
Notes on Ogg Vorbis and the MDCT

Keith Wright ∗

February 20, 2007

Abstract

Assuming only basic trigonometry, we define the Modifed

Discrete Cosine Transform (MDCT), and prove its basic

properties. The dread words “it can be shown” do not occur.

This document is not complete, but I am releasing the draft

because there is enough here that it may be useful to some-

one. Comments and suggestions for improvement are wel-

come, especially if you know the answers to any of the ques-

tions at the end.

Preface

Both the Vorbis audio format[20], the better known MP3 for-

mat, as well as other audio and video compressed file formats

use something called the Modified Discrete Cosine Trans-

form (MDCT).

I was interested in how this worked, but did not know

where to start. Is this the name of a particular algorithm,

or does it just mean something like a cosine transform, but

not quite right? So I asked the Vorbis mailing list. Nobody

answered.

It was not a high priority, so I did other things for about

a year. I got interested again, so I did a Google search for

MDCT. I got just a few hits, one of which was my own mail-

ing list question from a year previous, and none of which an-

swered my questions. So I searched the local library and the

internet, came up with a few definitions, removed the errors

and differing sign conventions and worked out the details.

∗This work is licensed under a Creative Commons Attribution-Share

Alike 3.0

https://creativecommons.org/licenses/by-sa/3.0/us/

That resulted in a document, Wright [19], that was released

to the Web in May 2003.

The main changes in this second version are:

• Addition of a section on Change of Window size.

• Substitution of 2K for K in the definition of MDCT.

This simplifies several formulae.

• This preface.

• Since I haven’t thought about this since 2005, I changed

the Licence from “Draft, please don’t copy” to Creative

Commons. After 15 years it’s not a draft.

This doesn’t count as research; it is, of course “well

known” in the mathematician’s sense. Nevertheless, my ex-

perience leads me to believe that it is not perfectly trivial to

actually become one of those who know.

1 Trigonometry

Prologue

The Exponential Function

This is the most important function in mathematics.

—Walter Rudin [13]

The exponential function is defined by an infinite series,

exp(z) =
∑
∞

n=0 z
n/n!. The name comes from the fact that

using this function the usual definition of integer exponenti-

ation by repeated multiplication can be extended to all com-

plex numbers, and when this is done it is found that complex

exponentiation still follows the usual algebraic rules and that

by defining the number e = exp(1) we have ez = exp(z).

1

We use the mathematician’s notation so that i =
√
−1 is

the imaginary unit . We are interested in the values of the ex-

ponential function for pure imaginary numbers. It turns out

that for pure imaginary arguments, the values of the exponen-

tial function lie on the unit circle, that is, | exp(ix)| = 1 for

all real x.

The functions cos and sin are defined as

cos(z) =
exp(iz) + exp(−iz)

2

sin(z) =
exp(iz) − exp(−iz))

2i

For a real argument, x, this amounts to the real and imaginary

parts, respectively, of the imaginary exponential

exp(ix) = cos(x) + i sin(x)

It often happens that the easiest way to derive (or remem-

ber) a complicated-looking formula involving real trigono-

metric functions is to write down a simple property of com-

plex exponentials and then take the real or imaginary part.

Two complicated equations can be traded for one simple one!

For example, every child knows that

cos(x+ y) = cos x cos y − sinx sin y

This is often taught as a long geometrical proof leading to

a formula that must simply be memorized, but it can be

quickly derived from the simple identity ei(x+y) = eixeiy

by applying the definition of complex multiplication, to wit:

(x1 + ix2)(y1 + iy2) = (x1y1 − x2y2) + i(x1y2 + x2y1),
and taking the real part. Taking the imaginary part leads to

the corresponding formula for the sin function.

Substituting −y for y,

cos(x− y) = cos x cos y + sinx sin y

adding the two previous equations

cos(x− y) + cos(x+ y) = 2 cos x cos y (1)

For a second example, we can prove the equation called

Lagrange’s trigonometric identity.

