
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 3, MAY/JUNE 1999 1

J:\PRODUCTION\TSE\2-INPROD\105579\105579-1.DOC regularpaper98.dot SL 19,968 04/14/99 2:14 PM 1 / 15

A Critique of Software Defect Prediction Models
Norman E. Fenton, Member, IEEE Computer Society, and Martin Neil, Member, IEEE Computer Society

Abstract—Many organizations want to predict the number of defects (faults) in software systems, before they are deployed, to
gauge the likely delivered quality and maintenance effort. To help in this, numerous software metrics and statistical models have
been developed, with a correspondingly large literature. We provide a critical review of this literature and the state-of-the-art. Most of
the wide range of prediction models use size and complexity metrics to predict defects. Others are based on testing data, the
“quality” of the development process, or take a multivariate approach. The authors of the models have often made heroic
contributions to a subject otherwise bereft of empirical studies. However, there are a number of serious theoretical and practical
problems in many studies. The models are weak because of their inability to cope with the, as yet, unknown relationship between
defects and failures. There are fundamental statistical and data quality problems that undermine model validity. More significantly
many prediction models tend to model only part of the underlying problem and seriously misspecify it. To illustrate these points the
“Goldilock’s Conjecture,” that there is an optimum module size, is used to show the considerable problems inherent in current defect
prediction approaches. Careful and considered analysis of past and new results shows that the conjecture lacks support and that
some models are misleading. We recommend holistic models for software defect prediction, using Bayesian Belief Networks, as
alternative approaches to the single-issue models used at present. We also argue for research into a theory of “software
decomposition” in order to test hypotheses about defect introduction and help construct a better science of software engineering.

Index Terms—Software faults and failures, defects, complexity metrics, fault-density, Bayesian Belief Networks.

——————————�������——————————

1 INTRODUCTION

RGANIZATIONS are still asking how they can predict the
quality of their software before it is used despite the

substantial research effort spent attempting to find an answer
to this question over the last 30 years. There are many papers
advocating statistical models and metrics which purport to
answer the quality question. Defects, like quality, can be de-
fined in many different ways but are more commonly de-
fined as deviations from specifications or expectations which
might lead to failures in operation.

Generally, efforts have tended to concentrate on the fol-
lowing three problem perspectives [1], [2], [3]:

1)�predicting the number of defects in the system;
2)� estimating the reliability of the system in terms of

time to failure;
3)�understanding the impact of design and testing proc-

esses on defect counts and failure densities.
A wide range of prediction models have been proposed.

Complexity and size metrics have been used in an attempt
to predict the number of defects a system will reveal in op-
eration or testing. Reliability models have been developed
to predict failure rates based on the expected operational
usage profile of the system. Information from defect detec-
tion and the testing process has been used to predict de-
fects. The maturity of design and testing processes have
been advanced as ways of reducing defects. Recently large
complex multivariate statistical models have been pro-
duced in an attempt to find a single complexity metric that
will account for defects.

This paper provides a critical review of this literature
with the purpose of identifying future avenues of research.
We cover complexity and size metrics (Section 2), the test-
ing process (Section 3), the design and development process
(Section 4), and recent multivariate studies (Section 5). For a
comprehensive discussion of reliability models, see [4]. We
uncover a number of theoretical and practical problems in
these studies in Section 6, in particular the so-called
“Goldilock’s Conjecture.”

Despite the many efforts to predict defects, there appears to
be little consensus on what the constituent elements of the
problem really are. In Section 7, we suggest a way to improve
the defect prediction situation by describing a prototype, Bay-
esian Belief Network (BBN) based, model which we feel can at
least partly solve the problems identified. Finally, in Section 8
we record our conclusions.

2 PREDICTION USING SIZE AND COMPLEXITY
METRICS

Most defect prediction studies are based on size and com-
plexity metrics. The earliest such study appears to have been
Akiyama’s, [5], which was based on a system developed at
Fujitsu, Japan. It is typical of many regression based “data
fitting” models which became common place in the litera-
ture. The study showed that linear models of some simple
metrics provide reasonable estimates for the total number of
defects D (the dependent variable) which is actually defined
as the sum of the defects found during testing and the de-
fects found during two months after release. Akiyama com-
puted four regression equations.

Equation (1) involving lines of code L (LOC) was so that,
for example, a 1,000 LOC (i.e., 1 KLOC) module is expected
to have about 23 defects:

0098-5589/99/$10.00 © 1999 IEEE

����������������

�� N.E. Fenton and M. Neil are with the Centre for Software Reliability,
Northampton Square, London EC1V 0HB, England.
E-mail: {n.fenton, martin}@csr.city.ac.uk.

Manuscript received 3 Sept. 1997; revised 25 Aug. 1998.
Recommended for acceptance by R. Hamlet.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 105579.

O

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 3, MAY/JUNE 1999

J:\PRODUCTION\TSE\2-INPROD\105579\105579-1.DOC regularpaper98.dot SL 19,968 04/14/99 2:14 PM 2 / 15

D L� �4 86 0 018. . (1)

Other equations had the following dependent metrics:
number of decisions C; number of subroutine calls J; and a
composite metric C + J.

Another early study by Ferdinand, [6], argued that the
expected number of defects increases with the number n of
code segments; a code segment is a sequence of executable
statements which, once entered, must all be executed. Spe-
cifically the theory asserts that for smaller numbers of seg-
ments, the number of defects is proportional to a power of n;
for larger numbers of segments, the number of defects in-
creases as a constant to the power n.

Halstead, [7], proposed a number of size metrics, which
have been interpreted as “complexity” metrics, and used
these as predictors of program defects. Most notably, Hal-
stead asserted that the number of defects D in a program P
is predicted by (2):

D
V

� 3 000, (2)

where V is the (language dependent) volume metric (which
like all the Halstead metrics is defined in terms of number
of unique operators and unique operands in P; for details
see [8]). The divisor 3,000 represents the mean number of
mental discriminations between decisions made by the
programmer. Each such decision possibly results in error
and thereby a residual defect. Thus, Halstead’s model was,
unlike Akiyama’s, based on some kind of theory. Interest-
ingly, Halstead himself “validated” (1) using Akiyama’s
data. Ottenstein, [9], obtained similar results to Halstead.

Lipow, [10] went much further, because he got round the
problem of computing V directly in (3), by using lines of ex-
ecutable code L instead. Specifically, he used the Halstead
theory to compute a series of equations of the form:

D
L A A L A L� � �0 1 2

2ln ln (3)

where each of the Ai are dependent on the average number
of usages of operators and operands per LOC for a par-
ticular language. For example, for Fortran A0 = 0.0047; A1 =
0.0023; A2 = 0.000043. For an assembly language A0 = 0.0012;
A1 = 0.0001; A2 = 0.000002.

Gaffney, [11], argued that the relationship between D
and L was not language dependent. He used Lipow’s own
data to deduce the prediction (4):

D L� �4 0 0015 4 3.2 . () / (4)

An interesting ramification of this was that there was an
optimal size for individual modules with respect to defect
density. For (4) this optimum module size is 877 LOC. Nu-
merous other researchers have since reported on optimal
module sizes. For example, [12] of UNISYS derived the
following polynomial regression equation:

D L L� � �0 069 0 00156 0 00000047 2. . . () (5)

Based on (5) and further analysis Compton and Withrow
concluded that the optimum size for an Ada module, with
respect to minimizing error density is 83 source statements.
They dubbed this the “Goldilocks Principle” with the idea
that there is an optimum module size that is “not too big
nor too small.”

The phenomenon that larger modules can have lower
defect densities was confirmed in [13], [14], [15]. Basili and
Perricone argued that this may be explained by the fact
that there are a large number of interface defects distrib-
uted evenly across modules. Moller and Paulish suggested
that larger modules tend to be developed more carefully;
they discovered that modules consisting of greater than 70
lines of code have similar defect densities. For modules of
size less than 70 lines of code, the defect density increases
significantly.

Similar experiences are reported by [16], [17]. Hatton ex-
amined a number of data sets, [15], [18] and concluded that
there was evidence of “macroscopic behavior” common to
all data sets despite the massive internal complexity of each
system studied, [19]. This behavior was likened to “mole-
cules” in a gas and used to conjecture an entropy model for
defects which also borrowed from ideas in cognitive psy-
chology. Assuming the short-term memory affects the rate
of human error he developed a logarithmic model, made
up of two parts, and fitted it to the data sets.1 The first part
modeled the effects of small modules on short-term mem-
ory, while the second modeled the effects of large modules.
He asserted that, for module sizes above 200-400 lines of
code, the human “memory cache” overflows and mistakes
are made leading to defects. For systems decomposed into
smaller pieces than this cache limit the human memory
cache is used inefficiently storing “links” between the
modules thus also leading to more defects. He concluded
that larger components are proportionally more reliable
than smaller components. Clearly this would, if true, cast
serious doubt over the theory of program decomposition
which is so central to software engineering.

