation for Training Set
Attacks

Pruthi et al. (2020) propose TracIn – a general-purpose influ-
ence estimation method; it estimates influence by “tracing”
the training procedure, adding up the impact of each exam-
ple each time its gradient is used to update the model. This
can be approximated as a dot product between training and
target gradients, and further approximated by using periodic
model checkpoints instead of every intermediate model seen
during training. See suppl. Alg. 3 for TracIn’s pseudocode.

In preliminary experiments, we found that TracIn better
identified training set attacks than other influence estimation
methods, e.g., influence functions (Koh & Liang, 2017)
and representer point methods (Yeh et al., 2018). However,
TracIn has two limitations that make it less effective for
our objective2. Our proposed method, COSIN (Alg. 1)3,
addresses these limitations by:

1We consider a single target example for simplicity and w.l.o.g.
2SGD-Cleanse (Hara et al., 2019) operates under similar prin-

ciples as TracIn. This work builds on TracIn since SGD-Cleanse
is designed for untargeted data cleaning.

3COSIN’s and TracIn’s training algorithm is in suppl. Alg. 2.

Algorithm 1 COSIN influence estimation
Input: Periodic training parameter checkpoints P , training set Dtr,
and target example ztarg
Output: COSIN influence values v
1: v← 0⃗ ▷ Initialize influence
2: for each (ηt, θt−1) ∈ P do
3: gtarg ← ∇θℓ (ztarg; θt−1)
4: for each zi ∈ Dtr do ▷ All examples
5: gi ← ∇θℓ (zi; θt−1)

6: vi ← vi + ηt
⟨gtarg,gi⟩
∥gtarg∥

2
∥gi∥2

▷ Normalized

7: return v

1. In TracIn, an example’s influence depends on the ran-
domly chosen batches to which it was assigned, so
copies of the same example will end up with different
influence. Checkpoint TracIn avoids this by perform-
ing one update per epoch, using all examples, but the
approximation quality will be poor if model parame-
ters change substantially within an epoch. Therefore,
COSIN considers every example at each checkpoint
and supports “subepoch” checkpoints at any frequency
within an epoch4.

2. TracIn uses un-normalized gradients, giving more in-
fluence to high-loss examples that have larger gradi-
ents, even though such examples align poorly with
target, ztarg. However, we observed that poison exam-
ples rarely have the largest gradient magnitudes (see
Figs. 1c & 1f). Therefore, COSIN normalizes gradients
by their magnitudes, i.e., uses cosine similarity, when
computing influence.

The first change affects how we sum influence over multiple
training examples and optimization steps. The latter change
is more significant, because it changes how each element’s
influence is computed. We refer to this modified method as
COSIN, since it estimates the target influence as the cosine
similarity averaged over the course of training.

Recent poisoning methods, e.g., (Huang et al., 2020; Wal-
lace et al., 2021), track crafted poison’s gradients during
simulated training. Hence, poison’s influence may be best
observed throughout or at very specific points in training.

As an intuition, note that all training set attacks only in-
fluence the model via gradients. By focusing on gradients,
COSIN is attack agnostic, making COSIN applicable to all
training set attacks – even those not yet known/devised.

Determining the Target Example

COSIN and the other influence estimation methods compute
each training example’s influence on a specific target. Gen-

4We use the term “m subepoch checkpointing” to denote
m evenly-spaced checkpoints within each epoch.
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(a) COSIN ztarg influence dist.
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(b) COSIN non-target influence dist.
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(c) Train set gradient norms (θ0 only)
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(d) COSIN ztarg influence dist.
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(e) COSIN non-target influence dist.
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(f) Train set gradient norms (cumulative)
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Figure 1. Quantile-quantile (QQ) plots with respect to a theoretical normal distribution for COSIN influence on CIFAR10 convex polytope
poisoning (Zhu et al., 2019) (label dog→ bird) and speech recognition backdoor (Liu et al., 2018) (digit 5→ 6) attacks. COSIN used
only θ0 for CIFAR10 and 10 subepoch checkpointing for speech. COSIN’s influence distribution over training set, Dtr, had much heavier
upper tails when evaluating target example, ztarg, (Fig. 1a & 1d) than for a non-target example (Fig. 1b & 1e). Training example gradient
norms were poorly correlated with whether the training example was adversarial (Fig. 1c & 1f).

erally, the defender does not know the target. Thus, our
ability to find and remove poison may rely on whether we
can first identify the target of any potential poison.

