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Foreword to Putting Auction Theory to Work 
 
Paul Milgrom has had an enormous influence on the most important recent application of 
auction theory for the same reason you will want to read this book – clarity of thought 
and expression.  In August 1993, President Clinton signed legislation granting the Federal 
Communications Commission the authority to auction spectrum licenses and requiring it 
to begin the first auction within a year. With no prior auction experience and a tight 
deadline, the normal bureaucratic behavior would have been to adopt a “tried and true” 
auction design. But in 1993 there was no tried and true method appropriate for the 
circumstances – multiple licenses with potentially highly interdependent values. I had 
been advocating the use of auctions to select FCC licensees since 1983, when I joined the 
staff of the FCC’s Office of Plans and Policy. When auction legislation finally passed I 
was given the task of developing an auction design.  
 
One of the first auction design issues the FCC considered was whether to use an 
ascending bid mechanism or a single round sealed bid. The federal government generally 
used sealed bid auctions, especially for high valued rights such as off shore oil and gas 
leases.  FCC staff felt reasonably confident that we could implement a sealed bid auction 
– keep the bids secure, open the bids and select the high bids. There were doubts whether 
we could do anything more complex. In the end, the FCC chose an ascending bid 
mechanism largely because we believed that providing bidders with more information 
would likely increase efficiency and, as shown by Milgrom and Weber (1982), mitigate 
the winner’s curse. 
 
The initial design the FCC proposed in September 1993 was a hybrid of an ascending bid 
and a first price sealed bid auction. It was intended to address the contentious policy issue 
of the appropriate geographic scope of the licenses for broadband Personal 
Communications Services (PCS).  Some companies argued that the FCC should issue 
nationwide licenses. While other companies, especially incumbent cellular providers who 
were barred from holding both a cellular and a PCS license in the same geographic area, 
argued for regional licenses. For each of two nationwide spectrum blocks, the FCC 
proposed conducting a single round sealed bid auction for all 51 licenses as a group 
followed by a series of open outcry auctions for the same licenses individually.  The 
sealed bids would be opened at the conclusion of the open outcry auctions and the 
spectrum awarded to the highest sealed bid only if it exceeded the sum of bids on the 
individual licenses.  
 
The initial FCC proposal also discussed the possibility of a simultaneous auction 
mechanism. Had AirTouch, a large cellular operator, not advocated this approach, it 
might not have been mentioned in the FCC’s September Notice of Proposed Rule 
Making. In meeting with me, they pointed out that in my 1985 FCC working paper 
written with Lex Felker I had suggested a simplified system of simultaneous bidding 
where parties simultaneously placed independent bids on several licenses.   
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In 1985 I had no idea how to run such a simultaneous auction, and in 1993 I was very 
skeptical of the possibility of anyone developing and the FCC implementing a workable 
simultaneous auction within the one year provided by the legislation. But Paul Milgrom 
and Bob Wilson working for Pacific Bell, and Preston McAfee working for AirTouch 
completely changed my thinking. Both the Milgrom-Wilson and the McAfee proposals 
were mindful of the limits on the complexity of any proposal that the FCC could or 
would implement. Both proposed simultaneous ascending bid auctions with discrete 
bidding rounds.  This approach promised to provide much of the operational simplicity of 
sealed bid auctions with the economic efficiency benefits of an ascending auction.  
 
The 1993 legislation required that the FCC develop auction rules within 7 months and 
begin auctions within another 4 months. The FCC could have met the legislative mandate 
by beginning a sealed bid auction or an oral outcry auction.  So why was it so important 
to begin a simultaneous auction within the legislative deadline? It was my view that 
whatever method was used in the first FCC auction, if it appeared successful, would 
become the default method for all future auctions, including broadband PCS. So I spent 
considerable effort looking for a set of licenses for our first auction that the FCC could 
successfully auction using the simultaneous multiple round design. I proposed to senior 
FCC staff that we auction 10 narrowband PCS licenses. It was small enough that we 
could successfully implement a simultaneous auction, valuable enough that a success 
would be considered important, but not so valuable that a failure would impose an 
unacceptably large loss.  
 
The closing rule was one of the major design issues for a simultaneous auction. McAfee 
proposed a market-by-market closing rule with adjustments in bid increments to foster 
markets closing at approximately the same time. In contrast, Milgrom and Wilson 
proposed a simultaneous closing rule whereby the auction closes on all licenses only after 
a round had passed with no bidding on any license. Until then, bidding remains open on 
all licenses. McAfee proposed the market-by-market closing rule because of its 
operational simplicity. The FCC could surely run a number of separate ascending bid 
auctions in parallel. But Milgrom argued that market-by-market closing could potentially 
foreclose efficient backup strategies. (For example, you might be the high bidder on a 
license for several rounds while a license that is a substitute for you closes. If you are 
then outbid on your license, you wouldn’t have the opportunity to place a bid on the 
substitute.) Milgrom’s argument prevailed and the FCC adopted a simultaneous closing 
rule, but not before addressing a closely related issue. 
 
Would an auction with the simultaneous closing rule proposed by Milgrom and Wilson 
ever end? This was the worst case scenario that troubled me when I first met Paul 
Milgrom. He had come to the FCC to explain their auction design. The simultaneous 
multiple round auction with a simultaneous closing rule struck me as the most elegant 
solution I had seen for auctioning multiple licenses that could be both substitutes and 
complements.  But might bidders each have an incentive to hold back while observing the 
bids made by others? If so, how could the FCC be sure that the auction would close in a 
timely fashion? I asked Milgrom this question. He clearly had thought about the problem 
and responded that with no loss of efficiency, bidders could be required to be active on at 
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least one license in every round. Any serious bidder must have either a high bid or place 
an acceptable new bid. With only 20 days between Comments and the deadline for Reply 
Comments, Milgrom and Wilson developed this insight into the activity rule that the FCC 
has used in all its simultaneous multiple round auctions. The Milgrom-Wilson activity 
rule was an elegant, novel solution to a difficult practical auction design issue. It imposed 
a cost on holding back by tying a bidder’s level of eligibility in future rounds to its 
activity level in the current round. If a bidder is not active on a minimum percentage of 
the quantity of spectrum for which it is eligible to bid it suffers a permanent loss of 
eligibility. This discourages bidders from holding back whether to “hide in the grass” or 
to collusively divide up the market.  
 
The activity rule was critical to the FCC adopting the Milgrom-Wilson auction design. 
The FCC could not tolerate the risk that the auction would drag on indefinitely with little 
bidding. The activity rule, with the ability to increase the activity requirement during the 
action, provided the FCC with a mechanism to promote a reasonable auction pace 
without subjecting bidders to the risk of an unanticipated close when they still wished to 
make additional bids. Without this feature the broadband PCS auction might have ended 
after only 12 rounds with revenue at 12% of the actual total. Because of less than 
anticipated initial eligibility in the auction, the initial level of the activity requirement put 
little pressure on bidders to make new bids once there were bids on most licenses. 
Bidding almost ended after 10 rounds but dramatically increased after the FCC raised the 
activity the requirement in round 12. 
 
The elegance and the coherence of the proposal were not sufficient to make it an easy sell 
at the FCC. Many staff had little taste for taking the chance on an auction design that had 
never been used and seemed far more complex than any auction they had heard of. 
Chairman Reed Hundt’s legal advisor, Diane Cornell, argued that the mechanism, 
especially the activity rule, was much too difficult for bidders to understand. I promised 
her that we would develop bidding software that would automatically calculate activity 
requirements and make it easy for bidders to participate. At the time, no such software 
existed, but fortunately we were able to develop user friendly interfaces in time for the 
first auction. A more serious concern was that the auction might be an operational fiasco. 
If that happened, the argument that the design had a theoretical beauty would not carry 
much weight in a congressional oversight hearing. My boss was quite frank when he told 
me that he didn’t want the FCC to be a “beta test site” for new auction designs. 
 
Why did the FCC adopt the basic Milgrom-Wilson auction design despite these 
concerns? First, it was good policy.  It seemed to provide bidders sufficient information 
and flexibility to pursue backup strategies to promote a reasonably efficient assignment 
of licenses, without so much complexity that the FCC could not successfully implement it 
and bidders could not understand it. But just having a good idea is not enough. Good 
ideas need good advocates if they are to be adopted. No advocate was more persuasive 
than Paul Milgrom. He was so persuasive because of his vision, clarity and economy of 
expression, ability to understand and address FCC needs, integrity and a passion for 
getting things right. He was able to translate his theoretical vision into coherent practical 
proposals and explain in plain English how all the pieces fit together. He took the time to 
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learn relevant institutional facts and to listen. He was willing and able to modify his 
proposals to address FCC concerns about auction length and destructive strategic 
behavior. He never used hard sell, or oversold his results, engendering the trust of FCC 
staff. He was always responsive to the frenetic time pressures under which the FCC often 
operates – willing to talk about auction rules while he was on vacation, take desperate 
calls late at night, and visit the FCC on very short notice during that first year the FCC 
was developing its auction design. 
 
As persuasive as Milgrom was, the FCC might not have been willing to risk adopting 
such a novel auction design without additional outside supporters. One was John 
McMillan, who the FCC hired as a consultant to provide independent analysis of 
alternative auction designs. His report to the FCC (a revised version published in JEP 
(1994)) provided strong support for M-W design. And his calm manner and articulate 
explanations were reassuring to FCC staff that we were going in the right direction.  
 
Another ally was Preston McAfee, who helped solidify support for the Milgrom-Wilson 
design when he said that he preferred it to the simpler simultaneous design he had 
developed at a time when he underestimated the FCC’s ability to implement anything but 
the simplest auction design. More important was his suggestion to modify the M-W 
proposal to permit bid withdrawals subject to a penalty. In a conference organized by 
Barry Nalebuff in January 1994 to help the FCC sort out alternative auction designs, 
McAfee proposed a simple way to reduce the exposure risk faced by bidders for licenses 
with strong complementarities. To discourage strategic insincere bidding, the M-W 
design had not allowed for any bid withdrawals. But when a collection of licenses is 
worth more than the sum of the licenses individually, bidders face the risk of paying too 
much for part of a package of licenses when the rest of the package is won by other 
bidders. The National Telecommunications and Information Administration (NTIA), 
whose role includes advising the White House on telecommunications policy, had 
proposed combinatorial auction mechanism to address this concern. The design, based on 
the work of Banks, Ledyard and Porter (1989) and developed in a NTIA staff paper by 
Mark Bykowsky and Robert Cull seemed far too complex for the FCC to implement in 
the time available. As an alternative, McAfee proposed permitting bid withdrawals 
subject to a payment equal to the difference between the withdrawn bid and the 
subsequent high bid. 
 
While the FCC did not adopt the NTIA proposal, the fact that NTIA proposed a 
simultaneous auction design was helpful in building support for the M-W design. It made 
the M-W mechanism look like a reasonable middle ground between sequential ascending 
bid auctions and simultaneous ascending auctions with package bidding. In addition to 
their written comments, in January 1994, NTIA jointly sponsored with Caltech a PCS 
auction design conference that brought FCC staff together with academic 
experimentalists as well as game theorist. Proposed and organized by Mark Bykowsky 
and John Ledyard, the conference provided additional support for the use of a 
simultaneous auction mechanism. The demonstration by David Porter of the 
combinatorial auction mechanism proposed by NTIA helped show the feasibility of some 
form of electronic simultaneous auction. Perhaps most important was a presentation by 
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Charles Plott of experimental evidence on the relative performance of sequential, 
simultaneous and combinatorial auction designs. This research sponsored by PacTel at 
Paul Milgrom’s suggestion offered experimental evidence that when there were strong 
synergies among items simultaneous auctions were better than sequential auctions and 
that combinatorial bidding was even better. Based on both the theory and experimental 
evidence, Ledyard persuasively argued that while it would be nice if the FCC 
implemented the combinatorial mechanism he had helped design, the FCC could achieve 
most of the benefits with a simpler simultaneous design along the lines proposed by 
Milgrom and Wilson. 
 
Part of the explanation for the successful collaboration between outside economists and 
the FCC in designing spectrum auctions was that the initial responsibility for a design 
was given to the FCC’s Office of Plans and Policy (OPP), which has a tradition of 
applying economics to public policy and tends to be far more open to new approaches 
than the operating bureaus. OPP had been advocating the use of auctions for more than 
10 years prior to the passage of the auction legislation, and was a logical home for a small 
team drawn from throughout the agency.  
 
One of the pillars of that team was Karen Wrege, an auction project manager, who the 
FCC recruited from the Resolution Trust Corporation. In 1993, it was not enough to 
convince FCC Chairman Reed Hundt that simultaneous multiple round auction was the 
best auction design. He had to be convinced that the FCC could implement it with the 
year mandated by Congress. Karen was able to visualize how the auction might work, 
convince Don Gips on Hundt’s staff that it could work, and as part of a remarkable FCC 
team, make it work. Jerry Vaughan led the team with indomitable courage through many 
harrowing moments, such as a complete system failure the night before the start of FCC 
auction #3. The team was too large to mention here all who deserve credit, but some who 
deserve particular mention for making the Milgrom-Wilson auction design proposal a 
reality are lawyers Kent Nakamura, Jonathan Cohen and Jackie Chorney, information 
technology specialist, John Giuli, contracting officer Mark Oakey and economist Greg 
Rosston. 
 
