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ABSTRACT 

The value from the growing availability of online documents and 

ontologies will increase significantly once these two resources become deeply 

interlinked at the semantic level. We focus our investigation on the automated 

identification and the linking of concepts and relations mentioned in a document 

that are (or should be) in a domain-specific ontology. Such semantic information 

can allow for improved navigation of the information space: users can more 

quickly retrieve documents that mention the relations sought; Ontology engineers 

can enhance concepts with relations extracted from the literature; and more 

advanced natural language-based applications such as text summarization, 

textual entailment, and machine reading become ever more possible. 

In this thesis, we present the task of supervised semantic interlinking of 

documents to an ontology. We also propose a supervised algorithm that 

identifies and links concept mentions that are (or should be) in the ontology, and 

also identify mentions of binary relations that are (or should be) in the ontology. 

The resulting system, SDOI, is tested on a novel corpus and ontology from the 

data mining field on intrinsic measures such as accuracy, and extrinsic measures 

such time saved by the annotator in the annotation process. 

One day many high-value documents and ontologies will be interlinked to 

each other. This thesis presents a principled step towards that outcome. 

Keywords: Concept Mention; Relation Mention; Reference Resolution; 
Ontology; Supervised Classification  
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1: INTRODUCTION 

“We need to have a way for computers to read books on chemistry and learn 

chemistry. ... Or biology. Or whatever. ... reading from text in structured domains I don’t 

think is as hard. It is a critical problem that needs to be solved.” –Edward Feigenbaum 

(Shustek, 2010) 

1.1 Motivation 

As more documents and ontologies become readily available in electronic 

format their combined value will increase significantly once they become deeply 

interlinked so that the mentions within a text are grounded to formalized concept 

descriptions, and the concepts within an ontology are grounded in the dominant 

form of knowledge exchange (Staab & Studer, 2009; Renear & Palmer, 2009; 

Buitelaar & al, 2009). Imagine, for example, the day when research papers, legal 

contracts, how-to manuals, or even the entirety of this thesis1 had their concept 

and the relation mentions linked to their corresponding item within an ontology 

from their respective domain. With such interlinking in place, several new 

applications become possible. 

Strategic reading, for example, will be further enabled when a person can 

„click‟ or „hover over‟ on an important but unfamiliar term in the text (for example 

“ontology” or “strategic reading”); be taken to the formal concept description (for 

                                            
1
 Some of the concept mentions within the abstract and body of this thesis are indeed hyperlinked 

to an ontological reference. Refer to http://www.gabormelli.com/RKB/2010_PhDThesis if you 
are not reading an electronic version of this document. 

http://www.gabormelli.com/RKB/Ontology
http://www.gabormelli.com/RKB/Ontology%20Concept
http://www.gabormelli.com/RKB/2009_HandbookOnOntologies
http://www.gabormelli.com/RKB/2009_StrategicReadingOntsAndTheFutOfSciPub
http://www.gabormelli.com/RKB/2009_TowardsLinguisticallyGroundedOntologies
http://www.gabormelli.com/RKB/Relation%20Mention
http://www.gabormelli.com/RKB/Strategic_Reading_Task
http://www.gabormelli.com/RKB/Ontology
http://www.gabormelli.com/RKB/Strategic_Reading_Task
http://www.gabormelli.com/RKB/2010_PhDThesis
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example, the webpages wikipedia.org/wiki/Ontology_(information_science) or 

gabormelli.com/RKB/Ontology and gabormelli.com/RKB/Strategic_Reading); 

and, be able navigate to a seminal document that used the concept (such as to 

Gruber, 1993 or Marchionini, 1997). Currently however such information seeking 

activity would require several Web sessions using several different search 

services ranging from google.com to scholar.google.com, and likely the use of 

some specialized digital libraries, such as portal.acm.org, or knowledge bases 

such as wikipedia.org (Renear & Palmer, 2009). 

Query-based information retrieval will also be better serviced when 

concepts with many lexical variations (such as “Gaussian distribution” or “normal 

density function”, or “supervised approaches to concept mention linking”) are 

identified and linked both in the text and in the queries. Currently queries on 

lexically varied concepts force users to iteratively fine-tune their keyword 

searches to account for these variations, while also ensuring that unintended 

matches are excluded (Tran & al, 2007; Lei & al; 2006). Once concept mentions 

are identified and linked to a concept in an ontology then the performance of 

identifying relevant documents will improve both in terms of precision (only 

documents that contain the intended concept) and of recall (all documents that 

contain the intended concept) despite of the many alternate ways to express the 

concept in text. 

Another area would benefit from document to ontology interlinking is the 

use and administration of ontologies themselves. An ontology‟s knowledge 

engineer could more quickly understand the meaning and scope of two slightly 

http://en.wikipedia.org/wiki/Ontology_(information_science)
http://www.gabormelli.com/RKB/Ontology
http://www.gabormelli.com/RKB/Strategic_Reading_Task
http://www.gabormelli.com/RKB/1993_ATranslationApproachToPortableOntologySpecs
http://www.gabormelli.com/RKB/1997_InformationSeekingInElectronicEnvironments
file:///C:/Documents%20and%20Settings/PCuser/My%20Documents/_Projects/Thesis/01%20Intro/google.com
http://scholar.google.com/
http://portal.acm.org/
http://www.wikipedia.org/
http://www.gabormelli.com/RKB/2009_StrategicReadingOntsAndTheFutOfSciPub
http://www.gabormelli.com/RKB/Gaussian_Distribution
http://www.gabormelli.com/RKB/Normal_Density_Function
http://www.gabormelli.com/RKB/Normal_Density_Function
http://www.gabormelli.com/RKB/Precision_Metric
http://www.gabormelli.com/RKB/Recall_Metric
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differing concepts by seeing them “in action” within relevant natural language 

passages (Buitelaar & al, 2009; Schaffert, 2006). Ontologies are generally also 

required to evolve with the domain they represent as time passes. Ontology 

engineers would benefit from a listing of concept or relation mentions that appear 

to be relevant to the domain (because several documents mention them) but are 

absent in the ontology (Buitelaar & al, 2009). 

Finally, other applications that would benefit from the existence of 

ontology-linked documents include: information retrieval (Manning & al; 2008), 

information extraction (Sarawagi, 2008), topic modelling (Blei & Lafferty, 2007; 

Griffiths & Steyvers, 2004), textual entailment (Burchardt & al, 2007; Dagan & al, 

2006), question answering (Strzalkowski & Harabagiu, 2006), text summarization 

(Melli & al, 2006), and eventually machine reading (Etzioni & al, 2006). 

An obstacle to this vision of semantically grounded documents however is 

the significant amount of effort required from domain experts both to semantically 

annotate the text within the documents, and to evolve an ontology in order to 

keep it aligned with its domain (Uren & al, 2006; Erdmann & al, 2000). The 

obstacle has been noted in the biomedical domain (Zweigenbaum & al, 2007), 

the business reengineering domain (Melli & Quinn, 2008), and the legal domain 

(Wyner, 2010). 

Some automation of the annotation task is a precondition to the 

envisioned future of deeply interlinked information. Fortunately, some recent 

research suggests the feasibility of such automation by the application of data-

http://www.gabormelli.com/RKB/2009_TowardsLinguisticallyGroundedOntologies
http://www.gabormelli.com/RKB/2007_ACorrelatedTopicModelOfScience
http://www.gabormelli.com/RKB/2004_FindingScientificTopics
http://www.gabormelli.com/RKB/2006_SQuASHDUC
http://www.gabormelli.com/RKB/2006_MachineReading
http://www.gabormelli.com/RKB/2007_FrontiersInBiomedicalTextMining
http://www.gabormelli.com/RKB/2010_TowardsAnnotatingAndExtrTexLegCasElements
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driven algorithms (Cucerzan, 2007; Mihalcea & Csomai, 2007; Milne & Witten, 

2008; Kulkarni & al, 2009). 

The research efforts to-date however have been focused on a domain-

independent interpretation of the task that uses Wikipedia2 or WordNet3 as the 

knowledge base. Certainly, the use of a knowledge base with a broad but 

shallow coverage of concepts is a good starting point to show the feasibility of 

automation; but there is also a need to support scenarios where a domain-

specific ontology is provided. Also, the empirical results reported in the literature 

are mostly for either Wikipedia-based or newswire-like articles where the 

annotation is focused on named entities (such as “Michael I. Jordan”, “iPhone 

4G” and “E.coli O157:H7”) and simple categories (such as “person”, “product”, or 

“organism”), while excluding nuanced concepts (such as “self-trained information 

extraction algorithm” or “contractual consideration”). Finally, current proposals 

focus on the recognition of some specific relation, either domain independent 

ones, such as IS-A, or domain-specific ones such as SUBCELLULAR-LOCALIZATION 

(Banko & al, 2007; Buitellar & Cimano; 2008). 

An organization or company that decides to link their high-value 

documents to their domain-specific ontology cannot make direct use of current 

research to reduce the workload (and cost) of their annotation team as their 

collection of annotated documents grows. We propose the application of 

supervised learning as a solution for this scenario. 

                                            
2
 http://www.wikipedia.org  

3
 http://wordnet.princeton.edu/  

http://www.gabormelli.com/RKB/2007_LargeScaleNEDisambigBasedOnWikiped
http://www.gabormelli.com/RKB/2007_Wikify
http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
http://www.gabormelli.com/RKB/2009_CollectiveAnnotationOfWiki
http://www.gabormelli.com/RKB/2007_OpenIEfromTheWeb
http://www.gabormelli.com/RKB/2008_OntologyLearningAndPopulation
http://www.wikipedia.org/
http://wordnet.princeton.edu/
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1.2 Topic and Approach 

This thesis examines the composite task of ontology-based concept 

mention identification and linking, and relation mention identification. The tasks 

and approaches most closely related to our are those proposed in (Milne & 

Witten, 2008; Kulkarni & al, 2009). Our topic however is for linking domain-

specific ontologies, rather than Wikipedia. Further, we extend our focus beyond 

concept mention linking to also include concept mention and relation mention 

identification. 

We decompose the task into three separate subtasks: 1) the identification 

of mentions in a document of concepts relevant to the specific domain; 2) the 

linking (disambiguation) of each of these mentions to the appropriate concept in 

an ontology, if such a concept exists; and 3) the identification of mentions in a 

document of relations between the mentioned concepts. This decomposition can 

support scenarios were one person first identifies the text segments that appear 

to refer to specialized meaning, some other person with likely greater expertise 

links the mention to the correct concept in the ontology (if the concept exists), 

and a third person with further expertise identifies relevant relations between the 

concepts mentioned in the document that exists in the ontology. Our proposed 

supervised solution, named SDOI, follows this three-fold decomposition: SDOICMI, 

SDOICML, and SDOIRMI. 

SDOICMI first trains a supervised sequential classifier to identify token 

subsequences in a document as concept mentions. Motivations for the 

application of a sequential tagger include their successful use in the NLP 

http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
http://www.gabormelli.com/RKB/2009_CollectiveAnnotationOfWiki


 

 6 

community to the related tasks of text-chunking (Sha & Pereira, 2003) and 

named entity recognition (McCallum & Li, 2003), and the possibility that any 

future improvements in the use and training of sequential taggers in other 

domains can be naturally imported into our framework. A further motivation of 

this sequential tagging approach is that it identifies lexically varied concept 

mention even when the token sequence is not present in the training corpus, nor 

recorded as a possible alternate spelling within the ontology. 

Next, due to the large number of concepts in the ontology, we propose 

that the SDOICMI module apply a binary supervised classifier to the concept-

mention linking task rather than to directly train a multi-class classifier (Rifkin & 

Klatau, 2004). To accomplish this transformation, each mention is associated 

with a subset of candidate concepts by means of heuristic candidacy tests that 

can be used to remove cases that are very unlikely to be true (i.e. to 

undersample). Next, each candidate concept is associated with a rich feature 

vector, including recursively defined (collective) features that account for global 

context, and then labelled as true or false based on whether the concept is 

indeed the one that the mention must link to. In order to support the collective 

features we propose the use of an iterative supervised classifier (Neville & 

Jensen, 2000). 

The final module of the pipeline, SDOIRMI, is another binary classifier for 

solving the relation mention identification task: SDOIRMI. For each permutation of 

two concept mentions, we build a feature vector and heuristically associate a 

label based on whether the relation is present in the ontology. A difference for 

http://www.gabormelli.com/RKB/2003_ShallowParsingWithCRFs
http://www.gabormelli.com/RKB/2003_EarlyResultsForNERwithCRFs
http://www.gabormelli.com/RKB/2004_InDefenseOfOneVsAllClassification
http://www.gabormelli.com/RKB/2004_InDefenseOfOneVsAllClassification
http://www.gabormelli.com/RKB/2000_IterativeClassification
http://www.gabormelli.com/RKB/2000_IterativeClassification
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this subtask is that we do not require that a person manually label each of the 

multitude of concept mention combinations within each document. Instead, we 

propose the use of a self-supervised approach that makes use of a labelling 

heuristic (Banko & Etzioni, 2008). The proposed labelling heuristic is to assign a 

label if the candidate mention refers to a link that exists or does not exist in the 

ontology. 

To estimate SDOI’s empirical performance we created an annotated 

corpus composed of the abstracts from papers accepted to the KDD-2009 and 

ICDM-2009 data mining conferences. Each abstract is annotated such that its 

concept mentions are identified and, where possible, linked to the concepts in a 

data mining ontology, kddo1, which we have also created in support of the 

thesis. Our evaluation suggests that SDOI is able to save time in the annotation 

process. 

1.3 Contributions 

The main contributions of this thesis4 are that: 

1. We present a formal definition of the task of ontology-based concept 

mention identification and linking, and relation mention identification. 

This definition is general in that it subsumes a variety of related tasks 

such the linking to Wikipedia pages, or the task of named entity 

recognition and disambiguation where the ontology contains only 

                                            
4 Some of the contributions are previously presented in (Melli & al, 2007; Melli & 
McQuinn, 2008; Melli, 2010; Melli & Ester, 2010). 
 

http://www.gabormelli.com/RKB/2008_TheTradeoffsBetOpenAndTradRelExtr
http://www.gabormelli.com/RKB/2007_nAryMultiSentencePPLRE_Melli_LBM
http://www.gabormelli.com/RKB/2008_RequirementsSpecificationUsingFactOrientedModeling
http://www.gabormelli.com/RKB/2008_RequirementsSpecificationUsingFactOrientedModeling
http://www.gabormelli.com/RKB/2010_ConceptMentionsWithinKDD2009Abs
http://www.gabormelli.com/RKB/2010_SupervisedIdentCMentionsAndLinkingToOntology
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named entities. Also, the task definition can be naturally extended to 

include additional future requirements, such as the classification of the 

type of the identified relation mentions. 

2. We propose a principled process composed of three pipelined learning 

algorithms (SDOICMI, SDOICML, and SDOIRMI) that are feasible to re-

implement and extend by others in the community, and so become the 

de facto baseline. The system‟s performance is intended to improve as 

the annotated corpus grows, and to not require expertise in natural 

language processing or statistics to, for example, develop lexico-

syntactic detection patterns or to fine tune algorithm parameters5. 

3. Our proposed algorithms include extensive feature sets that subsume 

and extend the features of related proposals. The feature sets can 

include recursively defined collective features, and for these we 

propose an iterative classification algorithm that does not require 

(Milne & Witten, 2008)‟s heuristic of which mentions to assume as 

correctly linked, nor requires a customized “objective” relatedness 

function as proposed in (Kulkarni & al, 2009). 

4. We present a novel and publicly available dataset for the task that may 

become a benchmark used by the community. The dataset is 

composed of the kddo1 ontology for the domain of data mining, and of 

two corpuses (kdd09cma1, icdm09cma1) derived from the 139 

                                            
5 Consequently, the algorithm is not tied to a particular domain or natural language, though it 

does require a natural language parser for the language of the corpus. 

http://www.gabormelli.com/RKB/Pipelined_Process
http://www.gabormelli.com/RKB/Lexico-Syntactic_Pattern
http://www.gabormelli.com/RKB/Lexico-Syntactic_Pattern
http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
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abstracts for the KDD 2009 and 22 of the abstracts of the ICDM 2009 

data mining conference proceedings. We are not aware of another 

similar dataset for any field within computing science, and believe that 

the dataset may continue to grow and evolve with each future edition 

of the KDD and ICDM annual conference proceedings. 

5. Finally, we evaluate the SDOICML and SDOIRMI algorithms not only on 

standard intrinsic measures of accuracy and F1, but also on task-

oriented extrinsic measures. For SDOICML we report time saved in the 

annotation process and for SDOICML the ability to suggest new direct 

relations. In this manner, we demonstrate that the algorithm is ready to 

participate in some real-world settings. 

1.4 Thesis Outline 

The remainder of the thesis is structured as follows: Sections 2 formally 

defines the task. Section 3 presents related work that will be used to ground, 

compare and contrast the proposed algorithms. Section 4 presents the ontology 

and corpus that we have created to the evaluated the task. Sections 5 through 7 

present the proposed algorithm. Specifically, section 5 presents the solution to 

the concept mention identification task: SDOICMI, and its evaluation; section 6 

presents the solution to the concept mention linking task: SDOICML, and its 

evaluation; and, section 7 presents the solution to the relation identification task: 

SDOIRMI, and its evaluation. Finally, section 8 concludes the thesis with a 

discussion of recognized limitations and future research directions. 

http://www.gabormelli.com/RKB/KDD_2009
http://www.gabormelli.com/RKB/ICDM_2009


 

 10 

2: TASK DEFINITION 

In this chapter, we define the task of supervised concept and relation 

mention6 recognition with respect to an ontology in terms of its input 

requirements, output requirements, and performance measures. 

2.1 Input Requirements 

Assume that we are given a corpus of text documents di D where each 

document is composed of sentences based on sequences of text tokens 

(orthographic words or punctuation). 

Assume also the existence of an ontology of interrelated concepts, oc O, 

that represent and describe some concepts within some domain. The concepts 

are interconnected by directed edges referred to as internal links () that link one 

concept to another concept, (oc’, oc’’). Each concept oc can be associated with: a 

preferred name, pc; a set of (also-known-as) synonyms Ac; and, some descriptive 

text tc. As described, an ontology is a directed and labelled multigraph that could 

be used to represent such diverse structures as Wikipedia7 (with its rich text and 

                                            
6 We generally affix the word “mention” to a term to distinguish the concept of a referring 

expression in a text and its referent; be it a mental state in the reader or a thing in the real-word 

(Cruse, 1986): For example: entity  entity mention, named entitynamed entity mention, 

conceptconcept mention, and relationrelation mention. 
7
 http://www.wikipedia.org 

http://www.gabormelli.com/RKB/Text%20Token
http://www.gabormelli.com/RKB/Orthographic%20Word
http://www.gabormelli.com/RKB/1986_LexicalSemantics
http://www.wikipedia.org/
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weak semantics) and the Gene Ontology8 (with its rich semantics and terse 

descriptions). 

Assume next that each document di has a set of non-overlapping non-

partitioning subsequences of tokens referred to as concept mentions9, mmdi, that 

refers to a domain specific meaning not generally found in a dictionary. We 

assume that there is a significant overlap between the concepts intended for the 

ontology and the concepts mentioned in the corpus. 

Every concept mention mi is connected via a directed edge to either the 

concept oj that captures the concept mention‟s intended meaning, or to the 

symbol “?” that denotes the absence of the concept within the ontology. We refer 

to these edges as external links and denote them as  (mm, oc). An unlinked 

concept mention,  (mm, ?),is one that cannot be linked to the ontology because 

the concept is not yet deemed to be present in the ontology. We can refer to a 

mention‟s token sequence as its anchor text, am, to distinguish the text from the 

concept it links to.  

Next, a candidate relation mention, ri, is any pairing of two concept 

mentions within the document <mi’, mi’’> that are linked to different concepts10. A 

relation mention is labelled as true if the mention signifies an internal link in the 

ontology, and false otherwise. 

                                            
8
 http://www.geneontology.org 

9
 The term “concept mention” is previously used in (Beigman, Klebanov & Shamir, 2005). 

10
 The type of the underlying relation does not play a role in our task definition of relation 
identification. No distinction is made between domain independent semantic relations such as: 
subsumption (IS-A-TYPE-OF), meronymy (IS-A-PART-OF), antonymy (IS-AN-OPPOSITE-TO), or 
sibling (SHARE-A-PARENT) relations; nor, between domain-specific relations such as 
ORGANIZATION-HEADQUARTERCITY, PROTEIN-LOCALIZATION-SUBCELLULARCOMPARTMENT, or IS-
AN-ALGORITHM-FOR. 

http://www.gabormelli.com/RKB/2005_GuidelinesForAnnotOfConcMentPat
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Figure 1 illustrates the concept mentions within a document. Next, Figure 

2 illustrates the objects and relations available for analysis. Finally, Table 1 

contains some additional terminology related to the task description. 