Empirically, we find that training set attack targets tend to
have many exceptionally influential examples, namely Dadv,
while non-targets do not (see Figure 1). We turn this intu-
ition into a quantitative method by measuring the one-sided
outliers for each potential target example, with real targets
tending to have an influence distribution with a heavy up-
per tail, including an unusually high number of training
examples with influence several standard deviations above
the mean. To be more statistically robust to high influence
outliers, median is used in place of mean and Rousseeuw &
Croux’s (1993) Q estimator instead of standard deviation.

4. Evaluation
We evaluate our method on three attacks – data poisoning
in vision and text, and backdoor attacks in speech recog-
nition. Our two tasks are to identify the target instance
ztarg and the attack instances Dadv. Because poison is rela-
tively rare, we measure performance using area under the
precision-recall curve (AUPRC), which quantifies how well
the actual attacks rank relative to clean training instances.
See suppl. Sections B and C for more details and additional
experiments, including all speech recognition results.

Baselines We compare to TracIn, influence functions,
and representer points, all of which estimate influence and
hence are comparable to COSIN. Section 4.1 also considers
clean-label poison defense Deep k-NN (Peri et al., 2020).

k-NN yields only a label, not a score. To be compatible
with AUPRC, we modified Deep k-NN to rank each training
example by the difference between the size of the neigh-
borhood’s plurality class and the number of neighborhood
instances that share the corresponding example’s label.

4.1. Defending Against Clean-Label Vision Poisoning

Zhu et al.’s (2019) targeted, clean-label attack crafts a set
of poisons by forming a convex polytope around the target’s
feature representation. Similar to Zhu et al.’s experimental
setting, our evaluation follows the pretrain then fine-tune
paradigm on CIFAR10 (Krizhevsky et al., 2014).

In each trial, ResNet9 was pretrained from scratch using
half the classes (plane, car, ship, truck, & horse). ztarg was
then randomly selected from the test examples labeled ytarg,
and then |Dadv| = 50 gray-box poisons (0.2% of Dtr) were
crafted from seed training examples labeled yadv. Lastly,
the pretrained network (with the linear layer’s parameters
randomly set) was fine-tuned using Dadv and the unused
training examples labeled bird, cat, deer, dog, and frog. As
in (Shafahi et al., 2018; Huang et al., 2020), the target/poison
label pairs are dog ↔ bird and deer ↔ frog.

Poison Identification Figure 2 visualizes COSIN’s poison
identification AUPRC (both when using just θ0 and with
5 subepoch checkpointing) versus the baselines. For all
class pairs, COSIN identified vastly more poison. While
COSIN using only θ0 has comparable mean performance
to subepoch checkpointing, it also has higher variance (see
suppl. Table 9). This lower variance comes at the expense
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Figure 2. Vision Poison Identification: Mean poison identification
AUPRC with 50 poison across >50 trials for four CIFAR10 class
pairs. X-axis denotes the target class→ to poison class resp. Both
versions of COSIN vastly outperformed all baselines for all class
pairs. See Table 9 for full numerical results inc. variance.
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Figure 3. Natural Language Poison Identification: Mean poison
identification AUPRC with 50 poison across 10 trials for 4 pos. and
4 neg. sentiment SST-2 reviews. Influence func. & representer pt.
both had AUPRC <0.03 and are excluded above. COSIN perfectly
identified all poison in 78/80 trials. See Table 14 for full results.
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Figure 4. Vision Poison Target Detection: COSIN’s (using only θ0)
top-K target, ztarg, detection accuracy across 10 trials for each ytarg

with 350 clean test examples per trial. The cutoff threshold was 5Q
above the median COSIN influence. All values are percentages.

of longer execution time (see suppl. Table 15).

Poison Target Detection Figure 4 shows COSIN’s (us-
ing only θ0) top-K ztarg detection accuracy across 10 trials
for each class pair. In each trial, the training set’s COSIN
influence was measured separately for ztarg and 350 clean
test instances (all labeled ytarg). COSIN influence’s upper-
tail heaviness (i.e., number of training examples with influ-
ence ≥5Q above the median) was calculated and the test
instances/ztarg ordered accordingly. For dog → bird, ztarg al-
ways had the heaviest upper tail (i.e., had perfect top-1
accuracy). For bird → dog and deer → frog, ztarg was top-1
in 9/10 trials and top-2 in 1/10. COSIN always had perfect
detection accuracy at top-2%.

Poison Removal In these experiments, a poisoned vision
model is trained as described above. Next COSIN (using
only θ0) was performed over Dtr, and any training examples
with COSIN influence a specified multiplier of Q above the
median were removed. A new, fine-tuned model was then
trained starting from θ0.