Much credit for implementing the FCC auctions goes to the contractors and consultants. 
Most of the programming for the electronic auction system was performed by outside 
contractors. After the first auction, the FCC hired a second economic theorist, Peter 
Cramton, to provide advice on refining the auction design and to develop a tool to assist 
bidders and the FCC track the progress of the auction. We also contracted with a team of 
experimentalist economists from CalTech, Charlie Plott, John Ledyard and Dave Porter. 
Without the help of Plott and Antonio Rangel, a first year graduate student, the contractor 
for the FCC’s first auction might not have succeeded in translating the FCC auction rules 
into software code. CalTech also tested the software used in the first and second FCC 
narrowband PCS auctions. As part of their “torture testing” they paid experiment 
participants a bonus for any error they could find with the software. CalTech also 
developed a clever method for manually checking all the calculations during the first 
FCC auction. Run by Rangel in parallel with the electronic auction system, this also 
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provided a manual back-up that could have been put into service if the electronic system 
had failed. Fortunately it did not. 
 
The first FCC simultaneous multiple round auction began on July 25, 1994 in the Blue 
Room of the Omni Shoreham Hotel in Washington, DC. Bidding was conducted 
electronically on site. Despite the testing of the software, there was some trepidation 
about whether it would work. There was particular concern about the software for “stage 
II” of the activity rule. The chief programmer for the contractor that developed the 
software and would run it during the auction, said in essence, “I am completely confident 
that the software will work properly in stage II, but don’t try it.”  We never found out 
because the auction closed successfully in stage I. Every round the FCC decided on how 
to set the bid increments on each license. We had a committee of three consultants to 
advise us: John McMillan, a theorist, Charlie Plott, an experimentalist, and Bill 
Stevenson, an auctioneer. We had five days to complete the auction before we would be 
kicked out of the ballroom so it could be used for a wedding. There was vigorous 
discussion about how large to make the bid increments, how long to make the rounds, 
and whether to deploy stage II of the activity rule. As it turned out, with few licenses, 
vigorous competition, and bidders on site, the auction closed after 47 rounds and five 
days, in time for the wedding in the Blue Room.  
 
Perhaps the biggest hero of the story of putting auction theory to work is FCC Chairman 
Reed Hundt. He defied the traditional tendency of government bureaucracies to do the 
safe thing even if it is not the best thing. He always wanted to know, “what does 
economic theory tell us?” He always tried to put into practice his favorite motto, “do the 
right thing.” But without economic theorists like Paul Milgrom, he wouldn’t have known 
what that was. 
 
Evan Kwerel 
January, 2003 
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Putting Auction Theory to Work 

Preface 
This book synthesizes the insights I have found from my teaching, research, and 

consulting about auction design. For me, the three have long been intertwined. I wrote 
my Ph.D. thesis about auction theory under the guidance of Robert Wilson, who was then 
already advising bidders how to bid and governments about how to design auctions. 
Fifteen years later, Wilson and I together made proposals that became the basis for the 
design of the FCC spectrum auctions—the most influential new auction design of the 20th 
century. The FCC design was copied with variations for spectrum sales on six continents. 
In the intervening years, I had often taught about auction theory, though not yet s the 
practical subject that it was to become.  

Work on this book began in spring of 1995, when I delivered the Churchill lectures at 
Cambridge University. Those lectures emphasized the history and design of the spectrum 
auctions run by the Federal Communications Commission (FCC) beginning in 1994, as 
well as the bidders’ experiences in the auctions. Wilson and I had only a few weeks in 
which to form our design and make recommendations, and my “Churchill project” was to 
complete the analysis of those recommendations by identifying the kinds of environments 
in which our new design was likely to be effective. Events caused the project to be 
delayed, but the project received a boost and a twist when I delivered lectures about 
auction theory in courses at Stanford in 1996 and 2000, in Jerusalem in 1997, and at 
Harvard and MIT in 2001 and 2002. 

In my 1978 dissertation, I had written that there were seven main results of auction 
theory. Two decades later, there are many more and many views about what is most 
important and how best to synthesize this exceptionally beautiful theory. What is 
distinctive about my synthesis here and what makes it both more encompassing and more 
practical than earlier attempts is that it is rooted both in traditional demand theory and in 
real world experiences.1 I unify auction theory with demand theory partly by using 
familiar techniques and concepts: the envelope theorem, comparative statics methods, 
and demand theory concepts like substitutes and complements.  

My perspectives on auction theory differ in emphasis and method from those of several 
recent contributors. In chapter 1, I describe how one can use the stylized results of 
auction theory in practical design. Chapter 2 presents my distinctive treatment of the 
Vickrey auction, which explains how the striking theoretical advantages of the auction 
are offset by equally striking disadvantages, which too often go unremarked.  

Chapters 3 and 4 develop the classical results of auction theory using the tools of 
ordinary demand theory: the envelope theorem and the comparative statics techniques. 
This is in sharp contrast to graduate microeconomics textbooks that emphasize the 

                                                 
1 In the years after the first FCC auctions, I contributed to spectrum auction designs in the US, Germany, 
Australia and Canada, electricity auction designs in New Jersey and Texas, asset sales in the US and 
Mexico, and internet procurement auctions. My suggestions were also the principal basis of the FCC’s 
design for auction #31—its first package or “combinatorial” auction design.  
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distinctive “revelation principle” as the basic tool of mechanism design theory (Mas 
Colell, Whinston and Green (1995))—a tool that has no analog in or relevance for 
demand theory.  

In chapter 5, I revisit the models of auctions with interdependent values and correlated 
information to recast it in the same terms. These new treatments show that parts of 
auction theory that had seemed difficult can be treated simply using the same methods.  

My experience in auction consulting teaches that clever new designs are only very 
occasionally among the main keys to an auction’s success. Much more often, the keys are 
to keep the costs of bidding low, encourage the right bidders to participate, ensure the 
integrity of the process, and take care that the winning bidder is someone who will pay or 
deliver as promised. Chapter 6 emphasizes those considerations. It particularly 
emphasizes the consequences of free entry and the instruments available to the designer 
to encourage entry of the right kinds.  

The final two chapters of the book deal with some areas of auction design in which 
scholarly input has the best chance of adding real value. This is in the area of multi-unit 
auctions, which have been used for radio spectrum, electrical power, treasury bills, and 
other applications. The design problems for these auctions include not just the usual ones 
about getting incentives and allocations right, but also limiting the complexity so that 
costs incurred by bidders are not too high, the reliability of the system is maintained. 
Unlike auctions for a single object, in which efficiency and revenue objectives are usually 
at least roughly aligned, multi-item auctions can involve radical trade-offs between these 
two objectives. Chapter 8, especially, highlights that trade-off and explains how the new 
Ausubel-Milgrom design tries to reach a practical compromise.  

I owe debts to many people not only for their help in preparing this book but for 
helping me to reach this point in my understanding of auctions. Robert Wilson introduced 
me to auction theory in graduate school, directed my PhD research and joined me in the 
work of creating the FCC auction for our joint client, Pacific Bell. I have dedicated this 
book to him. The folks at Pacific Bell, particularly James Tuthill, had the patience and 
courage to support my applied research and to help me advocate it to the FCC. Evan 
Kwerel and the FCC team have repeatedly shown the courage to be innovators, trying out 
radical new ideas. The colleagues with whom I have consulted on auction designs, Larry 
Ausubel, Peter Cramton, Preston McAfee, John McMillan and, again, Robert Wilson, 
have long been a source of ideas, enthusiasm and inspiration.  

Many people have directly supported my efforts in writing this book. I am especially 
grateful to my students for their assistance in preparing this book. My research assistant, 
Hui Li, often sat next to me at my computer, insisting that certain passages or arguments 
needed further detail and prodding me to make the text, as she would say, “easy enough 
for me.” Graduate students Parag Pathak, Siva Anantham and Paul Riskind all read the 
entire manuscript and made extremely helpful suggestions. Undergraduate Dan 
Kinnamon read and commented on parts of the manuscript. I had invaluable discussions 
about particular parts of the subject matter with many colleagues, including Susan Athey, 
Larry Ausubel, Peter Cramton, Evan Kwerel, Benny Moldovanu, Al Roth, David Salant, 
Ilya Segal, Steve Tadelis, Bob Wilson, Lixin Ye, and Charles Zheng.  
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The period since I began this work was an especially difficult one for my family, and I 
thank them, too. Without the love and support of my wife, Eva Meyersson Milgrom, and 
my children, Joshua and Elana, I could not have finished this book. 
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Chapter 1 
Getting to Work 

The era of putting auction theory to work began in 1993-94, with the design and 
operation of the radio spectrum auctions in the United States. Although the economic 
theory of auctions had its beginnings in the 1960s, early research had little influence on 
practice. Since 1994, auction theorists have designed spectrum sales for countries on six 
continents, electric power auctions in the US and Europe, CO2 abatement auctions, 
timber auctions, and various asset auctions. By 1996, auction theory had become so 
influential that its founder, William Vickrey, was awarded a Nobel Prize in economic 
science. In 2000, the US National Science Foundation’s 50th anniversary celebration 
featured the success of the US spectrum auctions to justify its support for fundamental 
research in subjects like game theory. By the end of 2001, just seven years after the first 
of the large modern auctions, the theorists’ designs had powered worldwide sales totaling 
more than $100 billion. The early US spectrum auctions had evolved into a world 
standard, with their major features expressed in all the new designs.  

It would be hard to exaggerate how unlikely these developments seemed in 1993. 
Then, as now, the status of game theory within economics was a hotly debated topic. 
Auction theory, which generated its main predictions by treating auctions as “games,” 
had inherited the controversy. At the 1985 World Congress of the Econometric Society, a 
wide gulf developed between bargaining theorists, who were skeptical that game theory 
could explain much about bargaining or be useful for improving bargaining protocols, 
and researchers in auctions and industrial organization, who believed that game theory 
was illuminating their fields. Although game theory gained increasing prominence 
throughout the 1980s and had begun to influence the leading graduate textbooks by the 
early 1990s, there was no consensus about its relevance in 1994, when the Federal 
Communications Commission conducted the first of the new spectrum auctions.  

The traditional foundations of game theory incorporate stark assumptions about the 
rationality of the players and the accuracy of their expectations which are hard to 
reconcile with reality. Yet, based on both field data and laboratory data, the contributions 
of auction theory are hard to dispute. The qualitative predictions of auction theory have 
been strikingly successful in explaining patterns of bidding for oil and gas1 and have 
fared well in other empirical studies as well. Economic laboratory tests of auction theory 
have uncovered many violations of the most detailed theories, but several key tendencies 
predicted by the theory find significant experimental support.2 Taken as a whole, these 
findings indicate that although existing theories need refinement, they capture important 
features of actual bidding. For real world auction designers, the lesson is that theory can 
be helpful, but it needs to be supplemented by experiments to test the applicability of key 
propositions and by practical judgments, seasoned by experience.  

Whatever the doubts in the academy about the imperfections of game theory, the 
dramatic case histories of the new auctions seized public attention. An article in 1995 in 

                                                 
1 See Hendricks, Porter and Wilson (1994).  
2 See Kagel (1995).  
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the New York Times hailed one of the first US spectrum auctions3 as “The Greatest 
Auction Ever.”4 The British spectrum auction of 2000, which raised about $34 billion, 
earned one of its academic designers5 a commendation from the Queen and the title 
“Commander of the British Empire.” In the same period, game theorists were plying their 
trade on another important application as well. The National Resident Matching Program, 
by which 20,000 US physicians are matched annually to hospital residency programs, 
implemented a new design in 1998 with the help of economist-game theorist Alvin Roth. 
By the mid-nineties, thirty-five years’ of theoretical economic research about fine details 
of market design was suddenly bearing very practical fruits.   

Politics Sets the Stage 
To most telecommunications industry commentators, the main significance of the US 

spectrum auctions was that a market mechanism was used at all. Spectrum rights 
(licenses) in the US and many other countries had long been assigned in comparative 
hearings, in which regulators compared proposals to decide which applicant would put 
the spectrum to its best use. The process was hardly objective: it involved lawyers and 
lobbyists arguing that their plans and clients were most deserving of a valuable-but-free 
government license.6 With its formal procedures and appeals, a comparative hearing 
could take years to complete. By 1982, the need to allocate many licenses for cellular 
telephones in the US market had overwhelmed the regulatory apparatus, so Congress 
agreed to allow licenses to be assigned randomly among applicants by lottery.  