The realization that size-based metrics alone are poor
general predictors of defect density spurred on much re-
search into more discriminating complexity metrics.
McCabe’s cyclomatic complexity, [20], has been used in
many studies, but it too is essentially a size measure (being
equal to the number of decisions plus one in most pro-
grams). Kitchenham et al. [21], examined the relationship
between the changes experienced by two subsystems and a
number of metrics, including McCabe’s metric. Two differ-
ent regression equations resulted (6), (7):

C MCI N HE� � �0 042 0 075 0 00001. . . (6)

C MCI DI VG� � �0 0 53 0 09.25 . . (7)

For the first subsystem changes, C, was found to be rea-
sonably dependent on machine code instructions, MCI, op-
erator and operand totals, N, and Halstead’s effort metric,
HE. For the other subsystem McCabe’s complexity metric,
VG was found to partially explain C along with machine
code instructions, MCI and data items, DI.

All of the metrics discussed so far are defined on code.
There are now a large number of metrics available earlier
in the life-cycle, most of which have been claimed by their
proponents to have some predictive powers with respect

1. There is nothing new here since Halstead [3] was one of the first to apply
Miller’s finding that people can only effectively recall seven plus or minus two
items from their short-term memory. Likewise the construction of a partitioned
model contrasting “small” module effects on faults and “large” module effects
on faults was done by Compton and Withrow in 1990 [7].

FENTON AND NEIL: A CRITIQUE OF SOFTWARE DEFECT PREDICTION MODELS 3

J:\PRODUCTION\TSE\2-INPROD\105579\105579-1.DOC regularpaper98.dot SL 19,968 04/14/99 2:14 PM 3 / 15

to residual defect density. For example, there have been
numerous attempts to define metrics which can be ex-
tracted from design documents using counts of “between
module complexity” such as call statements and data
flows; the most well known are the metrics in [22].
Ohlsson and Alberg, [23], reported on a study at Ericsson
where metrics derived automatically from design docu-
ments were used to predict especially fault-prone modules
prior to testing. Recently, there have been several at-
tempts, such as [24], [25], to define metrics on object-
oriented designs.

The advent and widespread use of Albrecht Function
Points (FPs) raises the possibility of defect density predic-
tions based on a metric which can be extracted at the speci-
fication stage. There is widespread belief that FPs are a
better (one-dimensional) size metric than LOC; in theory at
least they get round the problems of lack of uniformity and
they are also language independent. We already see defect
density defined in terms of defects per FP, and empirical
studies are emerging that seem likely to be the basis for
predictive models. For example, in Table 1, [26] reports the
following bench-marking study, reportedly based on large
amounts of data from different commercial sources.

3 PREDICTION USING TESTING METRICS

Some of the most promising local models for predicting
residual defects involve very careful collection of data
about defects discovered during early inspection and test-
ing phases. The idea is very simple: you have n predefined
phases at which you collect data dn (the defect rate. Sup-
pose phase n represents the period of the first six months of
the product in the field, so that dn is the rate of defects
found within that period. To predict dn at phase n – 1
(which might be integration testing) you look at the actual
sequence d1, ..., dn–1 and compare this with profiles of simi-
lar, previous products, and use statistical extrapolation
techniques. With enough data it is possible to get accurate
predictions of dn based on observed d1, ..., dm where m is less
than n – 1. This method is an important feature of the Japa-
nese software factory approach [27], [28], [29]. Extremely
accurate predictions are claimed (usually within 95 percent
confidence limits) due to stability of the development and
testing environment and the extent of data collection. It
appears that the IBM NASA Space shuttle team is achieving
similarly accurate predictions based on the same kind of
approach [18].

In the absence of an extensive local database it may be
possible to use published bench-marking data to help with
this kind of prediction. Dyer, [30], and Humphrey, [31], con-
tain a lot of this kind of data. Buck and Robbins, [32], report
on some remarkably consistent defect density values during
different review and testing stages across different types of
software projects at IBM. For example, for new code devel-
oped the number of defects per KLOC discovered with Fa-
gan inspections settles to a number between 8 and 12. There
is no such consistency for old code. Also the number of man-
hours spent on the inspection process per major defect is
always between three and five. The authors speculate that,
despite being unsubstantiated with data, these values form
“natural numbers of programming,” believing that they are

“inherent to the programming process itself.” Also useful
(providing you are aware of the kind of limitations discussed
in [33]) is the kind of data published by [34] in Table 2.

One class of testing metrics that appear to be quite
promising for predicting defects are the so called test cov-
erage measures. A structural testing strategy specifies that
we have to select enough test cases so that each of a set of
“objects” in a program lie on some path (i.e., are “covered”)
in at least on test case. For example, statement coverage is a
structural testing strategy in which the “objects” are the
statements. For a given strategy and a given set of test cases
we can ask what proportion of coverage has been achieved.
The resulting metric is defined as the Test Effectiveness Ra-
tio (TER) with respect to that strategy. For example, TER1 is
the TER for statement coverage; TER2 is the TER for branch
coverage; and TER3 is the TER for linear code sequence and
jump coverage. Clearly we might expect the number of dis-
covered defects to approach the number of defects actually
in the program as the values of these TER metrics increases.
Veevers and Marshall, [35], report on some defect and reli-
ability prediction models using these metrics which give
quite promising results. Interestingly Neil, [36], reported
that the modules with high structural complexity metric
values had a significantly lower TER than smaller modules.
This supports our intuition that testing larger modules is
more difficult and that such modules would appear more
likely to contain undetected defects.

Voas and Miller use static analysis of programs to conjec-
ture the presence or absence of defects before testing has
taken place, [37]. Their method relies on a notion of program
testability, which seeks to determine how likely a program
will fail assuming it contains defects. Some programs will
contain defects that may be difficult to discover by testing by
virtue of their structure and organization. Such programs
have a low defect revealing potential and may, therefore,
hide defects until they show themselves as failures during
operation. Voas and Miller use program mutation analysis to
simulate the conditions that would cause a defect to reveal
itself as a failure if a defect was indeed present. Essentially if
program testability could be estimated before testing takes
place the estimates could help predict those programs that
would reveal less defects during testing even if they contained

TABLE 1
DEFECTS PER LIFE-CYCLE PHASE PREDICTION

USING TESTING METRICS

Defect Origins Defects per Function Point

Requirements 1.00
Design 1.25
Coding 1.75
Documentation 0.60
Bad fixes 0.40
 Total 5.00

TABLE 2
DEFECTS FOUND PER TESTING APPROACH

Testing Type Defects Found/hr

Regular use 0.210
Black box 0.282
White box 0.322
Reading/inspections 1.057

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 3, MAY/JUNE 1999

J:\PRODUCTION\TSE\2-INPROD\105579\105579-1.DOC regularpaper98.dot SL 19,968 04/14/99 2:14 PM 4 / 15

defects. Bertolino and Strigini, [38], provide an alternative
exposition of testability measurement and its relation to
testing, debugging, and reliability assessment.

4 PREDICTION USING PROCESS QUALITY DATA

There are many experts who argue that the “quality” of the
development process is the best predictor of product quality
(and hence, by default, of residual defect density). This issue,
and the problems surrounding it, is discussed extensively in
[38]. There is a dearth of empirical evidence linking process
quality to product quality. The simplest metric of process
quality is the five-level ordinal scale SEI Capability Maturity
Model (CMM) ranking. Despite its widespread popularity,
there was until recently no evidence to show that level (n + 1)
companies generally deliver products with lower residual
defect density than level (n) companies. The Diaz and Sligo
study, [39], provides the first promising empirical support for
this widely held assumption.

Clearly the strict 1–5 ranking, as prescribed by the SEI-
CMM, is too coarse to be used directly for defect prediction
since not all of the processes covered by the CMM will relate
to software quality. The best available evidence relating par-
ticular process methods to defect density concerns the Clean-
room method [30]. There is independent validation that, for
relatively small projects (less than 30 KLOC), the use of
Cleanroom results in approximately three errors per KLOC
during statistical testing, compared with traditional devel-
opment postdelivery defect densities of between five to 10
defects per KLOC. Also, Capers Jones hypothesizes quality
targets expressed in “defect potentials” and “delivered de-
fects” for different CMM levels, as shown in Table 3 [40].