As shown in suppl. Table 11, COSIN (using only θ0) al-
ways successfully blocked the attack against bird → dog
and frog → deer across trials while removing as little
as 0.01% of Dcl. COSIN similar defended 9/10 attacks
against dog → bird and deer → frog while similarly remov-

ing 0.01% of Dcl. In contrast, Deep k-NN may remove up
to 4.3% of Dcl on average.

Remark COSIN with 5 subepoch checkpointing was the
method that best identified poison (see Figure 2), and we
expect it would also have better target detection and poison
removal performance than using just θ0 as in Figure 4.

4.2. Defending Against Natural Language Poisoning

Wallace et al. (2021) construct natural language poison us-
ing the traditional poisoning bilevel optimization (Biggio
et al., 2012; Muñoz-González et al., 2017). To make the
computation tractable, Wallace et al. approximate the in-
ner minimizer using second-order gradients similar to (Finn
et al., 2017; Wang et al., 2018; Huang et al., 2020). Wallace
et al.’s method5 initializes each poison instance from a seed
phrase, and tokens are iteratively replaced with alternates
that align well with the poison example’s gradient.

Like Wallace et al., our experiments attacked sentiment anal-
ysis on the Stanford Sentiment Treebank v2 (SST-2) dataset
(Socher et al., 2013) – specifically on RoBERTaBASE (Liu
et al., 2020), which has 125M parameters. We targeted
8 short, randomly-selected reviews (4 pos. & 4 neg.) and
generated |Dadv| = 50 new poison in each trial.

Poison Identification Figure 3 compares each method’s
mean performance across 10 trials for each of the 8 reviews.
In 78/80 trials, COSIN (with 3 subepoch checkpointing) per-
fectly identified all poison – vastly better than the baselines.
Even COSIN over just θ0 well outperformed the baselines.

Observe that the gap between COSIN using only θ0 versus
subepoch checkpointing is much larger than it was for CI-
FAR10 in Figure 2. This demonstrates the importance of
considering all epochs. If θ0 is not pretrained (as with suppl.
Section C.2’s speech recognition backdoor attack), extract-
ing significant information from θ0 may not be possible.

5Text poison was generated using Wallace et al.’s original
implementation which was provided via personal correspondence.
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haria, M. DAWNBench: An end-to-end deep learning
benchmark and competition. In Proceedings of the 2017
NeurIPS Workshop on Machine Learning Systems, 2017.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Proceed-
ings of the 34th International Conference on Machine
Learning, ICML’17, 2017.

Gao, Y., Xu, C., Wang, D., Chen, S., Ranasinghe, D. C.,
and Nepal, S. STRIP: A defence against trojan attacks on
deep neural networks. In Proceedings of the 35th Annual
Computer Security Applications Conference, ACSAC’19,
2019.

Hara, S., Nitanda, A., and Maehara, T. Data cleansing
for models trained with SGD. In Proceedings of the
32nd Conference on Neural Information Processing Sys-
tems, NeurIPS’19, 2019.

Huang, W. R., Geiping, J., Fowl, L., Taylor, G., and
Goldstein, T. MetaPoison: Practical general-purpose

clean-label data poisoning. In Proceedings of the
33rd Conference on Neural Information Processing Sys-
tems, NeurIPS’20, 2020.

Jia, J., Cao, X., and Gong, N. Z. Intrinsic certified robustness
of bagging against data poisoning attacks. In Proceedings
of the 35th AAAI Conference on Artificial Intelligence,
AAAI’21, 2021.

Koh, P. W. and Liang, P. Understanding black-box pre-
dictions via influence functions. In Proceedings of the
34th International Conference on Machine Learning,
ICML’17, 2017.

Krizhevsky, A., Nair, V., and Hinton, G. The CIFAR-10
dataset, 2014.

Levine, A. and Feizi, S. Deep partition aggregation: Prov-
able defenses against general poisoning attacks. In Pro-
ceedings of the 9rd International Conference on Learning
Representations, ICLR’21, 2021.

Liu, Y., Ma, S., Aafer, Y., Lee, W.-C., Zhai, J., Wang, W.,
and Zhang, X. Trojaning attack on neural networks. In
Proceedings of the 25th Annual Network and Distributed
System Security Symposium, NDSS’18, 2018.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
RoBERTa: A robustly optimized BERT pretraining ap-
proach. In Proceedings of the 8th International Confer-
ence on Learning Representations, ICLR’20, 2020.
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Weber, M., Xu, X., Karlaš, B., Zhang, C., and Li, B. RAB:
Provable robustness against backdoor attacks, 2021.