Figure 1 – An illustration of the task‟s training data. The two objects on top represent two 
text documents. The object below represents the ontology of concept nodes 
and internal links. Some non-overlapping token sequences in the documents 
are concept mentions mapped to either concept nodes or the unknown 
concept symbol (?), via external links. The concept nodes in the ontology 
have side bars to suggest that the data structures can record inlinks to the 
concept and outlinks from the concept. 

 

?

ontology

document1 documentd

missing

concept
document to

ontology link

concept

mention
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direct
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Figure 2 – The example of concept mention annotation using wiki-style formatting. 
Mentions are identified with doubled square brackets. The internal vertical bar 
(|) separates the anchor text from the concept reference. A question mark (?) 
refers to an unlinked concept. 

 [[Collaborative Filtering Algorithm| Collaborative 

filtering]] is the most popular [[Algorithm|approach]] to 

build [[Recommender System|recommender systems]] and has 

been successfully employed in many [[Computer Application 

|applications]]. However, as [[?|(Schein & al, 2002)]] 

explored, it cannot make recommendations for so-called 

[[?|cold start users]] that have rated only a very small 

number of [[Recommendable Item|items]]. 

Table 1 – Terminology associated with the task 

mi The ith concept mention in the corpus, mi D. 

oi The ith concept node in the ontology, oi O. 

I(oi) The set of internal links into oi from some ok 

O(oi) The set of internal links from oi into some ok. 

E(oi, D) The set of external links into oi from some mkD. 

 

2.2 Output Requirements 

Given a previously unseen document from the same domain as the 

ontology that lacks concept and relation mention annotations, the required 

outputs of the task under investigation are: 

1) The complete set of concept mentions within the document (both their 

anchor text and their corresponding external link) 

2) The set of relation mentions in the document that are in the ontology. 
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2.3 Evaluation 

Several relevant evaluation criteria are available to measure performance. 

Concept mention identification can be naturally assessed in terms of F1-measure 

(and its precision and recall components). An F1-measure of 1.0 for example will 

occur when all concept mentions within a document are identified and no non-

existing (false) mentions are predicted. 

Concept mention linking is a multiclass classification problem that lends 

itself to measure of accuracy. An accuracy measure of 1.0 will occur when all 

true mentions within a document are linked to the correct concept node (one of 

which is the unlined concept symbol). However, at this phase performance must 

also be evaluated against the concept mentions predicted by the concept 

mention identification algorithm (not the manually annotated ones). This alternate 

evaluation will better correlate with the experience of an annotator who waits to 

this stage to begin to review (and fix) mistakes made by the two-step algorithm. 

Finally, while relation mention identification is a binary classification task 

that lends itself to an F1-based assessment. An obstacle to such an assessment 

is that our task does not require manually annotated relation mention data. Thus 

the performance analysis of this task will be based on its ability to aid in some 

extrinsic task for some given dataset. 

2.3.1 Partial Credit 

Another evaluation metrics that is investigated is to grant partial credit for 

incorrect predictions that are relevant predictions. A motivating intuition for this 
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extension is that the task can have a subjective aspect to it where even two 

people may not agree on exact assignments because ambiguities in language. 

For the concept mention identification task, partial credit can be assigned 

if there is an overlap between the true mentions and the predicted mention. For 

the mention linking task partial credit can be assigned if the concept node 

selected only has a one edge distance to the correct node. For the relation 

mention identification task partial credit can be assigned if the relation is between 

concept mentions that only received partial credit. 

2.3.2  Concept Mention Annotation - Time Savings 

Some settings will require that all annotations be reviewed by an 

expensive person with domain expertise. In these settings a relevant 

performance measure is whether it would take less time for the annotator to fix 

the mistakes made by the algorithm or to not use the algorithm whatsoever. The 

measure to compare algorithm performance is the proportion of time spent per 

concept mention under the two competing approaches. A proportion that is 

greater than 1.0 would indicate that some time was saved and would also 

suggest that the technology is ready for broad use. This human factors 

assessment assumes that the mechanisms implemented for annotating and for 

fixing annotations will not change significantly after more careful design of the 

data curation interfaces. 
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3: RELATED WORK 

"… nos (we) esse quasi nanos (dwarfs), gigantium (giants) humeris (shoulders) 

insidentes (on), ut possimus plura eis et remotiora (far) videre (see)" 

--John of Salisbury quoting Bernard of Chartres (1159 AD) 

In this chapter, we summarize some the published research that has 

informed the solution that we propose in subsequent chapters to the task of 

supervised document-to-ontology interlinking. Subsequent chapters will also, on 

occasion, present more localized references to the literature; while in this 

chapter, we present the key ideas that we have extracted from past published 

research. We assume that the reader is familiar with state-of-the-art approaches 

to fully-supervised learning in vector-based feature spaces with noisy input data 

(Cortes & Vapnik, 1995) and the general availability of implementations such as 

SVMlight (Joachims, 1999). 

3.1 Overview 

Many diverse research areas have investigated topics that bear some 

similarity to that of document-to-ontology interlinking. These include: natural 

language processing research; research into applied tasks, such as information 

extraction; and research into general learning algorithm considerations, such as 

ways to address input data with a highly skewed label distribution. Generally, we 

focused the review on past research that was document centric (rather than 

http://en.wikipedia.org/wiki/John_of_Salisbury
http://en.wikipedia.org/wiki/Bernard_of_Chartres
http://en.wikipedia.org/wiki/Anno_Domini
http://www.gabormelli.com/RKB/1995_SupportVectorNetworks
http://www.gabormelli.com/RKB/1999_MakingLargeScaleSVMLearningPractical
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database centric) and assumed and accounted for the availability of background 

knowledge (ideally, of an ontology). 

The field of natural language processing has a natural influence on our 

design because it addresses ways to convert natural language utterances into a 

more structured representation with only partial regard of the extrinsic benefit to 

some real-world application. While much of their work is on identifying syntactic 

structure, such as part-of-speech tags and parse trees, a large amount of work 

has also gone into identifying preliminary semantic structure from the words used 

in sentences. The two topics within lexical semantic processing that we review in 

more detail are word sense disambiguation and named entity recognition. 

Several application areas are of interest to us because they have 

investigated techniques to (preprocess documents to) identify semantic structure. 

The main application-driven area that we review is that of corpus-based 

information extraction (Sunita, 2008) which requires that a database be 

populated with information drawn from text. We review some work that use or 

learn lexico-syntactic patterns, and also work into the populating of biomedical 

entity databases from biomedical literature. Another particularly relevant 

application-driven research that has received some recent attention is automated 

semantic annotation (Reeve & Han, 2005), particularly the addition of links from 

word mentions to the Wikipedia article that most closely addresses the meaning 

of the word. We closely review the proposals by (Milne & Witten, 2008) and 

(Kulkarni & al, 2009). 

http://www.gabormelli.com/RKB/2008_InformationExtraction
http://www.gabormelli.com/RKB/Lexico-Syntactic_Pattern
http://www.gabormelli.com/RKB/Entity%20Database
http://www.gabormelli.com/RKB/Biomedical_Literature
http://www.gabormelli.com/RKB/2005_SurveyOfSemanticAnnotationPlatforms
http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
http://www.gabormelli.com/RKB/2009_CollectiveAnnotationOfWiki
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Some of the application-driven research areas that we investigated but do 

not review here include: information extraction techniques whose focus is to 

populate a database from scratch without the use of background knowledge 

(Etzioni & al, 2008; Hassell & al, 2006); semantic information retrieval (Manning 

& al, 2008; Shah & al, 2002), preprocessing for question answering (Strzalkowski 

& Harabagiu, 2006; Melli & al, 2006); database record deduplication which links a 

database record to some canonical one (Bhattacharya & Getoor, 2004; Bilenko & 

al, 2005); ontology learning from text (Navigli & Velardi, 2006); ontology matching 

which requires the linking of equivalent concepts in two ontologies (Euzenat & 

Shvaiko, 2007); the automatic identification of the keywords commonly required 

when submitting a paper for publication (Turney, 2000); and the generation of a 

document‟s subject index (Sclano & Velardi, 2007; Jacquemin & Bourigault, 

2003). 

Finally, we review three research areas within machine learning that apply 

to us. The first is graph edge prediction of whether two labeled nodes in a graph 

are linked. The second is the handling of classification tasks with many labels. 

And, thirdly, techniques to handle significantly skewed distributions of 

classification labels.  

3.2 Word Sense Disambiguation 

Within lexical semantic processing, one of the more closely tasks to that of 

concept mention identification and linking is that of word sense disambiguation 

(WSD) which requires that words in some given text be linked to the appropriate 

word sense in the provided dictionary (Stevenson & Wilks, 2003). Canonical 

http://www.gabormelli.com/RKB/Oren_Etzioni
http://www.gabormelli.com/RKB/2006_OntolDrivenAutoEntDisambigInUnstrText
http://www.gabormelli.com/RKB/2008_IntroductionToInformationRetrieval
http://www.gabormelli.com/RKB/2008_IntroductionToInformationRetrieval
http://www.gabormelli.com/RKB/2006_AdvancesInOpenDomainQuestionAnswering
http://www.gabormelli.com/RKB/2006_AdvancesInOpenDomainQuestionAnswering
http://www.gabormelli.com/RKB/2006_SQuASHDUC
http://www.gabormelli.com/RKB/2004_IterativeRecordLinkageForCleaningAndIntegration
http://www.gabormelli.com/RKB/2005_AdaptiveProductNormalization
http://www.gabormelli.com/RKB/2005_AdaptiveProductNormalization
http://www.gabormelli.com/RKB/2006_OntologyEnrichThrAutoSemAnnot
http://www.gabormelli.com/RKB/2007_OntologyMatching
http://www.gabormelli.com/RKB/2007_OntologyMatching
http://www.gabormelli.com/RKB/2000_LearningAlgorithmsForKeyphraseExtraction
http://www.gabormelli.com/RKB/2007_TermExtractor
http://www.gabormelli.com/RKB/2003_TermExtractionAndAutomaticIndexing
http://www.gabormelli.com/RKB/2003_TermExtractionAndAutomaticIndexing
http://www.gabormelli.com/RKB/2003_WordSenseDisambiguation
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examples of challenging words that the task must cope with are “bank” and “pike” 

because of their multitude of wide ranging senses.  

A dominant data-driven algorithm for the task is the unsupervised Lesk 

algorithm (Lesk, 1986; Banerjee & Pedersen, 2002). The algorithms uses a 

similarity measure that compares the overlap in the words in the definition of the 

word sense in the dictionary (its gloss) and the words before/after the target word 

in the text (its text window of predefined size), and selects the word sense with 

the highest score. 

The task of WSD differs from ours in important ways that limit the 

portability of proposed solutions to our task. WSD solutions, for example, can 

assume that the provided lexical database (dictionary) will contain most word 

senses in the language. This assumption is largely valid because several 

electronic dictionaries, such as WordNet (Miller & al, 1993), exist with very broad 

lexical coverage. The Lesk algorithm will return a word sense for every word 

mention. For our task of concept mention linking on the other hand, one can 

assume that a large proportion of words will not be present in the ontology. 

Further, WSD‟s subtask of identifying which token sequences to deem as “words” 

is trivial, particularly in English, because dictionary words are typically composed 

of only one orthographic word or can be identified with a longest-matching-token-

subsequence heuristic. In our task the mentions can often be multi-word 

expressions that do not necessarily abide by the matching heuristic and (again) 

our ontology-based sense inventory is possibly incomplete. 

http://www.gabormelli.com/RKB/Lesk_Algorithm
http://www.gabormelli.com/RKB/Lesk_Algorithm
http://www.gabormelli.com/RKB/1986_AutoSenseDisambig
http://www.gabormelli.com/RKB/2002_AnAdaptedLeskAlgForWSDUsingWordNet
http://www.gabormelli.com/RKB/WordNet_Database
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3.3 Named Entity Recognition 

Another relevant task within lexical semantics is that of named entity 

recognition, NER, (Nadeau & Sekine, 2007) which requires the identification of 

proper nouns that refer to some set of basic categories such as person, protein, 

organization, and/or location. A seminal set of categories of was defined for the 

MUC-6 task (Grishman & Sundheim, 1996) and the CoNNL-2002 competition 

(Tjong Kim Sang, 2002) but has since been expanded a more granular 

categories (Jijkoun, 2008; Bunescu & Pasca, 2006). Examples of challenging 

names include words such as the location of “Java” (an island), the company 

“Amazon”, and the organization “the Ronald MacDonald charity”. A successful 

approach to corpus-based named entity recognition is the use of a trained 

sequential model based on conditional random fields, CRFs, (Lafferty & al, 

2001). (McCallum & Li, 2003) for example successfully apply a linear chain CRF.  

The task of named entity recognition resembles the task of concept 

mention identification in that named entity mentions are often multi-token 

sequences. As we will see in Section 5, we also propose the use of a CRF-based 

sequential model. A notable difference in that named entities have more natural 

surface features to draw on, such as the presence of capitalized first letters and 

non-letters, than exist for concept mentions. Further, the task of NER does not 

typically assume the presence of background knowledge – although sometimes it 

assumes the presence of simple listings of synonyms, gazetteers. Our proposal 

takes account of these differences by including features based on information 

drawn from the ontology. 

http://www.gabormelli.com/RKB/2007_ASurveyOfNER
http://www.gabormelli.com/RKB/1996_MUC6ABriefHistory
http://www.gabormelli.com/RKB/2002_IntroToTheCoNLL2002SharedTask
http://www.gabormelli.com/RKB/2008_NamedEntityNormInUserGenContent
http://www.gabormelli.com/RKB/2006_UsingEncyclKnowForNEDisambig
http://www.gabormelli.com/RKB/Conditional_Random_Fields_Metamodel
http://www.gabormelli.com/RKB/2001_ConditionalRandomFields
http://www.gabormelli.com/RKB/2001_ConditionalRandomFields
http://www.gabormelli.com/RKB/2003_EarlyResultsForNERwithCRFs
http://www.gabormelli.com/RKB/Linear_Chain_CRF
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The similarity between named entity recognition and the concept mention 

linking subtask is weaker that for identification because concept mentions, in 

general, are labeled from a very large set (of ontology concepts) not just a 

handful of categories. Further, concept mention linking has the special and 

possibly dominant label “?” to indicate an unknown category. Thus our proposed 

concept mention linking solution does not draw from this research area. 

3.4 Information Extraction with Lexico-Syntactic Patterns 

A similar task to ours that has received significant analysis is that of 

corpus-based information extraction which requires the population of a data 

structure based on the information available in a corpus (Sunita, 2008). Initially 

the research focused in the filling-in of predetermined “templates” such as a 

template for ORGANIZATION [name, headquarter location, ...], or PERSON 

[name, birthdate, ...] (Miller & al, 1998; Cardie, 1997). With the availability of the 

web as a corpus, less supervised solutions have been proposed that also extract 

some of the structure directly from the text (Banko & al, 2007). 

As a pre-processing step, information extraction system must identify 

token sequences in the text that represent entities and relations between the 

entities. One of the more successful approaches to this pre-processing is the use 

of extraction patterns based on the tokens near the candidate (tokens) under 

consideration, or that can include some syntactic information such as the part-of-

speech role: lexico-syntactic patterns. The use of such surface patterns for 

information extraction was suggested initially by (Hearst, 1992). A sample Hearst 

pattern is: “<Class> such as <Member1>, …, <Memberi>”. For the phrase 

http://www.gabormelli.com/RKB/1998_AlgsThatLearnToExtrInfBBN
http://www.gabormelli.com/RKB/1997_EmpiricalMethodsInInformationExtraction
http://www.gabormelli.com/RKB/2007_OpenIEfromTheWeb
http://www.gabormelli.com/RKB/Information_Extraction_Pattern
http://www.gabormelli.com/RKB/Lexical_Pattern
http://www.gabormelli.com/RKB/1992_AutomaticHyponymAcquisition
http://www.gabormelli.com/RKB/Hearst_Lexical_Pattern
http://www.gabormelli.com/RKB/Hearst_Lexical_Pattern


 

 22 

“Bacteria such as E.coli, P.aeruginosa and B.subtilis are commonly tested for…” 

the pattern can detect the semantic relations IsA(bacteria, E.coli), IsA(bacteria, 

P.aeruginosa), and IsA(bacteria, B.subtilis). Other patterns proposed by (Pantel 

& al, 2004) include: 

• <Class> like <Member1> and <Member2> 

• <Member> is a <Class> 

• <Class>, including <Member> 

• <Class>, especially <Member> 

• <Member> (<Class>) 

(Pantel & al, 2004) and (Etzioni & al, 2005) use surface patterns to identify 

homonyms and extract subsumption relations from very large corpora such as 

the Web. (Builtelaar & al, 2008) and (Magnini & al, 2006) use surface patterns to 

populate an ontology.  

A challenge to the use of manually designed extraction patterns is the ad 

hoc nature of constructing them for new types of concept and relation mentions. 

A solution to this challenge is the use of learning algorithms to produce the 

patterns (Pantel & al, 2009; Suchanek & al, 2006; Agichtein & Gravano, 2000). 

These proposals generally use bootstrapped weak-supervision based on a small 

number of training examples of the sought entities and relations. With these 

examples they look for likely mentions of them in the unannotated corpus, and 

then induce patterns to match these text segments. The patterns are tested 

against the corpus to assess their precision and the patterns that introduce too 

http://www.gabormelli.com/RKB/2004_TowardsTerascaleKnowledgeAcquisition
http://www.gabormelli.com/RKB/2004_TowardsTerascaleKnowledgeAcquisition
http://www.gabormelli.com/RKB/2004_TowardsTerascaleKnowledgeAcquisition
http://www.gabormelli.com/RKB/2005_UnsupNEExtrFromTheWeb
http://www.gabormelli.com/RKB/Lexical_Pattern
http://www.gabormelli.com/RKB/Homonymy_Relation
http://www.gabormelli.com/RKB/2008_OntologyBasedIEandIntegFromHeterDataSources
http://www.gabormelli.com/RKB/2006_OntolPopFromTextualMentions
http://www.gabormelli.com/RKB/Lexical_Pattern
http://www.gabormelli.com/RKB/2009_WebScaleDistrSimAndEntitySetExp
http://www.gabormelli.com/RKB/2006_CombiningLinguisticExtractRelations
http://www.gabormelli.com/RKB/2000_SnowballExtractingRelations
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many errors are discarded. An iterative (bootstrap) process is begun with the 

retained patterns by using them to extract new items from the corpus, assume 

that the extracted items are all correct, and then re-execute the process. 

A challenge for the direct use of these lexico-syntactic extraction patterns 

to our task is their conservativeness. These patterns exploit the redundancy in 

very large corpora where facts will eventually be stated (and re-stated) in just the 

way that the pattern is designed to catch. Our task however requires that every 

concept and every relation mention in a document be identified, but natural 

language allows for a multitude of irregular ways to express meaning. 

3.5 Named Entity Normalization in Biomedicine 

One of the early fields to actively investigate the application of information 

extraction techniques is that of Biomedicine (Zweigenbaum & al, 2007). The main 

reason for their interest is the significant value that bioinformaticians extract from 

databases on biomedical entities, such as proteins, and the fact that much of this 

information is „locked-up‟ in published papers. The focus of the field however, as 

in the BioCreAtIvE II benchmark task, remains on identifying named entity 

mentions, such as of molecules, genes, cellular locations, and organisms, and to 

then link (“normalize”) the mentions to entity-based databases, such as Swiss-

Prot, or the entities contained in Gene Ontology (Morgan & al, 2008). State-of-

the-art solutions to this task all make use large lists of synonyms for the sought 

entities (Fundel & al, 2007; Crim & al, 2005). Their challenge is to find ways to 

cope with the multitude of possible spellings and abbreviations.  

http://www.gabormelli.com/RKB/2007_FrontiersInBiomedicalTextMining
http://www.gabormelli.com/RKB/BioCreAtIvE_II_-_Gene_Normalization_Task
http://www.gabormelli.com/RKB/Named_Entity_Mention
http://www.gabormelli.com/RKB/Named_Entity_Mention
http://www.gabormelli.com/RKB/2008_OverviewOfBioCreativeIIGeneNorml
http://www.gabormelli.com/RKB/2007_RelExRelExtrUsingDepParseTrees
http://www.gabormelli.com/RKB/2005_AutoAnnotDocsWithNormalizedGeneLists
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3.6 Ontologized Information Extraction 

A related direction to normalization in biomedical text mining research is 

the “ontologization” of extracted entities proposed in (Pantel, 2005) and the 

ontologization of extracted relations proposed (Pantel & Pennacchiotti, 2008; 

Pennacchiotti & Pantel, 2006). Given an information extraction system‟s output of 

extracted terms and relations between the terms, the task is to link each of the 

terms to an ontology concept or relation. For example, given the output of 

PARTOF("Holland", "Europe") and PARTOF("Netherlands", "Europe") the proposed 

solutions must recognize that "Netherlands" and "Holland" refer to the same 

concept in the given ontology – their experiments use WordNet 2.0 as the 

ontology. Two unsupervised algorithms that use of a similarity function are 

proposed and evaluated on several relation types (PARTOF, SUCCESSION, and 

CHEMICALREACTION). 