5 MULTIVARIATE APPROACHES

There have been many attempts to develop multilinear re-
gression models based on multiple metrics. If there is a con-
sensus of sorts about such approaches it is that the accuracy
of the predictions is never significantly worse when the
metrics set is reduced to a handful (say 3-6 rather than 30),
[41]; a major reason for this is that many of the metrics are
colinear; that is they capture the same underlying attribute
(so the reduced set of metrics has the same information
content, [42]. Thus, much work has concentrated on how to
select those small number of metrics which are somehow
the most powerful and/or representative. Principal Com-
ponent Analysis (see [43]) is used in some of the studies to
reduce the dimensionality of many related metrics to a
smaller set of “principal components,” while retaining most
of the variation observed in the original metrics.

For example, [42] discovered that 38 metrics, collected on
around 1,000 modules, could be reduced to six orthogonal
dimensions that account for 90 percent of the variability. The
most important dimensions; size, nesting, and prime were
then used to develop an equation to discriminate between
low and high maintainability modules.

Munson and Khoshgoftaar in various papers, [41], [43],
[44] use a similar technique, factor analysis, to reduce the
dimensionality to a number of “independent” factors.
These factors are then labeled so as to represent the “true”

underlying dimension being measured, such as control,
volume and modularity. In [43] they used factor analytic
variables to help fit regression models to a number of error
data sets, including Akiyama’s [5]. This helped to get over
the inherent regression analysis problems presented by
multicolinearity in metrics data.

Munson and Khoshgoftaar have advanced the multi-
variate approach to calculate a “relative complexity metric.”
This metric is calculated using the magnitude of variability
from each of the factor analysis dimensions as the input
weights in a weighted sum. In this way a single metric in-
tegrates all of the information contained in a large number
of metrics. This is seen to offer many advantages of using a
univariate decision criterion such as McCabe’s metric [44].

6 A CRITIQUE OF CURRENT APPROACHES TO
DEFECT PREDICTION

Despite the heroic contributions made by the authors of
previous empirical studies, serious flaws remain and have
detrimentally influenced our models for defect prediction.
Of course, such weaknesses exist in all scientific endeav-
ours but if we are to improve scientific enquiry in software
engineering we must first recognize past mistakes before
suggesting ways forward.

The key issues affecting the software engineering com-
munity’s historical research direction, with respect to defect
prediction, are:

�� the unknown relationship between defects and fail-
ures (Section 6.1);

�� problems with the “multivariate” statistical approach
(Section 6.2);

�� problems of using size and complexity metrics as sole
“predictors” of defects (Section 6.3);

�� problems in statistical methodology and data quality
(Section 6.4);

�� false claims about software decomposition and the
“Goldilock’s Conjecture” (Section 6.5).

6.1 The Unknown Relationship Between Defects and
Failures

There is considerable disagreement about the definitions of
defects, errors, faults, and failures. In different studies de-
fect counts refer to:

�� postrelease defects;
�� the total of “known” defects;
�� the set of defects discovered after some arbitrary fixed

point in the software life cycle (e.g., after unit testing).

TABLE 3
RELATIONSHIP BETWEEN CMM LEVELS AND DELIVERED

DEFECTS MULTIVARIATE APPROACHES

SEI CMM
Levels

Defect
Potentials

Removal
Efficiency (%)

Delivered
Defects

1 5 85 0.75
2 4 89 0.44
3 3 91 0.27
4 2 93 0.14
5 1 95 0.05

FENTON AND NEIL: A CRITIQUE OF SOFTWARE DEFECT PREDICTION MODELS 5

J:\PRODUCTION\TSE\2-INPROD\105579\105579-1.DOC regularpaper98.dot SL 19,968 04/14/99 2:14 PM 5 / 15

The terminology differs widely between studies; defect
rate, defect density, and failure rate are used almost inter-
changeably. It can also be difficult to tell whether a model is
predicting discovered defects or residual defects. Because of
these problems (which are discussed extensively in [45]) we
have to be extremely careful about the way we interpret
published predictive models.

Apart from these problems of terminology and defini-
tion the most serious weakness of any prediction of residual
defects or defect density concerns the weakness of defect
count itself as a measure of software reliability.2 Even if we
knew exactly the number of residual defects in our system
we have to be extremely wary about making definitive
statements about how the system will operate in practice.
The reasons for this appear to be:

�� difficulty of determining in advance the seriousness
of a defect; few of the empirical studies attempt to
distinguish different classes of defects;

�� great variability in the way systems are used by dif-
ferent users, resulting in wide variations of opera-
tional profiles. It is thus difficult to predict which de-
fects are likely to lead to failures (or to commonly oc-
curring failures).

The latter point is particularly serious and has been high-
lighted dramatically by [46]. Adams examined data from
nine large software products, each with many thousands of
years of logged use world wide. He charted the relationship
between detected defects and their manifestation as fail-
ures. For example, 33 percent of all defects led to failures
with a mean time to failure greater than 5,000 years. In
practical terms, this means that such defects will almost
never manifest themselves as failures. Conversely, the pro-
portion of defects which led to a mean time to failure of less
than 50 years was very small (around 2 percent). However,
it is these defects which are the important ones to find,
since these are the ones which eventually exhibit them-
selves as failures to a significant number of users. Thus,
Adams’ data demonstrates the Pareto principle: a very small
proportion of the defects in a system will lead to almost all
the observed failures in a given period of time; conversely,
most defects in a system are benign in the sense that in the
same given period of time they will not lead to failures.

It follows that finding (and removing) large numbers of
defects may not necessarily lead to improved reliability. It
also follows that a very accurate residual defect density pre-
diction may be a very poor predictor of operational reliabil-
ity, as has been observed in practice [47]. This means we
should be very wary of attempts to equate fault densities
with failure rates, as proposed for example by Capers Jones
(Table 4 [48]). Although highly attractive in principle, such a
model does not stand up to empirical validation.

Defect counts cannot be used to predict reliability because,
despite its usefulness from a system developer’s point of
view, it does not measure the quality of the system as the
user is likely to experience it. The promotion of defect counts
as a measure of “general quality” is, therefore, misleading.

2. Here we use the “technical” concept of reliability, defined as mean time
to failure or probability of failure on demand, in contrast to the “looser”
concept of reliability with its emphasis on defects.

Reliability prediction should, therefore, be viewed as com-
plementary to defect density prediction.

6.2 Problems with the Multivariate Approach
Applying multivariate techniques, like factor analysis, pro-
duces metrics which cannot be easily or directly interpret-
able in terms of program features. For example, in [43] a
factor dimension metric, control, was calculated by the
weighted sum (8):

control a HNK a PRC a E a VG a MMC

a Error a HNP a LOC

� � � � �
� � �

1 2 3 4 5

6 7 8
 (8)

where the ai s are derived from factor analysis. HNK was
Henry and Kafura’s information flow complexity metric,
PRC is a count of the number of procedures, E is Halstead’s
effort metric, VG is McCabe’s complexity metric, MMC is
Harrison’s complexity metric, and LOC is lines of code.
Although this equation might help to avoid multicolinear-
ity it is hard to see how you might advise a programmer or
designer on how to redesign the programs to achieve a
“better” control metric value for a given module. Likewise
the effects of such a change in module control on defects is
less than clear.

These problems are compounded in the search for an ul-
timate or relative complexity metric [43]. The simplicity of
such a single number seems deceptively appealing but the
principles of measurement are based on identifying differing
well-defined attributes with single standard measures [45].
Although there is a clear role for data reduction and analysis
techniques, such as factor analysis, this should not be con-
fused or used instead of measurement theory. For example,
statement count and lines of code are highly correlated be-
cause programs with more lines of code typically have a
higher number of statements. This does not mean that the
true size of programs is some combination of the two metrics.
A more suitable explanation would be that both are alterna-
tive measures of the same attribute. After all centigrade and
fahrenheit are highly correlated measures of temperature.
Meteorologists have agreed a convention to use one of these
as a standard in weather forecasts. In the United States tem-
perature is most often quoted as fahrenheit, while in the
United Kingdom it is quoted as centigrade. They do not take
a weighted sum of both temperature measures. This point
lends support to the need to define meaningful and standard
measures for specific attributes rather than searching for a
single metric using the multivariate approach.

6.3 Problems in Using Size and Complexity Metrics
to Predict Defects

A discussion of the theoretical and empirical problems with
many of the individual metrics discussed above may be

TABLE 4
DEFECTS DENSITY (F/KLOC) VS. MTTF

F/KLOC MTTF

> 30 1 min
20–30 4-5 min
5–10 1 hr
2–5 several hours
1–2 24 hr
0.5–1 1 month

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 3, MAY/JUNE 1999

J:\PRODUCTION\TSE\2-INPROD\105579\105579-1.DOC regularpaper98.dot SL 19,968 04/14/99 2:14 PM 6 / 15

found in [45]. There are as many empirical studies (see, for
example, [49], [50], [51]) refuting the models based on Hal-
stead, and McCabe as there are studies “validating” them.
Moreover, some of the latter are seriously flawed. Here we
concentrate entirely on their use within models used to
predict defects.