Yeh, C., Kim, J. S., Yen, I. E., and Ravikumar, P. Represen-
ter point selection for explaining deep neural networks.
In Proceedings of the 31st Conference on Neural Infor-
mation Processing Systems, NeurIPS’18, 2018.

Zhu, C., Huang, W. R., Shafahi, A., Li, H., Taylor, G.,
Studer, C., and Goldstein, T. Transferable clean-label
poisoning attacks on deep neural nets. In Proceedings of
the 36th International Conference on Machine Learning,
ICML’19, 2019.



Simple, Attack-Agnostic Defense Against Targeted
Training Set Attacks Using Cosine Similarity

Supplemental Materials

A. Additional Algorithms
Algorithm 2 shows the minor modifications made to standard minibatch training to accomodate COSIN and TracIn.

Algorithm 2 COSIN & TracIn training phase
Input: Optimization algorithm A, initial parameters θ0, training
set Dtr, learning rate η, iteration subset T , iteration count T , and
initial parameters θ0
Output: Training parameters P
1: P ← ∅
2: for t← 1 to T do
3: if t ∈ T then
4: P ← P ∪ {(ηt,θt−1)}
5: Bt ∼ Dtr
6: θt ← A(ηt, θt−1,Bt)
7: return P

Algorithm 3 details TracIn’s basic algorithm for minibatch gradient descent. Note that TracIn always includes the first
iteration in its set of serialized parameters, i.e., 1 ∈ T , which is why Line 3’s if statement can be inside Line 2’s for loop.

Algorithm 3 TracIn inference phase
Input: Training parameters P , iteration subset T , batch se-
quence B1, . . . ,BT , and target example ztarg
Output: TracIn influence values v
1: v← 0⃗ ▷ Initialize influence
2: for t← 1 to T do
3: if t ∈ T then
4: (η, θ)← P[t] ▷ Equiv. to (ηt, θt−1)
5: gtarg ← ∇θℓ (ztarg; θ)
6: for each zi ∈ Bt do ▷ Batch examples
7: gi ← ∇θℓ (zi; θ)
8: vi ← vi + η⟨gtarg, gi⟩ ▷ Unnormalized
9: return v

B. Evaluation Setup
This section details the evaluation setup used in Section 4’s experiments, including dataset specifics, hyperparameters, and
the neural network architectures.

Our source code can be downloaded from https://github.com/ZaydH/cosin. All experiments used the PyTorch
automatic differentiation framework (Paszke et al., 2019) and were tested with Python 3.6.5. Wallace et al.’s (2021) sentiment
analysis data poisoning source code will be published by its authors at https://github.com/Eric-Wallace/
data-poisoning.

https://github.com/ZaydH/cosin
https://github.com/Eric-Wallace/data-poisoning
https://github.com/Eric-Wallace/data-poisoning
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B.1. Dataset Sizes

Table 1 details the dataset sizes used to train all evaluated models.

Table 1. Dataset sizes
Dataset Attack # Train # Test

CIFAR10 (Krizhevsky et al., 2014) Poison 25,000 5,000
SST-26 (Socher et al., 2013) Poison 67,349 N/A
Speech (Liu et al., 2018) Backdoor 3,0007 1,184

Liu et al.’s (2018) speech backdoor dataset includes training and test examples with their associated adversarial trigger. We
use this adversarial dataset unchanged. Table 2 details |Dadv| (i.e., adversarial training set size) for each speech digit pair.

Table 2. Number of backdoor training examples for each speech backdoor digit pair
Digit Pair 0→ 1 1→ 2 2→ 3 3→ 4 4→ 5 5→ 6 6→ 7 7→ 8 8→ 9 8→ 9

|Dadv| 16 17 14 14 16 18 16 16 12 11

B.2. Hyperparameters

B.2.1. MODEL TRAINING

Table 3 enumerates the hyperparameters used when training the models analyzed in Sections 4 and C.