An initial challenge to the application of the proposed algorithms to our 

concept-mention linking task is the assumption that extracted facts will have 

been extracted several times in the corpus. Given this assumption, the 

algorithms can exploit Harris‟ distributional hypothesis (Harris, 1954) that words 

are semantically similar to the extent to which they share syntactic contexts. 

Given several instances of PARTOF(Country, Continent) facilitates the detection 

of a syntactic similarity. In our task, a new document may result in fact types that 

have not been encountered before. A second challenge arises from the use of a 

similarity function and our likely scenario that the ontology is incomplete. For 

example, WordNet includes two word senses for “London”: the capital of England 

http://www.gabormelli.com/RKB/2005_InducingOntologicalCoOccurrVectors
http://www.gabormelli.com/RKB/2008_AutomaticallyHarvestAndOntologSemRels
http://www.gabormelli.com/RKB/2006_OntologizingSemanticRelations
http://www.gabormelli.com/RKB/WordNet_2.0
http://www.gabormelli.com/RKB/Harris%27_Distributional_Hypothesis
http://www.gabormelli.com/RKB/1954_DistributionalStructure
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and the author Jack London. It does not have the sense of London as a city in 

Ontario, Canada. The similarity function is forced to select one of the two 

available senses (likely the city sense). As we will show in Chapter 6:, our 

proposal is to train a classifier that can determine, in a sense, a situation specific 

threshold for when none of the candidate concepts is similar enough. 

3.7 Linking to Wikipedia 

The most similar applied task to ours that we have encountered is the 

recent thrust to identify and to link concept mentions that are described in 

Wikipedia (Cucerzan, 2007; Mihalcea & Csomai, 2007; Milne & Witten, 2008; 

Kulkarni & al, 2009). These proposals are document-centric rather than 

extraction-centric. The initial focus of the investigations was on reproducing the 

link mentions of named entities in a Wikipedia page; but the research has 

evolved to the identification of more general concepts and on text other than 

Wikipedia-style pages – typically news articles. While the proposed solutions are 

tailored to take advantage of Wikipedia‟s internal structures, such as category 

pages, disambiguation pages and list pages, they can naturally extended to work 

against a more general defined ontology, and thus be applicable to our task. In 

the following two sections, we review the proposals by (Milne & Witten, 2008) 

and (Kulkarni & al, 2009) in more detail. Both proposals apply some degree of 

supervised learning to the task, and both investigate features based on the 

context of the document. Neither solution addresses the task of relation 

identification. 

http://www.gabormelli.com/RKB/2007_LargeScaleNEDisambigBasedOnWikiped
http://www.gabormelli.com/RKB/2007_Wikify
http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
http://www.gabormelli.com/RKB/2009_CollectiveAnnotationOfWiki
http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
http://www.gabormelli.com/RKB/2009_CollectiveAnnotationOfWiki
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3.7.1 Supervised Balancing of Commonness and Context 

Given a mention that matches more than one Wikipedia page (Milne & 

Witten, 2008) propose the training of a supervised classifier that is based on 

three features. The first feature is based on how many Wikipedia pages link to 

the Wikipedia page under consideration (its commonness). The more popular the 

page, the more likely that it will be the correct page to link to. The two other 

features are based on the context of the document. First it assumes that some of 

the mentions in the document will require no disambiguation. Based on these 

mentions they propose the use of a semantic relatedness measure that averages 

the commonness over all unambiguous mentions11. When a mention has more 

than one prediction they apply the heuristic of selecting the one with the highest 

likelihood score. 

A challenge of applying their approach to the more general task of non-

Wikipedia documents is their requirement that some of the mentions in the 

document can be naturally linked to the ontology without the need for 

disambiguation (in order to provide the context for the relatedness features). 

Their two phase approach could benefit from a more conservative approach that 

continually increases the mentions that will be deemed as disambiguated, and for 

these context concepts to be decided by the same trained classifier. Also, they 

use a very limited feature set because they conceived of the learning step mainly 

as a data-driven means of setting a threshold on their three variables. 

                                            
11

 Because we incorporate (Milne & Witten, 2008)‟s context-based features we withhold a detailed 
description of the features until Section 6.4.7 

http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
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3.7.2 Document Features and Collective Features 

(Kulkarni & al, 2009) extends the link selection work of (Milne & Witten, 

2008) in two main ways. They add additional features based on the similarity 

between the bag-of-words representation of the text window surrounding the 

concept mention and the concept‟s description in the ontology. They also 

propose a more sophisticated scheme to handle the relatedness-based collective 

features. Specifically they propose the use of an objective function that sums up 

the probability estimate produced by the trained classifier (based on bag-of-word 

features) and the relatedness measure proposed in (Milne & Witten, 2008) tested 

on all pairs of candidate concepts. They empirically show that optimizing on the 

proposed function closely tracks F1-measure performance (on several of their 

test documents, as the value of their objective function increases so did F1 

performance). They explore two optimization algorithms for finding an optimal link 

assignment to the objective function. One algorithm is based on integer linear 

programming while the other based on greedy hill-climbing. 

Foreseen challenges to the application of this approach to our task include 

its use of the longest matching sequence heuristic for concept mention 

identification which will reject many candidate mentions. Also, updating the 

proposed objective function to include additional features and new definitions of 

relatedness could unwittingly degrade algorithm performance. 

3.8 Very Large Label Set Classification 

In the three remaining sections of this chapter we move away from 

application-based research to research into general algorithm topics within 

http://www.gabormelli.com/RKB/2009_CollectiveAnnotationOfWiki
http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
http://www.gabormelli.com/RKB/Integer_Linear_Programming_Algorithm
http://www.gabormelli.com/RKB/Integer_Linear_Programming_Algorithm
http://www.gabormelli.com/RKB/Greedy_Hill-Climbing_Algorithm
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supervised classification that relate to our task. The first area that we address is 

research into multi-class classification algorithms. Our main motivation for this 

topic is the linking phase of our supervised task which involves a very large label 

set, which can include every concept in the ontology. 

Large label sets are a known challenge for supervised classification 

algorithms (Dietterich & Bakiri, 1995; Breiman & al, 1984). One of the extensively 

investigated and defended mechanisms to handle such scenarios is to convert 

the problem to a binary classification one (Allwein & al, 2001); with two common 

approaches being the training a model for each class, OVA (Rifkin & Klautau, 

2004), or the training of a model for each pair of classes, AVA (Fürnkranz, 2002).  

Challenges to the application of these two generalized approaches to the 

task of concept linking include: 

1) Some classes in our test set will have few if any examples in the 

training set. The application of an OVA or AVA based approach would result in 

many concept mentions never being predicted. 

2) The number of classes in our task is far larger than that tested in 

the literature. The dataset with the most classes tested by (Rifkin & Klautau, 

2004) is the spectrometer dataset from the UCI repository12 with 48 classes. 

Our task could require thousands of classifiers to be trained which would likely 

result in a loss of performance because a large number of classifiers increase the 

                                            
12

 http://kdd.ics.uci.edu/ 

http://www.gabormelli.com/RKB/Thomas_G._Dietterich
http://www.gabormelli.com/RKB/Leo_Breiman
http://www.gabormelli.com/RKB/2001_ReducingMulticlassToBinary
http://www.gabormelli.com/RKB/2004_InDefenseOfOneVsAllClassification
http://www.gabormelli.com/RKB/2004_InDefenseOfOneVsAllClassification
http://kdd.ics.uci.edu/
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chances that one of the classifiers will falsely claim to be the correct answer, and 

because we do not expect to have large amounts of training data per class. 

Because of these two challenges we do not propose the direct application 

of OVA or AVA to our solutions. Instead we propose an approach more similar to 

the graph-edge prediction solution proposed in (Al Hasan & al, 2006) which we 

review in the next section. 

3.9 Graph-Edge Prediction 

Another relevant research area to the task is that of graph mining (Getoor 

& Diehl, 2005), specifically the prediction of whether two nodes are linked based 

on positive and negative examples of links. We focus the review on the work by 

(Al Hasan & al, 2006) which casts the problem as a binary classification task by 

creating feature vectors for each node pair and labeling the one that represents 

an existing link as TRUE. An additional contribution of theirs is an exploration of 

several different sources of information for predictive features ranging from 

topological features (such as the number of local edges) to intrinsic ones such as 

(matches between attribute-values). 

A notable difference between their task and ours is they allow for all graph 

nodes to have multiple links. The scenario they investigate is drawn from social 

network analysis where people can interact with many people. A citation network 

is a canonical example of this scenario, where authors often write papers with a 

variety other authors. In our case edges represent reference relations, and so a 

concept mention must only link to one referent concept node in the ontology. 

http://www.gabormelli.com/RKB/2006_LinkPredictionUsignSupervisedLearning
http://www.gabormelli.com/RKB/2005_LinkMiningASurvey
http://www.gabormelli.com/RKB/2005_LinkMiningASurvey
http://www.gabormelli.com/RKB/2006_LinkPredictionUsignSupervisedLearning
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Thus for our proposal we include in Section 6.6 an additional step of selecting a 

single link in situation where the classifier predicts more than concept for a 

mention. 

Finally, while (Al Hasan & al, 2006) point out that there is an inherent and 

significant skew of negative examples to positive examples, they only point to the 

literature on algorithms designed to handle classification in the presence of 

skewed data. We review this research area next. 

3.10 Classification Modeling with Skewed Data 

The final research area that we survey focuses on handling skewed 

training data where a few of the labels (possibly just one of the labels) are 

overrepresented, while the other labels are associated with few training cases. 

This topic is particularly relevant to us when we cast a problem as a binary 

labelling task, with most cases labelled as FALSE, and where a large number of 

mentions are labelled as UNLINKED. 

Two proposed approaches to handling scenarios with label skew are 

either to pre-process the data by undersampling the cases with a dominant label 

(Chawla & al, 2004); or, to apply an algorithmic remedy, such as the adjustments 

to kernel function definition (Wu & Chang, 2004; Morik & al, 1999). 

We use both approaches in our proposed solution. In Section 6.2, we 

present a heuristic that removes (undersamples) candidates from the training set 

that are likely to be FALSE. In Section 7.5, we adjust the SVM kernel to outweigh 

errors on TRUE cases more than on FALSE cases. 

http://www.gabormelli.com/RKB/2006_LinkPredictionUsignSupervisedLearning
http://www.gabormelli.com/RKB/Skewed_Training_Dataset
http://www.gabormelli.com/RKB/Skewed_Training_Dataset
http://www.gabormelli.com/RKB/2004_EditorialSpeclIssOnLearnImb
http://www.gabormelli.com/RKB/2004_AligningBoundaryInKernelSpace
file:///C:/Documents%20and%20Settings/PCuser/My%20Documents/_Projects/Thesis/03%20Related%20Work/1999%20CombiningStatisticalLearningWithaKBapproach
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3.11 Conclusion 

In this chapter, we reviewed the research that has most significantly 

influenced our solution to the task of supervised document to ontology 

interlinking. We focused our attention on the proposals by (Milne & Witten, 2008) 

and (Kulkarni & al, 2009), but also noted the relevant of sequential tagging 

models in named entity recognition (McCallum & Li, 2003) to the concept 

mention identification task, and the general need to support skewed data 

distributions. In the next chapter, we describe a dataset that we have created 

which will make the task more concrete and provide working examples for 

subsequent chapters.  

http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
http://www.gabormelli.com/RKB/2009_CollectiveAnnotationOfWiki
http://www.gabormelli.com/RKB/2003_EarlyResultsForNERwithCRFs
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4: THE KDDO1, KDD09CMA1 AND ICDM09CMA1 DATASETS 

“.. In 1993, very few scientific, technical, and medical (STM) journals had an electronic 

version, and yet by 2003, virtually all of them did.” (Renear & Palmer, 2009) 

This section describes three novel real-world datasets created to evaluate 

the proposed task. We describe the resource prior to the description of the 

proposed algorithm in order to draw examples from the resource in describing 

the algorithm. The datasets are an ontology for the field of data mining, and two 

annotated corpuses of research paper abstracts, also from the field of data 

mining. The corpuses and ontology are publicly available13 and summarized 

below. To our knowledge, this is the first ontology and annotated corpora for a 

computing discipline. 

4.1 The kddo1 Data Mining Ontology  

The kddo1 ontology is based on a custom built semantic wiki14 created 

specifically for the field of data mining and text mining by the author. In the wiki, 

each concept has its own distinct page15 and follows the structured English 

approach described in (Melli & McQuinn, 2008). Each concept contains: 1) A 

preferred name; 2) A one sentence definition in the form of “an X is a type of Y 

                                            
13

 http://www.gabormelli.com/Projects/kdd/data/ 
14

 A semantic wiki is a wiki that captures semantic information in a controlled natural language 
that enables the generation of a formal machine-processable ontology http://www.semwiki.org/ 

15
 For example, http://www.gabormelli.com/RKB/Information_Extraction_Task  

http://www.gabormelli.com/RKB/1993
http://www.gabormelli.com/RKB/STM_Journal
http://www.gabormelli.com/RKB/Electronic_Document
http://www.gabormelli.com/RKB/2003
http://www.gabormelli.com/RKB/STM_Journal
http://www.gabormelli.com/RKB/2009_StrategicReadingOntsAndTheFutOfSciPub
http://www.gabormelli.com/Projects/kdd/data/
http://www.semwiki.org/
http://www.gabormelli.com/RKB/Information_Extraction_Task
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that …”; 3) A set of possible synonyms; 4) A set of relationships to other 

concepts stated in structured English; 5) A set of sample instances of the 

concept; 6) A set of counter-examples of the concept; 7) A set of related terms 

whose relationship has not been formally defined; and 8) a set of relevant 

external references for the concept. Table 2 summarizes some statistics of the 

ontology. 

Table 2– Summary statistics of the kddo1 ontology 

CONCEPTS 5,067 

INTERNAL LINKS 27,408 

 MIN MEDIAN MAX  

LINKS INTO A CONCEPT 0 3 157 

LINKS OUT OF A CONCEPT 2 3 444 

SYNONYMS PER CONCEPT 0 1 8 

4.2 The kdd09cma1 Annotated Corpus 

The author has also created an annotated corpus, kdd09cma1, in order to 

evaluate the proposed algorithm. Additional motivations for the creation of the 

corpus include the lack of similar resources, and the possibility that this corpus 

could be the seed of a valuable and naturally expanding corpus. 

The kdd09cma1 corpus is composed of the 139 abstracts for the papers 

accepted to ACM‟s SIGKDD conference, which took place in 2009 (KDD-2009)16. 

The competitive peer-reviewed conference on the topic of data mining and 

knowledge discovery from databases has acceptance rates in the range of 20% -

25%. The annotation of the corpus (identification and linking of concept 

mentions) was performed in two separate phases. We first identified mentions of 

                                            
16

 The KDD-2009 abstracts are freely accessible from ACM‟s Digital Library 
http://portal.acm.org/toc.cfm?id=1557019  

http://portal.acm.org/toc.cfm?id=1557019
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the most specific concepts understood or used within the data mining community. 

This phase was performed without consideration for what concepts existed in the 

kddo1 ontology. Next, an attempt was made to link the mentions to the concept 

in the ontology that stood for the intended concept in the mention. On average, 

the identification task took approximately 6 minutes per abstract, while the linking 

task took approximately 17 minutes per abstract. To evaluate the quality of the 

annotation, sixteen abstracts were randomly selected and the paper‟s author was 

asked to review the annotation. Fourteen authors responded and simply 

accepted the annotation as is. 

The corpus bears similarities to corpora from the bio-medical domain such 

as the GENIA17 and BioCreAtIvE18 that are based on research paper abstracts 

found in MEDLINE abstracts and the terms are linked to concept in some 

ontology. Those corpora however focus on the annotation of basic named 

entities such as molecules, organisms, and locations. The kdd09cma1 corpus on 

the other hand contains very few named entities. Being from a formal science, its 

concept mentions range from single token ones such as “mining” to multi-token 

ones such as “minimal biclique set cover problem”. Also, in cases where named 

entities do appear they often are embedded within an abstract concept mention, 

as in “Gibbs sampling method”. The text was tokenized and assigned a part-of-

speech role by using Charniak‟s parser [3]. Table 3 summarizes some key 

statistics about the corpus. 

                                            
17 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA  
18 http://biocreative.sourceforge.net/  

http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA
http://biocreative.sourceforge.net/
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Table 3 – Summary statistics of the kdd09cma1 corpus, including the minimum, median, 

and maximum per abstract. 

DOCUMENTS 139 
PER DOCUMENT 
(min|med|max) 

SENTENCES 1,186    3 |    8|  17 

TOKENS 29,139 105 |220| 367 

CONCEPT MENTIONS (100%)    7,580  26 |  52|  96 

  SINGLE TOKEN (~66%)    5,001  12 |  35|  65 

  MULTI TOKEN (~33%)    2,579    4 |  18|  38 

 

Given the novelty of the corpus and ontology, Table 4 summarizes some 

additional key statistics of the linking (external links) between the corpus and 

ontology. 

Table 4 – Summary statistics of the external links from the kdd09cma1 corpus to the 

kddo1 ontology.  

DOCUMENTS 139 
PER DOCUMENT 

(min/median/max) 

LINKED MENTIONS 51.7%   3,920 10 | 26 | 66 

UNLINKED MENTIONS 48.3%   3,660   3 | 25 | 49 

DISTINCT CONCEPTS LINKED TO 

BY CORPUS 
820   9 | 19 | 50 

CONCEPTS UNIQUELY LINKED TO BY A SINGLE 

DOCUMENT 
0 |   2 | 17 

 

4.3 The icdm09cma1 Annotated Corpus 

A second corpus we present is one composed of twenty two manually 

annotated abstracts from the papers accepted into IEEE‟s annual conference on 

data mining in 2009 (ICDM‟0919). 

                                            
19

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?reload=true&punumber=5360037 
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For this corpus, seven data mining experts20 participated in the annotation. 

To ensure that most abstracts would be annotated by more than one person and 

that each person would annotate an abstract from a topic that they were 

comfortable in, we followed the following procedure. First, sixteen abstracts were 

randomly selected (from the 13921 accepted papers), and each annotator was 

requested to select five abstracts of interest to them from this list. Their selected 

abstracts were then ranked according to the number of annotators who selected 

it, and each person was asked to annotate at least two abstracts in this order. 

Some of the abstracts were pre-annotated either by the proposed SDOI algorithm 

or by the baseline algorithm based on (Milne & Witten, 2008). The first abstract 

was always pre-annotated in order to familiarize the person with the complete 

annotation process. 

We created an annotation environment based on the semantic wiki that 

houses the kddo1 ontology. Wiki-style annotation identifies text with double 

brackets, e.g. “...a log fn was...”  “... a [[log fn]] was...”. Further, wiki-style allows 

the linking of bracketed (anchor) text to a webpage by inserting the page name 

and a “|” character to the left of the text, e.g. “... a [[log fn]] was...”  “... a  [[Log 

Function|log fn]] was...” The annotation environment is crude but realistic given 

that thousands of people use this annotation style and technology daily to edit 

pages on wikis such as Wikipedia.  

Annotators were asked to follow a four-step procedure: 

                                            
20

 Includes four active computing science graduate students, two former graduate students, and a 
professor who specialize in data mining research 

21
 By coincidence, both KDD‟09 and ICDM‟09 accepted an identical number of papers: 139. 

http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
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1) Read the abstract on the official IEEE webpage for the paper; 

2) Identify and annotate concept mentions (without referencing the 

ontology); 

3) Link mentions to their first best guess of the concepts preferred name 

in the ontology; 

4) Revise their annotations based on active search of the ontology (either 

by hyperlink navigation or by keyword search). 

Eleven abstracts were annotated by more than one person: ranging from 

five abstracts by four annotators, to two abstracts by two annotators. The author 

reviewed the annotated abstracts and then created a single ground truth version 

of each abstract. 

Finally, eleven additional abstracts were randomly selected an annotated 

by the author in order to increase the total number of available documents to a 

larger quantity of documents that would result in performance estimates with 

stronger statistical confidence. 