Claim 1 (Lagrange)

N−1∑

n=0

cos(nx) =

1

2
+

sin((N − 1
2)x)

2 sin(x/2)
if x mod 2π 6= 0,

N if x mod 2π = 0

Despite the cases, this is a continuous function of x.

Proof: If z 6= 1, then the sum of a geometric series is given

by
∑N−1

n=0 zn = (1− zN)/(1− z), and so

N−1∑

n=0

exp(inx) =

N−1∑

n=0

(eix)n =
1− (eix)N

1− eix

assuming that eix 6= 1, that is, that x mod 2π 6= 0. Multiply-

ing above and below by exp(−1
2 ix)

=
exp(−1

2 ix)− exp((N − 1
2)ix)

exp(−1
2 ix)− exp(12 ix)

=
exp(−1

2 ix)− exp((N − 1
2)ix)

−2i sin(x/2)

=
i(exp(−1

2 ix)− exp((N − 1
2)ix))

2 sin(x/2)

Now, taking the real part of this equation

N−1∑

n=0

cos(nx) =
− sin(−x/2) + sin((N − 1

2)x)

2 sin(x/2)

=
1

2
+

sin((N − 1
2)x)

2 sin(x/2)

The formula for the sum of a geometric series is no good if

z = 1, so the above computation does not get off the ground

when x mod 2π = 0. Fortunately, in this case cos(x) = 1 so

the sum is easily seen to be N . Since the cosine is a contin-

uous function, the sum of (finitely many) cosines is continu-

ous, so if the sum is correctly done it must be continuous. If

you are skeptical, use L’Hôpital’s rule to show that

lim
x→0

sin((N − 1
2)x)

2 sin(x/2)
= N − 1

2

⊣
Let’s go through that again, with an offset!

2

Claim 2 (offset Lagrange)

N−1∑

n=0

cos((n+
1

2
)x) =

sin(Nx)

2 sin(x/2)
if x mod 2π 6= 0,

N if x/2π is even

−N if x/2π is odd

Proof:

N−1∑

n=0

exp(i(n +
1

2
)x) = exp(

1

2
ix)

(1 − exp(iNx))

(1− exp(ix))

=
(1 − exp(iNx))

(exp(−1
2 ix)− exp(12 ix))

=
i(1− exp(iNx))

2 sin(x/2)

Taking the real part yields the first case of the result. If x/2π
is even then the argument of the cosine is a multiple of 2π
and so the sum has N terms, all equal to one. If x/2π is odd

then the argument of the cosine is π plus a multiple of 2π and

so the sum has N terms, all equal to minus one. ⊣

2 Notation

Since the cases in the preceding claim simply provide the

unique extension of a formula that has isolated undefined

points to a continuous function defined on real numbers, we

will sometimes use a formula like sin(Nx)/(2 sin(x/2)) to

denote the continuous function given in Claim 2 by filling in

the isolated undefined points with N and −N .

We follow Graham, Knuth, and Patashnik[9, page 25], who

follow Iverson[8, page 11] in using square brackets around a

formula (e.g. an equation) as an arithmetic expression which

has the value one if the formula is true, and zero if the for-

mula is false. Since we also use square brackets to enclose

array indices, we will use double square brackets for this con-

version of boolean to integer values.

[[x = y]] =

{

1 if x = y,

0 if x 6= y
(2)

3 Modified Discrete Cosine Transforms

Vorbis[20] uses the Modified Discrete Cosine Transform

(MDCT), also called a Modulated Lapped Transform (MLT)

or Time Domain Alias Cancelation (TDAC).

The MDCT maps an array of 2K real numbers into an ar-

ray of K real numbers. To save a little space, let d = 1 +K .

Of course, d is an integer.

Let x be an array of 2K real numbers, indexed from zero.