The majority of size and complexity models assume a
straightforward relationship with defects—defects are a
function of size or defects are caused by program complex-
ity. Despite the reported high correlations between design
complexity and defects the relationship is clearly not a
straightforward one. It is clear that it is not entirely causal
because if it were we couldn’t explain the presence of de-
fects introduced when the requirements are defined. It is
wrong to mistake correlation for causation. An analogy
would be the significant positive correlation between IQ
and height in children. It would be dangerous to predict IQ
from height because height doesn’t cause high IQ; the un-
derlying causal factor is physical and mental maturation.
There are a number of interesting observations about the
way complexity metrics are used to predict defect counts:

�� the models ignore the causal effects of programmers
and designers. After all it is they who introduce the
defects so any attribution for faulty code must finally
rest with individual(s);

�� overly complex programs are themselves a conse-
quence of poor design ability or problem difficulty.
Difficult problems might demand complex solutions
and novice programmers might produce “spaghetti
code”;

�� defects may be introduced at the design stage because
of the overcomplexity of the designs already pro-
duced. Clerical errors and mistakes will be committed
because the existing design is difficult to comprehend.
Defects of this type are “inconsistencies” between de-
sign modules and can be thought of as quite distinct
from requirements defects.

6.4 Problems in Data Quality and Statistical
Methodology

The weight given to knowledge obtained by empirical
means rests on the quality of the data collected and the de-
gree of rigor employed in analyzing this data. Problems in
either data quality or analysis may be enough to make the
resulting conclusions invalid. Unfortunately some defect
prediction studies have suffered from such problems. These
problems are caused, in the main, by a lack of attention to
the assumptions necessary for successful use of a particular
statistical technique. Other serious problems include the
lack of distinction made between model fitting and model
prediction and the unjustified removal of data points or
misuse of averaged data.

The ability to replicate results is a key component of any
empirical discipline. In software development different
findings from diverse experiments could be explained by the
fact that different, perhaps uncontrolled, processes were used
on different projects. Comparability over case studies might
be better achieved if the processes used during development
were documented, along with estimates of the extent to
which they were actually followed.

6.4.1 Multicolinearity
Multicolinearity is the most common methodological
problem encountered in the literature. Multicolinearity is
present when a number of predictor variables are highly
positively or negatively correlated. Linear regression de-
pends on the assumption of zero correlation between pre-
dictor variables, [52]. The consequences of multicolinearity
are many fold; it causes unstable coefficients, misleading
statistical tests, and unexpected coefficient signs. For exam-
ple, one of the equations in [21] (9):

C MCI N HE� � �0 042 0 075 0 00001. . . (9)

shows clear signs of multicolinearity. If we examine the
equation coefficients we can see that an increase in the op-
erator and operand total, N, should result in an increase in
changes, c, all things being equal. This is clearly counter-
intuitive. In fact analysis of the data reveals that machine
code instructions, MCI, operand, and operator count, N,
and Halstead’s Effort metric, HE, are all highly correlated
[42]. This type of problem appears to be common in the
software metrics literature and some recent studies appear to
have fallen victim to the multicolinearity problem [12], [53].

Colinearity between variables has also been detected in a
number of studies that reported a negative correlation be-
tween defect density and module size. Rosenberg reports
that, since there must be a negative correlation between X,
size, and 1/X it follows that the correlation between X and
Y/X (defects/size) must be negative whenever defects are
growing at most linearly with size [54]. Studies which have
postulated such a linear relationship are more than likely to
have detected negative correlation, and therefore concluded
that large modules have smaller defect densities, because of
this property of arithmetic.

6.4.2 Factor Analysis vs. Principal Components Analysis
The use of factor analysis and principal components analysis
solves the multicolinearity problem by creating new or-
thogonal factors or principal component dimensions, [43].
Unfortunately the application of factor analysis assumes the
errors are Gaussian, whereas [55] notes that most software
metrics data is non-Gaussian. Principal components analysis
can be used instead of factor analysis because it does not rely
on any distributional assumptions, but will on many occa-
sions produce results broadly in agreement with factor
analysis. This makes the distinction a minor one, but one that
needs to be considered.

6.4.3 Fitting Models vs. Predicting Data
Regression modeling approaches are typically concerned
with fitting models to data rather than predicting data. Re-
gression analysis typically finds the least-squares fit to the
data and the goodness of this fit demonstrates how well the
model explains historical data. However a truly successful
model is one which can predict the number of defects dis-
covered in an unknown module. Furthermore, this must be a
module not used in the derivation of the model. Unfortu-
nately, perhaps because of the shortage of data, some re-
searchers have tended to use their data to fit the model
without being able to test the resultant model out on a new
data set. See, for example, [5], [12], [16].

FENTON AND NEIL: A CRITIQUE OF SOFTWARE DEFECT PREDICTION MODELS 7

J:\PRODUCTION\TSE\2-INPROD\105579\105579-1.DOC regularpaper98.dot SL 19,968 04/14/99 2:14 PM 7 / 15

6.4.4 Removing Data Points
In standard statistical practice there should normally be
strong theoretical or practical justification for removing
data points during analysis. Recording and transcription
errors are often an acceptable reason. Unfortunately, it is
often difficult to tell from published papers whether any
data points have been removed before analysis, and if they
have, the reasons why. One notable case is Compton and
Withrow, [12], who reported removing a large number of
data points from the analysis because they represented
modules that had experienced zero defects. Such action is
surprising in view of the conjecture they wished to test; that
defects were minimised around an optimum size for Ada. If
the majority of smaller modules had zero defects, as it ap-
pears, then we cannot accept Compton and Withrow’s con-
clusions about the “Goldilock’s Conjecture.”

6.4.5 Using “Averaged” Data
We believe that the use of “averaged” data in analysis
rather than the original data prejudices many studies. The
study in [19] uses graphs, apparently derived from the
original NASA-Goddard data, plotting “average size in
statements” against “number of defects” or “defect den-
sity.” Analysis of averages are one step removed from the
original data and it raises a number of issues. Using aver-
ages reduces the amount of information available to test the
conjecture under study and any conclusions will be corre-
spondingly weaker. The classic study in [13] used average
fault density of grouped data in a way that suggested a
trend that was not supported by the raw data. The use of
averages may be a practical way around the common
problem where defect data is collected at a higher level,
perhaps at the system or subsystem level, than is ideal; de-
fects recorded against individual modules or procedures.
As a consequence data analysis must match defect data on
systems against statement counts automatically collected at
the module level. There may be some modules within a
subsystem that are over penalized when others keep the
average high because the other modules in that subsystem
have more defects or vice versa. Thus, we cannot com-
pletely trust any defect data collected in this way.

Misuse of averages has occurred in one other form. In
Gaffney’s paper, [11], the rule for optimal module size was
derived on the assumption that to calculate the total num-
ber of defects in a system we could use the same model as
had been derived using module defect counts. The model
derived at the module level is shown by (4) and can be ex-
tended to count the total defects in a system, DT, based on
Li, (9). The total number of modules in the system is de-
noted by N.

D D N LT i
i

N

i
i

N

� � �
� �
� �

1

4 3

1

4 0 0015.2 . () / (9)

Gaffney assumes that the average module size can be
used to calculate the total defect count and also the opti-
mum module size for any system, using (10):

D N N
L

NT
i

N

i

� �

�

�

����

�

�

����
�4 0 0015 1

4 3

.2 .

/

�
 (10)

However we can see that (9) and (10) are not equivalent.
The use of (10) mistakenly assumes the power of a sum is
equal to a sum of powers.

6.5 The “Goldilock’s Conjecture”
The results of inaccurate modeling and inference is perhaps
most evident in the debate that surrounds the “Goldilock’s
Conjecture” discussed in Section 2—the idea that there is an
optimum module size that is “not too big nor too small.”
Hatton, [19], claims that there is

“compelling empirical evidence from disparate sources to sug-
gest that in any software system, larger components are propor-
tionally more reliable than smaller components.”

If these results were generally true the implications for
software engineering would be very serious indeed. It
would mean that program decomposition as a way of
solving problems simply did not work. Virtually all of the
work done in software engineering extending from funda-
mental concepts, like modularity and information-hiding,
to methods, like object-oriented and structured design
would be suspect because all of them rely on some notion
of decomposition. If decomposition doesn’t work then there
would be no good reason for doing it.

Claims with such serious consequences as these deserve
special attention. We must ask whether the data and
knowledge exists to support them. These are clear criteria
—if the data exist to refute the conjecture that large mod-
ules are “better” and if we have a sensible explanation for
this result then a claim will stand. Our analysis shows that,
using these criteria, these claims cannot currently stand. In
the studies that support the conjecture we found the fol-
lowing problems:

�� none define “module” in such a way as to make com-
parison across data sets possible;

�� none explicitly compare different approaches to
structuring and decomposing designs;

�� the data analysis or quality of the data used could not
support the results claimed;

�� a number of factors exist that could partly explain the re-
sults which these studies have neglected to examine.