The lottery sped up the license approval process, but it created a new set of problems. 
Lottery winners were free to resell their licenses, encouraging thousands of new 
applicants to apply for licenses and randomly rewarding many with prizes worth many 
millions of dollars. Lottery winners were often simple speculators with no experience in 
the telephone industry and no intention of operating a telephone business. Economic 
resources were wasted on a grand scale, both in processing hundreds of thousands of 
applications and in the consequent need for real wireless operators to negotiate and buy 
licenses from these speculators. The lotteries of small licenses contributed to the 
geographic fragmentation of the cellular industry, delaying the introduction of nationwide 
mobile telephone services in the United States.  

A better process was needed, and in 1993, Congress authorized auctions as the answer. 
The question of how an auction market for radio spectrum should be designed was left to 
the Federal Communications Commission (FCC).  

                                                 
3 The design was based on suggestions by Preston McAfee, Paul Milgrom and Robert Wilson.   
4William Safire, “The Greatest Auction Ever,” New York Times, March 16, 1995, page A17, commenting on 
FCC Auction #4. 
5 The principal designers were Professors Ken Binmore and Paul Klemperer. It was Binmore whom the 
Queen of England honored with a title.   
6 The process was once characterized by an FCC Commissioner as “the FCC’s equivalent of the Medieval 
trial by ordeal” (as quoted by Kwerel and Felker (1985)). 
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Designing for Multiple Goals 
Congress did provide some instructions to the FCC governing the new spectrum 

auctions. One was that the first auctions were to be begun by July 1994. A second called 
for the auctions to promote wide participation in the new industry. The FCC initially 
responded to the second mandate by introducing bidding credits and favorable financing 
terms for small businesses and woman- and minority-controlled businesses, to reduce the 
cost of any licenses acquired by those businesses. The statute also specified that the 
auction process should promote “efficient and intensive use” of the radio spectrum, in 
contrast with the fragmented use promoted by the lottery system. The meaning of the 
word “efficient” was initially subject to debate, but it was eventually read in economic 
terms to mean, in the words of Vice President Albert Gore, “putting licenses into the 
hands of those who value them the most.”7  

There is a powerful tradition in economics claiming that individuals and firms, left to 
their own devices and operating in a sound legal framework, tend to implement efficient 
allocations. The argument is that when resources are allocated inefficiently, it is possible 
for the parties to get together to make everyone better off. So, following their mutual 
interests, the parties will tend to eliminate inefficiencies whenever they can. This 
traditional argument has its greatest force when the parties can all see what is required 
and have no trouble negotiating how to divide the gains created by the agreement. For 
radio spectrum, with thousands of licenses and hundreds of participants involved, 
computing just one efficient allocation can be an inhumanly hard problem and getting 
participants to reveal the information about their values necessary to do that computation 
is probably impossible. Compared to the development of a universal standard (GSM) for 
mobile telephones in Europe, the more fragmented system that emerged in the US 
highlights that the lottery system did not lead to efficient spectrum allocations. With so 
many parties and interests involved, the market was unable to correct the initial 
misallocation of the spectrum. Getting the allocation right the first time does matter. 
Achieving that with an auction system called for a different and innovative approach. 

The Federal Communications Commission (FCC), which the law had charged with 
designing and running the spectrum auctions, had no previous auction experience. Within 
the FCC, the design task was assigned to a group led by Dr. Evan Kwerel, an economist 
and long-time advocate of using auctions to allocate spectrum licenses.8  

Like any other important FCC decision, the auction design decision would need to be 
based on an adequate public record—a requirement that would force the FCC to go 
through a long series of steps. It would need to write and issue a proposed rule, allow a 
period for comments and another for “reply comments,” meet with interested parties to 
discuss and clarify the points of disagreement, resolve those disagreements, issue a 
ruling, consider appeals, and finally run the auction. Steps like these often stifle 
innovation, but that is not what happened on this occasion. With no political guidance 
about what kind of auction to use, no in-house experts lobbying to do things their way, 
and no telecom with an historically fixed position about how an auction should be run, 
Dr. Kwerel had unusual freedom to evaluate a wide range of alternatives.  
                                                 
7 Quoted from Vice President Gore’s speech at the beginning of FCC auction #4.  
8 Kwerel’s initial advocacy is explained in Kwerel and Felker (1985).  
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Kwerel drafted a notice that proposed a complex auction rule. Industry participants, 
stunned by the novel proposal and with little experience or expertise of their own, sought 
the advice of academic consultants. These consultants generated a flood of suggestions, 
and the FCC hired its own academic expert, John McMillan, to help them evaluate the 
proposed designs. In the end, Kwerel favored a kind of simultaneous ascending auction, 
based in large part on a proposal by Robert Wilson and me and a similar proposal by 
Preston McAfee. The Milgrom-Wilson-McAfee rules called for a simultaneous multiple 
round ascending auction.9 This is an auction for multiple items in which bidding occurs 
in a series of rounds. In each round, bidders make sealed bids for as many spectrum 
licenses as they wish to buy. At the end of each round the ‘standing high bid’ for each 
license is posted along with the minimum bids for the next round, which are computed by 
adding a pre-determined bid increment, such as 5% or 10%, to the standing high bids. 
These standing high bids remain in place until superceded or withdrawn.10 An “activity 
rule” limited a bidder’s ability to increase its activity late in the auction, thus providing an 
incentive to bid actively early in the auction. For example, a bidder who has been actively 
bidding for ten licenses may not, late in the auction, begin bidding for eleven licenses.  

The theory of simultaneous ascending auctions is best developed for the case when the 
licenses being sold are substitutes. During the course of the auction, as prices rise, 
bidders who are outbid can switch their demands to bid for cheaper licenses, allowing 
effective arbitrage among substitute licenses. One of the clearest empirical characteristics 
of these auctions is that licenses that are close substitutes sell for prices that are also 
close—a property that is not shared by most older auction designs.  

The initial reception to Kwerel’s recommendation was skeptical.  The proposed auction 
was unexpectedly complicated, and FCC Chairman Reed Hundt sought the advice of 
other FCC staff.  He asked the economics staff: If you could pick any design you want, 
would this be it?  He asked those who would have to run it:  Can this really work?  Even 
in the short time available to set it up?  With the endorsement of his staff, Chairman 
Hundt decided to take the risk of adopting a new auction design.  

Substitutes and Complements 
Auctions are processes for allocating goods among bidders, so the challenge of auction 

design can only be understood by studying the demands of the participants. In the initial 
PCS auction, there were three groups of potential bidders. The first group included long-
distance companies with no existing wireless businesses. These companies, including 
MCI and Sprint, were making plans to enter the wireless business on a national scale. 
Each wished to acquire a license or licenses that would cover the entire United States, 
allowing it to make its service ubiquitous and to combine wireless with its own long 
distance service to offer an attractive and profitable package to consumers.  

                                                 
9 The principal difference was that the Milgrom-Wilson design proposed the now-standard features that 
bidding on all licenses would remain open until the end of the auction, with progress ensured by Milgrom’s 
activity rule. McAfee’s design had no activity rule, and ensured the progress of the auction by closing 
bidding on each license separately after a period with no new bids on that license.   
10 A bidder who withdraws its bid pays a penalty equal to the difference, if positive, between the eventual 
sales price for the license and the amount of its withdrawn bid. If the eventual price exceeds its bid, then no 
penalty is payable.  
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A second group comprised the existing wireless companies, including AT&T, some 
regional Bell operating companies, and others. The companies in this group already 
owned or controlled licenses that enabled them to offer services to parts of the country. 
Their objectives in the auction were to acquire licenses that filled in the varying gaps in 
their existing coverage and to expand to new regions or perhaps the entire nation. These 
companies posed a regulatory challenge for the FCC, which wanted to allow them to 
meet their legitimate business needs without gaining control of enough of the spectrum to 
manipulate market prices. To avoid this outcome, the FCC imposed limits on the amount 
of spectrum that any company could control in any geographic area. These existing 
wireless operators would be ineligible to bid for a nationwide PCS license of the sort that 
had typically been awarded in European countries. From MCI’s perspective, this meant 
that a nationwide license might be bought cheaply at auction, so it lobbied the FCC to 
structure the new licenses in this way.  

The last group consisted mainly of new entrants without wireless businesses. Some of 
these companies, like Pacific Bell in California, were quite large. These companies 
typically sought licenses or packages covering large regional markets, but not licenses 
covering the entire nation. 

One of the first lessons to take from this description is that the auction game begins 
long before the auction itself. The scope and terms of spectrum licenses can be even more 
important than the auction rules for determining the allocation, because a license can 
directly serve the needs of some potential bidders while being useless to others. For the 
actual PCS auctions, a license provided its owner the right to transmit and receive radio 
signals suitable for mobile telephone service in a particular band of radio frequencies and 
in a particular geographic area. These license specifications constrained the possible 
spectrum allocations. For example, suppose three separate licenses covering areas A, B 
and C were put for sale. If one bidder wanted a license covering A and half of B while the 
other wanted a license covering C and the other half of B, the license specifications 
would prevent each bidder from acquiring his optimal allocation.  One task of the auction 
designer was to promote the best (most “efficient”) possible allocation, subject to such 
constraints.  

Achieving efficiency involves various subtle complications. A certain license may be 
valuable to one bidder because it helps exclude entry and increase monopoly power, 
while it is valuable to another because the buyer will use it to create valuable services. In 
comparing the efficiency of allocations, only the second kind of value counts, but bidders 
do not respect that difference when placing their bids. The value of a license to a bidder 
may depend not only on the license itself, but also on the identities of other licensees and 
the technologies they use, because that can affect their “roaming arrangements”—which 
allow their customers to use another company’s services when they roam to the other 
company’s license area.  A third complication is that the bidders may need to pool 
information even to determine their own likely profits from various arrangements, for 
example because the bidders have different information about the available technology or 
forecasted demand.  

But the fundamental barrier to efficiency that was most debated among the FCC 
auction designers concerned the “packaging problem.” The value of a license to a bidder 
is not fixed; it generally depends on the other licenses the bidder receives. For example, a 
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bidder might be willing to pay much more per license for a package of, say, five or six 
licenses compared to smaller packages or larger packages.11 Until such a bidder knows 
all of the licenses it will have, it cannot say how much any particular license is worth.  

Consider a situation with just two licenses. If acquiring one license makes a bidder 
willing to pay less for the second, then the licenses are substitutes. If acquiring one makes 
the bidder willing to pay more for the second, then the licenses are complements. With 
more than two licenses, there are other important possibilities, and these add considerable 
complexity to the real auction problem. For example, if there are three licenses—say A, 
B and C—and a certain bidder anticipates needing exactly two of them to establish its 
business, then A and B are complements if the bidder has not acquired C, but they are 
substitutes if the bidder has already acquired C. Nevertheless, most economic discussions 
of the auction design are organized by emphasizing the two pure cases.  

Recent auctions devised by economic theorists are most distinguished from their 
predecessors in the ways they deal with the problems of substitutes and complements. 
Our later analyses will show that some of the new designs deal effectively with cases in 
which the items to be traded are substitutes, but that all auctions perform significantly 
worse in the more general case in which licenses might either be substitutes or 
complements. The impaired performance may take the form of loss of efficiency of the 
outcomes, uncompetitively low revenues to the seller, or vulnerability to collusion.  

To illustrate how value interdependencies affect proper auction design, we turn to a 
case study in which the matter received too little attention.   

New Zealand’s Rights Auction 
New Zealand conducted its first auctions of rights to use radio spectrum in 1990. Some of 

the rights took the traditional form of “license rights” to use the spectrum to provide a 
specific service, such as the right to broadcast television signals using those frequencies. 
Others consisted of “management rights” according to which the buyer may decide how to 
use the spectrum, choosing, for example, between television broadcasts, wireless telephones, 
paging, or some other service. In theory, when management rights are sold, private interests 
have an incentive to allocate spectrum to its most profitable uses, but the problem of 
coordinating uses among licensees can also become more complex.  

Acting on the advice of a consulting firm—NERA, the New Zealand government adopted 
a second-price sealed-bid auction for its first four auction sales. As originally described by 
Vickrey (1961), the rules of the second-price auction are these: Each bidder submits a sealed 
bid. Then, the license is awarded to the highest bidder for a price equal to the second highest 
bid, or the reservation price if only one qualifying bid is made. The auction gets its name 
from the fact that the second highest bid determines the price.  

The idea of a second-price sealed-bid auction strikes many people as strange when first 
they hear about it, but on closer analysis, the auction is not strange at all. In fact, it 

                                                 
11 An instance of this sort arose in the Netherlands spectrum auction in 1998, where most of the licenses 
were for small amounts of bandwidth. New entrants were expected to need five or six such licenses to 
achieve efficient scale and make entry worthwhile.  
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implements a version of the ascending (“English”) auction12 similar to the one used at 
Amazon auction.13.  