Table 3. Model training hyperparameter settings

Poison Backdoor

Hyperparameter CIFAR10 SST-2 Speech

θ0 Pretrained? ✓ ✓
Existing Adv. Dataset ✓
Data Augmentation? ✓
Validation Split 1

6
Predefined 1

6

Optimizer SGD Adam SGD
|Dadv| 50 50 11–188

Batch Size 256 32 32
# Epochs 30 4 30
# Subepochs 5 3 3

η (Peak) 1 · 10−3 1 · 10−5 1 · 10−3

η Scheduler One cycle Poly. Decay One cycle
Weight Decay 1 · 10−1 1 · 10−1 1 · 10−3

Dropout Rate N/A 0.1 N/A

B.2.2. POISON CRAFTING

Both Zhu et al.’s (2019) and Wallace et al.’s (2021) poison crafting algorithms have their own dedicated hyperparameters,
which are detailed in Tables 4 and 5 respectively. Note that Table 5’s hyperparameters are taken unchanged from the original
source code provided by Wallace et al.

6Stanford Sentiment Treebank dataset (SST-2) is used for sentiment analysis
7Clean only. Dataset also has 300 backdoored samples divided among the 10 attacks (e.g., 0→ 1, 1→ 2, etc.).
8Varies by digit pair. See Table 2.
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Table 4. Convex polytope poison crafting (Zhu et al., 2019) hyperparameter settings

Hyperparameter Value

# Iterations 1,000
Learning Rate 4 · 10−2

Weight Decay 0
Max. Perturb. (ϵ) 0.1

Table 5. SST-2 sentiment analysis poison crafting hyperparameter settings. These are identical to Wallace et al.’s (2021) hyperparameter
settings.

Hyperparameter Value

Optimizer Adam
Total Num. Updates 20,935
# Warmup Updates 1,256
Max. Sentence Len. 512
Max. Batch Size 7
Learning Rate 1 · 10−5

LR Scheduler Polynomial Decay

B.2.3. BASELINES

Koh & Liang’s (2017) influence function method uses Pearlmutter’s (1994) stochastic Hessian-vector product (HVP)
estimation algorithm. Pearlmutter’s algorithm requires 5 hyperparameters; we follow Koh & Liang’s notation for these
parameters below.

Influence function’s five hyperparameters are required to ensure estimator quality and to prevent numerical instabil-
ity/divergence. Table 6 details the influence function hyperparameters used for each of the Section 4’s datasets. t and r were
selected to make a single pass through the training set in accordance with the procedure specified by Koh & Liang.

As noted by Basu et al. (2021), influence functions can be fragile on deep networks. We tuned β and γ to prevent
HVP divergence, which is common with influence functions.

Table 6. Influence function hyperparameter settings

Poison Backdoor

Hyperparameter CIFAR10 SST-2 Speech

Minibatch Size 1 1 1
Damp (β) 1 · 10−2 1 · 10−2 5 · 10−3

Scale (γ) 3 · 107 1 · 106 1 · 104
Recursion Depth (t) 2,500 6,740 1,000
Repeats (r) 10 10 10

Peri et al.’s (2020) Deep k-NN labels a training example as poison if its label does not match the plurality of its neighbors.
For Deep k-NN to accurately identify poison, it must generally hold that k > 2|Dadv|. Peri et al. propose selecting k using
the normalized k-ratio, k/N , where N is the size of the largest class in Dtr.

Peri et al.’s ablation study showed that Deep k-NN generally performed best when the normalized k-ratio was in the
range [0.2,2]. To ensure a strong baseline, our experiments tested Deep k-NN with three normalized k-ratio values,
{0.2, 1, 2},9 and we report the top performing k’s result.

9This corresponds to k ∈ {833, 4167, 8333} for 25,000 CIFAR10 training examples and a 1
6

validation split ratio.
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B.3. Network Architectures

Table 7 details the CIFAR10 neural network architecture. Specially, we used Page’s (2020) ResNet9 architecture, which is
the state-of-the-art for fast, high-accuracy (>94%) CIFAR10 classification on DAWNBench (Coleman et al., 2017) at the
time of writing.

All sentiment analysis evaluation (see Sec. 4.2) used Liu et al.’s (2020) RoBERTaBASE pretrained parameters. All language
model training used Facebook AI Research’s fairseq sequence-to-sequence toolkit (Ott et al., 2019) in-line with (Wallace
et al., 2021). Text was encoded using Radford et al.’s (2019) byte-pair encoding (BPE) scheme.

The speech classification convolutional neural network is identical to that used by Liu et al. (2018) except for two minor
changes. First, batch normalization (Szegedy et al., 2013) was used instead of dropout to expedite training convergence. In
addition, each convolutional layer’s kernel count was halved to allow the model to be trained on a single NVIDIA Tesla K80
GPU.