We denote the MDCT of x by (
→

FK x). It is, of course, also

an array indexed from zero, and is defined for all m such that

0 ≤ m < K by the formula

(
→
FK x)[m] =

2K−1∑

k=0

x[k] cos

(
π

K
(k +

d

2
)(m+

1

2
)

)

If X is an array of K elements, then the reverse MDCT is

an array of 2K elements defined for all j such that 0 ≤ j <
2K by

(
←
FKX)[j] =

2

K

K−1∑

m=0

X[m] cos

(
π

K
(j +

d

2
)(m+

1

2
)

)

We have called this a reverse, rather than an inverse,

MDCT because the reverse transform is not a full inverse of

the forward transform. It takes us part of the way back, but

not all the way

We want to compute the result of applying the forward

MDCT followed by the reverse MDCT. The following claim

is the heart of the matter. (Recall the notation of equation 2.)

Claim 3 If 0 ≤ j, k < 2K then

K−1∑

m=0

cos

(
π

K
(k +

d

2
)(m+

1

2
)

)

cos

(
π

K
(j +

d

2
)(m+

1

2
)

)

=
K

2

(
[[k = j]]− [[k = 2K − d− j]]

+ [[k = 4K − d− j]]
)

3

x : 0, . . . K − 1 K, . . . 2K − 1
︸ ︷︷ ︸

❄

→

FK

X

❄

←

FK
︷ ︸︸ ︷

−K − 1, . . . 0

0, . . . K − 1 K, . . . 2K − 1

+2K − 1, . . . K

Figure 1: Forward followed by reverse MDCT

Proof: First note that by equation 1

cos

(
π

K
(k +

d

2
)(m+

1

2
)

)

cos

(
π

K
(j +

d

2
)(m+

1

2
)

)

=
1

2
cos

(
π

K
(k − j)(m +

1

2
)

)

+
1

2
cos

(
π

K
(k + j + d)(m+

1

2
)

)

This reduces the sum of products in the claim to a sum of

sums, which, by the associative law, can be added separately.

Furthermore by Claim 2 the sum of the first set of terms is

K−1∑

m=0

cos

(
π

K
(k − j)(m+

1

2
)

)

=
sin(π(k − j))

2 sin(π(k − j)/(2K)))

but, because j and k are integers, the numerator is zero and

so the fraction is zero unless π
K (k − j) mod 2π = 0 that is,

unless (k− j) is a multiple of 2K . Because of the bounds on

j and k, this can happen only when j − k = 0, in which case

the sum is K . This accounts for the first term in the right side

of the claim.

Similarly, the sum of the second set of terms is

K−1∑

m=0

cos

(
π

K
(k + j + d)(m+

1

2
)

)

=
sin(π(k + j + d))

2 sin(π(k + j + d)/(2K))

which is zero unless (k+ j+d) is a multiple of 2K . Because

of the bounds on j and k, this can happen when k + j + d =
2K or when k+j+d = 4K . In the first case the sum is−K ,

in the second it is K . This accounts for the last two terms.

Of course, at most one of the three terms is non-zero for

any given j and k. ⊣
With this formula in mind, we can compute the result of

applying the forward and reverse MDCT in succession (see

Figure 1).

Claim 4 If x is an array of 2K numbers and j is such that

0 ≤ j < 2K

(
←
FK

→
FK x)[j] =

{

x[j]− x[K − j − 1], j < K

x[j] + x[3K − j − 1], K ≤ j

Proof: Just to shorten the equations a bit, let

s(k, j,m) = cos

(
π

K
(k +

d

2
)(m+

1

2
)

)

cos

(
π

K
(j +

d

2
)(m+

1

2
)

)

So that

(
←
FK

→
FK x)[j] =

2

K

K−1∑

m=0

2K−1∑

k=0

x[k]s(k, j,m)

=
2

K

2K−1∑

k=0

x[k]

K−1∑

m=0

s(k, j,m)

=

2K−1∑

k=0

x[k]
(
[[k = j]] − [[k = 2K − d− j]]

+ [[k = 4K − d− j]]
)

= x[j] − x[2K − d− j] + x[4K − d− j]

= x[j] − x[2K −K − 1− j]