4.3.1 Inter-Annotator Agreement 

This section analyzes the general agreement between the annotated 

documents produced by the annotators, and the single version of each document 

that is based on a consolidation of their inputs. We assess agreement by 

measuring the accuracy of each manually annotated abstract with respect to its 

consolidated version22. 

                                            
22

 The few abstracts per annotator make it infeasible to characterize individual performance bias. 
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A complication to the measurement of inter-annotator agreement was the 

“learning curve” associated with the annotation process. We noticed that the 

annotators annotated their first abstract more slowly, and the annotation resulted 

in lower agreement, than each of the other documents that they annotated. To 

account for this effect, we generally report results both on the entire annotated 

set and on a set that excludes the first abstract to be annotated by an annotator. 

Table 5, for example, reports the inter-annotator agreement with both sets. On 

average, 65.8% or each person‟s annotations were identical to the consolidate 

version. When the first abstract is removed the agreement increases to an 

accuracy of 71.8%. From this analysis, we infer that 70% is a more realistic 

maximum accuracy to expect from an automated solution than a 100% ideal 

accuracy23. 

Table 5 – Average accuracy of the annotator‟s abstract versus the consolidated “gold” 
annotation. The second row accounts for the annotator‟s “learning curve” by 
excluding the first abstract processed by each annotator. 

 

 

Table 5 also reports performance based on a loosened definition of 

accuracy that does not require an exact match between the annotated concept 

and the predicted one. We define a “partial (near) match” to occur when the 

predicted concept is directly linked to the concept that the annotator linked to, 

                                            
23

 We note that the “learning curve” persists to a lesser degree on their future abstracts, therefore 
we believe that the estimates of human performance underestimate their true long-term 
performance 

Match type: Exact Partial

All abstracts 65.8% 66.9%

First abstract withheld 71.8% 72.8%
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and further, that the annotated concept is also directly linked to the predicted 

concept. This definition is intended to captures some of the subjectivity that is 

encountered during annotation when there is ambiguity exactly which concept 

the writer meant to express in the text. On the icdm09cma1 corpus, for example, 

a term in the text such as “collaborative filtering” can be difficult to disambiguate 

as to whether the mention refers to a COLLABORATIVE FILTERING ALGORITHM or a 

COLLABORATIVE FILTERING TASK. However, since a direct link exists between the 

two concepts in the ontology predicting either one would result in a “near match”. 

Certainly, this loosened definition will also however lead to crediting 

unambiguously incorrect predictions. As expected, the loosened definition of a 

match increases the ensuing calculation of „accuracy‟. We note that there is an 

approximately 1% increase in accuracy when based on a “partial (near) match”. 

4.4 Conclusion 

In this chapter we presented an ontology (kddo1) and two annotated 

corpuses (kdd09cma1, icdm09cma1) from the data mining domain that we have 

created to evaluate the task for document to ontology interlinking. The two 

corpuses are based on abstracts drawn from the KDD-2009 and ICDM-2009 

conferences. Each of the abstract‟s concept mentions have been manually 

identified and subsequently linked to a concept in the data mining ontology. With 

this data we can evaluate the performance of the three component algorithms of 

our proposed solution to the task that we now turn our attention to in the next 

three chapters.  

http://www.gabormelli.com/RKB/Collaborative_Filtering_Algorithm
http://www.gabormelli.com/RKB/Collaborative%20Filtering%20Task
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5: FULLY-SUPERVISED CONCEPT MENTION 
IDENTIFICATION: SDOICMI 

This chapter begins the description of our proposed solution to the task of 

document to ontology interlinking. We start with our proposed algorithm for the 

task of supervised concept mention identification: SDOICMI and its empirical 

evaluation on the kdd09cma1 corpus. Our main contributions in this chapter are 

to initiate the principled supervised solution to the overall task; and to propose a 

solution that can identify spans of text as concept mentions that are not explicitly 

represented in the ontology, as currently required by baseline solutions. 

5.1 Proposed Approach 

To identify concept mentions in a document we propose the use of a 

supervised sequential tagging algorithm based on linear-chain conditional 

random fields (Lafferty & al, 2001). Motivations for this approach to the task 

include its successful application to the similar tasks of syntactic chunking (Sha & 

Pereira, 2003) and of named entity recognition (McCallum & Li, 2003). Also, 

unlike the longest-matching substring heuristic generally used in the literature 

that requires the text span to be predefined in the ontology, this approach 

enables the identification of novel text spans as the anchor text of candidate 

mentions. The approach enables SDOICMI to be also applied in complex domains 

where ontologies are incomplete (and evolving), and where concept mentions 

can often be expressed with many different token sequences. 

http://www.gabormelli.com/RKB/2003_ShallowParsingWithCRFs
http://www.gabormelli.com/RKB/2003_ShallowParsingWithCRFs
http://www.gabormelli.com/RKB/2003_EarlyResultsForNERwithCRFs
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A trained linear-chain CRF is a undirected conditional probability network 

with jointly distributed random variables that provides the conditional probability 

P(Y|X) of a label (tag) sequence y = y1,...,yn given a corresponding input token 

sequence x = x1,...,xn. The structure of a linear-chain CRF on (X, Y) is defined by 

a feature vector, f, and a corresponding weight vector, λ. Each dimension of the 

feature vector is associated to a set of binary-valued functions (features), b(x, i), 

that express some property of the empirical distribution of the training data that is 

expected to remain valid in the model distribution. 

In the next section we define how sequences are to be labeled, and then 

continue with the definition of the features proposed for our task 

5.2 Label Assignment 

We propose the use of IOB tagging to our task (Ramshaw & Marcus, 

1995). In IOB tagging a “B” label denotes the token that begins a span; the “I” 

label denotes an intervening token in the span; and the “O” label denotes any 

token that is outside a span – where a “span” in our case refers to the “anchor 

text” or a concept mention24. Figure 3 illustrates the labels used to identify 

concept mentions in a sample passage. 

                                            
24

 Empirical analysis by (Tjong Kim Sang & Veenstra, 1999) suggest that performance on text 
chunking is minimally affected by alternate label assignments, such as IOE where ti end ("E") 
of the segment is demarcated. 

http://www.gabormelli.com/RKB/Linear-Chain_Conditional_Random_Field
http://www.gabormelli.com/RKB/Undirected_Conditional_Probability_Network
http://www.gabormelli.com/RKB/Joint_Distribution
http://www.gabormelli.com/RKB/Random_Variable
http://www.gabormelli.com/RKB/IOB_Tagging_Task
http://www.gabormelli.com/RKB/1995_TextChunkingUsingTransfBasedLearning
http://www.gabormelli.com/RKB/1995_TextChunkingUsingTransfBasedLearning
http://www.gabormelli.com/RKBW/index.100817q.cgi/1999_RepresentingTextChunks
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Figure 3 – Sample of the first sentence in Figure 1 labelled for concept mention 
identification. 

Collaborative/B filtering/I is/O the/O most/O popular/O 

approach/B to/O build/O recommender/B systems/I and/O 

has/O been/O successfully/O employed/O in/O many/O 

applications/B ./O 

 

5.3 Feature Space 

We propose eight features for the sequential tagging model: five based on 

information about the token themselves, and three that draw on information from 

the ontology.  

The first two (of five) token-based features that we propose are: (Token), 

the token itself, and (POS), its part-of-speech role25. These two features are 

commonly used in supervised text segmentation tasks (Sha & Pereira, 2003). 

The three other token-based features that we proposed are: (CAP) whether the 

first letter is capitalized, (sChar) whether a token contains a number or a special 

character, and (fourC) whether the token contains fewer than four characters. 

These three additional features are commonly used for named entity recognition 

tasks (Nadeau & Sekine, 2007), and while our task is not focused on named 

entities we do not precluded their presence in the text and the ontology. 

Finally, given the availability of a domain-specific ontology, we propose 

three features O1, O2, and O>2 that indicate whether a text token appears in the 

ontology within any single-token, two-token, or greater than two-token preferred 

name. We borrow this approach from prior work in supervised named entity 

                                            
25

 While the token‟s POS is not available from our text data directly, the use of an automated part-
of-speech tagger is accepted practice. 

http://www.gabormelli.com/RKB/2003_ShallowParsingWithCRFs
http://www.gabormelli.com/RKB/2007_ASurveyOfNER
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recognition that addresses the availability for large lists names (Minkov & al, 

2005; Tsai & al, 2006). 

Table 6 presents a sample sequence, the corresponding feature 

(unbinarized) values, and label. 

Table 6 – Sample text sequence along with the associated features (the Token and POS 
features would be binarized) 

Token POS CAP sChar fourC O1 O2 O>2 Label 

f1(x) f2(x) f3(x) f4(x) f5(x) f6(x) f7(x) f8(x) f(y) 

Collaborative JJ 1 0 0 0 1 1 B 

filtering VBG 0 0 0 1 1 1 I 

is AUX 0 0 1 0 0 1 O 

the DT 0 0 1 0 0 1 O 

most RBS 0 0 0 0 0 0 O 

popular JJ 0 0 0 0 0 0 O 

approach NN 0 0 0 1 1 1 B 

to TO 0 0 1 0 0 0 O 

build VB 0 0 0 0 0 0 O 

recommender NN 0 0 0 0 1 1 B 

systems NNS 0 0 1 1 1 1 I 

and CC 0 0 1 0 0 1 O 

has AUX 0 0 1 0 0 0 O 

been AUX 0 0 0 0 0 0 O 

successfully RB 0 0 0 0 0 0 O 
employed VBN 0 0 0 0 0 0 O 
in IN 0 0 1 0 0 0 O 

many JJ 0 0 0 0 0 0 O 

applications NNS 0 0 0 1 0 0 B 

. . 0 1 1 0 0 0 O 

 

Another common practice in the application of CRFs to tagging text 

sequences is to apply the features on the nearby tokens. The use of five token 

wide text window is common (Nadeau & Sekine, 2007). Similarly, bigram and 

trigram combinations of the features are commonly used. We also use a five 

token window and test on unigram, bigram and trigrams combinations. 

http://www.gabormelli.com/RKB/2005_ExtractingPersonalNamesFromEmail
http://www.gabormelli.com/RKB/2005_ExtractingPersonalNamesFromEmail
http://www.gabormelli.com/RKB/2006_IntegratingLingKnowIntoACRF
http://www.gabormelli.com/RKB/2007_ASurveyOfNER
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5.4 Empirical Evaluation of Concept Mention Identification 

In this section, we empirically evaluate the performance of the proposed 

concept-mention identification algorithm, SDOICMI. For this evaluation, we used 

the CRF++ package26, with its default parameter settings, to train the models. 

5.4.1 Evaluation Setup 

We assessed performance on the kdd09cma1 corpus by using of a leave-

one-document-out approach. For each document we train a model on the other 

(138) documents, apply the model to the held-out document, and evaluate the 

predicted concept mentions with the evaluation script from the CONLL-2000 text 

chunking shared task27 which reports the achieved recall, precision, and F1 

rates. Performance was further evaluated on predicted mentions that started on 

the correct token but ended on a different token – which we refer to as “partial 

matches”. Overall performance is based on the average of the corresponding 

metric on the 139 holdout tests. The process was similarly followed for a 

dictionary-based baseline algorithm.  

5.4.2 Baseline Definition 

The baseline algorithm that we use to compare against on the concept 

identification task is an unsupervised dictionary-based approach (dict) that 

heuristically selects the longest token subsequence in the text that matches a 

concept‟s preferred name or synonym (raw or stemmed28). This is the 

identification method used in (Kulkarni & al, 2009) and in the experiments by 

                                            
26

  http://crfpp.sourceforge.net/ 
27

 http://www.cnts.ua.ac.be/conll2000/chunking/conlleval.txt. 
28

 We used the Porter stemmer in http://tartarus.org/martin/PorterStemmer/ 

http://crfpp.sourceforge.net/
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(Milne & Witten, 2008) on non-Wikipedia documents. For our task, which involves 

a nascent ontology for a complex domain, we expect this baseline to achieve 

poor recall rate because it cannot identify concept that are not yet in the 

ontology, nor ones with alternative spellings. 

5.4.3 Full Data Analysis 

Table 7 reports the performance results on the leave-one-document out 

analysis. SDOI outperforms the baseline on all metrics, with relative differences 

(lift) in performance measures ranging from 34% to 67%. In general, the lift is 

higher for precision than for recall29. 

We attribute SDOI‟s superior performance to its sequential model‟s ability 

to identify mentions not in the nascent ontology. Certainly, as more concepts and 

synonyms are added to the ontology, the longest subsequence heuristic‟s recall 

would improve. However, at the same time, the baseline‟s precision may also 

drop when able to guess at more predictions. 

Table 7 – Average and relative (lift) concept mention identification performance (Precision, 
Recall, and F1-Score) of the baseline and SDOI algorithms on kdd09cma1, and 

under exact and partial matching criteria. 

 

                                            
29

 Note that SDOI„s recall performance can be traded-off for additional recall performance, by 

accepting predictions with a lower expected likelihood probability. 

P R F1 P R F1

SDOI 70.8% 67.3% 69.0% 82.7% 78.6% 80.6%

dict 51.9% 40.2% 44.8% 61.5% 50.4% 54.1%

lift 36.4% 67.3% 54.0% 34.4% 56.0% 48.9%

Exact Match Partial Match

http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
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5.4.4 Learning Curve Analysis 

In addition to the performance evaluation on the entire training corpus, we 

evaluated F1 performance on subsets of the training data in order to provide 

insight into the real-world effect of having access to additional annotated data. 

We again perform hold-one-document-out, but continually reduce the proportion 

of the dataset used: one-half, one-third, one-quarter, and so on30. For each 

proportion set, we average the performance on each of the training sets and 

average the number of concept mentions in the training documents. Because the 

heuristic baseline‟s performance is unaffected by additional training we simply 

retain the performance results reported in the previous section. In this analysis, 

we also investigate the effect of a reduced feature set. Figure 4 presents the 

results. 

5.4.5 Observations 

As expected from a supervised learning solution, additional training data 

results in increased F1 performance, with the rate of F1 improvement rapidly 

slowing. A learning curve will eventually „plateau‟ given sufficient training data, 

however as Figure 4 shows, the kdd09cma1 training corpus does not contains 

sufficient annotated data to reach SDOICMI‟s performance plateau. A simple 

extrapolation however suggests that it would require one order of magnitude of 

additional training data to reach this plateau for partial match performance – two 

orders of magnitude of additional data for exact match. 

                                            
30

 We randomly assign documents to the training subsets and test on each of the remaining 
documents. Starting with the proportion of one-eighth only five subsets are created to speed up 
the process while still achieving a stable estimate. 
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Figure 4 – Log-scale learning curve analysis of SDOI‟s and the baseline‟s F1 performance 

on the kdd09cma1 dataset under exact and partial match criteria. For SDOI two 

features spaces: complete and abridged (only POS and token) 

The trend supports the recent dictum within the statistical NLP community 

that “there is no data like more data”. While few domains or organizations can 

justify the resources required for this amount of annotation, we will see in the 

next section that the generated models both may be portable across corpuses 

and may be used to reduce annotation time. These two outcomes suggest that 

organizations could pool their annotation efforts to improve overall performance 

and speed-up the annotation31. 

                                            
31

 For example the organizations that organized the KDD, ICDM, PKDD, PAKDD, and SIAM 
conferences could pool their annotation work and achieve better performance. 
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We observe that SDOI‟s F1 performance overtakes that of the baseline 

after approximately 30 to 50 annotated concept mentions have been trained on. 

This information can be used to determine the minimal amount of effort required 

to invest in the approach when applying it to other domains (assuming that the 

data in other domains behaves in a similar manner). 

The use of all of the proposed features results in higher performance than 

when only the two most commonly used features (the token and part-of-speech 

tag) are used. Interestingly however, as Figure 4 illustrates, the relative benefit in 

performance shrinks as more data is made available, and becomes marginal 

once the entire kdd09cma1 corpus is available for training. This shrinking benefit 

from feature engineering, along with the distant performance plateau suggests 

that future research could focus more on ways to reduce the effort required to 

annotate mentions rather than on improvements in the feature space. 

Finally, there is a significant and persistent lift in performance when 

partially matched multi-token mentions that start on the same token but end at a 

different one are accepted. We address this difference in F1 performance in the 

next section. 

5.5 Analysis on Misclassifications 

In this section, we review examples of misclassified concept mentions 

from the kdd09cma1 corpus in order to better understand the performance 

results. The misclassified multi-token examples are presented in Figure 5. In all 

examples, SDOICMI detected the correct starting token, and often the final token 



 

 50 

as well. A common pattern within these misclassified multi-token examples is that 

mentions are largely being divided at different spots by the annotator and the 

algorithm. These differently divided mentions clearly would affect the concept 

that it would be linked to, but they may still result in link to relevant concepts. For 

example, the manually annotated mention of “user-generated content site” is split 

by SDOICMI into two concept mentions “user-generated” and “content site”.  

This pattern suggests an explanation of why the “partial match”-based 

comparison achieved such significantly higher F1 results in the learning curve 

analysis shown in Figure 4. Under an exact match criteria these mentions would 

often result in three penalties: either two false negatives (FN) and one false 

positive (FP) assessment, or one false negative (FN) and two false positives 

(FP). Under the partial match criteria, these mentions would results in one credit 

and one penalty: one true positive (TP) and either one false negative (FN) or one 

false positive (FP). The approach of a single penalty may be relevant to some 

settings. Imagine for example that a person had to review and „fix‟ a mistake 

made by SDOICMI. Depending on the annotation interface, the examples below 

suggest that the annotator could more quickly determine and remedy the 

problem than have to both identify the start token and end token and then 

determine if the span of text also required to be further subdivided. 

Under the strict exact-match criteria, the challenge appears to focus on 

correctly identifying whether the mention is to be divided and where the division 

occurs. We had envisioned that the inclusion of ontology-based features would 

provide a sufficiently strong signal to classifier to make this decision. Future work 
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may investigate the use of semi-Markov CRFs (Sarawagi & Cohen, 2004) in 

which labels are assigned to segments (not tokens). Further, it would be 

interesting to feedback the information about the more confident predictions by 

the linking and relation identification solutions that will be presented in the next 

two chapters. 

Figure 5 - Sample passages from kddcma1 that contain misclassified multi-token concept 

mentions. The underlined text represent the manual annotations; the lines 
above the text SDOI‟s predicted mention boundaries. The bolded tokens 
represent segments that are deemed as partial matches. The thicker lines 
represent linked anchor text while the thinner lines represent unlinked 
mentions (again, predicted on top and manual on bottom). 

` 

a) ... on user-generated content sites ...  

b) ... , transfer learning employs knowledge from .... 

c) ... in recommender system settings ... 

d) ... novel semi-supervised boosting algorithms that ... 

e) ... All Netflix Prize algorithms proposed ... 

f) ... to predictive-modeling holdout evaluation ... 

g) ... on eigen equation compression , ... 

h) ... useful accurately labeled instances . ... 

i) ... collaborative filtering recommendation approaches ... 

j) ... in historical search session logs . 

k) ... than approximate spectral clustering based on ... 

l) ... of prequential error estimators ... 

m) ... the multi-relational data mining framework is ... 

n) ... the UCI machine learning repository . 

 

 

http://www.gabormelli.com/RKB/2004_SemiMarkovCRFforIE
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5.6 Conclusion 

In this chapter, we presented the SDOICMI supervised algorithm for the task 

for concept mention identification. The algorithm applies a supervised sequential 

tagging algorithm to the task based on eight proposed features drawn from the 

text and ontology. We evaluated the algorithm on the kddcma1 dataset using a 

leave-one-document-out framework and demonstrated a significant performance 

improvement over a longest-matching token sequence baseline algorithm. We 

investigated some of the misclassification errors and that one of the main 

challenges is the identification of the splitting point of multi-token mentions. 

Given identified concept mentions we can now turn to the challenge of 

linking the mentions to a concept in a relevant ontology. 
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6: FULLY-SUPERVISED CONCEPT MENTION LINKING: 
SDOICML 

In this chapter, we transition our investigation from the supervised 

identification of concept mentions within a text to the task of linking identified 

concept mentions to a concept within an ontology, where possible. The chapter 

begins with a definition of our proposed algorithm for the task and concludes with 

a report on an empirical evaluation of the algorithm‟s performance. Our main 

contributions are: a continuation of the principled supervised approach to the 

task; a demonstration that when connected into a pipeline our proposed concept 

mention identification SDOICMI and linking SDOICML algorithms outperform baseline 

algorithms; and, also in this chapter we demonstrate that SDOI can reduce the 

amount of time required by annotator to annotate a document. 