In an ascending auction, if a bidder has a firm opinion about what the item is worth, then 
he can plan in advance how high to bid – an amount that we may call the bidder's 
reservation value. At sites like eBay and Amazon, the bidder can instruct a proxy bidder to 
carry out a reservation value strategy. The proxy keeps beating the current highest bid on 
the bidder’s behalf so long as that bid is less than the specified reservation value. If everyone 
bids that way, then the outcome will be that competition ends when the price rises to the 
second highest reservation value, or thereabouts (with differences due to the minimum bid 
increment). If everyone adopts such a reservation value strategy, then the ascending auction 
is almost the same as a second-price auction. 

Strategic considerations in a second-price auction are easy: each bidder should set his 
reservation value to what the object is worth to him. If it happens that the highest bid among 
the other bidders is greater than this value, then he cannot do better than to bid his 
reservation price, because there is no bid he could make that would win the auction 
profitably. If, instead, it happens that the highest competing bid is less than his value, then 
the setting his reservation value in this way wins and fixes the price at what the competitor 
bid, which is the best outcome that any bid could achieve. Thus, regardless of the bids made 
by others, setting a reservation value equal to the bidder’s actual value always earns at least 
as much as any other bid.  

The second-price sealed-bid auction has two advantages over most other designs. First, it 
duplicates the outcome of an ascending bid auction with small bid increments but without 
requiring the bidders to be assembled together or even requiring them to hire agents to 
represent them in their absence. Second, it presents each bidder with a simple strategic 
bidding problem: each merely has to determine his reservation price and bid it. This also 
means that there is no need for any bidder to make estimates of the number of other bidders 
or their values, since those have no bearing on a rational bidder's optimal bid.  

The second-price auction has a simple extension to sales of multiple identical items, and 
it, too, can be motivated by considering a particular ascending auction. For example, 
suppose there is such an auction rule with seven identical items for sale, to be awarded to the 
seven highest bidders in an ascending outcry auction. Again, bidders might sensibly adopt 
reservation value strategies, bidding just enough to be among the top seven bidders and 
dropping out when the required bid finally exceeds the bidder’s value. An analysis much 
like the preceding one then leads to the conclusion that the items will be awarded to the 
seven bidders with the highest values for prices approximately equal to the eighth highest 
value. To duplicate that with a sealed-bid auction, the rule must award items at a uniform 
price equal to the highest rejected bid. In such an auction, the right advice to bidders is 

                                                 
12 The most common form of an ascending (“English”) auction is one in which the auctioneer cries out 
increasing bids and the bidders drop out when they are no longer willing to pay above the current price. 
The auction ends when there is just one remaining bidder. As the winning bidder is required to pay the 
current high price, it is optimal for each bidder to stay in the auction only until the current price is equal to 
his valuation (“reservation value”) of the item and not thereafter.    
13 eBay also runs a similar auction, but its fixed ending time involves additional gaming issues as described 
by Roth and Ockenfels (2000).  
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simple: “bid the highest price you are willing to pay.” A similar uniform-price rule has 
sometimes been used in the sale of U.S. Treasury bills.14  

In New Zealand, the government was selling essentially identical licenses to deliver 
television signals to audiences in New Zealand. On the advice of its consultants, it did not 
adopt this “highest rejected bid” rule, but chose instead to conduct simultaneous second-
price sealed-tender auctions for each license. New Zealand’s second-price rules would 
work well in one case only: when the values of the items were independent—neither 
substitutes nor complements. In the actual New Zealand auction, it would have been 
difficult to give bidders good advice. Should a bidder bid for only one license? If so, 
which one? If everyone else plans to bid for just one license and picks randomly, perhaps 
there will be some license that attracts no bids. Bidding a small amount for every license 
might then be a good strategy. On the other hand, if many spread around small bids like 
that, then bidding a moderate amount for a single license would have a high chance of 
success. With interdependent values, independent auctions inevitably involve guesswork 
that gets in the way of an efficient allocation.  

 

The actual outcome of the first New Zealand auction is shown in Table 1. Notice that 
one bidder, Sky Network TV, consistently bid and paid much more for its licenses than 
other bidders. Totalisator Agency Board, which bid NZ$401,000 for each of six licenses, 
acquired just one license at a price of NZ$100,000, while BCL, which bid NZ$255,000 
for just one license, paid NZ$200,000 for it. Without knowing the exact values of various 

                                                 
14The Treasury rule set a uniform price equal to the lowest accepted bid. 

 Table 1 

Winning Bidders on Nationwide UHF Lots 
8 MHz License Rights 

Lot 
 

Winning Bidder 
 

High Bid 
(NZ$) 

Second Bid 
(NZ$) 

1 Sky Network TV 2,371,000 401,000 
2 Sky Network TV 2,273,000 401,000 
3 Sky Network TV 2,273,000 401,000 
4 BCL 255,124 200,000 
5 Sky Network TV 1,121,000 401,000 
6 Totalisator Agency Board 401,000 100,000 
7 United Christian Broadcast 685,200 401,000 

Source: Hazlett (1998). 
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numbers of licenses to the bidders, it is impossible to be certain that the resulting license 
assignment is inefficient, but the outcome certainly confirms that the bidders could not 
guess one another's behavior. If Sky Network, BCL, or United Christian had been able to 
guess the pattern of prices, they would have changed the licenses on which they had bid. 
The bid data shows little connection between the demands expressed by the bidders, the 
numbers of licenses they acquired, and the prices they eventually paid, suggesting that 
the outcome was inefficient.  

A second problem was even more embarrassing to New Zealand's government 
officials.15 McMillan (1994) described it as follows: “In one extreme case, a firm that bid 
NZ$100,000 paid the second-highest bid of NZ$6. In another the high bid was NZ$7 
million and the second bid was NZ$5,000.” Total revenue, which consultants had 
projected to be NZ$250 million, was actually just NZ$36 million. The second-price rules 
allowed public observers to get a good estimate of the winning bidders' profits, some of 
which were many times higher than the price. To avoid further embarrassment, the 
government shifted from the second-price sealed bid format to a more standard “first-
price” sealed-bid format, in which the highest bidder pays the amount of its own bid. As 
we will see later in this book, that did not guarantee higher prices. It did, however, 
conceal the bidders' profits from a curious public.  

The change in auction format still failed to address the most serious auction design 
problems. Unlinked auctions with several licenses for sale that may be substitutes or 
complements force a choice between the risks of acquiring too many licenses or too few, 
leaving a guessing game for bidders and a big role for luck.  Allocations are 
unnecessarily random, causing licenses to be too rarely assigned to the bidders who value 
them the most. 

Better Auction Designs 
In the New Zealand case, alternative auction designs could have performed much 

better. For example, the government could have mimicked the design of the Dutch flower 
auctions. The winner at the first round would be allowed to take as many lots as it wished 
at the winning price. Once that was done, the right to choose next could be sold in the 
next auction round, and so on. No bidder would be forced to guess about which licenses 
to bid on with such an auction. Each bidder could be sure that, if he wins at all, he will 
win the number of lots or licenses anticipated by his business plan at the bid price he 
chose.  

There are other designs, as well, that limit the guesswork that bidders face.  A common 
one in US on-line auctions allows bidders to specify both a price and a desired quantity. 
The highest bidders (or, in case of ties, those who bid earliest) get their orders filled in 
full, with only the last winning bidder running the risk of having to settle for a partial 
order. As with the Dutch design, efficiency is enhanced because bidders do not have to 
ponder over which licenses to bid on, and such rules reduce the “exposure” risk that a 
bidder may wind up acquiring licenses at a loss, because it buys too few to build an 
efficiently scaled system.  

                                                 
15 For a detailed account, see Mueller (1993).  
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The FCC Design and Its Progeny 
In the circumstances of the FCC’s big PCS auction, it was obvious that some licenses 

would be substitutes.  For example, there would be two licenses available to provide PCS 
service to the San Francisco area. Since the two licenses had nearly identical technical 
characteristics and since, for antitrust reasons, no bidder would be allowed to acquire 
more than one, these licenses were necessarily substitutes. The argument that some 
licenses were complements was also made occasionally, but the force of the argument 
was reduced by the large geographic scope of the licenses.16  

As in the New Zealand case, the main design issue was to minimize guesswork, 
allowing bidders to choose among substitute licenses based on their relative prices. When 
substitute goods are sold in sequence, either by sealed bids or in an ascending auction, a 
person bidding for the first item must guess what price he will have to pay later if he 
waits to buy the second, third, or fourth item instead. Incorrect guesses can allow bidders 
with relatively low values to win the first items, leading to an inefficient allocation. With 
this problem in mind, the final rules provided that the licenses would be sold all at once, 
in a single open ascending auction. The openness of the process would eliminate the 
guesswork, allowing bidders to switch among substitute licenses, and guaranteeing equal 
prices for perfect substitutes as well as an efficient outcome.  

In order for the auction to work in this idealized way, bidding on all licenses would 
need to remain open until no new bids were received for any license. In a worst case 
scenario, the auction might drag on interminably as each bidder bid on just one license at 
a time, even when it was actually interested in eventually buying, say, 100 licenses. To 
mitigate this risk, the FCC adopted my “activity rule.” The general application of an 
activity rule involves two key concepts: eligibility and activity. A bidder’s activity in any 
round is the “quantity” of licenses on which it has either placed new bids in the round or 
had the high bid at the beginning of the round. In the example cited earlier, the quantity is 
just the number of licenses on which a bid is placed, but other quantity measures, 
including the total bandwidth of the licenses bid or the bandwidth multiplied by the 
population covered, have also been used. The rule specifies that a bidder’s total activity 
in a round can never exceed its eligibility. A bidder’s initial eligibility, applicable to the 
first round of the auction, is established by filing and application paying a deposit before 
the bidding begins. Its eligibility in each later round depends on its recent bidding 
activity. One simple form of the rule specifies that a bidder’s eligibility in any round after 
the first is equal to its activity in the preceding round. Thus, bidders who are not active 
early in the auction lose eligibility to place bids later in the auction. This rule speeds the 
auction and helps bidders to make reliable inferences about the remaining demand at the 
current prices.  

The FCC rules have evolved since the original 1994 design, but larger changes have 
been made to adapt the simultaneous ascending auction to other applications. One 
                                                 
16 Dr. Mark Bykowsky of the National Telecommunications and Information Administration (NTIA) was a 
forceful advocate that licenses could be complements and proposed a complex package auction design to 
accommodate the possibility. His case that complementarity was important is more convincing for the later 
auctions in which smaller licenses were sold. Nonetheless, the short time available to run the first auction 
led to a near-consensus that the package auction proposal involved too many unspecified details and 
unresolved uncertainties to evaluate and adopt immediately.  
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common variation arises when there are many units of each kind of item, such as auctions 
involving the sale of electricity contracts. In these auctions, for each item, each bidder 
bids his quantity demanded at the current price indicated on a “clock” visible to all 
bidders. The clock starts at a low price and keeps raising the price at any point at which 
the current total demand of all bidders exceeds the supply of that item. When demand 
equals supply on all items, the auction ends. A series of such clocks record the current 
prices for the various goods, and the rate of movement in these clocks determine the 
progress of the auction. A similar clock auction was used in March 2002 by the British 
government to buy 4 million metric tons of CO2 emission reductions proposed by British 
businesses.  

Clock auctions share several key characteristics with their FCC ancestor. Bidding on 
all items takes place simultaneously, so bidders can respond to changing relative prices. 
Prices rise monotonically, ensuring that the auction progresses in an orderly and 
predictable way. All bids are serious and represent real commitments. There is an activity 
rule that prevents a buyer from increasing its overall demand on all items as prices 
increase. Finally, bidding ends simultaneously on all the lots, so that opportunities for 
substitution do not disappear during the auction until all final prices are set.  

New variations based on the same principles continue to be created to solve a wide 
range of economic problems. Electricité de France (EDF) used a particularly interesting 
one in 2001 in a sale of electrical power contracts. The sale involved power contracts of 
different lengths, ranging from three months to two years, but all beginning at the same 
time—January 2002 for the first sale. Because different buyers wanted different mixes of 
contract lengths and because all contracts covered the first quarter of 2002, EDF regarded 
the different kinds of contracts as substitutes.  

Larry Ausubel and Peter Cramton developed the auction design. The first step was to 
assist EDF in developing a standard for comparing bids on contracts of different lengths. 
Using recent price data, it determined that, for example, a six-month contract awarded 
only if its price was X higher than the price of a three-month contract, where X is a 
number that varies from time to time. During the auction itself, the price clocks were 
controlled to maintain this relationship, that is, the price of a six- month contract was at 
all times X higher than the price of the three-month contract. Prices for contracts of all 
lengths continued to rise until total remaining demand exhausted the total power 
available.17 Such an auction creates competition among bidders for contracts of different 
lengths, increasing both efficiency and sales revenue compared to more traditional 
auction designs.  