+ x[4K −K − 1− j]

= x[j] − x[K − j − 1] + x[3K − j − 1]

Now note that if j < K then 3K − j − 1 > 2K − 1 and so

x[3K − j − 1] = 0 but if K ≤ j then K − j − 1 < 0 and so

x[K − j − 1] = 0. ⊣

4

0, . . . K − 1 K, . . . 2K − 1 2K, . . . 3K − 1
︸ ︷︷ ︸

︸ ︷︷ ︸

❄ ❄

❄

❄

︷ ︸︸ ︷

︷ ︸︸ ︷

−K − 1, . . . 0

0, . . . K − 1 K, . . . 2K − 1

+2K − 1, . . . K

−2K − 1, . . . K

K, . . . 2K − 1 2K, . . . 3K − 1

+3K − 1, . . . 2K

Figure 2: Reconstruction by Overlap

Thus we see that the Modified Discrete Cosine Transform

maps a sequence of 2K real numbers into a sequence of K
real numbers in such a way that the original sequence can be

recovered, only slightly scrambled. (Of course it is not sur-

prising that the sequence gets a bit scrambled, since the trans-

form has only half as much information.) The scrambling is

called Time Domain Aliasing, because the sequences are of-

ten samples of a waveform which is a function of time, and

the scrambling consists of adding in parts of the waveform

that should occur at some other time.

The trick to unscramble the sequence is called Time Do-

main Alias Cancelation. It is illustrated in Figure 2. To re-

construct any of the original sequence, we need two of the

half-size blocks of transformed data. By transforming two

overlapping blocks, first in the forward direction, then in the

reverse, we find that by combining the results we can per-

fectly reconstruct the original signal, while totally canceling

the aliased part. Since this makes the transformed data the

same length as the original data, it is not absurd on its face

to try to get the original data back, but there it is still not ob-

vious that it can be done. In fact, although Discrete Fourier

Transforms have been known since stone age times1, it was

not until 1986 that Princen and Bradley[12] showed that alias

cancelation would work.

To form the transform of a long sequence, instead of break-

1Well, almost.

ing it into disjoint blocks, we break it into blocks of length

2K that start at multiples of K , so that the blocks overlap

by half their length. We then take the MDCT of each block.

Since the MDCT of a block of length 2K has length only K ,

the result of transforming a long sequence is approximately

the same length as the original sequence. (There is half a

block of overhead at each end.)

Claim 5 Suppose x is a long sequence of samples, and let

x0[j] = x[j] and x1[j] = x[j +K] for 0 ≤ j < 2K .

For any j such that 0 ≤ j < K,

(
←
FK

→
FK x0)[j +K] + (

←
FK

→
FK x1)[j] = 2x[j +K]

Proof: For j such that 0 ≤ j < K we have, by Claim 4,

(
←
FK

→
FK x0)[j +K] + (

←
FK

→
FK x1)[j]

= x0[j +K] + x0[3K − (j +K)− 1]

+ x1[j] − x1[K − j − 1]

= x[j +K] + x[2K − j − 1]

+ x[j +K]− x[K − j − 1 +K]

= 2x[j +K]

⊣
Thus, by overlapping and adding two adjacent blocks, we

cancel out the aliased parts and recover the original data in

the overlapped part.

4 Windowing

At this point we have shown how to transform a signal into

a frequency domain representation with (approximately) the

same number of bits, and then reverse the transformation to

get the original back. Well, that is nice, but but we could have

done that by taking ordinary Fourier or Cosine transforms of

non-overlapping blocks. So what has been gained?

The whole point is to compress the signal by using some

coding tricks to represent the transformed signal in fewer bits.

This causes a loss of information, and therefore, after coding

and decoding, the transformed signal is changed slightly and

5

we can no longer expect perfect reconstruction. We hope to

do it in such a way that the changes to the signal due to coding

and decoding, are not audible. The problem is that when non-

overlapping blocks are processed independantly, any changes

will make the signal “discontinuous” 2 at the block bound-

aries. This discontinuity will be heard as a buzz or hum with

pitch proportional to the block rate.