Additionally, there are other data sets which do not show
any clear relationships between module size and defect
density.

If we examine the various results we can divide them into
three main classes. The first class contains models, exempli-
fied by graph Fig. 1a, that shows how defect density falls as
module size increases. Models such as these have been pro-
duced by Akiyama, Gaffney, and Basili and Pericone. The
second class of models, exemplified by Fig. 1b, differ from
the first because they show the Goldilock’s principle at work.
Here defect density rises as modules get bigger in size. The
third class, exemplified by Fig. 1c, shows no discernible pat-
tern whatsoever. Here the relationship between defect den-
sity and module size appears random (no meaningful curvi-
linear models could be fitted to the data at all.

The third class of results show the typical data pattern
from a number of very large industrial systems. One data set
was collected at the Tandem Corporation and was reported
in, [56]. The Tandem data was subsequently analyzed by Neil
[42], using the principal components technique to produce a

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 3, MAY/JUNE 1999

J:\PRODUCTION\TSE\2-INPROD\105579\105579-1.DOC regularpaper98.dot SL 19,968 04/14/99 2:14 PM 8 / 15

“combined measure” of different size measures, such as deci-
sion counts. This principal component statistic was then
plotted against the number of changes made to the system
modules (these were predominantly changes made to fix
defects). This defect data was standardized according to
normal statistical practice. A polynomial regression curve
was fitted to the data in order to determine whether there
was significant nonlinear effects of size on defect density. The
results were published and are reproduced here in Fig. 2.

Despite some parameters of the polynomial curve being
statistically significant it is obvious that there is no discerni-
ble relationship between defect counts and module size in
the Tandem data set. Many small modules experienced no
defects at all and the fitted polynomial curve would be use-
less for prediction. This data clearly refutes the simplistic
assumptions typified by class Fig. 1a and 1b models (these
models couldn’t explain the Tandem data nor accurately
predict the defect density values of these Tandem modules.
A similar analysis and result is presented in [47].

We conclude that the relationship between defects and
module size is too complex, in general, to admit to straight-
forward curve fitting models. These results, therefore, con-
tradict the idea that there is a general law linking defect
density and software component size as suggested by the
“Goldilock’s Conjecture.”

7 PREDICTING DEFECTS USING BBNS

It follows from our analysis in Section 6 that the suggestion
that defects can be predicted by complexity or size meas-
ures alone presents only a skewed picture. The number of
defects discovered is clearly related to the amount of testing
performed, as discussed above. A program which has never
been tested, or used for that matter, will have a zero defect
count, even though its complexity may be very high.
Moreover, we can assume the test effectiveness of complex
programs is relatively low, [37], and such programs could
be expected to exhibit a lower number of defects per line of
code during testing because they “hide” defects more ef-
fectively. This could explain many of the empirical results
that larger modules have lower defect densities. Therefore,
from what we know of testability, we could conclude that
large modules contained many residual defects, rather than
concluding that large modules were more reliable (and by
implication that software decomposition is wrong).

Clearly all of the problems described in Section 6 are not
going to be solved easily. However, we believe that model-
ing the complexities of software development using new
probabilistic techniques presents a positive way forward.
These methods, called Bayesian Belief Networks (BBNs),
allow us to express complex interrelations within the model

Fig. 2. Tandem data defects counts vs. size “principal component.”

Fig. 1. Three classes of defect density results. (a) Akiyama (1971), Basili and Perricome (1984), and Gaffney (1984); (b) Moeller and Paulish (1993),
Compton and Withrow (1990), and Hatton (1997); (c) Neil (1992) and Fenton and Ohlsson (1997).

FENTON AND NEIL: A CRITIQUE OF SOFTWARE DEFECT PREDICTION MODELS 9

J:\PRODUCTION\TSE\2-INPROD\105579\105579-1.DOC regularpaper98.dot SL 19,968 04/14/99 2:14 PM 9 / 15

at a level of uncertainty commensurate with the problem.
In this section, we first provide an overview of BBNs
(Section 7.1) and describe the motivation for the particular
BBN example used in defects prediction (Section 7.2). In
Section 7.3, we describe the actual BBN.

7.1 An Overview of BBNs
Bayesian Belief Networks (also known as Belief Networks,
Causal Probabilistic Networks, Causal Nets, Graphical
Probability Networks, Probabilistic Cause-Effect Models,
and Probabilistic Influence Diagrams) have attracted much
recent attention as a possible solution for the problems of
decision support under uncertainty. Although the under-
lying theory (Bayesian probability) has been around for a
long time, the possibility of building and executing realistic
models has only been made possible because of recent algo-
rithms and software tools that implement them [57]. To date
BBNs have proven useful in practical applications such as
medical diagnosis and diagnosis of mechanical failures.
Their most celebrated recent use has been by Microsoft
where BBNs underlie the help wizards in Microsoft Office;
also the “intelligent” printer fault diagnostic system which
you can run when you log onto Microsoft’s web site is in
fact a BBN which, as a result of the problem symptoms you
enter, identifies the most likely fault.

A BBN is a graphical network that represents probabilis-
tic relationships among variables. BBNs enable reasoning
under uncertainty and combine the advantages of an intui-
tive visual representation with a sound mathematical basis
in Bayesian probability. With BBNs, it is possible to articu-
late expert beliefs about the dependencies between different
variables and to propagate consistently the impact of evi-
dence on the probabilities of uncertain outcomes, such as
“future system reliability.” BBNs allow an injection of sci-
entific rigor when the probability distributions associated
with individual nodes are simply “expert opinions.”

A BBN is a special type of diagram (called a graph) to-
gether with an associated set of probability tables. The graph
is made up of nodes and arcs where the nodes represent un-
certain variables and the arcs the causal/relevance relation-
ships between the variables. Fig. 3 shows a BBN for an exam-
ple “reliability prediction” problem. The nodes represent
discrete or continuous variables, for example, the node “use
of IEC 1508” (the standard) is discrete having two values
“yes” and “no,” whereas the node “reliability” might be con-
tinuous (such as the probability of failure). The arcs represent
causal/influential relationships between variables. For ex-
ample, software reliability is defined by the number of (la-
tent) faults and the operational usage (frequency with which
faults may be triggered). Hence, we model this relationship
by drawing arcs from the nodes “number of latent faults and
“operational usage” to “reliability.”

For the node “reliability” the node probability table (NPT)
might, therefore, look like that shown in Table 5 (for ultra-
simplicity we have made all nodes discrete so that here reli-
ability takes on just three discrete values low, medium, and
high). The NPTs capture the conditional probabilities of a
node given the state of its parent nodes. For nodes without
parents (such as “use of IEC 1508” in Fig. 3.) the NPTs are
simply the marginal probabilities.

There may be several ways of determining the probabili-

ties for the NPTs. One of the benefits of BBNs stems from the
fact that we are able to accommodate both subjective prob-
abilities (elicited from domain experts) and probabilities
based on objective data. Recent tool developments, notably
on the SERENE project [58], mean that it is now possible to
build very large BBNs with very large probability tables (in-
cluding continuous node variables). In three separate indus-
trial applications we have built BBNs with several hundred
nodes and several millions of probability values [59].

There are many advantages of using BBNs, the most im-
portant being the ability to represent and manipulate com-
plex models that might never be implemented using con-
ventional methods. Another advantage is that the model can
predict events based on partial or uncertain data. Because
BBNs have a rigorous, mathematical meaning there are soft-
ware tools that can interpret them and perform the complex
calculations needed in their use [58].

The benefits of using BBNs include:

�� specification of complex relationships using condi-
tional probability statements;

�� use of “what-if? analysis and forecasting of effects of
process changes;

�� easier understanding of chains of complex and
seemingly contradictory reasoning via the graphical
format;

�� explicit modeling of “ignorance” and uncertainty in
estimates;

�� use of subjectively or objectively derived probability
distributions;

�� forecasting with missing data.