Comparing Seller Revenues 
The question most frequently asked of auction designers is: What kind of auction leads 

to the highest prices for the seller? The answer, of course, depends on the particular 
circumstances, but even the thrust of the answer surprises many people: There is no 
systematic advantage of either sealed bids over open bid auctions, or the reverse.  

                                                 
17 For example, in the sale of power beginning January 2002, when the total demand exceeded the power 
available for the first quarter of 2002, the auction ended. Any remaining unsold power for, say, the second 
quarter of 2002 was then included in subsequent sales.  
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A particular formal statement of this conclusion is known as the payoff equivalence 
theorem. It holds that in an important class of idealized situations, the average revenues 
from an auction and the payoffs of bidders are exactly the same. To illustrate the logic of 
the idea, suppose you are selling an item that is worth $10 to bidder A and $15 to bidder 
B. If you sell the item using an ascending bid auction with both bidders in attendance, 
then bidder A will stop bidding at a price close to $10 and B will acquire the item for that 
price. If you use sealed bids instead and sell the item to the highest bidder, then the 
outcome will depend on what the bidders know when they bid. If they know all the 
values, then in theory B will bid just enough to ensure that it wins—around $10 or $10.01 
and A will likely bid just under $10. If they behave that way, the price will be just the 
same as in the ascending auction. As William Vickrey first observed, a similar conclusion 
holds on average for a much wider class of auction rules and in a more realistic set of 
situations than the one described here. For forecasting average revenue, it is irrelevant 
which auction is used, within a certain class of standard auction designs.  

Practical people tend to feel puzzled when presented with Vickrey’s irrelevance 
conclusion. Auctioneers who conduct ascending auctions often say that they generate 
more excitement and more competition than sealed bids. After all, they argue, no bidder 
is willing to bid close to its value unless pushed to do so by the open competition of the 
ascending auction design. Those who favor sealed-bids counter by arguing that ascending 
auctions never result in more being paid than is absolutely necessary to win the auction; 
there is no money “left on the table.” Sealed bids frequently result in lots of money left 
on the table. For instance, in the December 1997 auction for licenses to provide wireless 
telephone services in Brazil, an international consortium including Bellsouth and Splice 
do Brazil bid $2.45 billion in that auction to win the license covering the Sao Paulo 
concession. This bid was about 60% higher than the second highest bid, so 40%, or about 
$1 billion, was left on the table.18  

Similar arguments among practitioners arise quite frequently, sometimes with 
variations. In the United States, the staff of the Treasury Department have periodically 
argued the relative merits of two alternative auction schemes for selling bills. In one 
scheme, each bidder pays the amount of its own bid for each bill it buys while in the 
other all bidders pay the same “market-clearing price,” identified by the lowest accepted 
bid. Advocates of the first (“each-pays-its-own-bid”) scheme say that the government 
will get more money from the auction, since winning bidders are by definition people 
who have bid more than the lowest acceptable bid. Advocates of the second (“uniform 
price”) scheme counter that bidders who know they must pay their own bid when they 
win will naturally bid less, reducing market clearing price and leading to lower revenues.  

Informal arguments like these show that the matter is subtle, but they do not settle the 
issue. A formal analysis based on the payoff equivalence theorem discussed in chapter 3 
helps to cut through the confusion. Under certain idealized conditions, if the allocation of 
lots among bidders is the same for two different designs, then the average payoffs to all 
parties, including the average prices obtained by the seller, must also be exactly the same. 

                                                 
18 While the 60% overbid may be atypical, the ordinary amounts of money left on the table are still 
impressive. For example, in the Brazilian band A privatization, the median overbid was 27%. That is, for 
half the licenses, the winning bidders bid at least 27% more than the second highest bid.   
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One cannot conduct a meaningful analysis of average prices alone, without also studying 
how the designs affect the distribution of the lots among the winning bidders.  

The practical uses of the payoff equivalence theorem are similar in kind to the uses of 
the Modigliani-Miller theorems in financial economics, the Coase theorem in contract 
theory, and the monetary neutrality theorems in macroeconomics. All of these theorems 
assert that under idealized conditions, particular effects cannot follow from identified 
causes.19 For example, according to the Modigliani-Miller theorems, if decisions about 
debt-equity ratios and dividend policies merely slice up the total returns to a firm’s 
owners without affecting the firm’s operations, then those decisions cannot affect the 
firm’s total market value. Today, financial economists explain financial decisions by 
focusing on how financial decisions might affect a firm’s operations—its taxes, 
bankruptcy costs and managerial incentives. Similarly, according to the Coase theorem, if 
there were no costs or barriers to transacting, then the default ownership of an asset 
established by the legal system could not affect value. Today, economic theorists explain 
features of organization in terms of costs and barriers to transacting, including incomplete 
information and incomplete contracts. The payoff equivalence theorem is similar: the 
payment terms of an auction do not affect the seller’s total revenue unless they are 
associated with a change in the allocation of the goods. Today, analysts focus more 
attention on how assumptions of the theorem are violated and the consequences of those 
violations or, for government regulators, about the implied trade-offs between their 
allocation and revenue objectives.  

The planning for a sale of electrical power in Texas in 2002 illustrates how the payoff 
equivalence theorem has been applied in practice. According to the planned auction 
design, the auctioneer would gradually raise the prices for any products with excess 
demand and would accept quantity demands from the bidders, in much the fashion that 
Leon Walras once described. The auctioneer would not tell the bidders the quantities 
demanded by others. The rules called for the auctioneer to stop raising the price for a 
product when its total demand falls to the level of available supply. Texas ratepayers 
benefit from the revenues of this power sale, and the ratepayers’ advocate argued that the 
auctioneer should continue to raise prices until demand is actually less than supply, and 
should then roll back the price by one increment. The idea was to sell power for the 
highest market clearing price, rather than the lowest one. This rule was problematic for a 
variety of reasons relating to the details of the auction, and the design team cited the 
payoff equivalence theorem to argue that there was little reason to expect that the 
proposed change would lead to higher prices. Bidders would bid differently if the 
payment rules were changed. A bidder who knows that it may acquire power at a lower 
price if it withdraws demand early will be more inclined to do that than a bidder who 
knows that it cannot cause a price rollback. The net effect on revenues is hard to predict, 

                                                 
19 According to the Modigliani-Miller theorems, under its idealized “frictionless markets” conditions, a 
firm’s financial structure and dividend policy cannot affect its market value. According to the Coase 
theorem, under other idealized conditions, the initial allocation of ownership rights cannot alter the 
efficiency of the final allocation. Monetary neutrality theorems hold that under yet other idealized 
conditions, monetary policy cannot change real outcomes in an economy. The payoff equivalence theorem 
holds that under its idealized conditions, changing payment rules cannot affect the participants’ final 
payoffs.  
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because it depends on how the proposed new rule changes the allocation. Eventually, the 
ratepayer advocate agreed not to oppose the auction design.  

The Academic Critics  
Economists who work at putting auction theory to work encounter a dazzling array of 

issues, from ideological to theoretical to practical. Recognizing the complexity of the 
problems and the short times available to solve them, the engineering work for auctions 
sometimes entails guesses and judgments that cannot be fully grounded in a complete 
economic analysis. Auction designers generate ideas using theory, test those ideas when 
they can, and implement them with awareness of their limitations, supplementing the 
economic analysis with worst-case analyses and other similar exercises.  

The idea that economic theorists can add value through this mixture of auction theory 
and practical judgment has come under attack from some members of the economics 
profession. Some of the more frequent attacks, and my responses to them, are expressed 
below.  

Resale and the Coase Theorem  
One of the most frequent and misguided criticisms of modern auction design comes in 

the form of the remarkable claim that the auction design does not matter at all. After all, 
say the critics, once the licenses are issued, parties will naturally buy, sell and swap them 
to correct any inefficiencies in the initial allocation. Regardless of how license rights are 
distributed initially, the final allocation of rights will take care of itself. Some critics went 
even farther, arguing on this basis that the only proper objective of the government is to 
raise as much money as possible in the sale, since it should not and cannot control the 
final allocation.  

To justify this argument, the critics relied on the Coase Theorem, which holds that if 
there are no laws or frictions to block trades in the market and no wealth effects on 
preferences, then the initial allocation of property rights cannot affect the final allocation 
of property rights, which will necessarily be efficient. Coase reasoned that so long as the 
allocation remains inefficient, the parties will continually find it in their interests to buy, 
sell and swap as necessary to eliminate the inefficiency.  

Whatever merits the Coasian argument may have in other situations, it plainly leads to 
the wrong conclusion in this case.20 The history of the US wireless telephone service 
offers direct evidence that the initial fragmented distribution of rights was inefficient. 
Despite demands from consumers for nationwide networks and the demonstrated 
successes of similarly wide networks in Europe, such networks were slow to develop in 
the United States.  

                                                 
20 The Coase theorem has includes a variety of assumptions that may fail in this application, such as the 
assumption that the parties values reflect social value—not market power, the assumption that the parties 
have unlimited budgets, so spending on spectrum rights does not impair the ability to invest in 
infrastructure, and the assumption that rights have no “externalities,” that is, that bidders don’t care about 
which competitors get license rights. The importance of the last assumption is analyzed by Jehiel and 
Moldovanu (2001). 
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As I argued during the deliberations at the FCC, the conclusion that initial allocations 
do matter follows by juxtaposing two well-known propositions from economic theory.21 
The first is that, as explained in chapter 2, auction mechanisms exist that achieve efficient 
license allocations for any number of available licenses, provided the government uses 
the auction from the start. With just one good for sale, the English auction is such a 
mechanism. The generalized Vickrey auction, which works even in the case of multiple 
goods, is analyzed in detail in chapter 2. The second proposition is that, even in the 
simplest case with just a single license for sale, there exists no mechanism that will 
reliably untangle an initial misallocation. Intuitively, in any two-sided negotiation 
between a buyer and seller, the seller has an incentive to exaggerate its value and the 
buyer has an incentive to pretend its value is lower. These misrepresentations can delay 
or scuttle a trade. According to a famous result in mechanism design theory—the 
Myerson-Satterthwaite theorem—there is no way to design a bargaining protocol that 
avoids this problem: delays or failures are inevitable in private bargaining if the good 
starts out in the wrong hands.  

Mechanism Design Theory 
A second line of criticism emerges from a part of game theory called “mechanism 

design theory.”  A “mechanism” is essentially a set of rules to govern the interactions of 
the parties. For example, it may specify the rules of an auction. Are there to be sealed or 
ascending bids? If sealed bids, how will the winner and price be determined? And so on. 

Once the rules of the mechanism and the designer’s objective have all been specified, 
the designer applies some criterion or “solution concept” to predict the outcome and then 
evaluates the outcome according to the objective. In the theory’s purest and most elegant 
form, the aim is to identify the mechanism that maximizes the performance according to 
the specified objective. For example, one might try to find the auction that maximizes the 
expected selling price or the expected efficiency of the outcome. We will treat parts of 
this theory at length later in this book.  

Mechanism design theory poses this challenge to practical auction designers: how can 
you incorporate the use of theory without, at the same time, applying the mechanism 
design approach? If you believe the theory accurately describes the behavior of players, 
you should use it to optimize the mechanism performance!  

There is a longstanding joke about the arbitrage theory in financial economics that 
applies equally to mechanism design theory. Two people are walking along a street when 
one spots a $100 bill on the ground. “Pick it up,” says one. “Why bother?” replies the 
other. “If it were real, someone would have picked it up already!”  

Like arbitrage theory, the equilibrium analysis of game theory is an abstraction based 
on a sensible idea. Just as arbitrage theory implies that people don’t leave real $100 bills 
lying on the street, equilibrium theory says that players in a game do not overlook ways 
to increase their payoffs. Both theories are useful idealizations—not reasons to leave 
$100 bills lying on the ground! Theories like these, based on ubiquitious awareness and 
thoroughly rational calculations, are obviously inexact models of real behavior, and one 
                                                 
21 The theory described here applies to private values models, in which a bidder’s maximum willingness to 
pay for any good or package of goods is independent of what other bidders know about that good. 



 

 16

should be especially careful about applying them to choices that are complex and subtle, 
or when players are inexperienced, or when the time and other resources to support 
effective decision-making are limited.  

Despite their simplicity and incompleteness, equilibrium models can be very valuable 
to real-world mechanism designers. Just as a mechanical engineer whose mathematical 
model assumes a frictionless surface treats those calculations as inexact, an economic 
designer whose model assumes that the players adopt equilibrium strategies may do the 
same. Just as the real-world mechanical engineer pays attention to factors that increase 
friction and builds in redundancy and safety margins, the real-world mechanism designer 
pays attention to timing and bidder interfaces to make rational decisions easier, and plans 
to accommodate worst-case scenarios, in case bidders make mistakes or simply behave 
contrary to expectations.  