Table 7. CIFAR10 poison ResNet9 neural network architecture

Conv1 In=3 Out=64 Kernel=3× 3 Pad=1
BatchNorm2D Out=64
ReLU

Conv2 In=64 Out=128 Kernel=3× 3 Pad=1
BatchNorm2D Out=128
ReLU
MaxPool2D 2× 2

↑
ResNet1

↓

ConvA In=128 Out=128 Kernel=3× 3 Pad=1
BatchNorm2D Out=128
ReLU

ConvB In=128 Out=128 Kernel=3× 3 Pad=1
BatchNorm2D Out=128
ReLU

Conv3 In=128 Out=256 Kernel=3× 3 Pad=1
BatchNorm2D Out=256
ReLU
MaxPool2D 2× 2

Conv4 In=256 Out=512 Kernel=3× 3 Pad=1
BatchNorm2D Out=512
ReLU
MaxPool2D 2× 2

↑
ResNet2

↓

ConvA In=512 Out=512 Kernel=3× 3 Pad=1
BatchNorm2D Out=512
ReLU

ConvB In=512 Out=512 Kernel=3× 3 Pad=1
BatchNorm2D Out=512
ReLU

MaxPool2D 2× 2

Linear Out=10
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Table 8. Speech recognition convolutional neural network

Conv1 In=3 Out=48 Kernel=11× 11 Pad=1
MaxPool2D 3× 3

BatchNorm2D Out=48

Conv2 In=48 Out=128 Kernel=5× 5 Pad=2
MaxPool2D 3× 3

BatchNorm2D Out=128

Conv3 In=128 Out=192 Kernel=3× 3 Pad=1
ReLU
BatchNorm2D Out=192

Conv4 In=192 Out=192 Kernel=3× 3 Pad=1
ReLU
BatchNorm2D Out=192

Conv5 In=192 Out=128 Kernel=3× 3 Pad=1
ReLU
MaxPool2D 3× 3

BatchNorm2D Out=128

Linear Out=10
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C. Additional Evaluation Results
C.1. CIFAR10 Convex Polytope Poisoning Full Results

Poison Identification & Detection Tables 9 and 10 contain the numerical values (including standard deviation) corre-
sponding to the results shown visually in Figures 2 and 4 respectively. Table 11 shows COSIN’s aggregated defense success
rate.

Table 9. Vision Poison Identification: Poison identification AUPRC mean and standard deviation across >50 trials for four CIFAR10 class
pairs with |Dadv| = 50. Both COSIN using just initial parameters θ0 and with 5 subepoch checkpointing outperformed all baselines for all
class pairs. Mean results are shown graphically in Figure 2.

Classes Ours Baselines

Targ. Pois COSIN θ0 Only COSIN Deep k-NN TracIn Influence Func. Representer Pt.

Bird Dog 0.749± 0.212 0.859± 0.149 0.055± 0.155 0.172± 0.103 0.116± 0.156 0.027± 0.013

Dog Bird 0.850± 0.127 0.863± 0.117 0.057± 0.106 0.197± 0.108 0.058± 0.056 0.017± 0.006

Frog Deer 0.907± 0.125 0.961± 0.074 0.184± 0.288 0.250± 0.136 0.122± 0.137 0.024± 0.012

Deer Frog 0.819± 0.147 0.881± 0.095 0.022± 0.054 0.195± 0.110 0.081± 0.090 0.027± 0.020

Table 10. Vision Poison Target Detection: COSIN over only θ0’s top-K ztarg detection accuracy across 10 trials for each ytarg with 350 clean
test examples in each trial. The cutoff threshold was 5Q above the median COSIN influence. All values are percentages. Mean results are
shown graphically in Figure 4.

Classes Ours

Targ. Pois Top-1 Top-1% Top-2%

Bird Dog 90% 100% 100%
Dog Bird 100% 100% 100%
Deer Frog 20% 60% 100%
Frog Deer 90% 100% 100%

Table 11. Vision Poison Removal: Defense success rate for COSIN (using only θ0) over 10 trials for three poison removal thresholds. The
mean and standard deviation removal percentages over Dadv and Dcl demonstrate that our defense removes little clean data.