7.2 Motivation for BBN Approach
Clearly defects are not directly caused by program complex-
ity alone. In reality the propensity to introduce defects will be
influenced by many factors unrelated to code or design com-
plexity. There are a number of causal factors at play when we
want to explain the presence of defects in a program:

�� Difficulty of the problem
�� Complexity of designed solution
�� Programmer/analyst skill
�� Design methods and procedures used

Eliciting requirements is a notoriously difficult process
and is widely recognized as being error prone. Defects intro-
duced at the requirements stage are claimed to be the most
expensive to remedy if they are not discovered early enough.
Difficulty depends on the individual trying to understand
and describe the nature of the problem as well as the prob-
lem itself. A “sorting” problem may appear difficult to a
novice programmer but not to an expert. It also seems that
the difficulty of the problem is partly influenced by the num-
ber of failed attempts at solutions there have been and
whether a “ready made” solution can be reused. Thus, novel
problems have the highest potential to be difficult and
“known” problems tend to be simple because known solu-
tions can be identified and reused. Any software develop-
ment project will have a mix of “simple” and “difficult”
problems depending on what intellectual resources are avail-
able to tackle them. Good managers know this and attempt
to prevent defects by pairing up people and problems; easier
problems to novices and difficult problems to experts.

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 3, MAY/JUNE 1999

J:\PRODUCTION\TSE\2-INPROD\105579\105579-1.DOC regularpaper98.dot SL 19,968 04/14/99 2:14 PM 10 / 15

When assessing a defect it is useful to determine when it
was introduced. Broadly speaking there are two types of
defect; those that are introduced in the requirements and
those introduced during design (including coding/ imple-
mentation which can be treated as design). Useful defect
models need to explain why a module has a high or low
defect count if we are to learn from its use, otherwise we
could never intervene and improve matters. Models using
size and complexity metrics are structurally limited to as-
suming that defects are solely caused by the internal or-
ganization of the software design. They cannot explain de-
fects introduced because:

�� the “problem” is “hard”;
�� problem descriptions are inconsistent;
�� the wrong “solution” is chosen and does not fulfill the

requirements.

We have long recognized in software engineering that
program quality can be potentially improved through the use
of proper project procedures and good design methods. Basic
project procedures like configuration management, incident
logging, documentation and standards should help reduce
the likelihood of defects. Such practices may not help the
unique genius you need to work on the really difficult prob-
lems but they should raise the standards of the mediocre.

Central to software design method is the notion that prob-
lems and designs can be decomposed into meaningful chunks
where each can be readily understood alone and finally re-
composed to form the final system. Loose coupling between
design components is supposed to help ensure that defects are
localized and that consistency is maintained. What we have
lacked as a community is a theory of program composition
and decomposition, instead we have fairly ill-defined ideas on
coupling, modularity and cohesiveness. However, despite not
having such a theory every day experience tells us that these
ideas help reduce defects and improve comprehension. It is
indeed hard to think of any other scientific or engineering dis-
cipline that has not benefited from this approach.

Surprisingly, much of the defect prediction work has
been pursued without reference to testing or testability.
According to [37], [38] the testability of a program will dic-
tate its propensity to reveal failures under test conditions
and use. Also, at a superficial level the amount of testing
performed will determine how many defects will be dis-
covered, assuming there are defects there to discover.
Clearly, if no testing is done then no defects will be found.
By extension we might argue that difficult problems, with
complex solutions, might be difficult to test and so might
demand more test effort. If such testing effort is not forth-
coming (as is typical in many commercial projects when

Fig. 3. “Reliability prediction” BBN example.

TABLE 5
NODE PROBABILITY TABLE (NPT) FOR THE NODE “RELIABILITY”

operational usage low med high

faults low med high low med high low med high

low 0.10 0.20 0.33 0.20 0.33 0.50 0.20 0.33 0.70
reliability med 0.20 0.30 0.33 0.30 0.33 0.30 0.30 0.33 0.20

high 0.70 0.50 0.33 0.50 0.33 0.20 0.50 0.33 0.10

FENTON AND NEIL: A CRITIQUE OF SOFTWARE DEFECT PREDICTION MODELS 11

J:\PRODUCTION\TSE\2-INPROD\105579\105579-1.DOC regularpaper98.dot SL 19,968 04/14/99 2:14 PM 11 / 15

deadlines loom) then less defects will be discovered, thus
giving an over estimate of the quality achieved and a false
sense of security. Thus, any model to predict defects must
include testing and testability as crucial factors.

7.3 A Prototype BBN
While there is insufficient space here to fully describe the
development and execution of a BBN model here we have
developed a prototype BBN to show the potential of BBNs
and illustrate their useful properties. This prototype does not
exhaustively model all of the issues described in Section 7.2
nor does it solve all of the problems described in Section 6.
Rather, it shows the possibility of combining the different
software engineering schools of thought on defect prediction
into a single model. With this model we should be able to
show how predictions might be made and explain historical
results more clearly.

The majority of the nodes have the following states:
“very-high,” “high,” “medium,” “low,” “very low,” except
for the design size node and defect count nodes which have
integer values or ranges and the defect density nodes which
have real values. The probabilities attached to each of these
states are fictitious but are determined from an analysis of
the literature or common-sense assumptions about the di-
rection and strength of relations between variables.

The defect prediction BBN can be explained in two stages.
The first stage covers the life-cycle processes of specification,
design or coding and the second stage covers testing. In Fig. 4
problem complexity represents the degree of complexity inher-
ent in the set of problems to be solved by development. We
can think of these problems as being discrete functional re-
quirements in the specification. Solving these problems ac-
crues benefits to the user. Any mismatch between the prob-
lem complexity and design effort is likely to cause the intro-
duction of defects, defects introduced, and a greater design size.
Hence the arrows between design effort, problem complexity,
introduced defects, and design size. The testing stage follows the
design stage and in practice the testing effort actually allo-
cated may be much less than that required. The mismatch
between testing effort and design size will influence the num-
ber of defects detected, which is bounded by the number of
defects introduced. The difference between the defects detected
and defects introduced is the residual defects count. The defect
density at testing is a function of the design size and defects
detected (defects/size). Similarly, the residual defect density is
residual defects divided by design size.

Fig. 5 shows the execution of the defect density BBN
model under the “Goldilock’s Conjecture” using the Hugin
Explorer tool [58]. Each of the nodes is shown as a window
with a histogram of the predictions made based on the facts
entered (facts are represented by histogram bars with 100
percent probability). The scenario runs as follows. A very
complex problem is represented as a fact set at “very high”
and a “high” amount of design effort is allocated, rather than
“very high” commensurate with the problem complexity. The
design size is between 1.0–2.0 KLOC. The model then
propagates these “facts” and predicts the introduced defects,
detected defects and the defect density statistics. The distribu-
tion for defects introduced peaks at two with 33 percent

probability but, because less testing effort was allocated
than required, the distribution of defects detected peaks
around zero with probability 62 percent. The distribution
for defect density at testing contrasts sharply with the residual
defect density distribution in that the defect density at testing
appears very favourable. This is of course misleading be-
cause the residual defect density distribution shows a much
higher probability of higher defect density levels.

From the model we can see a credible explanation for
observing large “modules” with lower defect densities.
Underallocation of design effort for complex problems re-
sults in more introduced defects and higher design size.
Higher design size requires more testing effort, which if
unavailable, leads to less defects being discovered than are
actually there. Dividing the small detected defect counts
with large design size values will result in small defect den-
sities at the testing stage. The model explains the
“Goldilock’s Conjecture” without ad hoc explanation or
identification of outliers.

Clearly the ability to use BBNs to predict defects will
depend largely on the stability and maturity of the devel-
opment processes. Organizations that do not collect metrics
data, do not follow defined life-cycles or do not perform
any forms of systematic testing will find it hard to build or
apply such models. This does not mean to say that less
mature organizations cannot build reliable software, rather
it implies that they cannot do so predictably and controlla-
bly. Achieving predictability of output, for any process,
demands a degree of stability rare in software development
organizations. Similarly, replication of experimental results
can only be predicated on software processes that are de-
fined and repeatable. This clearly implies some notion of
Statistical Process Control (SPC) for software development.

8 CONCLUSIONS

Much of the published empirical work in the defect predic-
tion area is well in advance of the unfounded rhetoric sadly
typical of much of what passes for software engineering
research. However every discipline must learn as much, if
not more, from its failures as its successes. In this spirit we
have reviewed the literature critically with a view to better
understand past failures and outline possible avenues for
future success.

Our critical review of state-of-the-art of models for pre-
dicting software defects has shown that many methodo-
logical and theoretical mistakes have been made. Many past
studies have suffered from a variety of flaws ranging from
model misspecification to use of inappropriate data. The
issues and problems surrounding the “Goldilock’s Conjec-
ture” illustrate how difficult defect prediction is and how
easy it is to commit serious modeling mistakes. Specifically,
we conclude that the existing models are incapable of pre-
dicting defects accurately using size and complexity metrics
alone. Furthermore, these models offer no coherent expla-
nation of how defect introduction and detection variables
affect defect counts. Likewise any conclusions that large
modules are more reliable and that software decomposition
doesn’t work are premature.

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 3, MAY/JUNE 1999

J:\PRODUCTION\TSE\2-INPROD\105579\105579-1.DOC regularpaper98.dot SL 19,968 04/14/99 2:14 PM 12 / 15

Fig. 4. BBN topology for defect prediction.