At the present state of the art, academic mechanism design theory relies on stark 
assumptions to reach theoretical conclusions that can sometimes be fragile. One such 
assumption is that bidder types are statistically independent. It is well known (Cremer 
and McLean (1985)) that relaxing this assumption leads to optimal mechanisms that have 
implausibly strange designs, in which bidders are forced to make side-bets with the 
auctioneer about how much others are likely to bid. Game theoretic equilibrium models 
also assume not only that bidders maximize accurately but also that they are themselves 
completely confident that others will maximize accurately. Moreover, they cling to these 
beliefs even when their best strategies are very sensitive to small mistakes by other 
bidders.22 Practical auction designers must treat these analyses with skepticism. Real 
players in mechanism are rarely if ever so confident about their competitors’ behavior, 
and analyses that rely too sensitively on their assumptions are not reliable. Useful, real-
life mechanisms need to be robust. Those that are too fragile should be discarded, while a 
robust mechanism can sometimes be confidently adopted even if, in the corresponding 
mechanism design model, it is not provably optimal.23  

Besides the very demanding behavioral assumptions that characterize the theoretical 
mechanism design approach, the existing formal models of mechanism design theory 
capture and analyze only a small subset of the issues that a real auctioneer faces. Some of 
the important issues that are usually omitted from mechanism design models are listed 
below. While none of these are incompatible with mechanism design theory in principle, 
accounting for all in a single optimization model is far beyond the reach of present 
practice.   

• What to sell? If a farmer dies, should the entire farm be sold as a unit? Or 
should some fields be sold to neighbors? The house and barn as a holiday and 
weekend home? How should the FCC cut up the radio spectrum? Should power 

                                                 
22 For example, see Dasgupta and Maskin (2000) or Perry and Reny (2002).  
23 The view expressed here is a variation of the “Wilson doctrine,” which holds that practical mechanisms 
should be simple and designed without assuming that the designer has very precise knowledge about the 
economic environment in which the mechanism will operate. Here, we further emphasize that even given a 
very complete description of the economic environment, the behavior of bidders cannot be regarded as 
perfectly predictable.  
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suppliers be required to bundle regulation services, or should that be priced 
separately? 

• To whom and when? Marketing a sale is often the biggest factor in its success. 
Bidders may need approval or may need to line up financing to participate. 
Conditions may change: financing may be more easily available at one time 
than another; uncertainties about technology or demand may become partly 
resolved; etc. Bidders may actively try to discourage others from bidding, 
hoping to get a better price.24 Auctioneers may seek to screen bidders to 
encourage participation by those who are most qualified.  

• How? For example, if the deal is complicated and needs to be individually 
tailored for each bidder, a seller might prefer to engage in a sequence of 
negotiations to economize on costs. If an auction is to be used, the right kind 
can depend, as we have already seen, on whether the items are substitutes or 
complements.  

• Interactions? Decisions about what to sell, to whom, when, and how are not 
independent ones. What to sell depends on what buyers want, which depends on 
who is bidding, which may depend on how and when the auction is conducted.  

• Mergers and Collusion? The European spectrum auctions of 2000, with their 
very high stakes, provided some interesting examples of before-the-auction 
actions to reduce competition. In Switzerland, last minute mergers among 
potential bidders resulted in only four bidders showing up for four spectrum 
licenses. The auction was postponed, but the licenses were eventually sold for 
prices close to the government-set minimum. Similar problems of valuable 
spectrum attracting few bidders and resulting in prices near the minimum 
occurred in Germany, Italy, and Israel.  

• Resale? Most of the theory of mechanism design starts with a given set of 
bidders who keep whatever they buy. The possibility of resale not only affects 
auction strategy, it may also attract speculators who buy with the intention of 
reselling. Should the seller encourage speculators, as additional bidders create 
more competition in the auction? Or should the seller discourage them, since 
value captured by speculators must come from someone else’s payoff—
possibly the seller’s?  

The mechanism design purist’s view, which holds that the only consistent approach is 
to develop theoretically “optimal” mechanisms, is not useful in practice. Even if we could 
incorporate all the features described above, our models of human behavior are not nearly 
accurate enough for use in optimization. Behavior is neither perfectly stable over time, 
nor the same across individuals, nor completely predictable for any single individual. 
Useful analyses must be cognizant of these realities.  

                                                 
24 On the eve of the FCC PCS spectrum auction #4, the author made a television appearance on behalf of 
Pacific Bell telephone, announcing a commitment to win the Los Angeles telephone license, and 
successfully discouraging most potential competitors from even trying to bid for that license.  



 

 18

Despite these limitations, a large portion of this book focuses on mechanism design and 
related analyses. The theory is useful in practice for thinking through some issues and 
guiding some decisions. Among the decisions that the theory can illuminate are ones 
about information policy (what information to reveal to bidders), how to structure split 
awards (in which a buyer running a procurement auction splits its business between two 
or more suppliers), how to create scoring rules (in which bids are evaluated on 
dimensions besides price), and when and how to implement handicapping (in which the 
auctioneer treats bids unequally in order to encourage more effective competition, for 
example, promote small businesses or those run by women and minorities). The 
mechanism design approach also helps answer important questions about when to use 
auctions at all. Purchasing managers sometimes pose this question by asking whether 
particular goods and services are “auctionable,” that is, whether the most effective 
procurement process is to run a formal bidding process.  

Theory and Experiment 
In sharp contrast to mechanism design purists, some economic experimenters raise an 

opposite objection: why should any attention be paid to auction theory at all, now that we 
have the capability to test alternative auction designs in experimental economics 
laboratories? Theories sometimes fail badly. The rest of the time, they explain only some 
of the data, so why rely on theory at all?   

The possibility of experimental tests has, indeed, fundamentally shifted the way 
auctions can be designed. In the FCC auction design, successful tests conducted by 
Charles Plott in his laboratory at Caltech helped convince the FCC to adopt the 
theoretically motivated Milgrom-Wilson design. Working software demonstrating the 
design was another important element.25 Yet, the experiments to date have been very far 
from replicating the actual circumstances of high value auctions.  

In practice, it is unlikely that anyone will ever test a range of actual proposals in a 
completely realistic setting. The amounts at stake in experiments are necessarily much 
smaller, and the preparation time for bidders will normally be much less. Because 
experimental settings differ so much from the auctions they simulate, the role of theory is 
indispensable. Theory guides the design of experiments, suggests which parts of any 
experimental results might be generalized, and illuminates the economic principles at 
work, enabling further predictions and improvements upon the original design.  

The philosopher Alfred North Whitehead, when asked whether theory or facts was 
more important, answered famously: “theory about facts.” Indeed, theories that are 
incompatible with facts are useless, but there can be no experimental designs and, indeed, 
no reporting of experimental results without a conceptualization of the issues. Theory 
will always play a key role in answering engineering questions, including questions about 
auction design.  
                                                 
25 Working software demonstrating the feasibility of the new design was another important element. 
Implementation issues also played a huge role in the debate. The very possibility of running the computer 
implemented simultaneous auction drew hackles from critics in 1994. To rebut the critics, my assistant, 
Zoran Crnja, programmed a flawless small-scale version of the software in a set of linked Excel 
spreadsheets. His software convinced the FCC that a reliable system could be created using our proposed 
rules even in the short time available.  
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Practical Concerns 
The final criticism is that, in the real world, the whole mechanism design approach is 

irrelevant for several reasons. First, the auction rules themselves are subject to 
bargaining: there is no single mechanism designer. Second, the rules are rarely even a 
first tier concern in setting up and running a complex auction. Several other issues are 
more important.  

One such issue is marketing: an auction cannot succeed without participants. This 
interacts with the first observation: bidders may simply refuse to participate in designs 
that they strange or unfair.26 This very observation, however, emphasizes that good 
design can be affirmative way to attract more and better participants.  

There are many examples of auctions and other competitions that get poor results 
because the rules are rigged to favor particular bidders and so discourage others from 
participating. One is the earlier description of MCI’s attempts to rig the US spectrum 
auctions in its favor by making the “lot” a single national license. When different bidders 
want different kinds of lots, a package auction design, such as the ones often used in 
bankruptcy sales, may enable wider participation.  

Another example is the initial public offering (IPO) of shares in a young company. In 
the past, the investment banks that organize the IPOs have often reserved shares in “hot” 
offerings for the bank’s biggest and best customers, and that discourages small investors 
from participating. Trying to buck this trend, investment bank WR Hambrecht has 
introduced its “Open IPO” product, which is a uniform price auction in which large and 
small investors are all subject to the same auction rules. The company tries actively to 
attract small investors to increase demand for shares and create an alternative to the 
existing auction system, although its success will also depend on attracting larger 
investors, too, and companies willing to experiment with a new system.  

A second important practical issue concerns the property rights being allocated. For 
example, if auctions are to be used to allocate take-off and landing rights at a congested 
airport, then the rights themselves need to be carefully defined. What is to happen to a 
plane that is delayed for mechanical reasons and cannot depart in its assigned slot? What 
are the airline’s rights if weather delays decrease the capacity of the airport? While no 
sophisticated auction rule can lead to a good outcome unless these practical issue are 
resolved, an auction system that fails to coordinate all the resources needed by the 
airlines—takeoff slots, landing slots, rights through en route choke points, gate access, 
and so on—cannot succeed regardless of how well rights are defined. Real problems 
require comprehensive solutions, and the auction rules are a part whose importance varies 
across applications.  

Another important practical detail for electronic auctions is the interface used by 
bidders. The original FCC auction software made it easy for bidders to make mistakes. 
On several occasions, bidders made what came to be called “fat finger bids.” For 
example, when trying to bid $1,000,000, a bidder might accidentally enter a bid of 

                                                 
26 My own experience designing a procurement auction system for Perfect Commerce, Inc, revealed the 
seriousness of this concern. Sellers do often refuse to participate in auctions that are not structured to their 
liking.  
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$10,000,000—an error encouraged by the fact that the early interfaces could not accept 
commas in the bid field.  

The FCC’s solution for this problem, however, was one that considered more than the 
ease of bidding. Under the FCC’s initial rules, bidders found it easy to communicate 
messages, including threats, with their bids in the auction. Suppose, for example, that 
bidder A wishes to discourage competitor B from bidding on a particular license, say 
#147, in a particular auction. If B bids on that license, A might retaliate by raising the 
price of another license on which B has the current high bid of, say, $9,000,000 by 
bidding $10,000,147, where the last three digits send a none-too-subtle message about its 
motivations. Such bids were frequently observed in some of the early FCC auctions.  

Both the “fat finger” and the signaling problems were solved when the FCC changed 
the auction interface to require that a bidder select its bid from a short drop-down menu 
on its bidding screen. All bids on the menu used round numbers, being the minimum bid 
plus one or more increments. This system eliminated typos involving one or more extra 
digits and simultaneously made it much harder for bidders to encode messages in their 
bids.  

Some critics respond to such anecdotes with the claim that while these do show that 
rules matter, they mainly show the dangers in electronic auctions or auctions using novel 
rules. However, even familiar, low-tech auctions can perform badly on account of 
problematic rules. In 1998, the Cook County, Illinois, tax collector conducted a 
traditional oral outcry auction to sell the right to collect certain 1996 property taxes that 
were two years overdue. In that “1996 tax sale” auction, a bid specified the penalty rate 
that the winning bidder could charge in addition to the taxes due, as compensation for its 
collection services. The auction was conducted in an ordinary meeting room, with the 
auctioneer sitting in the front. The auctioneer would read a property number and the 
bidding instantly began with the bidders shouting penalty amounts. The maximum 
opening bid was 18% and successively lower bids were shouted until a winning low 
bidder was determined.  

The trouble occurred when several bidders simultaneously opened with bids of the 
maximum amount. Under the Cook County rules for that year, in the event of such a tie, 
the auctioneer was to assign the properties to winning bidders essentially at random. A 
bidder tied with, say, five others at 18% then faced a simple choice. He could bid less 
than 18%, having roughly a one in six chance to win the auction at a much lower rate 
than 18%. Or, he could sit quietly and enjoy a one in six chance to win at a rate of 18%. 
Most bidders chose to sit quietly, and about 80% of the properties sold at the maximum 
rate of 18%.  

How can we be sure it was the faulty rules, rather than collusion among (more than a 
dozen) bidders, that accounted for this outcome? A few days after the auction began, the 
county auctioneer announced a change in the rules. In the future, a tie bid at 18% would 
result in withdrawal of the property from the auction. After the change, penalty rates 
quickly collapsed to a lower level, providing some initial evidence that the treatment of 
ties does matter. Immediately after the rule change, some bidders sought a court order to 
restrain the auctioneer from changing its rules during the auction. The court agreed and 
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issued the order. After the order was issued and the original rules restored, the winning 
bids quickly returned to 18%.   