To eliminate this so-called “blocking artifact”, we multiply

each block by a “window” so that the blocks end smoothly,

rather than just cut off suddenly. Because the blocks over-

lap, we can arrange that the signal fades out smoothly at the

end of one block and fades in at the beginning of the overlap-

ping block in such a way that the overall gain remains con-

stant during the block transition. To do this while keeping

the perfect reconstruction property, we must apply a window

to both the input and the output of the transform procedure.

This gives us enough degrees of freedom to adjust so that

alias cancelation can be achieved.

Let h0 and h1 be the window functions for the input of

the first and second blocks, respectively, and let f0 and f1
be the window functions for the output of the two blocks.

Then the input blocks to the transform procedure are x0[j] =
h0[j]x[j] and x1[j] = h1[j]x[j +K] for j = 0 . . . 2K . The

following claim gives the conditions on the windows under

which perfect time domain alias cancelation will occur when

windowed segments are overlapped and added.

Refer to figure 3, where the labels along the bottom show

indices into x0 and the labels along the top show indices into

x1.

Claim 6 If for j such that 0 ≤ j < K

f0[j +K]h0[j +K] + f1[j]h1[j] = 1

and

f0[j +K]h0[2K − j − 1]− f1[j]h1[K − j − 1] = 0

then for j such that 0 ≤ j < K

f0[j +K](
←
FK

→
FK x0)[j +K] + f1[j](

←
FK

→
FK x1)[j]

= 2x[j +K]

2The word ‘discontinuous’ is in quotes, because the concept does not

really apply to a discrete signal.

0 K 3
2K

2K 3K

0
1
2K K 2K

Figure 3: Two Windows of the Same Size

Proof: We have, by Claim 4,

f0[j +K](
←
FK

→
FK x0)[j +K] + f1[j](

←
FK

→
FK x1)[j]

= f0[j +K]x0[j +K]

+ f0[j +K]x0[3K − (j +K)− 1]

+ f1[j]x1[j]− f1[j]x1[K − j − 1]

= f0[j +K]h0[j +K]x[j +K]

+ f0[j +K]h0[2K − j − 1]x[2K − j − 1]

+ f1[j]h1[j]x[j +K]

− f1[j]h1[K − j − 1]x[2K − j − 1]

In order to recover the original function we need the coeffi-

cient of x[j+K] to be one and the coefficient of x[2K−j−1]
to be zero. In other words,

f0[j +K]h0[j +K] + f1[j]h1[j] = 1

and

f0[j +K]h0[2K − j − 1]− f1[j]h1[K − j − 1] = 0

⊣

When we use the same window for all blocks, we can drop

the subscripts. (This does not hold if blocks of different sizes

are mixed.)

Vorbis uses the window

wK(x) = sin
(π

2
sin2

(π

2K
x
))

offset by half a step, for both input and output.

6

This means that

f [j] = h[j] = wK(j +
1

2
) = sin

(
π

2
sin2

(
π

2K
(j +

1

2
)

))

Note that wK(0) = wK(2K) = 0 and wK(K) = 1, and

that the window (which extends from 0 to 2K) is symmetric

about K . The half-step offset makes the integerized window

symmetric, in the sense that f [0] = f [2K − 1], f [K − 1] =
f [K], and in general f [j] = f [2K − 1− j].

The following claim shows that the Vorbis window satis-

fies the conditions for perfect reconstruction.