Fig. 5. A demonstration of the “Goldilock”s Conjecture.”

FENTON AND NEIL: A CRITIQUE OF SOFTWARE DEFECT PREDICTION MODELS 13

J:\PRODUCTION\TSE\2-INPROD\105579\105579-1.DOC regularpaper98.dot SL 19,968 04/14/99 2:14 PM 13 / 15

Each of the different “schools of thought” have their
own view of the prediction problem despite the interactions
and subtle overlaps between process and product identified
here. Furthermore each of these views model a part of the
problem rather than the whole. Perhaps the most critical
issue in any scientific endeavor is agreement on the con-
stituent elements or variables of the problem under study.
Models are developed to represent the salient features of
the problem in a systemic fashion. This is as much the case
in physical sciences as social sciences. Economists could not
predict the behavior of an economy without an integrated,
complex, macroeconomic model of all of the known, perti-
nent variables. Excluding key variables such as savings rate
or productivity would make the whole exercise invalid. By
taking the wider view we can construct a more accurate
picture and explain supposedly puzzling and contradictory
results. Our analysis of the studies surrounding the
“Goldilock’s Conjecture” shows how empirical results
about defect density can make sense if we look for alterna-
tive explanations.

Collecting data from case studies and subjecting it to
isolated analysis is not enough because statistics on its own
does not provide scientific explanations. We need compel-
ling and sophisticated theories that have the power to ex-
plain the empirical observations. The isolated pursuit of
these single issue perspectives on the quality prediction
problem are, in the longer-term, fruitless. Part of the solu-
tion to many of the difficulties presented above is to de-
velop prediction models that unify the key elements from
the diverse software quality prediction models. We need
models that predict software quality by taking into account
information from the development process, problem com-
plexity, defect detection processe, and design complexity.
We must understand the cause and effect relations between
important variables in order to explain why certain design
processes are more successful than others in terms of the
products they produce.

It seems that successful engineers already operate in a
way that tacitly acknowledges these cause-effect relations.
After all if they didn’t how else could they control and de-
liver quality products? Project managers make decisions
about software quality using best guesses; it seems to us
that will always be the case and the best that researchers
can do is

1)� recognize this fact and
2)� improve the “guessing” process.

We, therefore, need to model the subjectivity and uncer-
tainty that is pervasive in software development. Likewise,
the challenge for researchers is in transforming this uncer-
tain knowledge, which is already evident in elements of the
various quality models already discussed, into a prediction
model that other engineers can learn from and apply. We
are already working on a number of projects using Bayesian
Belief Networks as a method for creating more sophisti-
cated models for prediction, [60], [61], and have described
one of the prototype BBNs to outline the approach. Ulti-
mately, this research is aiming to produce a method for the
statistical process control (SPC) of software production im-
plied by the SEI’s Capability Maturity Model.

All of the defect prediction models reviewed in this paper
operate without the use of any formal theory of program/
problem decomposition. The literature is however replete
with acknowledgments to cognitive explanations of short-
comings in human information processing. While providing
useful explanations of why designers employ decomposi-
tion as a design tactic they do not, and perhaps cannot, al-
low us to determine objectively the optimum level of de-
composition within a system (be it a requiremen’s specifi-
cation or a program). The literature recognizes the two
structural3 aspects of software, “within” component struc-
tural complexity and “between” component structural
complexity, but we lack the way to crucially integrate these
two views in a way that would allow us to say whether one
design was more or less structurally complex than another.
Such a theory might also allow us to compare different de-
compositions of the same solution to the same problem re-
quirement, thus explaining why different approaches to
problem or design decomposition might have caused a de-
signer to commit more or less defects. As things currently
stand without such a theory we cannot compare different
decompositions and, therefore, cannot carry out experi-
ments comparing different decomposition tactics. This
leaves a gap in any evolving science of software engineer-
ing that cannot be bridged using current case study based
approaches, despite their empirical flavor.

ACKNOWLEDGMENTS

The work carried out here was partially funded by the
ESPRIT projects SERENE and DeVa, the EPSRC project
IMPRESS, and the DISPO project funded by Scottish Nu-
clear. The authors are indebted to Niclas Ohlsson and Peter
Popov for comments that influenced this work and also to
the anonymous reviewers for their helpful and incisive
contributions.

REFERENCES

[1]� N.E. Schneidewind and H. Hoffmann, “An Experiment in Soft-
ware Error Data Collection and Analysis,” IEEE Trans. Software
Eng., vol. 5, no. 3, May 1979.

[2]� D. Potier, J.L. Albin, R. Ferreol, A, and Bilodeau, “Experiments
with Computer Software Complexity and Reliability,” Proc. Sixth
Int’l Conf. Software Eng., pp. 94-103, 1982.

[3]� T. Nakajo, and H. Kume, “A Case History Analysis of Software
Error Cause-Effect Relationships,” IEEE Trans. Software Eng., vol.
17, no. 8, Aug. 1991.

[4]� S. Brocklehurst and B. Littlewood, “New Ways to Get Accurate
Software Reliability Modelling,” IEEE Software, vol. 34, no. 42,
July 1992.

[5]� F. Akiyama, “An Example of Software System Debugging,” Infor-
mation Processing, vol. 71, pp. 353-379, 1971.

[6]� A.E. Ferdinand, “A Theory of System Complexity,” Int’l J. General
Systems, vol. 1, pp. 19-33, 1974.

[7]� M.H. Halstead, Elements of Software Science. Elsevier North-Holland,
1975.

[8]� N.E. Fenton and B.A. Kitchenham, “Validating Software Meas-
ures,” J. Software Testing, Verification & Reliability, vol. 1, no. 2,
pp. 27-42, 1991.

3. We are careful here to use the term structural complexity when dis-
cussing attributes of design artifacts and cognitive complexity when refer-
ring to an individuals understanding of such an artifact. Suffice it to say,
that structural complexity would influence cognitive complexity.

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 3, MAY/JUNE 1999

J:\PRODUCTION\TSE\2-INPROD\105579\105579-1.DOC regularpaper98.dot SL 19,968 04/14/99 2:14 PM 14 / 15

[9]� L.M. Ottenstein, “Quantitative Estimates of Debugging Require-
ments,” IEEE Trans. Software Eng., vol. 5, no. 5, pp. 504-514, 1979.

[10]� M. Lipow, “Number of Faults per Line of Code,” IEEE Trans. Soft-
ware Eng., vol. 8, no. 4, pp. 437-439, 1982.

[11]� J.R. Gaffney, “Estimating the Number of Faults in Code,” IEEE
Trans. Software Eng., vol. 10, no. 4, 1984.

[12]� T. Compton, and C. Withrow, “Prediction and Control of Ada
Software Defects,” J. Systems and Software, vol. 12, pp. 199-207,
1990.

[13]� V.R. Basili and B.T. Perricone, “Software Errors and Complexity:
An Empirical Investigation,” Comm. ACM, vol. 27, no. 1, pp.
42-52, 1984.

[14]� V. Y. Shen, T. Yu, S.M., Thebaut, and L.R. Paulsen, “Identifying
Error-Prone Software—An Empirical Study,” IEEE Trans. Software
Eng., vol. 11, no. 4, pp. 317-323, 1985.

[15]� K.H. Moeller and D. Paulish, “An Empirical Investigation of
Software Fault Distribution,” Proc First Int’l Software Metrics Symp,
pp. 82-90, IEEE CS Press, 1993.

[16]� L. Hatton, “The Automation of Software Process and Product
Quality,” M. Ross, C.A. Brebbia, G. Staples, and J. Stapleton, eds.,
Software Quality Management, pp. 727-744, Southampton: Com-
putation Mechanics Publications, Elsevier, 1993.

[17]� L. Hatton, C and Safety Related Software Development: Standards,
Subsets, testing, Metrics, Legal Issues. McGraw-Hill, 1994.

[18]� T. Keller, “Measurements Role in Providing Error-Free Onboard
Shuttle Software,” Proc. Third Int’l Applications of Software Metrics
Conf. La Jolla, Calif., pp. 2.154-2.166, proc. available from Software
Quality Engineering, 1992.

[19]� L. Hatton, “Re-examining the Fault Density-Component Size
Connection,” IEEE Software, vol. 14, no. 2, pp. 89-98, Mar./Apr.
1997.

[20]� T.J. McCabe, “A Complexity Measure,” IEEE Trans. Software Eng.,
vol. 2, no. 4, pp. 308 - 320, 1976.

[21]� B.A. Kitchenham, L.M. Pickard, and S.J. Linkman, “An Evaluation
of Some Design Metrics,” Software Eng J., vol. 5, no. 1, pp. 50-58,
1990.