Understanding auction theory is helpful for more than just avoiding obviously bad 
designs. Well-designed auctions that link the allocation of related resources can perform 
much better than traditional auction sales. In the New Zealand case described earlier, if 
the novel second-price auction rules had been replaced with more traditional pay-as-bid 
rules, any simultaneous sealed-bid auction would still be prone to misallocation, because 
bidders would still need to guess about which TV licenses to bid on. Computational 
experiments suggest that 25-50% of the value might have been lost simply because the 
allocation was so poorly coordinated. In similar circumstances, the current world-
standard for spectrum auctions, the simultaneous ascending auction, can theoretically 
lead to an efficient or nearly efficient outcome.  

The simultaneous ascending auction has limitations too, which can be particularly 
important when the items for sale are ones that different bidders prefer to package in 
different ways, or when there are complicated constraints on the collection of acceptable 
offers. In such cases, a package auction design can both attract a wider set of bidders and 
vastly increase the likelihood that the right packages emerge from the auction. The design 
of these auctions is, however, subject to many pitfalls, to which we return in section II of 
this book. 

There are many more examples of the importance of the detailed auction rules. One is 
from a Mexican sealed-bid auction for a road construction contract, in which the bidders 
were asked to submit a total bid and to break down the bid into three pieces in case part 
of the project was delayed or canceled. Although each bidder was required to specify four 
numbers, the project was to be awarded based only on the total price. The winning bidder 
submitted a bid in which the “total” was less than the sum of the three parts. As matters 
transpired, the sum of the three was low enough to win, and the winner claimed that he 
had simply made an “arithmetic mistake” and that the price must, of course, be the sum 
of the three component parts. It seems more likely that this device was used to place two 
bids, allowing the bidder to withdraw the lower one if the higher bid was a winner. That 
could be a useful option in a competitive setting, but even more so if the bidders were 
colluding, because the low “total price” bid would prevent a deviator from cheating on 
the agreement and placing a lower than expected bid. Indeed, if the auctioneer had 
intended to facilitate collusion in the bidding, this would have been quite a clever design 
for accomplishing that!  

Another example of how the details matter is drawn from the German experience in a 
1999 spectrum auction. In that auction, Mannesmann and T-Mobil managed to divide the 
market between themselves without engaging in intense price competition. With ten 
licenses for sale and a 10% price increment, Mannesmann opened the bidding by jumping 
to prices of DM20 million for five licenses and DM18.18 million for the other five, 
effectively suggesting to T-Mobil that the ten licenses be divided five-and-five at a price 
of DM20 million. In the event, T-Mobil bid DM20 million for the five licenses and that 
ended the auction. The facts that equal division was possible and that the bidder could 
make such jump bids are design elements that contributed to this outcome. The risk was 
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predictable. Indeed, the danger that such rules posed had been previously been pointed 
out in a 1997 report commissioned by the US spectrum authorities.27  

In the US electricity markets, ill-considered market rules frequently contributed to high 
prices by making too easy for power suppliers to manipulate the system. In a famous 
example, energy traders at the Enron Corporation manipulated the California power 
market by scheduling transmissions on congested links that were far in excess of those 
Enron had actually planned. That led the California Power Exchange to try to mitigate the 
expected congestion by paying the company to reduce its transmissions, resulting in 
massive profits for the company. Only after repeated failures did these designs evolve to 
produce more reasonable results, yet all of these defects are instantly revealed by a game 
theoretic analysis of the market designs.  

The most careful statistical evidence of the importance of design comes not from 
auction markets per se but from the closely related “matching” markets, such as the ones 
by which most new US doctors are matched to hospital residency programs. Roth (1991) 
provides evidence that a particular characteristic of the matching rules—whether the rules 
lead to a “stable” match—is an important determinant of whether organized markets 
succeed in attracting participants over a long period of years. A match is stable if no 
medical student strictly prefers to be matched to another program as compared to the one 
he is currently matched with while this other program simultaneously strictly prefers this 
medical student to one of those with whom it is matched. The analogous criterion for 
auctions is that no group of participants should be able to do better by rejecting the 
auction outcome and making a side-deal of their own. Auctions that do not have this 
theoretical property are likely to run into trouble in practice, as some participants try to 
void the auction outcome to reach a better deal among themselves.  

Successful auction programs need to be well designed in every important respect, of 
which auction rules are one. Applying the perspective of auction theory can be valuable 
in many ways. It can enable an auctioneer to avoid mistakes like those that marred the 
1993 spectrum auction in New Zealand and the 1996 tax auction in Cook County. It can 
help the auctioneer to pursue multiple objectives, like promoting minority participation, 
encouraging alternative suppliers, and enhancing competition among bidders with diverse 
advantages. Finally, rules can be designed to accommodate complicated preferences and 
constraints for the bidders and the auctioneer. We will see some examples of this later in 
this book.  

Plan for this Book 
This book integrates two projects, which are presented in the next two sections. The 

first section gives a review of traditional auction theory and is based on courses that I 
have given over a period of years at Stanford, Jerusalem, Harvard, and MIT. Traditional 
auction theory is based largely on the theory of mechanism design and the chapter 
organization follows certain principles of that theory. Much of the analysis is focused on 
auctions in which each buyer wants only a single object—a condition called singleton 
demand.  
                                                 
27 See Cramton, McMillan et al. (1997).  
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My treatment of the material differs from other treatments in two ways. First, it 
emphasizes practical applications where possible and makes an effort to include the 
issues that are most important in practice. Second, the treatment reflects my personal 
view that incentive theory is a mysterious new part of economics but is closely related to 
standard demand theory. Rather than taking a too-specialized view that obfuscates the 
connections, I approach the material using general perspectives and techniques that, I 
believe, prove their worth by delivering some difficult results in short, intuitive 
arguments.  

The second section of the book differs from the first in its questions and methods. The 
questions mainly concern the design of auctions for environments in which there are 
multiple heterogeneous goods. These environments are fundamentally more complex 
than ones with singleton demand. One reason is that the number of possible allocations is 
exponentially larger, which leads to serious issues about the practical feasibility of 
auction algorithms and bidder strategies. For example, in an auction with five bidders and 
one item, there are only five theoretically possible allocations of the item and each bidder 
bids over just a single item. However, in an auction with five bidders and five items, 
there are 55 = 3125 theoretically possible allocations. A second way in which singleton 
demand is special is that it eliminates much of the tension between promoting efficient 
allocations and ensuring competitive revenues for the seller. In the general case of section 
II, where multiple heterogeneous goods are sold with complementarities among the 
items, that tension can be severe. For example, the Vickrey auction, noted for its ability 
to promote efficient outcomes, can leads to zero low revenues in relevant examples. A 
third difference concerns the problem of value discovery. With singleton demand, bidders 
have only one allocation to evaluate, but in the general case the exponentially larger 
number of allocations can force a bidder to reduce its valuation activities, which can limit 
both efficiency and price competition.  

Because the Vickrey mechanism plays a significant role in both parts of the theory, we 
begin by studying this mechanism in the next chapter.   

Auction theory has grown into a huge area of research, and this book reports on only 
those parts of the theory research that are relatively settled and that, in my opinion, have 
promise to be helpful to auction designers. With these criteria in mind, I have given only 
light coverage to some of the elegant formal treatments of how auctions perform when 
there are very many bidders28 as well as much of the recently developing literature about 
one or more of these topics: auctions with “interdependent” valuations, collusion among 
bidders, corrupt auctioneers, purchases for resale, and information processing during 
auctions. Readers who wish to follow the frontiers of auction theory are encouraged to 
read about these subjects in the new auction literature.  

 

                                                 
28 This research begins with Wilson (1977) and includes Milgrom (1979) and the especially beautiful 
results by Pesendorfer and Swinkels (1997), Pesendorfer and Swinkels (2000), Swinkels (2001).   
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Section I: 
The Mechanism Design Approach  

The five chapters of section I apply “mechanism design theory” and related methods to 
problems of auction design. We begin with informal descriptions of the main concepts of 
mechanism design theory. Although these descriptions correspond closely to the formal 
ones, they conceal technical details that are occasionally important, so the mathematical 
development is indispensable for a full understanding of the theory.  

Mechanism design theory distinguishes sharply between the apparatus under the 
control of the designer, which we call a “mechanism,” and the world of things that are 
beyond the designer’s control, which we call the “environment.” A mechanism consists 
of rules that govern what the participants are permitted to do and how these permitted 
actions determine outcomes. An environment comprises three lists: a list of the 
participants or potential participants, another of the possible outcomes, and another of the 
participants’ possible types—that is, their capabilities, preferences, information and 
beliefs. 

In a political mechanism model, the participants could be legislators, and an outcome 
the set of bills that are enacted. Or the participants could be voters, and the outcome a set 
of elected officials. The mechanism analyst might investigate how a particular legislative 
process affects the likelihood of stalemate or how the electoral system distorts choices by 
politicians concerned with reelection. In economic mechanism models, the participants 
could be workers, or the members of a family, or departmental managers. The analyst 
would model how mechanisms determine job assignments, the distribution of household 
chores or the family budget, or the levels of funding of departments within a firm. Indeed, 
the most commonly studied mechanisms in economics are resource allocation 
mechanisms in which the outcome is an allocation of resources.  

Mechanism theory evaluates alternative designs based on their comparative 
performance. Formally, performance is the function that maps environments into 
outcomes. The function ‘When it rains, we distribute umbrellas; when the sun shines, we 
distribute bathing suits’ gives a better performance than the opposite distribution pattern. 

The goal of mechanism design analysis is to determine what performance is possible 
and how mechanisms can best be designed to achieve the designer’s goals. Mechanism 
design addresses three common questions: Is it possible to achieve a certain kind of 
performance, for instance a map that picks an efficient allocation for every possible 
environment in some class? What is the complete set of performance functions that are 
implementable by some mechanism? What mechanism optimizes performance (according 
to the mechanism designer’s performance criterion)?  

Mechanism design theory is outcome-oriented. A central assumption of the theory is 
that people care only about outcomes, not how they are achieved. In the real world, 
processes sometimes succeed or fail based on whether they are perceived as fair, simple, 
or open—attributes that are hard to evaluate in a formal model. Setting aside these 
considerations facilitates a formal but partial analysis. Once that analysis is complete, the 
omitted issues and criteria can be examined.  



 

 27

 

Two categories of problems plague mechanism designers.  Information problems are 
the first category. Consider the problem of an airline regulator trying to respond to bad 
weather around a major airport that requires delaying or canceling some flights. But 
which flights? The regulator might the airlines to cooperate, identifying which flights can 
be cancelled with only moderate disruptions to passengers and the schedule, but those 
who honestly identify all those flights bear most of the cost of cancellations. Canceling 
flights could even make passenger service problems worse. For example, when flights on 
large planes are canceled or delayed, some passengers may hire private jets that use the 
same runway capacity to serve fewer customers. In this example, the regulator might be 
able to alleviate the information problems by paying any airline that voluntarily sacrifices 
a runway slot and charging a fee to an unscheduled airline seeking an extra slot. In 
practice, cash compensation may not be allowed. What can be achieved then? What 
additional performance is possible if cash payments are possible?  

Problems caused by inadequate information can be found throughout the economy. An 
architect who requires use of materials of a certain quality may not know that the builder 
has actually used a less costly and less durable substitute.  Black marketeers who conceal 
their transactions or people who misreport income may thwart a government’s tax 
system. A business manager might find a system of performance-related pay frustrated by 
inaccurate or intentionally distorted performance measures.  

The second kind of problem facing mechanism designers is a commitment problem, in 
which participants do not trust the designer to keep his promises. For example, suppose 
the workers in a certain factory are paid a certain amount, called a “piece rate,” for each 
unit they produce. The manager of a factory promises not to change a piece rate 
regardless of how much workers earn. Suppose the workers believe the manager and 
increase their output, but it turns out that some workers’ piece rates are much too high 
relative to others, allowing them to earn much higher incomes. The manager’s superiors 
and the workers whose piece rates are relatively low are likely to pressure the manager to 
reduce the higher rates and increase the lower ones. Anticipating such a reaction, the 
factory workers in the easy jobs may try to make their jobs look hard by limiting their 
production to avoid a reduction in their piece rates. In this example, the manager’s 
inability to commit not to change rates reduces the factory output.  

Both kinds of problems play a role in mechanism design theory and in its application to 
the economic theory of contracts. We’ll focus on information problems, however, 
because these are the most relevant ones for auction theory. They arise for the simple 
reason that bidders know more about their values than the auctioneer.  

An auction is a mechanism to allocate resources among a group of bidders. An auction 
model includes three major parts: a description of the potential bidders (and sometimes 
the seller or sellers), the set of possible resource allocations (describing the number of 
goods of each type, whether the goods are divisible, and whether there are legal or other 
restrictions on how the goods may be allocated), and the values of the various resource 
allocations to each participant.  

Values may be determined in subtle ways. For example, when a bottle of fine wine is 
sold at auction, the winning bidder’s payoff may depend on how much she likes the 
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particular wine, likes the prestige of winning the bottle, or likes keeping the bottle away 
from a certain competing collector. Losers, too, may care about the outcome, for example 
because they expect that if a certain friend wins the bottle, he will serve it at an upcoming 
wine tasting party. The mechanism designer’s problem is to choose the rules of the 
auction—what bids are allowed, how the resources are allocated, and how prices are 
determined—to achieve some objective, such as maximizing the seller’s proceeds.   