6.1 Proposed Approach 

We propose the use of a fully-supervised classification algorithm to solve 

the concept mention linking task. The basic approach is to train a classification 

model on the training corpus and then use the model to predict the “class” (the 

ontology concept) of a concept mention in an unseen document. The use of a 

supervised algorithm to directly predict the ontology concept however is 

complicated by the very large number of classes (ontology concepts) that can be 

predicted and by the fact that many of the classes that will be encountered in test 

documents will not be represented in the training data. To overcome this 
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challenge we propose the transformation of the problem to a binary classification 

one in which the prediction is whether a given concept from the ontology 

represents the correct or incorrect (TRUE or FALSE) link for the concept mention. 

Finally, in special cases where a concept mention is associated with more than 

one concept that is predicted to be TRUE for it, we define a mechanism to select 

one of the concepts32. 

Our proposed approach enables the application of any one of the many 

successful state-of-the-art binary classification algorithm in existence, and also 

employs a feature space which can be expanded on in the future as additional 

information becomes available that appears to be relevant to the classification 

task. A challenge of the proposal however is the skewed dominance of FALSE 

labeled training examples over TRUE labeled ones. For this challenge we propose 

a filtering heuristic that substantially reduces the number of FALSE labeled 

examples with minimal culling impact on the TRUE labeled examples. 

Procedurally the algorithm is structured as follows: 1) a set of candidate 

concepts is associated with each mention, 2) a set of features is associated with 

each candidate, 3) a binary classifier is trained with a supervised classification 

algorithm, and 4) a selection heuristic is applied when more than one TRUE 

prediction is made for a mention. 

                                            
32

 The approach is akin to the supervised graph-edge prediction of (Al Hasan & al, 2006) that 

reviewed in Section 3.8. Recall however that their task did not require a single link/edge to be 
added between nodes; and they do not directly address the label skew challenge. 

http://www.gabormelli.com/RKB/2006_LinkPredictionUsignSupervisedLearning


 

 55 

6.2 Training Example Filtering 

While a concept mention could be linked to any one of the many concept 

in the ontology, we suggest that knowledge of the mention‟s anchor text can 

inform a filtering rule that significantly reduces the number of concepts to be 

realistically be considered as candidates for the evaluation – with low likelihood 

of discarding the correct (TRUE) concept to link to in the process. As an example, 

assume that a concept mention contains the anchor text composed of the single 

token of “features” then its candidate concept set could reasonably include 

concepts such as PREDICTOR FEATURE, APPLICATION FEATURE, and DATA TABLE 

ATTRIBUTE (one of which ideally is the correct concept for the mention), and could 

reasonably exclude irrelevant concepts such as: HIDDEN MARKOV MODEL, LINEAR 

DISCRIMINANT ANALYSIS, and thousands of other unrelated concepts. In this 

section, we define a filtering heuristic that determines which concepts in the 

ontology are considered as candidates for a given concept mention. 

We refer to the set of concepts associated to the anchor text of a concept 

mention as its candidate set which is composed of zero or more distinct concepts 

from the ontology:  am → Cm = {, oc’, oc”, …}. The proposed heuristic is based on 

a set of eight (8) individual TRUE/FALSE tests that directly compare the concept 

mention‟s anchor text against some information about the concept ti(am, oc). The 

overall heuristic accepts the union of all concepts that are accepted by any one 

of the selected tests. Note that while this section proposes eight tests, the actual 

subset of these tests that will be proposed for SDOI will be determined 

empirically (see Section 6.7.3). 
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The first test we propose, t1, simply requires an exact match between the 

anchor text and the preferred name of the concept. The second test, t2, extends 

this pattern and requires that the anchor text exactly match any one of the 

concept‟s pre-identified synonyms (e.g. as materialized in the redirect pages in 

Wikipedia). These two tests {t1, t2,} allow for the replication of the approach 

proposed in (Milne & Witten, 2008; Kulkarni & al, 2009). 

In more specialized domains, that involve complex multi-token concept 

mentions and ontologies with incomplete synonym sets, however, these first two 

tests would result in a weak recall rate of the correct concept. An anchor text 

such as “supervised learning of a sequential tagging model” for example, would be 

very likely excluded. To increase the number of relevant candidates we define 

two additional candidacy tests for consideration. 

Another test that we propose, t3, probes into the documents in the training 

corpus to determine whether the anchor text was also linked to this concept. For 

example, if the training corpus has the phrase “supervised learning of a sequential 

tagging model” identified as a concept and linked to a concept then would detect 

the sequence again in a future test document.  

Because many of the concept mentions and concept synonyms are 

composed of more than one token, the final primary test that we define, t4, 

accepts a concept where any of the component tokens match. Table 8 

summarizes the four primary tests of candidacy. 

http://www.gabormelli.com/RKB/Concept_Name
http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
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Table 8 – the primary tests used to determine whether concept (oc) becomes a member of 
the candidate concept set (Cm) for anchor text (am). 

 

 

Finally, each of the four primary tests is associated with an alternative test 

that instead uses the stemmed versions of the text being compared. We denote 

these „stemmer-based‟ tests as: ts1, ts2, ts3, and ts4. 

6.3 Label Assignment 

During training each candidate concept that passes the filter for a concept 

mention is assigned a TRUE or FALSE label. Because of the availability of 

manually annotated information the labeling procedure is straightforward. If the 

candidate concept associated with the mention matches the concept assigned by 

the annotator then a TRUE label is assigned; other a FALSE label is assigned. As a 

consequence, and as desired, mentions that the human annotator deemed not to 

have referent concept in the ontology will only have FALSE labels associated with 

every one of its candidate concepts. 

6.4 Feature Space 

This section describes the feature vector associated with each training 

case defined by a concept mention and candidate concept pairing. Table 9 

t 1 The anchor text (a m) matches the concept's preferred name (p c)

t 2 The anchor text (a m) matches a synonym of the concept (o c)

t 3

The anchor text (a m) matches a linked anchor text  (in some other 

document) to the concept, a k'd k ,  (a k' ,o c ) and k≠m

t 4

A token in the anchor text  (a m) matches a token within the preferred 

name (p c), a synonym (s in S c), or a linked anchor text (a k) in some 

other document
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illustrates the structure of the training data produced. Each of the seven feature 

categories is defined in the coming subsections. 

The final category of features, referred to as “Collective Features”, differ 

substantially from the others in that they are recursively defined on the labelling 

decisions of a classifier. Thus, given the additional complexity of these features 

we describe their population (by means of an iterative classification procedure) in 

Section 6.5. 

Table 9 – Illustration of the structure of the training data used for the linking task. 

 

6.4.1 Anchor Text-based Features f(am,oc) 

Each of the eight tests defined for the filtering heuristic to determine 

concept candidacy are included as binary features. The intuition for their 

inclusion as features is that these tests signal how closely a mention‟s anchor 

text matches some text associated with the concept in the ontology. 
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http://www.gabormelli.com/RKB/Iterative_Supervised_Classification_Algorithm
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6.4.2 Text Window-based Features f(tm,oc) 

Another source of features is text beside the concept mention‟s anchor 

text (its text window) and from the text used to describe the concept in the 

ontology. We propose a feature for the cosine distance between the normalized 

bag-of-word vector representations of the text window and of the ontology 

description. This feature is proposed in (Kulkarni & al, 2009)33 and replicates the 

type of similarity measured proposed in (Lesk, 1986) for the word sense 

disambiguation task. We use the same text window size of five tokens used in 

(Kulkarni & al, 2009). 

6.4.3 Document-based Features f(dm,oc) 

Rather than limiting the analysis to the text window, information can also 

be drawn from the entire document can also inform the classification decision. 

Two proposed features drawn from the document are: 1) the cosine distance 

between the normalized bag-of-word vector representations of the document and 

the ontology description (also proposed in (Kulkarni & al, 2009)), and 2) the token 

position of the concept mention within the document (1st token, 2nd token …). The 

intuition of the later feature is that different types of concepts are expressed near 

the beginning of a document rather than later on. Table 10 summarizes these 

two features. 

                                            
33

 they also include dot product and Jaccard similarity 

http://www.gabormelli.com/RKB/Text_Token_Window
http://www.gabormelli.com/RKB/Word_Vector
http://www.gabormelli.com/RKB/1986_AutoSenseDisambig
http://www.gabormelli.com/RKB/Word_Vector
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Table 10 – Document-based features 

FEATURE DEFINITION 

cos(dm,oc) 
The bag-of-word cosine similarity between the 
document and the concept description. 
Proposed in (Kulkarni & al, 2009) 

tok(am,dm) 
Number of tokens between the start of the 
document and the first token in the mention. 

6.4.4 Candidate Concept-based Features f(oc) 

The candidate concept on its own along with its role within the ontology 

(without knowledge of the specific concept mention being considered) can also 

inform the classification decision. For example, (Kulkarni & al, 2009) proposes 

the use of the frequency that a concept is linked to (its inlink count) as a feature. 

We include this count as a feature, CI(oc) and also include the count of internal 

links extending out of the concept (its outlink count), CO(oc). The first feature 

signals the popularity of the concept as a reference within the ontology. The 

second feature can signal whether the concept has received significant attention 

by the ontology engineers in the form of many (or few) links. Table 11 

summarizes these two features. 

Table 11 – Candidate concept-based features 

FEATURE DEFINITION 

CI(oc) Cardinality of all internal links into oc, i.e. |(oc)|  

CO(oc) Cardinality of all internal links from oc, i.e. |O(oc)| 

http://www.gabormelli.com/RKB/Concept_Inlink_Count
http://www.gabormelli.com/RKB/Concept_Outlink_Count
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6.4.5 Corpus Based-based Features f(oc,D) 

A novel data source of linking features that we propose is the use of 

training corpus. An intuition for the use of the training corpus is that if an anchor 

text in a corpus is frequently linked to a concept then this is more likely true in 

future unseen documents. Further, note that the t3 candidacy test also signals the 

presence in the corpus of an identical anchor text. The corpus-based feature(s) 

are defined in Table 12. 

An implementational challenge associated with the use of corpus-based 

features is the risk of creating different training and testing spaces. When 

calculating the corpus-based feature values for a training example the document 

that contains the associated mention must be excluded from the calculation. An 

intuition for this removal of the document is that it likely contains repetitions of the 

mention under consideration and these other mentions should not influence the 

calculation of a feature because a test document would not have the benefit of its 

repeated items from contributing.34 

Table 12 – Corpus-based features 

FEATURE DEFINITION 

CE (am, oc, D) 
Cardinality of all external links into oc, 

i.e. |E(oc, D‟)|, where dm  D‟ 

                                            
34

 The effect of not removing the document is particularly noticeable during cross-validation 
studies where a repeated concept mention provides significant information and would inflate 
the results. 
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6.4.6 Candidate Set-based Features f(Cmc) 

Another novel feature type is based on the information about the size and 

membership of the candidate set of concepts associated with each anchor text. 

For example, it may be riskier to pick a concept from a large candidate set than 

from a candidate set composed of only two members. Table 13 summarizes 

these features. 

Table 13 – Candidate Concept Set-based Features 

FEATURE DEFINITION 

CC(Ci) Cardinality of the set of candidate concepts. i.e. |Ci | 

CI(Ci) 
Count of internal links into all candidate concepts. 

CI(oj’) + CI(oj’’) + …,  for all ojCi 

RCI(oj,Ci) 

Relative proportion of the internal links into the candidate 
concept relative to overall size.  

CI(oj) /CI(Ci) 

CO(Ci) 
Count of internal links out from all candidate concepts. 

CI(oj’) + CI(oj’’) + …,  for all ojCi 

RCO(oj,Ci) 

Relative proportion of the internal links out from the candidate 
concept relative to overall size.  

CI(oj) /CO(Ci) 

CE(Ci) 
Count of external links into all candidate concepts. 

CE(oj’) + CE(oj’’) + …,  for all ojCi 

RCE(oj,Ci) 

Relative proportion of the external links into the candidate 
concept relative to overall size.  

CE(oj) /CE(Ci) 

6.4.7 Collective-based Features f(oc,Sm) 

 (Milne & Witten, 2008) and (Kulkarni & al, 2010) focus much of their 

attention on “context” or “collective” features whose role is to inform the classifier 

about the other concepts that are mentioned in the document. With possession of 

some disambiguated links to the ontology, the ontology can provide some 

background knowledge into the classification decision for the remaining links. For 

http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia


 

 63 

example, when faced with the ambiguous anchor text of “LDA” (which could refer 

to LATENT DIRICHLET ALLOCATION or LINEAR DISCRIMINANT ANALYSIS), the classifier 

could benefit from information about the presence, elsewhere in the document, of 

the TOPIC MODELING concept (which is directly linked to LATENT DIRICHLET 

ALLOCATION in the ontology) or the presence of the ANOVA concept (which has a 

direct link in the ontology to the LINEAR DISCRIMINANT ANALYSIS concept)35.  

In this section, we describe a set of features that are informed by the other 

concepts mentioned in the document. A challenge to calculating these features is 

that we do not know apriori which concepts are being mentioned (because it is 

the task that we are trying to solve). In this section, we describe the two-step 

heuristic approach proposed by (Milne & Witten, 2008) to resolve the challenge. 

In the following section, we describe an alternative principled approach to the 

calculation of the collective features. 

The first set of collective features that we defined are the ones proposed 

by (Milne & Witten, 2008). Their proposal makes use of a “relatedness” measure, 

which in turn is based on (Cilibrasi & Vitanyi, 2007)‟s Normalized Google 

Distance (NGD) metric used to assesses the dissimilarity between two sets. 

 

Given two ontology concepts (oa, ob) their proposed relatedness measure 

defines two sets based on the links within the ontology into each of the concepts 

                                            
35

 Other examples of ambiguous mentions include “wrapper”, “boosting”, and general terms such 
as “algorithm” or “task” which are used in an anaphoric role to a more specialized term 
mentioned earlier in the document. 

http://www.gabormelli.com/RKB/LDA
http://www.gabormelli.com/RKB/Latent_Dirichlet_Allocation_Model
http://www.gabormelli.com/RKB/Linear_Discriminant_Analysis
http://www.gabormelli.com/RKB/Document_Topic_Modeling_Task
http://www.gabormelli.com/RKB/Latent_Dirichlet_Allocation_Model
http://www.gabormelli.com/RKB/Latent_Dirichlet_Allocation_Model
http://www.gabormelli.com/RKB/Analysis_of_Variance_Task
http://www.gabormelli.com/RKB/Linear_Discriminant_Analysis
http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
http://www.gabormelli.com/RKB/2007_TheGoogleSimilarityDistance
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A=inlinks(oa), and B=inlinks(oa). They also map NDG‟s function range of [0,] to a 

similarity metric by truncating the output to [0,1] and then subtracting the result 

from the value one (1). 

 

 

We extend this feature space by including the components used in the 

calculation of NDG, and by including a Jaccard similarity function-based feature. 

Table 14 defines some relevant functions to collective analysis, while Table 15 

defines the collective features. In the case where the context set of mentions is 

empty, such as initially when no mentions have been linked, these features all 

calculate to zero (0). 

Table 14 – Functions used to define collective features based on the relatedness of two 
concepts. 

FUNCTION DEFINITION 

Cab(oj, ok) The cardinality of I(oj)  I(ok) 

Cab(oj, ok) The cardinality of I(oj)  I(ok) 

max_ab(oj, ok) The larger of |I(oj)| or |I(ok)|. 

min_ab(oj, ok) The smaller of |I(oj)| or |I(ok)|. 

AMW08rel(oj, O’) 
The average relatedness. of concept 

oj and O’, where oj  O’.  

Table 15 – Definition of the collective features. 

FEATURE DEFINITION 

CS(Si) The cardinality of the set of context concepts. i.e. |Si|. 

IS(Si) 
The count of internal links to the set of context 
concepts. 

http://www.gabormelli.com/RKB/Jaccard_Distance_Function
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AIS(Si) 
The average number internal links into each of the 
context concepts. 

AMS(oj,Si) 

The average cardinality of the intersection between 
the links into concept oj and the internal links into the 
anchor concepts in Si.  

Cab(oj,Si), where okSi and oj≠ok. 

AMW08rel(oj,Si) 
The average weighted relatedness between the 
concept oj and each of the concepts in Si, as 
proposed in (Milne & Witten, 2008). 

MW08 (Si) 

The sum of the relatedness between each concept in 
Si. to the other concepts in Si. This feature is 
proposed in (Milne & Witten, 2008) to inform the 
classifier about the entire context set. 

AJacc(oj,Si) 
The average Jaccard set similarity between the links 
into the oj concept and each of the concepts in Si.  

 

6.5 Collective Feature Handling via Iterative Classification 

In this section, we propose an alternative method to the two-step heuristic 

proposed in (Milne & Witten, 2008) to the calculation of the “collective” features 

defined in Section 6.4.7. Recall that those features require that some portion of a 

document‟s concept mentions be already linked to the ontology. (Milne & Witten, 

2008) accomplish this assignment by first identifying some mentions heuristically 

as “context” mentions that do not require disambiguation. (Kulkarni & al, 2009) 

accomplish this assignment by specifying a custom objective function that is then 

optimized by, for example, greedily committing to the next highest scoring 

mention. 

We propose an incremental approach, as (Kulkarni & al, 2009), but one 

that is directed by a supervised learning algorithm rather than through the 

optimization of a custom function that requires advanced machine learning 

expertise to update for the domain. Our approach is to apply an iterative 

http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
http://www.gabormelli.com/RKB/2009_CollectiveAnnotationOfWiki
http://www.gabormelli.com/RKB/2009_CollectiveAnnotationOfWiki
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classification algorithm similar to the one suggested by (Neville & Jensen, 2000) 

for relational classification settings. The intuition of their approach is to, during 

the application of the model on new data, identify the most confident predictions, 

select them, and based on these selected predictions recalculate the values of 

the collective features on all cases. The recalculated vectors are ready to repeat 

the cycle, and each with each iteration selecting a larger and larger proportion of 

the predictions until the final iteration selects all cases. Specifically, their proposal 

is to perform  iterations of classification where 1/ of the predictions are 

selected. During the training phase they propose that the collective features of 

the training examples be based on complete knowledge of all the labels (in our 

case concepts) associated with them.  

A challenge that we encountered with the direct application of this 

approach to our task and feature space definition is that SDOICML‟s collective 

features are all zero (0) valued when no concepts have been committed to. Thus, 

feature vectors will differ dramatically (on the collective features) during the 

transition from the first iteration to the second one. We propose instead that on 

the 0th iteration a second model be used, one that was trained on all but the 

collective features. In this way, the gap between the trained and tested feature 

vectors (on the collective features) is substantially reduced on the first (a likely 

critical) iteration. 

http://www.gabormelli.com/RKB/2000_IterativeClassification
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Assume that the constant number of iterations, , is provided, and along 

with a set of  training instances36. Our proposed training and testing process for 

SDOICML is presented in Figure 6. Steps 1 and 4b are novel additions. 

Figure 6 – Proposed iterative classification algorithm. 

1. Train model (Mcol) without the collective features 

2. Train a model (Mcol) with the collective features (and oracle) 

3. Create the test set (without collective feature values) 

4. For each test iteration of  from 1 to  

a. Calculate the value for the collective features (with selected links in K) 

b. Apply model Mcol to the test set, if  is 1 

otherwise, apply model Mcol to the test set. 

c. Select in K the  most probable links, where  =  ( /). 

5. Output the final set of predictions on all mentions. 

 

6.6 Mention-level Classification 

The presented linking algorithm defined to this point trains a classifier that 

predicts whether a candidate concept from the ontology is the correct concept to 

associate to a given concept mention. When a mention has multiple candidates 

however, the classifier may assign the TRUE label to more than one of the 

candidates. Which to chose? The challenge arises because of our original 

conversion of a multiclass task into a binary one. We conclude the design of our 

proposed algorithm by defining the mechanism that will make the final selection 

of a single candidate when more than one TRUE prediction is made..  

We propose two alternatives to mention-level classification. The first 

approach (which will be default approach during the evaluation) is to use a 

                                            
36

 Looking ahead, the parameter  will be set to 5, during the evaluation of SDOICML.  
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heuristic rule based on available information. The second approach trains a 

separate classifier to select the winning candidate.  

The use of a heuristic rule to solve a multi-class problem with a binary 

classifier has been widely investigated in the literature (Rifkin & Klatau, 2004) 

and is the approach used by the related work of (Milne & Witten, 2008). Typically, 

the rule assumes the use of a binary classifiers, such as a kernel-based 

classifiers, a decision trees or a logistic functions, that also provide a score with 

each prediction, This score can generally be used to rank the predictions 

according to the likelihood of their correctness. The heuristic then, which we refer 

to a “pick-largest-true-score”, selects the test example with the highest likelihood 

score – with ties broken randomly.  