Claim 7 If f [j] = h[j] = sin
(
π
2 sin

2
(

π
2K (j + 1

2)
))

then

f [j +K]h[j +K] + f [j]h[j] = 1

f [j +K]h[2K − j − 1]− f [j]h[K − j − 1] = 0

Proof: Since, sin(π2 + x) = sin(π2 − x) = cos(x) and

cos2(x) + sin2(x) = 1, for any real x, we have

sin2
(

π
x+K

2K

)

= sin2
(πx

2K
+

π

2

)

= cos2
(πx

2K

)

= 1− sin2
(πx

2K

)

Taking x = j + 1/2, we have

f [j +K] = h[j +K] =

sin

(

π

2
sin2

(

π
(j +K) + 1

2

2K

))

=

sin

(

π

2
− π

2
sin2

(

π
j + 1

2

2K

))

=

cos

(

π

2
sin2

(

π(j + 1
2)

2K

))

Let v(j) = π
2 sin

2
(
π(j+1/2)

2K

)

. Then

f [j]=h[j] =

sin

(

π

2
sin2

(

π(j + 1
2)

2K

))

= sin (v(j))

and

f [j +K]=h[j +K] = cos (v(j))

so the first condition becomes

f [j +K]h[j +K] + f [j]h[j] =

cos2(v(j)) + sin2(v(j)) = 1

At the same time, letting x = (j + 1/2), we have

h[2K − j − 1] = sin

(

π

2
sin2

(

π
(2K − j − 1) + 1

2

2K

))

= sin

(

π

2
sin2

(

π
2K − (j + 1

2)

2K

))

= sin

(

π

2
sin2

(

π − π
j + 1

2

2K

))

= sin

(

π

2
sin2

(

π
j + 1

2

2K

))

= sin(v(j))

while taking x = −(j + 1/2), we have

h[K − j − 1] = sin

(

π

2
sin2

(

π
K − (j + 1

2)

2K

))

= sin

(

π

2
− π

2
sin2

(

π
−(j + 1

2)

2K

))

= cos(v(j))

and so the second condition is

f [j +K]h[2K − j − 1]− f [j]h[K − j − 1] =

cos(v(j)) sin(v(j)) − sin(v(j)) cos(v(j)) = 0

⊣

5 Change of window size

Vorbis can change the size of the window, using a long win-

dow when encoding relatively “smooth” parts of the wave-

form and a shorter window when encoding rapidly changing

7

0 K 3
2K

2K

0
1
2K
′

K ′ 2K ′

Figure 4: Two Windows of Different Sizes

parts. The basic reference for this seems to be a paper in

German by Edler[2]. I have been unable to obtain a copy

of this paper; perhaps someone can help me with this (I can

read German, with time and motivation). The reference to

Edlers paper is taken from Sporer et. al.[14] The following is

reconstructed from Vorbis documentation and source code.

In the previous section we have shown how to construct a

window of length 2K , where K is a parameter.

Assume that K ≥ K ′.

wKK ′(x)

wK(x), x ≤ K

1, K ≤ x ≤ K + L

wK ′(x′), K + L ≤ x ≤ K + L+K ′

0, K + L+K ′ ≤ x < 2K

where x′ = x− 3
2K + 3

2K
′ = x− (K + L) +K ′.

f0[j] = h0[j] = wKK ′(j + 1
2)

Note that if K = K ′ then this formula reduces to the previ-

ous one, f0[j] = h0[j] = wK(j) for 0 ≤ j < 2K . Also note

that the case which is fixed at 1 and the case which is fixed at

0 are the same length, 1
2K−1

2K
′. Let’s define L = 1

2K−1
2K
′

so that L is this common length.

Let the input blocks to the transform procedure be x0[j] =
h0[j]x[j] for j = 0 . . . 2K , and x1[j] = h1[j]x[j + K + L]
for j = 0 . . . 2K ′,

Refer to figure 4, where the labels along the bottom show

indices into x0 and the labels along the top show indices into

x1.

Claim 8 If for j such that 0 ≤ j < L+K ′

f0[j +K]h0[j +K] + f1[j]h1[j] = 1

and

f0[j +K]h0[2K − j − 1]− f1[j]h1[K − j − 1] = 0

then for j such that 0 ≤ j < L+K ′

f0[j +K](
←
FK

→
FK x0)[j +K] + f1[j](

←
FK ′

→
FK ′ x1)[j]

= 2x[j +K]

6 Questions

The above is a fairly complete and detailed account of the

basics of the MDCT, but there are a many related issues that

are just not mentioned at all.