[22]� S. Henry and D. Kafura, “The Evaluation of Software System’s
Structure Using Quantitative Software Metrics,” Software—Prac-
tice and Experience, vol. 14, no. 6, pp. 561-573, June 1984.

[23]� N. Ohlsson and H. Alberg “Predicting Error-Prone Software
Modules in Telephone Switches IEEE Trans. Software Eng., vol. 22,
no. 12, pp. 886-894, 1996.

[24]� V. Basili, L. Briand, and W.L. Melo, “A Validation of Object Ori-
ented Design Metrics as Quality Indicators,” IEEE Trans. Software
Eng., 1996.

[25]� S.R. Chidamber and C.F. and Kemerer, “A Metrics Suite for Object
Oriented Design,” IEEE Trans. Software Eng., vol. 20, no. 6, pp. 476-
498, 1994.

[26]� C. Jones, Applied Software Measurement. McGraw-Hill, 1991.
[27]� M.A. Cusumano, Japan’s Software Factories. Oxford Univ. Press,

1991.
[28]� K. Koga, “Software Reliability Design Method in Hitachi,” Proc.

Third European Conf. Software Quality, Madrid, 1992.
[29]� K. Yasuda, “Software Quality Assurance Activities in Japan,”

Japanese Perspectives in Software Eng., pp. 187-205, Addison-Wesley,
1989.

[30]� M. Dyer, The Cleanroom Approach to Quality Software Development.
Wiley, 1992.

[31]� W.S. Humphrey, Managing the Software Process. Reading, Mass.:
Addison-Wesley, 1989.

[32]� R.D. Buck and J.H. Robbins, “Application of Software Inspection
Methodology in Design and Code,” Software Validation, H.-L.
Hausen, ed., pp. 41-56, Elsevier Science, 1984.

[33]� N.E. Fenton, S. Lawrence Pfleeger, and R. Glass, “Science and
Substance: A Challenge to Software Engineers,” IEEE Software,
pp. 86-95, July 1994.

[34]� R.B. Grady, Practical Software Metrics for Project Management and
Process Improvement. Prentice Hall, 1992.

[35]� A. Veevers and A.C. Marshall, “A Relationship Between Software
Coverage Metrics and Reliability,” J Software Testing, Verification
and Reliability, vol. 4, pp. 3-8, 1994.

[36]� M.D. Neil, “Statistical Modelling of Software Metrics,” PhD the-
sis, South Bank Univ. and Strathclyde Univ., 1992.

[37]� J.M. Voas and K.W. Miller, “Software Testability: The New Verifi-
cation,” IEEE Software, pp. 17-28, May, 1995.

[38]� A. Bertolino, and L. Strigini, “On the Use of Testability Measures
for Dependability Assessment,” IEEE Trans. Software Eng., vol. 22,
no. 2, pp. 97-108, 1996.

[39]� M. Diaz and J. Sligo, “How Software Process Improvement
Helped Motorola,” IEEE Software, vol. 14, no. 5, pp. 75-81, 1997.

[40]� C. Jones, “The Pragmatics of Software Process Improvements,”
Software Engineering Technical Council Newsletter, Technical Council
on Software Eng., IEEE Computer Society, vol. 14 no. 2, Winter
1996.

[41]� J.C. Munson and T.M. Khoshgoftaar, “Regression Modelling of
Software Quality: An Empirical Investigation,” Information and
Software Technology, vol. 32, no. 2, pp. 106-114, 1990.

[42]� M.D. Neil, “Multivariate Assessment of Software Products,” J.
Software Testing, Verification and Reliability, vol. 1, no. 4, pp. 17-37,
1992.

[43]� T.M. Khoshgoftaar and J.C. Munson, “Predicting Software Devel-
opment Errors Using Complexity Metrics,” IEEE J Selected Areas in
Comm., vol. 8, no. 2, pp. 253-261, 1990.

[44]� J.C. Munson and T.M. Khoshgoftaar, “The Detection of Fault-
Prone Programs,” IEEE Trans. Software Eng., vol. 18, no. 5, pp.
423-433, 1992.

[45]� N.E. Fenton and S. Lawrence Pfleeger, Software Metrics: A Rigorous
and Practical Approach, second edition, Int’l Thomson Computer
Press, 1996.

[46]� E. Adams, “Optimizing Preventive Service of Software Products,”
IBM Research J., vol. 28, no. 1, pp. 2-14, 1984.

[47]� N. Fenton and N. Ohlsson, “Quantitative Analysis of Faults and
Failures in a Complex Software System,” IEEE Trans. Software
Eng., 1999. to appear

[48]� T. Stalhane, “Practical Experiences with Safety Assessment of a
System for Automatic Train Control,” Proc. SAFECOMP’92, Zu-
rich, Switzerland, Oxford, U.K.: Pergamon Press, 1992.

[49]� P. Hamer and G. Frewin, “Halstead’s Software Science: A Critical
Examination,” Proc. Sixth Int’l Conf. Software Eng., pp. 197-206,
1982.

[50]� V.Y. Shen, S.D. Conte, and H. Dunsmore, “Software Science Re-
visited: A Critical Analysis of the Theory and Its Empirical Sup-
port,” IEEE Trans. Software Eng., vol. 9, no. 2, pp. 155-165, 1983.

[51]� M.J. Shepperd, “A Critique of Cyclomatic Complexity as a Soft-
ware Metric,” Software Eng. J., vol. 3, no. 2, pp. 30-36, 1988.

[52]� B.F. Manly, Multivariate Statistical Methods: A Primer. Chapman &
Hall, 1986.

[53]� F. Zhou, B. Lowther, P. Oman, and J. Hagemeister, “Constructing
and Testing Software Maintainability Assessment Models,” First
Int’l Software Metrics Symp., IEEE CS Press, Baltimore, Md., 1993.

[54]� J. Rosenberg, “Some Misconceptions About Lines of Code,” Soft-
ware Metrics Symp., IEEE Computer Society, pp. 37-142, 1997.

[55]� B.A. Kitchenham, “An Evaluation of Software Structure Metrics,”
Proc. COMPSAC’88, Chicago Ill., 1988.

[56]� S. Cherf, “An Investigation of the Maintenance and Support
Characteristics of Commercial Software,” Proc. Second Oregon
Workshop on Software Metrics (AOWSM), Portland, 1991.

[57]� S.L. Lauritzen and D.J. Spiegelhalter, “Local Computations with
Probabilities on Graphical Structures and Their Application to
Expert Systems (with discussion),” J.R. Statistical Soc. Series B, 50,
no. 2, pp. 157-224, 1988.

[58]� HUGIN Expert Brochure. Hugin Expert A/S, Aalborg, Denmark,
1998.

[59]� Agena Ltd, “Bayesian Belief Nets,” http://www.agena.co.uk/bbnarticle/
bbns.html

[60]� M. Neil and N.E. Fenton, “Predicting Software Quality Using
Bayesian Belief Networks,” Proc 21st Ann. Software Eng. Workshop,
NASA Goddard Space Flight Centre, pp. 217-230, Dec. 1996.

[61]� M. Neil, B. Littlewood, and N. Fenton, “Applying Bayesian Belief
Networks to Systems Dependability Assessment,” Proc. Safety
Critical Systems Club Symp., Springer-Verlag, Leeds, Feb. 1996.

FENTON AND NEIL: A CRITIQUE OF SOFTWARE DEFECT PREDICTION MODELS 15

J:\PRODUCTION\TSE\2-INPROD\105579\105579-1.DOC regularpaper98.dot SL 19,968 04/14/99 2:14 PM 15 / 15

Norman E. Fenton is professor of computing
science at the Centre for Software Reliability,
City University, London and is also a director at
Agena Ltd. His research interests include soft-
ware metrics, empirical software engineering,
safety critical systems, and formal development
methods. However, the focus of his current work
is on applications of Bayesian nets; these appli-
cations include critical systems’ assessment,
vehicle reliability prediction, and software quality

assessment. He is a chartered engineer (member of the IEE), a fellow
of the IMA, and a member of the IEEE Computer Society.

Martin Neil holds a first degree in mathematics
for business analysis from Glasgow Caledonian
University and has achieved a PhD in statistical
analysis of software metrics jointly from South
Bank University and Strathclyde University.
Currently he is a lecturer in computing at the
Centre for Software Reliability, City University,
London. Before joining the CSR, He spent three
years with Lloyd’s Register as a consultant and
researcher and a year at South Bank University.
He has also worked with J.P. Morgan as a soft-

ware quality consultant. His research interests cover software metrics,
Bayesian probability, and the software process. Dr. Neil is a director at
Agena Ltd., a consulting company specializing in decision support and
risk assessment of safety and business critical systems. He is a mem-
ber of the CSR Council, the IEEE Computer Society, and the ACM.