The “pick-largest-true-score” heuristic approach described above however 

does not account for dependencies that may exist between the candidate 

concepts. For example, in a scenario with the five candidate concepts, two of 

which are predicted to be TRUE, imagine further that neither is associated with a 

significantly larger confidence and that the one with the lower confidence is much 

more commonly linked to. In this type of situations it may be more reasonable to 

pick the candidate with the lower confidence. Further, it may occasionally be 

better to pick the most common class (which generally is the unlinked label). 

Based on this intuition, the alternative mechanism investigated is to trains a 

classifier at the mention level based on aggregated features from the candidate 

set. A further appeal of this approach is that it more closely approximates the 

ideal of making data-driven decisions. 

http://www.gabormelli.com/RKB/2004_InDefenseOfOneVsAllClassification
http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
http://www.gabormelli.com/RKB/Kernel-based%20Predictive%20Classifier
http://www.gabormelli.com/RKB/Kernel-based%20Predictive%20Classifier
http://www.gabormelli.com/RKB/Logistic_Function
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We propose in Table 16 a small feature set that can be used to assess 

whether there is value in the modeling at the mention-level. The label associated 

with each mention is whether the default rule of picking the concept with the 

highest confidence is correct or not. 

Table 16 – the features for the mention level classifier to be trained. 

Feature Name Definition 

TruePreds 
The number candidates predicted as TRUE in the 
candidate set 

FalsePreds 
The number candidates predicted as FALSE in the 
candidate set 

HighTrueConf 
The highest confidence value for a true prediction 
(if one existed). 

HighFalseConf 
The highest confidence value for a false predictions 
(if one existed). 

 

Looking ahead, in Section 6.7.7 we report on the effectiveness of a trained 

model over the default “pick-largest-true-score” heuristic. The empirical results 

suggest that the simple heuristic rule is at least as accurate as the model-based 

approach. Thus, this approach to a collective-style decision when more than one 

case is labelled TRUE does not appear to be a worthwhile addition on this task. 

6.7 Empirical Evaluation of Concept Mention Linking 

In this section, we empirically evaluate the performance of the proposed 

concept-mention linking algorithm, SDOICML. For this evaluation, we used the 

SVMlight
37 package, with its default parameter settings, as the underlying 

supervised classification algorithm. 

                                            
37

 http://svmlight.joachims.org/  

http://svmlight.joachims.org/
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6.7.1 Evaluation Setup 

Similar to the analysis performed for on concept mention identification, we 

used a leave-one-document-out method on the kdd09cma1 corpus and 

compared against the accuracy attained by baseline algorithms. For each 

document we first train a model on the other (138) documents, apply the model 

to the held-out document, and evaluate the accuracy of the class (concept) 

assignment38. The overall accuracy is based on the average accuracy on the 139 

holdout tests. 

For this task, we also analyze performance on a separate corpora: 

icdm09cma1. Our approach is to apply the model trained on the kdd09cma1 

corpus to predict concept mention links on each of the document in the 

icdm09cma1 corpus, and in this manner assess whether the annotation effort in 

one corpus is portable across to another. We also evaluate the ability of these 

predictions to reduce the amount of time required to annotate future documents. 

In summary, the analysis indicates that SDOICML outperforms the baseline 

both on the intrinsic performance measure of accuracy and on the extrinsic 

measure of annotation time saved. The analysis also shows that the benefits of 

the annotation effort on one corpus can be ported to a separate corpus, and that 

the accuracy attained is sufficient to speed-up the real-world effort of semantic 

annotation. 

                                            
38

 Accuracy is calculated by counting the number of correct predictions and dividing by the 
number of predictions made. 

http://www.gabormelli.com/RKB/Accuracy_Metric
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6.7.2 Baseline Algorithm 

The main baseline algorithm that we compare against for the linking task 

is the supervised approach proposed in (Milne & Witten, 2008). We 

reimplemented their proposed features (RCI, AMW08rel, and MW08 as defined in 

Section 5) and their algorithm‟s two-step approach (as described in Section 

6.4.7) to calculate their two collective „context‟ features. Recall that the first step 

selects a set of „context‟ concept mentions (SMW08) whose links can be linked by 

an accurate heuristic, once these links are established the context features are 

calculated, and the binary classifier trained on the three features. We 

reimplemented their concept candidacy heuristic by accepting all candidate 

concepts that satisfy tests t1+t1s+t2+t2s, and use their “pick-largest-true-score” 

heuristic to select the winning concept.  

A secondary baseline algorithm that we compared against is the naive 

unsupervised approach of selecting the concept with the larger number of 

internal inlinks in the ontology (CIB). That is, when a candidate set has more than 

one concept link to the more “popular” one (popular within the ontology). 

6.7.3 Candidacy Filter Finalization 

Before proceeding to assessing SDOI‟s performance we first select, by 

empirical means, the subset of the eight candidacy test defined in Section 6.2 

that filter which concepts to test against for each concept mention. Recall that the 

definition of the candidacy selection heuristic can affect performance: too 

restrictive a policy will limit the maximal attainable recall performance; too liberal 

http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
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a policy could swamp the classifier with a large ratio of negative-to-positive 

training cases.  

We empirically test the effect on accuracy of incrementally adding 

individual tests (primary and stemmed39) in the following simple sequential order: 

t1+t1s+t2+t2s+t3+t3s +t4+t4s. Table 17 summarizes the impact of sequentially adding 

each of the tests. Based on this empirical analysis, the candidacy test select for 

SDOI for the subsequent experiments was composed of tests: t1+t1s+t2+t2s+t3+t3s. 

Adding more tests beyond this point drops F1 performance significantly, likely 

because the average number of training cases per mention increases from 

approximately 2.5 to 47 cases per mention on average. This large leap in training 

cases between t3-based tests and the t4-based tests (from 11,598 to 296,086 

tests) suggests that some performance gain may be achieved as future work by 

investigating additional and more nuanced candidacy tests. 

Table 17 – Effect of the candidacy test definition on linking performance. As the resulting 
filter becomes more inclusive, the maximum possible recall and number of 
training increases. The combination of tests selected for SDOI is highlighted. 

 
 

                                            
39

 http://search.cpan.org/perldoc?Lingua%3A%3AStem  

Test  training cases 
max. possible 

accuracy
Accuracy

+ t 1 536                9.0% 13.7%

+ t 1s 1,278             19.1% 26.4%

+ t 2 3,126             40.4% 46.1%

+ t 2s 5,206             53.0% 46.0%

+ t 3 9,390             74.8% 56.7%

+ t 3s 11,598          77.3% 57.3%

+ t 4 296,086         90.1% 50.3%

+ t 4s 386,537         91.5% 49.3%

http://search.cpan.org/perldoc?Lingua%3A%3AStem
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6.7.4 Linking Performance on kdd09cma1 

To estimate algorithm performance, as mentioned earlier, we performed a 

leave-one-out cross-validation study. Specifically, we iterated through all 139 

documents, leaving one document out of the training corpus and testing on all 

the mentions within the excluded document. The number of iterations for the 

iterative classifier used to handle the collective features was set to five (=5). 

Table 18 reports the linking accuracy achieved from different combinations 

of (two) feature spaces and (two) candidate heuristics. The feature spaces tested 

are the complete feature space of SDOICML and the one proposed by (Milne & 

Witten, 2008). The candidate heuristic tested is a baseline composed of 

t1+t1s+t2+t2s which most closely approximates the one used in (Milne & Witten, 

2008) and (Kulkarni & al, 2009) and the heuristic selected for SDOICML in the 

previous section which also includes the corpus-based candidacy tests of t3+t3s. 

In summary, both the additional features proposed for SDOICML and the addition of 

the corpus-based candidacy tests (t3+t3s) equally help to significantly increase 

accuracy. All subsequent evaluations that we report on use SDOICML‟s candidate 

concept selection heuristic. 

Table 18 – Linking accuracy (on manually identified kdd09cma1 mentions) for two different 

feature space and candidacy heuristic combinations. 

 

Next, we assess the performance when the concept mention identification 

and linking tasks are sequentially performed in a pipeline manner. Table 19 

SDOICML MW08

SDOICML 57.3% 44.7%

baseline 46.0% 33.8%

Feature SpaceCandidacy 

Heuristic

http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
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contrasts the linking accuracy achieved when the underlying anchor text was 

identified either by the human annotator or by one the algorithms presented in 

the previous chapter: either: SDOICMI or the baseline heuristic approach that 

approximates the identification method used in (Milne & Witten, 2008) and 

(Kulkarni & al, 2009). In summary, as expected, overall accuracy is reduced 

when link predictions are made against predicted anchor text. Further, the 

relative difference in accuracy is more significant for the joint task of linking on 

algorithmically identified mentions. This larger drop in accuracy by the baseline is 

likely due to the multiplicative effects of performance of serially performing the 

identification and linking: The baseline linking algorithm received fewer 

opportunities to predict a correct link for a concept mention because the baseline 

identification method had failed to identify them to begin with. 

Table 19 – Accuracy of the SDOICML and (Milne & Witten, 2008) algorithms on the 

kdd09cma1 linking task when based on true anchor text or those predicted by 

the SDOICML and baselines algorithms described in Chapter 5: 

 

Table 20 reports the effect loosening the definition of a “match” between 

the predicted and annotated concept. Rather than requiring an exact match we 

also test a “near match”-based accuracy that attempts to capture some of the 

subjectivity encountered during annotation, such as when there is ambiguity 

anchor text 

identified by …
SDOICML MW08

annotator 57.3% 44.7%

SDOICMI 45.4% -

baseline - 17.7%

http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
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about exactly which concept the writer meant to express in the text40. In 

summary, as expected, the loosened definition of a match increases the ensuing 

calculation of „accuracy‟. The difference between the two results of approximately 

6% is larger than the approximately 1% difference encountered in the inter-

annotator agreement analysis in Section 4.3.1. This larger difference suggests 

that the algorithmic approach is more likely to select unintended concepts – but 

that these unintended concepts are still “near” the intended one. 

Table 20 – Accuracy of SDOICML on kdd09cma1 where “accuracy” requires either an „exact‟ 

match between predicted and annotated concept, or a „near‟ match where 
direct links exist in the ontology between the concepts. 

 

6.7.5 Unsupervised Baseline Performance 

Table 21 reports relative difference in accuracy41 between SDOICML (under 

different feature spaces configuration) and the unsupervised baseline approach, 

CIB, that select the concept with the largest number of inlinks within the ontology. 

The results indicate a benefit of committing to all proposed features. They also 

show little lift from the sole use the (Milne & Witten, 2008) feature set. Recall that 

this feature set contains the commonness of the concept and two collective 

features. Since the commonness is captured by the CIB, the small relative 

                                            
40

 Recall that we defined a “near match” in Section 4.3.1 to refer to predictions in which the 
predicted concept is directly linked to the annotated concept, and the annotated concept is 
directly linked to the predicted concept. 

41
 (SDOI accuracy – Unsupervised accuracy)/SDOI accuracy 

Exact Match Near Match

57.3% 63.2%

http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
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difference of 1.2% (on the second row) is further evidence that collective features 

play a marginal role in this task42. 

Table 21 - Relative difference in the accuracy of SDOICML (on five different feature sets) 

relative to the most common concept (CIB) baselines. 

CIB FEATURE SET 

-4.0% Anchor Text-based only 

1.2% (Milne & Witten, 2008) 

3.5% Anchor Text and Collective-based 

14.6% All except Collective-based 

15.3% All features 

6.7.6 Analysis of Collective Features & Iterative Classification 

This subsection further explores the effect of collective features, and 

analyzes the role of the iterative classifier defined in Section 6.5. We hypothesize 

that the collective features would offer more predictive power when fewer (non-

collective) features are present that reduce the need for collective insight into the 

concepts mentioned in the text. Table 22 reports the accuracy attained by 

committing to the model created after each iteration, for two different feature 

spaces: all feature, or only Anchor-Text and Collective based ones. In summary, 

the collective features contribute more noticeably to the accuracy when fewer 

features are present (47.9%→50.2% versus 57.2%→57.3%). 

                                            
42

 The weaker (-4.0%) performance when only anchor text-based features are used shows the 
importance of knowing which is the more popular concept. 

http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
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Table 22 – Average accuracy of SDOI after each iteration on the full feature set, and on 

only anchor text-based features. 

 

 

6.7.7 Modeling the Multiple-TRUEs Decision 

In Section 6.6, we defined a method to model the decision of which 

candidate to chose when more than one candidate is predicted as TRUE by the 

binary classifier. In this section, we compare the performance of the “pick-largest-

true-score” heuristic approach and the performance attained by a second model 

trained43 on the four features defined in Table 16. We also calculate the 

performance of making a random selection between the TRUE candidates. Table 

23 summarizes the results. 

In summary, the results suggest that the use of a trained model is no more 

accurate than the use of the “pick-largest-true-score”. Some benefit is seen from 

making an informed choice over a random one. 

Table 23 – Performance comparison between three different methods of selecting the final 
prediction when more than one candidate is predicted to be TRUE: highest 
likelihood rule, a trained as described in Section 6.6, and a random selection.  

 
 

                                            
43

 For training this mention-level model we again used SVMlight. 

Iter. All Features Anchor Text + Collective

1 57.2% 47.9%

2 57.3% 49.7%

3 57.3% 49.9%

4 57.3% 50.0%

5 57.3% 50.2%

highest-

likelihood

Trained 

Model
Random

57.3% 56.8% 55.6%
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6.8 Portability Analysis on icdm09cma1 

Although when pipelined, the SDOI concept mention identification and 

linking algorithms have been shown to significantly outperform the baseline 

algorithms on the kdd09cma1 corpus it would be helpful to assess whether once 

trained, the resulting model could be effectively applied outside of the training 

corpus. If it can be applied outside of its corpus then a significant amount of effort 

could be spared in creating a training set for the new corpus. In this section, we 

assess the portability of the models trained on kdd09cma1 at identifying and 

linking concept mentions within icdm09cma1 – a corpus from a difference 

source (different organizer and few overlapping authors) that is still within the 

data mining domain. 

The accuracy of SDOI and the baseline algorithm with respect to the 

manually and collectively annotated abstract was analyzed and the results 

reported in Table 24. Performance on the second corpus is only slightly lower 

than the accuracy reported on the kdd09cma1 corpus (reported earlier in Table 

19) suggesting that the trained models are portable to other corpora. 

Table 24 – Pipelined SDOI and baseline accuracy, trained on the kdd09cma1, and tested on 

the twenty-two ICDM‟09 abstracts, for either exact or partially matched anchor 
text (correct start token). 

 

SDOI MW08 SDOI MW08

ICDM-2009 42.2% 15.6% 46.5% 17.5%

KDD-2009 (from Table 11) 45.4% 17.7% 47.1% 19.1%

Exact Match Partial MatchLinking accuracy on 

predicted anchor text
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6.9 Time Savings Evaluation on icdm09cma1 

We also use this opportunity to analyze SDOI from the perspective of its 

ability to aid in a real-world task of manual annotation. We explore whether 

SDOI‟s predictions can reduce the amount of time required by a human annotator 

to manually annotate a document by working from a pre-annotated version 

(instead of the unprocessed version of the document). This measure is 

particularly relevant to scenarios were annotation will be an ongoing process and 

where high-accuracy is required, such as for linking mentions in high-impact 

journal publications to research ontologies, and of documented policy or 

agreements to official term definitions in business environments. 

For this analysis, we selected the five human annotators who annotated 

three or more of the kdd09cma1 abstracts. As they annotated each document, 

they would discover that the documents alternated from being pre-annotated and 

to being unprocessed44. We further asked the annotators to record the amount of 

time required for the three phases of identifying mentions, linking mentions, and 

revising their work (described in Section 4.3). Table 25 presents the averaged 

timing results. 

                                            
44

 They were blind to whether their pre-annotated document used SDOI or the MW08 pipelined 

solutions. 
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Table 25 – Seconds required for annotators (who annotated three or more abstracts) to 
annotate each unique concept mention: per phase and three pre-annotation 
scenarios. 

 

On average, annotators required significantly less time on all three phases 

when abstracts were pre-annotated using SDOI‟s output. Rather than spending 

approximately 34 seconds per annotated mention, they required 19 seconds per 

mention (44% less time). Interestingly, the use of the (Milne & Witten, 2008) 

based pipelined baseline resulted in no measureable savings in time spent. As 

much time was consumed by the annotator to fix the baseline‟s erroneously 

placed annotations than they saved from correct classifications. This extrinsic 

performance assessment suggests that SDOI has achieved sufficient accuracy to 

be of value on some tasks45. To the best of our knowledge, this type of 

timesavings evaluation has not been performed to date on a related task. 

6.10  Conclusion 

In this chapter, we presented the SDOICML supervised algorithm for the task 

of concept mention linking. We cast the multi-class problem to a binary one, 

propose a filtering heuristic to cope with the skew in FALSE labelled data, and 

propose a decision rule to enforce the constraint that a concept mention must 

only link to one concept in the ontology. We evaluated the algorithm on the 

                                            
45

 Estimates of performance and relative benefits based on user-interaction studies are typically 
complicated by external factors. In our case, a different user interface may significantly reduce 
the observed benefit. As we noted in Section 4.3 however, the wiki-style environment used in 
our tests is widely used at present, such as in updates to Wikipedia. 

 Phase No Pre-Annot. MW08 SDOI

B - Identification 8.0                      9.3     3.5     

C - Linking 15.6                    12.8  6.9     

D - revision 9.9                      12.2  8.5     

B, C, D 33.6                    34.3  18.9  

http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
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kddcma1 dataset using a leave-one-document-out framework and demonstrated 

a lift in accuracy over (Milne & Witten, 2008) and naive baselines, on annotated 

and predicted concept mentions. SDOI achieved significantly higher accuracy on 

all assessments. 

We further evaluated the models trained on the kddcma1 corpus on the 

icdm09cma1 corpus and noted that accuracy did not deteriorate, suggesting that 

in some cases, work on one corpus can be ported to another. Further, we used 

this opportunity to demonstrate that the models could significantly reduce the 

time required by an annotator to process a new document. While there remains a 

significant gap between human and algorithm annotation accuracy, our proposal 

presents a viable solution for the real-world application, and a principled solution 

for future comparison in the research arena. 

We now turn to the final module of SDOI tasked with the identification of 

relations mentioned in the text. 

http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
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7: SEMI-SUPERVISED RELATION MENTION 
IDENTIFICATION: SDOIRMI 

In this chapter, we switch from identifying and linking mentions of 

concepts to the final task defined in Chapter 2: of identifying mentions of 

relations. Recall that a “candidate relation mention” is any pair of concept 

mentions in a text, and the challenge of the task is to determine which pairs are 

contained in text that expresses a TRUE direct relation (of any type46) in the 

domain. 

A further switch in this chapter is from the application of a fully-supervised 

classification algorithm to that of a semi-supervised one. This change in learning 

type is due to the absence of manually labelled (relation mention) data. Our task 

definition only requires labelled concept mention data. We propose the use of a 

labelling heuristic that exploits the information provided ontology: if a direct 

relation exists in the ontology between the two concepts then it labels the 

candidate as TRUE. 

Finally, for the evaluation of task performance, we change the motivating 

real-world application from aiding with semantic annotation to aiding with 

ontology engineering. While automatically annotating text with relation mentions 

                                            
46

 Recall from Chapter 2: that the type of the underlying relation does not play a role in our task 
definition of relation identification. 

http://www.gabormelli.com/RKB/Labeling%20Heuristic
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can be useful to applications such as: strategic reading47, information retrieval, 

text summarization, textual entailment, and manual semantic annotation; our 

envisioned real-world application is to assist a knowledge engineer to process a 

new set of documents that present an opportunity to enhance the ontology. 

Instead of having to read meticulously through an entire new corpus, a 

knowledge engineer could instead receive a list of candidate relation mentions 

that are predicted to be TRUE relation mention candidates between concepts that 

do not (possibly yet) have a direct relation between them, and that is ranked 

according to some correctness likelihood score. With such a list, the knowledge 

engineer could dedicate more attention on comprehending the meaning of the 

passages that (very likely) contain high-quality relation mention candidates. For 

example, assume that the algorithm is requested to process the research paper 

(Chapelle & al, 2006) and, as a result produces, the following list48: 

1) SUPERVISED LEARNING ALGORITHM + UNSUPERVISED LEARNING ALGORITHM 

2) SEMI-SUPERVISED LEARNING ALGORITHM + SUPERVISED LEARNING ALGORITHM 

3) SEMI-SUPERVISED LEARNING ALGORITHM + UNSUPERVISED LEARNING ALGORITHM 

Based on the background knowledge the ontology engineer recognizes 

the possibility of an interesting direct relation between the concepts in one or (all 

three) pairings. They select (e.g. click) on one of the pairings and are taken to a 

passage in (Chapelle & al, 2006) that reads: “Semi-supervised learning (SSL) is 

                                            
47

 Imagine, for example, a strategic reader selecting a concept mention of interest in a text and 
then seeing the related mentions become visually highlighted. 