Algorithms The original objective was to understand the al-

gorithm used in mdct.c. Knowing what it computes is

a step forward, but does not suffice to expain the code.

Context and Overview How does the MDCT relate to the

ordinary Cosine Transform and to the Fourier trans-

form? The TEX source of this document has some frag-

mentary notes on this which have not yet been pieced

together.

References

[**] This is a list of publications that seemed like they might

be relevant, I have not even seen copies of all of them.

[1] Ronald E. Crochiere & Lawrence R. Rabiner, Multi-

rate Digital Signal Processing, Prentice-Hall signal pro-

cessing series, Englewood Cliffs, New Jersey (1983)

TK5102.5 C76, ISBN 0-13-605162-6

[2] B. Edler, Coding of Audio Signals with Overlapping

Block Transform and Adaptive Window Functions (in

German), Frequenz, vol. 43(1989), pp. 252–256

8

[3] M. Temerinac, B. Edler A Unified Approach to Lapped

Orthogonal Transforms IEEE Trans. on Image Process-

ing, Vol. 1, No. 1, pp. 111-116, Jan. 1992

[4] M. Temerinac, B. Edler Overlapping Block Transform:

Window Design, Fast Algorithm and an Image Coding

Experiment IEEE Trans. on Communications, Vol. 43,

No. 9, Sep. 1995

[5] M. Temerinac, B. Edler LINC: A Common Theory of

Transform and Subband Coding IEEE Trans. on Com-

munications, Vol. 41, No. 2, pp. 266-274, Feb. 1993

[6] B. Edler Aliasing Reduction in Subbands of Cascaded

Filter Banks with Decimation Electronics Letters, Vol.

28, No. 12, pp. 1104-1105, June 1992.

[7] Douglas F. Elliott, Handbook of Digital Signal Process-

ing Engineering Applications Academic Press (1987)

TK5102.5 H32, ISBN 0-12-237075-9

[8] Kenneth E. Iverson, A Programming Language, Wiley

(1962)

[9] Ronald L. Graham, Donald E. Knuth & Oren Patashnik

Concrete Mathematics Addison-Wesley (1994)

[10] N. S. Jayant & P. Null Digital Coding of Waveforms

Prentice-Hall (1984)

[11] Henrique S. Malvar, Signal Processing with Lapped

Transforms, Artech House, Norwood MA (1992)

[12] J. Princen & A. Bradley. Analysis/Synthesis Filter Bank

Design Based on Time Domain Aliasing Cancellation,

IEEE Transaction, ASSP-34, No. 5, Oct. 1986, pp.

1153-1161

[13] Walter Rudin, Real & Complex Analysis, third edition,

McGraw-Hill (1987)

[14] Th. Sporer & Kh. Brandenburg & B. Edler, The use of

multirate filter banks for coding of high quality digi-

tal audio, 6th European Signal Processing Conference

(EUSIPCO), Amsterdam, June 1992, Vol.1 pp. 211-

214.

[15] Pat Yip & K. Ramamohan Rao, Fast DIT Algorithms

for a Family of Discrete Cosine and Sine Transforms,

Circuits, 3, 387-408(1984)

[16] K. R. Rao & P. Yip, Discrete Cosine Transform: Algo-

rithms, Advantages and Applications, Academic Press,

ISBN: 012580203X (1990)

[17] Pat Yip & K. Ramamohan Rao, Fast Discrete Trans-

forms Chapter 6 in [7] pp 481-525

[18] P. Yip & K. R. Rao, The decimation-in-frequency al-

gorithms for a family of discrete sine and cosine trans-

forms Circuits, Systems, and Signal Processing, pages

4–19, 1988.

[19] Keith Wright, Post to vorbis@xiph.org, archived at

http://lists.xiph.org/pipermail/

vorbis/2003-May/010560.html

[20] Xiphophorus,

http://www.vorbis.com

http://www.xiph.org

9