2Q 2.5Q 3Q

Defense
Success

% Poison
Removed

% Clean
Removed

Defense
Success

% Poison
Removed

% Clean
Removed

Defense
Success

% Poison
Removed

% Clean
Removed

Bird → Dog 100% 95.4 ± 6.5 0.5 ± 0.2 100% 89.0 ± 8.5 0.18 ± 0.10 100% 80.0 ± 12.0 0.06 ± 0.06

Dog → Bird 90% 90.6 ± 10.2 0.2 ± 0.1 90% 80.6 ± 16.4 0.05 ± 0.04 90% 62.2 ± 20.7 0.01 ± 0.02

Deer → Frog 90% 93.8 ± 8.4 0.3 ± 0.1 90% 87.4 ± 12.5 0.05 ± 0.03 90% 77.4 ± 16.4 0.01 ± 0.01

Frog → Deer 100% 86.6 ± 14.8 0.2 ± 0.1 100% 73.0 ± 21.1 0.04 ± 0.03 100% 56.6 ± 24.9 0.01 ± 0.01
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C.2. Defending Against a Backdoor Attack on Speech

Liu et al.’s (2018) speech backdoor classification dataset contains spectrograms of human speech pronouncing digits 0 to 9,
and includes 300 backdoor training and 200 backdoor test examples.

Liu et al. injected specific background noise as the adversarial trigger. When present, this noise causes a targeted digit to be
misclassified as the digit one larger (modulo 10). For instance, a targeted 0 would be misclassified as 1, 1 as 2, etc. making
10 possible digit pairs. Following Liu et al., the underlying model was a speech recognition CNN trained from scratch.

Backdoor Identification Figure 5 compares COSIN (with 3 subepoch checkpointing) to the four baselines across the
10 digit pairs. In all cases, COSIN’s mean AUPRC error (i.e., 1− AUPRC) was several times lower than the baselines – in
8/10 cases by more than an order of magnitude. COSIN even achieve perfect identification (i.e., AUPRC = 1) for three digit
pairs: 0 → 1, 3 → 4, and 4 → 5.

Backdoor Target Detection Table 12 details COSIN’s ability to detect whether a particular test example is an attack
target. Specifically, an example was classified as “targeted” if any training example’s COSIN influence exceeded the median
by cQ (c ∈ {4,5}), with c tunable to control sensitivity. With c = 4, there were no false negatives for any digit pair (i.e.,
precision = 1), but the false positive rate (FPR) was larger. Six digit pairs had perfect target detection precision even at
c = 5.

As expected, those digit pairs where identification performed worse (e.g., 2 → 3 and 6 → 7) also had poorer target detection.
Observe that digit pairs 5 → 6 and 9 → 0 had near perfect identification but had a higher false positive rate at c = 4 and
a higher false negative rate at c = 5 respectively; such divergent behavior indicates that detection performance could be
improved via a better underlying assumptions for Q, e.g., accounting for the non-normality visible in Figures 1d to 1f. We
leave this to future work.

CosIn (ours) TracIn Influence Functions Representer Point

0 → 1 1 → 2 2 → 3 3 → 4 4 → 5 5 → 6 6 → 7 7 → 8 8 → 9 9 → 0

0

0.2

0.4

0.6

0.8

1

A
U
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C

Figure 5. Speech Backdoor Identification: Mean speech backdoor example identification AUPRC across 30 trials for 11 ≤ |Dadv| ≤ 18
(varies by class pair). COSIN with 3 subepoch checkpointing always outperformed the baselines – often by an order of magnitude. For
digit pairs 0→ 1, 3→ 4, and 4→ 5, COSIN always perfectly identified Dadv (i.e., AUPRC = 1). See Table 13 for numerical results
including standard deviation.

Table 12. Speech Backdoor Target Detection: COSIN’s (with 10 subepoch checkpointing) target, ztarg, detection performance across
>100 trials for each digit pair at cutoff thresholds of 4Q and 5Q above the median COSIN influence. All values are percentages.

Cutoff Metric 0→ 1 1→ 2 2→ 3 3→ 4 4→ 5 5→ 6 6→ 7 7→ 8 8→ 9 9→ 0

4Q

Acc. 99.2 97.3 100 99.2 97.6 88.5 95.1 95.7 97.4 100
Prec. 100 100 100 100 100 100 100 100 100 100
FPR 0.8 2.9 0 0.9 2.8 13.4 5.4 4.9 2.9 0

5Q

Acc. 100 99.1 99.4 99.2 100 97.3 97.6 97.9 99.1 96.9
Prec. 100 100 95.2 100 100 100 83.3 100 91.7 76.5
FPR 0 1.0 0 0.9 0 3.2 0.9 2.5 0 0
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Table 13. Speech Backdoor Identification: Mean and standard deviation AUPRC across 30 trials for Liu et al.’s (2018) speech backdoor
dataset with 11 ≤ |Dadv| ≤ 18. COSIN with 3 subepoch checkpointing always outperformed the baselines, even achieving perfect
backdoor identification for three digit pairs.