48
 The list presents the label for each linked concept mention. Note that this list assumes that the 
ontology does not yet contain direct relations between these concepts (possibly the concepts 
are still „stubs‟). 

http://www.gabormelli.com/RKB/2006_IntroductionToSemiSupLearn
http://www.gabormelli.com/RKB/Supervised_Learning_Algorithm
http://www.gabormelli.com/RKB/Unsupervised_Learning_Algorithm
http://www.gabormelli.com/RKB/Semi-Supervised_Learning_Algorithm
http://www.gabormelli.com/RKB/Supervised_Learning_Algorithm
http://www.gabormelli.com/RKB/Semi-Supervised_Learning_Algorithm
http://www.gabormelli.com/RKB/Unsupervised_Learning_Algorithm
http://www.gabormelli.com/RKB/2006_IntroductionToSemiSupLearn
http://www.gabormelli.com/RKB/Semi-Supervised_Learning_Task
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halfway between supervised and unsupervised learning.” Based on the passage 

and their background knowledge they could decide which of the three relation 

mentions are important enough to appear in the ontology. If they do enter a direct 

relation between the concepts into the ontology, the relation can be immediately 

linked to the supporting passage in (Chapelle & al, 2006). In this example, the 

three relations are rather commonplace in the data mining literature thus their 

appearance would suggest that the ontology contains many concept stubs. 

The next two sections defined our proposed algorithm for relation mention 

identification: SDOIRMI, and then conclude with an empirical analysis of its 

performance on the datasets presented in Section 4. 

7.1 Algorithm Overview 

For the task of relation mention identification, we propose a semi-

supervised algorithm inspired by the TeGRR text graph-based relation recognition 

algorithm proposed in (Melli & al, 2007). The algorithm first applies a labelling 

heuristic to unlabeled candidate relation mentions, and then trains a binary 

classification model. We were motivated to follow this approach used by TeGRR 

for the following reasons:  

1) It is based on relation recognition approaches, such as (Jiang & Zhai, 

2007), that achieve state-of-the-art performance (e.g. on benchmark 

tasks such as ACE49). 

                                            
49

 ACE Relation Detection Recognition (RDR) task http://projects.ldc.upenn.edu/ace/annotation/  

http://www.gabormelli.com/RKB?action=edit;id=supervised
http://www.gabormelli.com/RKB?action=edit;id=unsupervised_learning
http://www.gabormelli.com/RKB/2006_IntroductionToSemiSupLearn
http://www.gabormelli.com/RKB/Stub%20Concept
http://www.gabormelli.com/RKB/2007_nAryMultiSentencePPLRE_Melli_LBM
http://www.gabormelli.com/RKB/2007_SystematicExplOrRelExtrFeatureSpace
http://www.gabormelli.com/RKB/2007_SystematicExplOrRelExtrFeatureSpace
http://www.gabormelli.com/RKB/ACE_Relation_Mention_Detection_Task
http://projects.ldc.upenn.edu/ace/annotation/
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2) It is designed to recognize relation mentions that span beyond a single 

sentence (by the use of a text graph representation)  

3) It exposes an extensible feature space (that can be extended with 

information drawn from our task‟s ontology). 

4) It provides a natural path for the future support of tasks with labelled 

training data – possibly even labelled with the actual relation type. 

One of the distinctive aspects of TeGRR is its representation of a 

document into a graph-based representation, where each concept mention or 

token in the text is mapped to an „external‟ node in a graph, and which 

represents other syntactic and structural features of the text as internal nodes 

and edges between nodes. In Section 7.3 we define the text graph 

representation and its effect on the algorithm definition. 

Given a document‟s text-graph, we can proceed to define a feature space 

for each relation mention candidate. Table 26 illustrates the structure of the 

training data and its feature space that we propose for SDOIRMI. We divide the 

feature space into three information sources. An initial feature source is based on 

the shortest path between the concepts mentions, all of which have been 

proposed for TeGRR in (Melli & al, 2007). We also proposed to inherit the concept 

mention linking features (defined in Section 6) for each of the two concept 

mentions associated to a relation mention candidate. Finally, we also propose 

features that draw on information from the ontology. The formal feature space 

definition is found in Section 7.4 

http://www.gabormelli.com/RKB/2007_nAryMultiSentencePPLRE_Melli_LBM
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Table 26 – A high-level representation of training examples of a document‟s unique 
concept mention pairs (relation mention candidates). The label assignment 
procedure and the feature definitions are presented in the two coming 
subsections. 

 

7.2 Label Assignment 

Because of the lack of annotated relation mention data, the label 

assignment procedure for relation mention candidates differs significantly to the 

manually based assignment in the concept mention identification and linking 

tasks. We propose to use the ontology for the labeling decision. For each 

combination of concept mention pairs the heuristic automatically assign labels 

according to the following rule. If the concepts in the ontology associated with the 

relation mention share a direct internal link in the ontology in either direction then 

the training example is marked as TRUE; otherwise it is labeled as FALSE. For 

example, a candidate relation mention such as Semi-Supervised Learning 

Algorithm (SSL) + Supervised Learning Algorithm (SL) drawn from processing 

(Chapelle & al, 2006) would be labelled as TRUE if a direct link exists from, say, 

SSL to SL (and/or SL to SSL) in the ontology; while a candidate relation mention 

such as Semi-Supervised Learning Algorithm (SSL) + k-Nearest Neighbors 

Algorithm (kNN) would be labelled as FALSE if there is no direct link between the 

two concepts in the ontology. 

doc d m i m j

T

F  e  a  t  u  r  e     S  p  a  c  e F

…

TeGRR

Text-Graph based
Ontology based

la
b

e
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Mention
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http://www.gabormelli.com/RKB/Semi-Supervised_Learning_Algorithm
http://www.gabormelli.com/RKB/Semi-Supervised_Learning_Algorithm
http://www.gabormelli.com/RKB/Supervised_Learning_Algorithm
http://www.gabormelli.com/RKB/2006_IntroductionToSemiSupLearn
http://www.gabormelli.com/RKB/Semi-Supervised_Learning_Algorithm
http://www.gabormelli.com/RKB/Supervised_Learning_Algorithm
http://www.gabormelli.com/RKB/Semi-Supervised_Learning_Algorithm
http://www.gabormelli.com/RKB/k-Nearest_Neighbor_Algorithm
http://www.gabormelli.com/RKB/k-Nearest_Neighbor_Algorithm
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This approach to labeling is similar to the one used by relation mention 

recognition task such as (Melli & al, 2007). In these tasks, annotators focus on 

identifying of TRUE relation mentions because these contain the information to be 

extracted into their target database. While, some candidate relation mentions 

they encounter are explicitly labeled as FALSE, the majority of the FALSE labeled 

relations are automatically generated by assuming closed-world assumption that 

all other combinations of concept mentions represent FALSE relations. This 

assumption can lead to erroneous assignments because, given the complexity of 

the annotation task, when not forced to decide whether a relation mention is 

FALSE, the annotator can more easily overlook TRUE relation mentions in the text. 

Our proposal extends this automatic labeling approach for FALSE example 

labeling to also automatically label TRUE relation mentions. This approach is more 

likely to lead to erroneously mislabeled candidates. In many cases, the passages 

associated with a candidate relation mention that happens to refer to directly 

linked concepts in the ontology do not substantiate a direct semantic relation. In 

these cases, after reading the passage, an expert would instead conclude that a 

direct relation is not implied by the passage and would label the candidate 

relation mention as FALSE. Alternatively, the heuristic would label some relation 

mention candidates as FALSE simply because the relation did not yet exist in the 

ontology; while, upon manual inspection of the passage, the annotator would 

label the relation as a TRUE candidate. 

Despite this recognition of noise in the generated labels, we hypothesize 

that this heuristic labeling approach provides a sufficient signal for the supervised 

http://www.gabormelli.com/RKB/2007_nAryMultiSentencePPLRE_Melli_LBM
http://www.gabormelli.com/RKB/Closed_World_Assumption
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classification algorithm to detect many direct relation mentions with sufficient 

accuracy to be useful in some real-world tasks, such as ontological engineering. 

7.3 Text Graph Representation 

The TeGRR feature space is based on a graph representation of the 

document under consideration. The text graph representation is composed of the 

three types of edges: 1) Intra-sentential edges; 2) Sentence-to-sentence edges; 

and 3) Co-reference edges. Figure 750 presents a sample text graph that makes 

use of the three edge types. 

7.3.1 Intra-sentential Edges 

Intra-sentential edges in a text-graph represent edges between nodes 

associated with tokens from the same sentence. In the literature, these edges 

can vary from being: word-to-word edges (Freitag & McCallum, 1999), shallow 

parsing edges (Zelenko & al, 2003), dependency parse tree edges (Suchanek & 

al, 2006), and phrase-structure parse tree edges (Zhang & al, 2006). We propose 

the use the phrase-structure parse tree as the source of intrasentential edges for 

two reasons. The choice of this data source over the others is the analysis by 

(Jiang & Zhai, 2007) that suggests that the phrase-structure parse tree is the 

best single source of information for relation detection. Secondly, all other 

proposed intra-sentential edge types can be derived, or approximated, from 

phrase-structure parse trees by means of transformations. 

                                            
50

 Figure 1 in Section 1: can also help to visualize the three edge types. 

http://www.gabormelli.com/RKB/1999_InfExtrWithHMMsAndShrinkage
http://www.gabormelli.com/RKB/2003_KernelMethodsForRelationExtraction
http://www.gabormelli.com/RKB/2006_CombiningLinguisticExtractRelations
http://www.gabormelli.com/RKB/2006_CombiningLinguisticExtractRelations
http://www.gabormelli.com/RKB/2006_ExploringSyntacticFeaturesForRelExtrUsingConvKernels
http://www.gabormelli.com/RKB/2007_SystematicExplOrRelExtrFeatureSpace
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A phrase-structure parse tree is composed of two types of nodes: leaf 

nodes and internal nodes. Leaf nodes (which map to our external nodes) are 

labelled with the text token (or concept mention), and with the part-of-speech 

role. Internal nodes contain the syntactic phrase-structure label. 

Figure 7 - A sample of the text graph representation (for a highly summarized 
document) that SDOIRMI would use to create feature vectors for the talk of relation mention 

identification. 
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The text graph in Figure 7 contains 26 intrasentential edges connecting 12 

internal nodes and 19 leaf nodes. 

7.3.2 Sentence-to-sentence Edges 

Edges in a text graph can also cross sentence boundaries. The first type 

of inter-sentential edge to be considered is the “sentence-to-sentence” edge that 

simply joins an end-of-sentence punctuation node with the first word of the 

sentence that follows. The intuition for this edge type is that a concept that is 

mentioned in one sentence can be in a semantic relation with a concept mention 

in the adjacent sentence, and that the likelihood of it being a relation increases 

as you reduce the number of sentences between the two entities. The text graph 

in Figure 7 contains two sentence-to-sentence edges. 

7.3.3 Co-reference Edges 

The other source of inter-sentential edges to be considered, also taken 

from (Melli & al, 2007), are based on concept mentions in the same document 

that are linked to (co-refer to) the same concept in the ontology. For example if 

“hidden-Markov models” is mentioned in one sentence, “HMMs” is mentioned in 

a subsequent one, and the pronoun “they” is used to refer to the concept further 

on in the document, then coreference edges would exist between “hidden-

Markov models” and “HMMs”, and between “HMM” and “they” (via the HIDDEN 

MARKOV MODELS concept). The intuition for this edge type is that concept 

mentions on separate sentences but that are near a some co-referent concept 

mention are more likely to be in a semantic relation than if that co-referent 
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mention did not exist. The text graph in Figure 7 contains a coreference edge 

between the mentions of to the CONJOINT ANALYSIS ALGORITHM (that were 

identified by SDOICMI and linked to the ontology by SDOICML). 

7.3.4 Text-Graph Properties 

We describe properties of a text graph used to define SDOIRMI‟s text-graph 

related features: 

1) A test-graph is a connected graph: for every pair of nodes n and v there is 

a walk from n to v 

2) A text-graph can be a cyclic graph, and such cycles must involve co-

reference edges. 

3) A text-graph, has at least one shortest path between any two nodes, n and 

v, and the number of edges between them is their distance. 

4) A concept mention mi is in a p-shortest path with concept mention mj if 

there are only p-1 other concept mentions in a shorter shortest-path 

relation with mi. The value of p can be interpreted as the rank of the 

proximity between the two concept mentions, e.g. 1st nearest, 2nd nearest, 

etc. If two alternate mention pairs are in equal p-shortest path relation then 

both are TRUE for the relation. 

5) A path-enclosed subtree is the portion of the syntactic tree enclosed by 

the shortest-path between two leaf-nodes. This inner portion of a syntactic 

tree is predictive in relation extraction tasks (Jiang & Zhai, 2007). 

Figure 8 highlights the nodes and edges that will be used in defining text-

graph features for a candidate relation mention. 

http://www.gabormelli.com/RKB/2007_SystematicExplOrRelExtrFeatureSpace
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Figure 8 – An illustration of the subgraph based on the shortest-path between the two 
darkened concept mentions. The highlighted edges and nodes include the path-enclosed 
(IN preposition) tree nodes. 
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ontology-based features, and conclude with the concept linking features inherited 

from the previous (concept linking) task. 

7.4.1 Text-Graph based Features 

This section describes the features that we directly inherit from TeGRR. 

We first describe the underlying text graph representation that is then used to 

define the associated features. 

7.4.1.1 Path-Enclosed Shortest Path Features 

From the path-enclosed shortest-path subgraph we identify all distinct 

subtrees with up to e edges as proposed in (Jiang & Zhai, 2007) to replicate the 

convolution-kernel approach of (Haussler, 1999). A feature is created for each 

possible neighborhood in the subgraph, where a neighborhood is defined by a 

subtrees with e edges, where e ranges from zero through to some upper limit on 

edges: e  [0, emax]. We retain the e proposed in (Jiang & Zhai, 2007) of emax=2. 

Subtree-based features associated to the subtrees of size zero (e=0) simply 

summarize the number of nodes of a certain content type in either the entire 

relation mention graph, or one of its pairings. For example, one feature would 

count the number of NP (Noun Phrase) nodes in the relation mention graph, 

while another feature would count the number of times that the word “required” is 

present. Subtree-based features associated to the subtrees of size e>0 represent 

the number of times that a subgraph with e edges appears within the subgraph. 

For example, one feature would count the number of times that the triple IN – PP 

– NP appears in the graph. 

http://www.gabormelli.com/RKB/1999_ConvolutionKernelsOnDiscreteStructures
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7.4.1.2 Sentence Count: 

This feature informs the classifier about the number of sentences that 

intervene between concept mentions. For example, the number of intervening 

sentences between the “case study” and “logistic regression” mention in the 

relation mention in Figure 8 is two (2) sentences. This information will help the 

classifier adjust its predictions based on the separation. The further apart the less 

likely that a relation mention is true.  

7.4.1.3 Intervening Concept Mentions:  

This pair of features informs the classifier about the number of concept 

mentions that intervene between two concept mention pairs. For example, in 

Figure 8 “conjoint analysis” is counted as one intervening concept mentions 

between “case study” and “logistic regression”. This information will help the 

classifier adjust its predictions based on how many other concept mention 

candidates exist; the greater then number of intervening concept mentions the 

less likely that a semantic relation between the two concept mentions is being 

stated. 

7.4.2 Concept Mention Linking-based Features 

A second source of features that we propose is to include the features for 

each concept mention defined for concept mention linking (in Section 6). We 

concatenate the two feature vectors in the following order: the concept mention 

that appears first in the text, followed by the other concept mention. These 

features provide signals of the context of each mention, such as even simply 
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what sentence it is locate on. In Figure 8, for example, the “case study” concept 

mention is located on the first sentence and the closer a mention is to the first 

sentence may affect the importance of the mention – as it can in other NLP tasks 

such as text summarization (Melli & al, 2006). 

7.4.3 Ontology-based Features 

We further propose four features based on information from the ontology – 

that differ from the ones inherited from the concept-mention linking task. These 

four features capture information signals from their pairing in the ontology: 

SHARED_OUTLINKS, SHARED_INLINKS, SHORTEST_GT1-EDGE_DISTANCE, and TF-

IDF_CONCEPTS_SIMILARITY. 

7.4.3.1 SHARED_OUTLINKS Feature 

The SHARED_OUTLINKS feature counts the number of shared concept 

outlinks. The intuition for this feature is that two concepts that reference many of 

the same other concepts in the ontology are more likely to be themselves in a 

direct relation. 

7.4.3.2 SHARED_INLINKS Feature 

The SHARED_INLINKS feature counts the number of shared concept inlinks. 

The intuition for this feature is that two concepts that are referenced by many of 

the same other concepts in the ontology are more likely to be themselves in a 

direct relation. 

http://www.gabormelli.com/RKB/2006_SQuASHDUC
http://www.gabormelli.com/RKB/Multiset_Count
http://www.gabormelli.com/RKB/Concept_Outlink_Set_Overlap
http://www.gabormelli.com/RKB/Concept_Outlink_Set_Overlap
http://www.gabormelli.com/RKB/Multiset_Count
http://www.gabormelli.com/RKB/Concept_Inlink_Set_Overlap
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7.4.3.3 SHORTEST_GT1-EDGE_DISTANCE Feature 

The SHORTEST_GT1-EDGE_DISTANCE feature reports the shortest distance 

that is greater than one counts the number of edges that separate the two 

concepts. This feature is the one that introduces the risk of giving away the 

presence of a direct link between the two concepts in the candidate. An edge 

distance of one (1) versus any other edge distance would be a perfect predictor 

of the label. However, information about the distance of alternate paths can 

provide a signal that the two concepts should be (or are) linked.  

7.4.3.4 TF-IDF_CONCEPTS_SIMILARITY Feature 

The TF-IDF_CONCEPTS_SIMILARITY feature reports the TF-IDF bag-of-words 

similarity between the two concept descriptions in the ontology. The intuition is 

similar to that of the “Shared Outlinks” feature: two concepts that reference many 

of the same words are more likely to be themselves in a relation. Unlike the 

“Shared Outlinks” feature however, this feature normalizes for very common and 

uncommon words. 

7.4.4 Corpus-based Features 

A final source of information for features that we propose is the training 

corpus itself. As with the corpus-based features for concept linking (defined in 

Section 6.4.5), the use of cross-validation for performance estimation requires 

that the document associated with the training record does not inform these 

features. For this feature, the count is on “other” documents. 
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7.4.4.1 RELATION_MENTION_OTHER_DOC_COUNT Feature 

The RELATION_MENTION_OTHER_DOC_COUNT feature counts the number of 

other documents in the corpus that contain the pair of linked concept mentions. 

For example, if one other document contains the two linked concept mentions 

(and thus contains the same candidate relation mention) this feature is set to one 

(1).  

7.5 Empirical Evaluation of Relation Mention Identification 

In this section, we empirically evaluate the performance of the proposed 

relation-mention identification algorithm: SDOIRMI. For this evaluation, we again 

used the SVMlight51 package with its default parameter settings, as the 

underlying supervised classification algorithm. For the syntactic parse trees, we 

use Charniak‟s parser52 (Charniak, 2000). 

7.5.1 Evaluation Setup 

Similar to evaluation of SDOI‟s two other component algorithms for 

concept mention identification and linking, we use a leave-one-document-out 

method on the kdd09cma1 corpus. For each unseen document, we predict 

which of its binary relation mention candidates (with linked concept mentions) 

already exist in the ontology. Those relations that do not exist in the ontology are 

proposed candidates for addition to the ontology.  

                                            
51

 http://svmlight.joachims.org/  
52

 ftp://ftp.cs.brown.edu/pub/nlparser/  

http://www.gabormelli.com/RKB/2000_AMaximumEntropyInspiredParser
http://svmlight.joachims.org/
ftp://ftp.cs.brown.edu/pub/nlparser/
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A challenge associated with this task, as found in the concept-mention 

linking task, is the highly skewed distribution of the labels. In this case, we do not 

propose a filtering heuristic to change the training data. Instead, we propose an 

algorithmic change by tuning SVMlight‟s cost-factor parameter that multiplies 

the training error penalty for misclassification of positive examples. We set aside 

three documents to tune the parameter, and based on an analysis to optimize F1 

we set the cost-factor to 8. 

7.5.2 Analysis of Automatically Generated Labels 

We briefly analyze characteristic of the training, particularly the behaviour 

of the labelling heuristic on the kdd09cma1 corpus. Table 27 lists some of the 

more common candidate relation mentions derived from the corpus and whether 

the labelling heuristic would set associated relation mentions to TRUE or to FALSE. 

Most of these common candidate relations do not have a direct relation between 

them in the ontology (they have an indirect relation via intermediary concepts). In 

an unseen document, such pairings will also likely be predicted as FALSE 

because there are so examples in training data that that suggest that there is no 

direct relation between them. Even if a passage, for example, reads “... the 

algorithm was tested on the dataset ...” 

http://www.gabormelli.com/RKB/SVMlight_System
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Table 27 – A sampling of the more commonly mentioned concept pairs mentioned in the 
kdd09cma1 corpus; and, whether the kddo1 ontology contains a direct link 

between the two concepts. 

 
  

Table 28 presents some of the key statistics for the kdd09cma1 from the 

perspective of relation mention candidates. The corpus contains 44,896 relation 

mention candidates. Of these, which quantifies the task‟s data skew, only 3.55% 

of the mention candidates are found in the ontology.  

Concept mentioned Concept mentioned
Abstracts that 

mention the pair

Present in 

Ontology

Research Paper Algorithm 61 FALSE

Research Paper Experiment Outcome 33 FALSE

Task Algorithm 32 TRUE

Algorithm Experiment Outcome 29 FALSE

Research Paper Data Set 29 FALSE

Algorithm Data Set 28 FALSE

Research Paper Task 24 FALSE

Data Value Set Algorithm 23 FALSE

Algorithm Real-World Dataset 21 FALSE

Research Paper Real-World Dataset 21 FALSE

Research Paper Efficient Algorithm 20 FALSE

Experiment Outcome Algorithm 19 FALSE

Algorithm Efficient Algorithm 18 TRUE

Task Experiment Outcome 18 FALSE

Data Mining Task Algorithm 17 FALSE

Research Paper Experimental Evaluation 17 FALSE

Algorithm State-of-the-Art-Algorithm 13 TRUE

Dataset Real-World Dataset 11 TRUE

Synthetic Dataset Real-World Dataset 11 TRUE

… … … …

Clustering Algorithm Cluster Set 8 TRUE

Classification Model Accuracy Measure 8 TRUE

… … … …
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Table 28 – Key statistics of the number of binary relation mentions in the kdd09cma1 

corpus, per abstract and for entire corpus. The final row reports the total 
number of concept pairings where, at the document-level, pairs to the same 
two concepts are consolidated. 

 

7.5.3 Baseline Algorithm(s) 

The baseline algorithm that we compare SDOIRML‟s performance against on 

the relation-mention identification task is an unsupervised co-occurrence-based 

algorithm that predicts all permutations of linked concept mention pairs 

regardless of distance between them. This is the baseline algorithm compared 

against in (Melli & al, 2007, and Shi & al, 2007). We refer to this algorithm as 

AllTrue.  

We also include as a baseline a version of SDOIRML with a restricted 

feature space that contains the features originally proposed for TeGRR. 

7.5.4 Intrinsic Performance Analysis 

Table 29 presents the results of the leave-one out performance analysis. 

SDOIRML outperforms the baseline algorithm in terms of precision and F1. The 

proposed feature space for SDOI also outperforms the original feature space 

proposed for TeGRR. 

Binary Relation 

Mention Candidates Positive Candidates Proportion

Minimum (per abstract)                                   42.0                                    1.0 0.88%

Average (per abstract)                                322.1                                 11.5 3.86%

Maximum (per abstract)                             1,582.0                                    4.3 12.50%

Entire corpus                          44,896.0                           1,593.0 3.55%

Entire corpus (only distinct relations)                          34,181.0                           1,080.0 3.16%
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Table 29 – Leave-one-out performance results on the relation mention identification task 
on the kdd09cma1 corpus (excluding the three tuning abstracts) by SDOI, 

SDOI with its feature space restricted to those originally proposed for TeGRR 

in (Melli & al, 2007), and the AllTrue baseline. 

 
 

7.5.5 Extrinsic Performance Analysis 

We analyze the performance on a real-world usage scenario where an 

ontology engineer receives the generated list of relation mention candidates 

predicted as TRUE for being a direct link, which upon inspection of the ontology 

does not exist. We manually analyzed the top 40 predicted relation mention 

candidates proposed for insertion into the kddo1 ontology ranked on their 

likelihood score53. Table 30 reports a snapshot of these relation candidates. Of 

the 40 candidates 31 (77.5%) were deemed candidates for insertion into the 

ontology54. Given the high proportion of relation candidates worthy of insertion, 

this result illustrates some benefit to the ontology engineer. 

                                            
53

 We used SVMlight‟s real-number predictions, and did not boost the selection based on whether 
more than two documents resulted in predictions for the concept pair. 

54
 This task-based result is likely dependent on the maturity of the ontology. 

Algorithm Feature Space Precision Recall F1

All 18.2% 24.3% 20.8%

TeGRR 7.7% 41.8% 13.0%

3.7% 100.0% 7.1%

SDOI

AllTrue
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Table 30 – A sample of candidate relations (and their source document) with high 
likelihood score predicted by SDOI as candidates for addition to the kddo1 

ontology. The table groups candidates that refer to the same concept pairs. 

 

 

7.5.6 Boostrapping Experiment 

In practice, a common method of applying self-labelled learning is to treat 

the labelling heuristic as a means to seed a bootstrapped process where 

subsequent rounds of labelling are based on the most confident predictions by 

the newly trained model (Chapelle & al, 2006). Generally, evaluations of this 

approach have assumed high-accuracy seed labels - either from a small 

manually curated training set, such as in (Agichtein & Gravano, 2000), or with 

high-accuracy labelling patterns, such as in (Yarowsky, 1995). Each iteration 

sacrifices some precision for additional recall performance. In our case a 

bootstrapped process does not begin with high precision to sacrifice, because of 

our labelling heuristic does not start with high-precision predictions. However, we 

performed a bootstrap experiment by iteratively selecting the 10% of relation 

mentions that were predicted to be TRUE with the highest likelihood score, and 

Concept A Concept B

20.873 Computing System Algorithm doi:10.1145/1557019.1557112

… … … …

15.975 Computing System Algorithm doi:10.1145/1557019.1557144

23.584 Conditional Probability Marginal Probabilty doi:10.1145/1557019.1557130

22.345 Conjoint Analysis User Preference doi:10.1145/1557019.1557138

22.075 Optimization Task Gradient Descent Algorithm doi:10.1145/1557019.1557129

20.349 Optimization Task Gradient Descent Algorithm doi:10.1145/1557019.1557100

21.788 Set Pattern doi:10.1145/1557019.1557071

19.849 Set Pattern doi:10.1145/1557019.1557077

21.047 Training Dataset Performance Measure doi:10.1145/1557019.1557144

Score

Binary Relation

Document

http://www.gabormelli.com/RKB/2006_IntroductionToSemiSupLearn
http://www.gabormelli.com/RKB/2000_SnowballExtractingRelations
http://www.gabormelli.com/RKB/1995_UnsupWSDRivalingSupervMethods
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then labelled these candidates as TRUE in the subsequent iteration (even if no 

direct link existed in the ontology for the corresponding concept pair). 

F1 performance dropped with each iteration. Some analysis can show that 

this deterioration in performance is unavoidably built into the process: with each 

iteration the supervised classifier trained models that were based on the 

increasingly false assumption that TRUE labelled training data were 

representative of direct links in the ontology. Ensuing models would begin to 

predict links that were by definition not in the ontology and would thus be 

evaluated as false positives. 

Thus, we again manually inspected the top 40 predicted relations for the 

first two iterations. The precision dropped after each iteration. After the first 

iteration, 29 (72.5%) candidates were correct, and after the second iteration, 21 

(52.5%) candidates were correct. During the manual review, we observed that 

predictions in subsequent iterations began to include some of the more common 

FALSE pairings listed in Table 27. Bootstrapping of SDOIRML does not improve the 

precision of the reported predictions, on the kdd09cma1 benchmark task. 

7.5.7 Observations 

We include some observations of the original set of predictions reported in 

Table 30 of the leave-one-out evaluation on the kdd09cma1 corpus The table 

includes some promising candidates for addition to the ontology. For example, 

because of this experiment we noted that the obvious missing direct relation 
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between a COMPUTING SYSTEM and an ALGORITHM
55. The table also includes a 

more nuanced missing direct relation missing in the ontology between 

CONDITIONAL PROBABILITY and MARGINAL PROBABILITY
56.  

Next, we observe that suggested relation mention candidates whose 

concept pairs are predicted within more than one document, such as COMPUTING 

SYSTEM + ALGORITHM, may be more indicative that the direct relation is indeed 

missing from the ontology than when only supported by a single document. 

However, as counter-evidence, some of the repeated pairs in Table 30 appear to 

be listed simply due to their frequent occurrence in the corpus. For example, the 

candidate relation between the concepts of SET and of PATTERN may simply be 

due to documents (abstracts) that often mention “sets of patterns”. We would not 

expect the SET concept to be directly linked to every concept in the ontology that 

can be grouped into a set. This example however does suggest that PATTERN + 

SET may be a common and important concept in the data mining domain to 

deserve the addition of a PATTERN SET concept into the ontology. We note further 

that very frequent candidates reported in Table 27, such as RESEARCH PAPER + 

ALGORITHM, were not predicted; likely because the algorithm recognized that if 

such a commonplace relation is always false then it likely will be false in a 

new/unseen document. Thus, there is some evidence that the number of 

repetitions can indeed signify a more likely candidate. As future work, it would be 

                                            
55

 The direct relation can naturally added in both directions “an ALGORITHM can be implemented 
into a COMPUTING SYSTEM” and “a COMPUTING SYSTEM can implement an ALGORITHM.” 

56
 Based on passage “…assumption made by existing approaches, that the marginal and 
conditional probabilities are directly related....” From [doi:10.1145/1557019.1557130] and due 

to the fact that, in kddo1, the two concept descriptions are briefly described (stubs). 

http://www.gabormelli.com/RKB/Computing_System
http://www.gabormelli.com/RKB/Algorithm
http://www.gabormelli.com/RKB/Conditional%20Probability%20Value
http://www.gabormelli.com/RKB/Marginal%20Probability%20Value
http://www.gabormelli.com/RKB/Computing_System
http://www.gabormelli.com/RKB/Computing_System
http://www.gabormelli.com/RKB/Algorithm
http://dx.doi.org/10.1145/1557019.1557130
http://www.gabormelli.com/RKB/Concept_Definition
http://www.gabormelli.com/RKB/Stub_Concept_Definition
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worthwhile to attempt to train a second classifier that can use the number of 

referring documents as a feature57. 

A separate challenge that we observe from the predictions in Table 30 is 

illustrated by the OPTIMIZATION TASK + GRADIENT DESCENT ALGORITHM entry. While 

this seems like a reasonable candidate for addition at first glance, these two 

concepts are more likely indirectly related via the OPTIMIZATION ALGORITHM 

concept (an OPTIMIZATION TASK can be solved by an OPTIMIZATION ALGORITHM; a 

GRANDIENT DESCENT ALGORITHM is an OPTIMIZATION ALGORITHM.). The resolution of 

these situations could require additional background knowledge from the 

ontology, such as relation types, to inform the classifier that in some situations 

when the parents is linked to the concept then the child is not directly linked to. 

Finally, the candidates reported in Table 30 that were considered to be 

candidates for the addition of a direct relation in the ontology illustrate the noise 

introduced by the labelling heuristic. When these candidates where used to train 

a model (when some other document was being held out) they were incorrectly 

labelled as FALSE. However, eventually, as the ontology becomes more 

complete, the labelling heuristic become more accurate. Still, it would be 

interesting as future work to perform a round of active learning (that repairs the 

labels on some of the most likely candidate relations from FALSE to TRUE) to 

investigate the algorithm‟s sensitivity to noisy labels. 

                                            
57

 Although, as with the mention-level modeling that we performed on the linking task in Section 
6.4, the classifier in this task may also already account for the frequency of the pair from, for 
example, the frequency of the pair which is signaled by the corpus-based features. 
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7.6 Conclusion 

In this chapter, we presented the SDOIRMI semi-supervised algorithm for 

the task for relation mention identification in which the underlying concept 

mentions have been identified and linked to an ontology. To overcome the lack of 

annotated data, we propose a labelling heuristic based on information extracted 

from the ontology. We evaluated the algorithm on the kdd09cma1 dataset using 

a leave-one-document-out framework and demonstrated an increase in F1 in 

performance over a co-occurrence based ALLTRUE baseline algorithm. An 

extrinsic evaluation of the predictions suggested a worthwhile precision on the 

more confidently predicted additions to the ontology, and could thus contribute to 

some real-world scenarios. 
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8: CONCLUSION AND FUTURE WORK 

In this thesis, we introduced the task of document to ontology interlinking 

and proposed a composite supervised learning-based solution for it. Specifically, 

given a training corpus whose concept mentions are identified and linked to a 

given ontology, the solution trains predictive models that will, on unseen text: 1) 

identify the mentions of concepts that (could) exist in the ontology; 2) link these 

mentions to their referent concept in the ontology (if it exists); and, 3) identify the 

mentions of relations in the text that exist (or could exist) as direct relations in the 

ontology. In this chapter, we summarize the contributions of the thesis, and 

discuss some promising future research directions that address some of the 

known limitations. 

8.1 Contributions 

Our main contributions in this thesis are: a formal task definition that can 

ground the research area; a principled process SDOI composed of supervised 

learning algorithms (SDOICMI, SDOICML, and SDOIRMI) that can become de facto 

baselines; their empirical evaluation and demonstration of benefit on intrinsic 

performance measures and on real-world tasks; and finally, a publicly available 

benchmark dataset that others can evaluate their solutions against and that can 

continue to grow and evolve. We now describe the contributions as they relate to 

each of the chapters in the thesis 
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In Chapter 2:, we formally define the task. One-day we believe that a 

substantial number of documents will be annotated in this manner; and, a formal 

task definition enables other research to focus on solutions by that can be 

constructively compared.  

In Chapter 3, we review some of the literature that relates to the topic. 

Several diverse fields have addressed tasks related to ours, such as in natural 

language processing and information extraction. The most similar solutions that 

we review are the Wikipedia-centric proposals of (Milne & Witten, 2008) and 

(Kulkarni & al, 2009). 

In Chapter 4, we describe the kddo1 data mining ontology and the 

kdd09cma1 and icdm09cma1 annotated corpuses that we manually created to 

evaluate the task. This data may become a benchmark for future research. We 

do not know of another similar dataset within the field of Computing Science. 

Looking ahead, the ontology and corpora may continue to evolve if more 

conference proceeding abstracts are annotated and the ontology continually 

aligned.  

In Chapter 5, we define a concept-mention identification algorithm that 

applies supervised sequential tagging classifier. Unlike prior solutions that use a 

dictionary-based longest-matching sequence heuristic, SDOICMI will identify 

concept mentions from the domain that are not necessarily yet represented in the 

the ontology. 

http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
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In Chapter 6, we define a concept mention linking algorithm that casts the 

multi-class problem into a binary one and defines a filtering heuristic to 

counteract the skew in FALSE labelled mentions. To support collective features, 

SDOICML performs iterative classification that circumvents the problematic 

transition in feature behaviour from the first to second iteration in (Neville & 

Jensen, 2000). In the evaluation phase the algorithm is shown to significantly 

outperform a reimplemented version of (Milne & Witten, 2008), and to also 

reduce by 44% the time required by an annotator to manually annotate a 

document. 

Finally, in Chapter 7, we define a relation-mention identification algorithm 

SDOICMI, that applies a labelling heuristic based on information drawn from the 

ontology, and that extends the supervised binary classification approach 

proposed in (Melli & al, 2007) by adding features drawn from the corpus and 

ontology. For this phase, we demonstrated benefit in the real-world task of 

ontology enhancement based on the information in new documents. 

8.2 Limitations and Future Work 

While this thesis has made a significant contribution to the topic of 

interlinking documents and ontologies, as with most research that involves 

natural language, a significant amount of research lies ahead to achieve human 

levels of performance. To conclude, we discuss several of the research 

directions that we believe hold some promise in advancing the state-of-the-art in 

supervised document to ontology interlinking. 

http://www.gabormelli.com/RKB/2000_IterativeClassification
http://www.gabormelli.com/RKB/2000_IterativeClassification
http://www.gabormelli.com/RKB/2008_LearningToLinkWithWikipedia
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8.2.1 Performance Improvement through Pipeline Feedback 

A promising method for performance improvement is through the 

introduction of feedback in the pipeline so that the predictions of the later stages 

of the pipeline, particularly the more confident predictions, can assist the 

decisions of the earlier stages. For example, in deciding between which of two 

overlapping anchor texts to identify as a concept mention, the anchor text that 

results in a more confident link to the ontology may be more likely to demarcate 

the correct anchor text; but SDOI‟s concept mention identification algorithm 

currently does not have access to this information. This adjustment could help to 

reduce the gap between the exact matching performance and the partial match 

performance because the algorithm will make better decision about where to 

divide a multi-token concept mention. One possible means to create this 

feedback is to use an iterative classification method, as we did for the collective 

features of linking task, and then include the resulting likelihood score as a 

feature of the concept-mention identification task. Another method to more tightly 

couple the pipeline is through the use of joint inference models that model all 

decisions at once (Finkel & al, 2006; Miller & al, 2000). 

8.2.2 Performance Improvement through Long-Range Features 

Another promising direction for performance improvement is by explicitly 

including predictor features that inform the classifier of long-range dependencies 

to the presence of other concepts in a document or ontology. In the case of the 

mention linking task, information about other similar anchor text in the document 

could aid in better division predictions, such as to capture mentions that are 
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acting as anaphors (Culotta & al, 2007). For example, the linking of a general 

concept mention such as “algorithm” to a concept in the ontology can be affected 

by information in the text that lies outside of the mention‟s text window, or by 

concepts within the ontology that lie beyond the candidate one. 

8.2.3 Performance Improvement through Semi-Supervised Learning 

A source of additional features, for any of the three tasks, are the 

frequencies of the anchor text associated with a concept mention candidate in 

the literature, such as made available from Google‟s n-gram dataset58. For 

example, the fact that the phrase “semi-supervised algorithm” matches 406 

documents, or that “semi-supervised learner” matches 53 documents on Google 

Scholar‟s search service likely could inform SDOICMI about the likelihood that 

either of those two phrases is the anchor text for some concept mention, 

especially if the terms had not been encountered before in the labelled corpus. 

8.2.4 Performance Improvement via Active Learning 

As we noted in the learning curve analysis of the mention identification 

performance, it appeared that gathering more annotated data is a clear route to 

improved performance. Further, we noted in the empirical analysis on the 

icdm09cma1 corpus in Section 6.9 that the annotation task was performed more 

quickly when it was based on the pre-annotated version of the documents. Thus, 

a possible enhancement to the process is the application of active learning 

methods that leverage trained models to reduce the labelling requirements. 

                                            
58

 http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html 

 

http://www.gabormelli.com/RKB/2007_FirstOrderProbModForCorefRes
http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
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Indeed, one of the research directions in the natural language processing 

community to improve classification performance is to use active learning where 

the annotator is presented with the items to annotate59 (Tang & al, 2001), and 

could be applied to our task as well. 

8.2.5 Clustering and Classification of Relations 

A foreseeable extension to the task is to extract additional structure about 

the extracted relation mentions. Recall that the task currently only identifies the 

presence of an internal link in the ontology and does not characterize the type of 

identified relations. One interesting topic is the ability to cluster relation mentions 

in order for an ontology engineer to determine whether some new type of relation 

should be added to ontology. Likely, these discovered relations types would be 

domain specific ones such as HEADQUARTER-LOCATION or PROTEIN-SUBCELLULAR-

LOCALIZATION, rather than the domain independent ones of IS-A and PART-OF. 

For the later ones it would be interesting to attempt the direct classification of the 

relation type. Ideally, this extension could be achieved without the requirement of 

annotated relation data. 

8.2.6 Real-World Application 

Finally, while we have demonstrated that our proposal can lead to 

improved real-world performance, it would be helpful to more fully qualify this 

behaviour. Currently, someone wanting to apply SDOI will find little guidance in 

this thesis as to whether their environment is a good candidate. We plan to make 

                                            
59

 pages.cs.wisc.edu/~bsettles/active-learning/alnlp2010/ Active Learning for NLP Workshop 

http://pages.cs.wisc.edu/~bsettles/active-learning/alnlp2010/
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progress in this direction by integrating the solution into the submission process 

of future conferences, such as ICDM-2010 and KDD-2011, in order to have the 

authors themselves validate and correct the pre-annotated versions of their 

abstracts. Such an assisted annotation system would be a living example of the 

future of deeply interlinked documents and ontologies that we foresee. 

 
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