Digits Ours Baselines

Targ Pois COSIN TracIn Influence Func. Representer Pt.

0 1 1 ± 0 1.490± 0.217 0.637± 0.270 0.081± 0.063

1 2 0.997± 0.007 0.312± 0.127 0.629± 0.174 0.050± 0.017

2 3 0.933± 0.053 0.646± 0.218 0.600± 0.231 0.075± 0.057

3 4 1 ± 0 0.752± 0.193 0.603± 0.261 0.099± 0.104

4 5 1 ± 0 0.470± 0.169 0.502± 0.221 0.069± 0.070

5 6 1.000± 0.001 0.526± 0.133 0.502± 0.177 0.053± 0.031

6 7 0.934± 0.074 0.344± 0.145 0.225± 0.150 0.040± 0.009

7 8 1.000± 0.002 0.791± 0.148 0.623± 0.191 0.048± 0.021

8 9 0.998± 0.013 0.793± 0.204 0.542± 0.284 0.071± 0.075

9 0 1.000± 0.001 0.328± 0.143 0.569± 0.276 0.036± 0.016

C.3. Sentiment Analysis Poisoning Full Results

Table 14. Natural Language Poison Identification: Poison identification AUPRC mean and standard deviation across 10 trials for 4 positive
and 4 negative sentiment SST-2 movie reviews (Socher et al., 2013) with |Dadv| = 50. COSIN with 3 subepoch checkpointing perfectly
identified all poison in all but two trials. Mean results are shown graphically in Figure 3.

Review Ours Baselines

Type No. COSIN θ0 Only COSIN TracIn Influence Func. Representer Pt.

↑
Pos.

↓

1 0.762± 0.111 1 ± 0 0.089± 0.037 0.023± 0.027 0.003± 0.001

2 0.477± 0.098 1 ± 0 0.151± 0.079 0.005± 0.002 0.002± 0.000

3 0.852± 0.062 1 ± 0 0.039± 0.039 0.002± 0.001 0.001± 0.001

4 0.435± 0.054 1 ± 0 0.011± 0.003 0.003± 0.004 0.001± 0.000

↑
Neg.

↓

1 0.518± 0.082 1 ± 0 0.005± 0.001 0.005± 0.003 0.002± 0.001

2 0.920± 0.081 1 ± 0 0.279± 0.060 0.006± 0.004 0.001± 0.001

3 0.255± 0.075 0.983± 0.055 0.065± 0.035 0.003± 0.002 0.001± 0.001

4 0.304± 0.087 1 ± 0 0.007± 0.001 0.003± 0.001 0.001± 0.001

C.4. Adversarial Set Identification Execution Time

Table 15 compares the execution time of COSIN to the other general-purpose, influence-based benchmarks across 50 trials.
All results were collected on an HPC system with 3 Intel E5-2690v4 cores, 48GB of 2400MHz DDR4 RAM, and a single
NVIDIA Tesla K80.

With the exception of the representer point baseline (Yeh et al., 2018) which considers only the network’s linear classification
layer (and had the worst performance in our experiments), COSIN using only the initial θ0 parameters was the fastest
– by a large margin. Note that COSIN (see Alg. 1) is also embarrassingly parallel and can be naively sped up across
multiple GPUs/clusters.

Recall that Deep k-NN Peri et al. (2020) is an empirical, defense against clean-label data poisoning and serves as an
additional baseline for Section 4.1’s convex polytope attack experiments on CIFAR10. Across >50 trials using the above
hardware setup, Deep k-NN’s execution time had mean and standard deviation of 242 seconds and 1.1 seconds respectively.
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Table 15. Adversarial Set Identification Execution Time: Mean and standard deviation algorithm execution time (in seconds) across
>50 trials for: convex polytope poisoning attack on CIFAR10, sentiment analysis poisoning attack on SST-2, and speech classification
using Liu et al.’s (2018) backdoored dataset. COSIN (using only θ0) is multiple times faster than TracIn and influence functions.
Representer point only directly consider the network’s final linear layer so its execution time cannot be directly compared to the other
methods.

Type Dataset COSIN θ0 Only COSIN TracIn Influence Func. Representer Pt.

Image CIFAR10 212± 2 24,267± 1,939 5,910± 600 15,634± 641 187± 2
Sentiment SST-2 4,213± 17 27,723± 7,933 16,667± 187 21,409± 77 1,697± 11
Speech (Liu et al., 2018) N/A 2,605± 710 894± 279 4,595± 177 49± 1