Three important early contributions to mechanism design deserve special mention.  The 
next chapter reviews the first of these contributions, William Vickrey’s design of 
auctions that allocate resources efficiently in a wide range of circumstances.  

The second important contribution was the Vickrey-Mirrlees design of an optimal 
income tax and welfare system given a utilitarian objective. Vickrey built the basic 
model, which gave structure to the question. The model incorporated the ideas that 
individual utility depends on income and leisure, that different people have different 
opportunities to generate income by sacrificing leisure, that the taxing authority can only 
observe total income, and that the tax system affects labor supply. The problem was to 
create a tax-and-transfer system to maximize the total utility of everyone in society. The 
utilitarian optimal solution would tax with high earning ability and pay transfers to those 
with low earning ability, but would be limited by the incentive problem that entails. 
James Mirrlees later revisited and solved the optimization problem implied by Vickrey’s 
formulation.  Subsequent researchers have often mimicked Mirrlees’ methods.  For their 
contributions to the theories of efficient auctions and optimal taxation, Vickrey and 
Mirrlees shared the 1996 Nobel Prize in economic science.  

The third important contribution was the Clarke-Groves analysis of the optimal 
provision of public goods. For example, a condominium association may need to decide 
whether to improve its common areas, perhaps by installing a faster elevator in the 
building, renovating the exterior, or building a children’s playground. Improvements are 
costly and must be funded out of association funds and by an assessment levied on the 
association members. In these circumstances, the association board may want to know 
how much various improvements are worth to its members. Depending on exactly how 
the information is used and how costs are shared, association members might be inclined 
to misstate their preferences. Clarke and Groves analyzed how to arrange affairs to make 
truthful reporting consistent with individual interests. Their methods and conclusions are 
quite similar to Vickrey’s; we treat the two together in the next section.  

In the years that followed, mechanism design techniques were applied to problems in 
the public sector, e.g. the optimal state regulation of public utilities to maximize 
consumer welfare, and the private sector, e.g. the optimal design of contracts to maximize 
the welfare of the contracting parties. Roger Myerson’s work on designing auctions to 
maximize revenue was the first to apply mechanism design to auction theory.29 

                                                 
29 See Myerson (1981).  
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Formalities of the Mechanism Design Model30  
The model we shall study has two parts: an environment and a mechanism. An 

environment is a triple (N,Ω,Θ). The first element of the triple, N={1,…,N}, is the list of 
participants (or potential participants) in the mechanism. The second element, Ω, is the 
set of possible outcomes over which the participants and the mechanism designer have 
preferences. The third element is the most abstract one: 1 ... NΘ = Θ × × Θ  is the set of type 
profiles 1( ,..., )Nt t t=

G
, which includes a “type” for each participant. Participant i’s type 

( it ) indexes the participant’s information, beliefs, and preferences. For example, we may 
say that bidder #1 is of type A if the item for sale is worth $100 to that bidder and the 
bidder believes that the item is worth $150 to bidder #2, and of type B if the item is worth 
$200 to the bidder and the bidder believes it is worth $175 to bidder #2. The set of types 
lists all the possibilities that the modeler considers.  

The type profile and the outcome combine to determine individual payoffs: 
:iu Ω×Θ → \ . Thus, ( , )iu tξ

G
 denotes the payoff or utility that participant i gets when 

the outcome is ξ ∈Ω  and the type profile is t
G

.  

In much of economic theory, a player’s payoff depends only on the outcome and his 
own type, but the general formulation allows a broader dependence than that. An 
example in which payoffs depend on others’ types comes from George Akerlof, who 
shared the 2001 Nobel Prize in economic science. In his famous “lemons” model of the 
market for used cars,31 there are two kinds of participants: buyers and sellers. A seller’s 
type describes the car’s condition, which only the seller knows. A buyer’s utility depends 
on both the buyer’s tastes and the car’s condition. Market models in which some 
participant has quality information that affects other participants’ payoffs are called 
“adverse selection” models. The name reflects the idea that the selection of cars being 
sold in this model is not a random cross-section of all cars but instead is overweighted by 
cars that are in bad condition, because owners of bad cars are more eager to sell them.  

Although the treatment of adverse selection in auction models has a long history,32 the 
largest part of auction theory sets adverse selection aside to focus on the private values 
case, in which each participant’s utility depends only on its own type: ( , ) ( , )i i iu t u tξ ξ=

G
. 

In this case, others’ information cannot influence a participant’s ranking of the outcomes 
in Ω. Except where specifically noted, all the mechanisms in this chapter deal with the 
private values case.  

Most mechanism models assume that participants are uncertain about what other 
participants know. In Bayesian models, the conditional probability distribution ( | )i it tπ

G
 

describes a participant’s beliefs, which depend on the participant’s own type. Throughout 
most of this chapter, we employ the Harsanyi doctrine that the beliefs are derived from a 

                                                 
30 The first general mechanism design model was formulated by Hurwicz (1973).  
31 Akerlof (1970).  
32 However, there were auction models with adverse selection even before the pioneering work of Akerlof 
(1970). See Ortega-Reichert (1968) and Wilson (1969).  
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common prior distribution π.33 Although this doctrine is restrictive and rules out certain 
interesting and realistic phenomena, it does have one important advantage. It rules out 
“betting pathologies,” which are models in which participants can make themselves much 
better off simply by betting against one another based on the differences in their beliefs.34 
To focus attention on other aspects of the design problem, the Harsanyi doctrine is widely 
used in mechanism design models.  

It is sometimes convenient to write a type profile as ( , )i it t t−=
G

, where it−  lists the 
types of the participants other than i. A (strategic form) mechanism is a pair ( , )ωS  where 

1 ... N= × ×S S S  is the set of possible strategy profiles ( jS  is the set of possible strategies 
of a typical player j) and :ω → ΩS  maps strategy profiles to outcomes.35  

For each mechanism and each realization t of the type vector, we can define a 
corresponding strategic form game. The game ( )N,S, ( | )U t⋅

G
is a triple consisting of a set 

of players, a set of strategy profiles, and a payoff function U mapping strategy profiles 
into payoffs. The arguments of the payoff function are strategies, but these matter to the 
players only insofar as they determine the outcomes that the participants care about:  

1 1( ,..., , ) ( ( ,..., ), )i N i NU t u tσ σ ω σ σ=
G G

. If the players are Bayesians, adding the beliefs as 
described above completes the description of a Bayesian game.  

Given a mechanism ( , )ωS , if the game theoretic solution concept forecasts that a 
particular strategy profile ( )1 1( ),..., ( )N Nt tσ σ σ=  will be played, then one can use that 
forecast to predict and evaluate the performance of the mechanism. The forecasted 
outcome will be ( )1 1( ) ( ),..., ( )N Nt t tξ ω σ σ=

G
. The function ( )ξ ⋅  mapping type profiles to 

outcomes is the performance function corresponding to the mechanism ( , )ωS . Many 

                                                 
33 Harsanyi (1967-68).  
34 Legend has it that the “betting pathology” was first discovered in the coffee room of the Stanford 
University economics department, when Professors Joseph Stiglitz and Robert Wilson disagreed about 
whether a certain uncomfortable seat cushion was stuffed with foam or feathers. They agreed to bet $10 on 
the issue and to cut open the cushion, with the loser to pay for a new cushion. Alas, the department 
administrator stopped them before they could execute their agreement. The pathology is that this 
agreement, from which both participants expected to benefit, required the destruction of real resources. It 
would be possible to buy a new cushion without destroying the old one first, but that would not allow the 
professors to benefit from the bet.  
When the Harsanyi doctrine does not hold and parties with the same information nevertheless have 
different beliefs, side bets like that between Wilson and Stiglitz are quite generally beneficial. According to 
the no trade theorem (Milgrom and Stokey (1982)), the Harsanyi doctrine precludes mutually beneficial 
side-bets, so adopting the doctrine focuses the analysis on other, more economically plausible, aspects of 
the mechanism design problem. This resolution is unsatisfying, however, because it is contradicted by 
evidence about human beliefs. Moreover, we will see later that even with the Harsanyi doctrine, side-bets 
still arise in optimal mechanisms when the participants’ types are statistically correlated (Cremer and 
McLean (1985)).  
35 This is a strategic form description of the mechanism. One can also describe a mechanism in extensive 
form, by completely describing the succession of possible moves (the “game tree”), the information 
available to each player when she moves (the “information sets”), and the outcome that follows each 
possible sequence of moves. The difference between the two descriptions is potentially significant when 
one applies an extensive form solution concept, such as sequential equilibrium or perfect equilibrium.   
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game theoretic solution concepts are not single-valued; for example, many games have 
multiple Nash equilibria. There are several ways to accommodate multiple equilibria, but 
for this chapter we focus on the following one. When a game has multiple solutions, we 
define the augmented mechanism ( , , )ω σS  to be the mechanism plus a selected solution. 
The idea is that the solution σ represents a recommendation made by the mechanism 
designer to the participants. If the recommendation is consistent with a solution concept 
that adequately captures the participants’ incentives, then no participant would have any 
incentive to deviate from the recommendation and σ is therefore a reasonable prediction 
of how the participants will behave.  

When σ is a solution according to some solution concept, we say that the mechanism 
( , )ωS  or the augmented mechanism ( , , )ω σS  “implements” the performance ξ ω σ= D . 
In other words, the equilibrium outcome of the mechanism is x, which is obtained from 
the outcome function ω when each participant plays according to σ i. Sometimes, we 
attach the name of the solution concept, saying that a mechanism “implements in 
dominant strategies” or “Bayes-Nash implements” the particular performance.  

The Chapters of Section I 
We develop the mechanism design approach to auction theory in a series of steps. In 

chapter 2, we review the Vickrey analysis of auctions and the related Clarke-Groves 
analysis of public decisions. The Vickrey-Clarke-Groves (VCG) design establishes a 
useful benchmark to which subsequent analyses of resource allocation mechanisms must 
be compared.  

Chapter 3 introduces the envelope theorem and some of its most important 
consequences, including Holmstrom’s lemma and Myerson’s lemma, which are incentive 
theory analogues of the famous demand theory lemmas of Hotelling and Shepard. Using 
the envelope theorem allows short proofs of many famous results and reveals their close 
relationship. Among these are the Green-Laffont-Holmstrom theorem that the VCG 
mechanisms are the only efficient dominant strategy mechanisms, the Myerson-
Satterthwaite theorem about the inescapable inefficiencies of bargaining with incomplete 
information, the Jehiel-Moldovanu theorem about the impossibly of implementing 
efficient outcomes with adverse selection, the celebrated payoff and revenue equivalence 
theorems, the Myerson-Riley-Samuelson optimal auctions theorem, and the McAfee-
McMillan weak cartels theorem.  

Chapter 4 proves the constraint simplification theorem under the assumption that 
individual preferences satisfy a “single crossing property” (described in the chapter).  The 
theorem greatly facilitates analysis of standard auction designs and characterization of 
implementable performance functions. With additional simplifying assumptions, the 
theorem permits fuller development of “optimal auction” theory, comparisons of 
expected revenues across auctions, predictions about the distributions of bids consistent 
with equilibrium, and other results.  

The models explored in chapters 2-4 are simplified by the assumptions that bidders 
know their own values and know nothing about others’ values. In chapter 5, we explore 
models in which  these assumptions no longer hold, including models in which bidders or 
the seller invest in additional information and conceal or reveal it. A seller can benefit in 
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several ways by revealing valuation information. The information can avoid 
inefficiencies caused by mistaken evaluations, reduce the risk premia that bidders deduct 
in valuing uncertain assets, and decrease the information rents that bidders earn. All of 
these changes can increase expected revenues.  

Chapter 6 sets a larger context for auctions by treating entry decisions and post-auction 
performance. These larger considerations are extremely important in practice: an auction 
can hardly be considered optimal if no bidders choose to participate or if the winner 
defaults on his obligations. They also shift the focus of auction design in several 
important ways. First, when participation is costly, unless enough profit is left for the 
bidders, they will not choose to participate, damaging both efficiency and revenues. 
Maximizing efficiency can involve pre-screening of potential bidders, so that only the 
most qualified incur the cost of learning their types and preparing bids. Pre-screening and 
other devices can also help ensure that the selected bidder is able to perform. When 
bidders differ in their qualification, evaluating bids becomes more complicated as well, as 
the seller balances whether to accept a higher bid from a weak buyer who may default or 
a lower bid from a qualified buyer.  
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Chapter 2:  
Vickrey-Clarke-Groves Mechanisms  

This chapter describes the important contributions of Vickrey, Clarke and Groves 
(VCG) to the theory of mechanism design. Vickrey (1961) analyzed a situation in which 
bidders compete to buy or sell a collection of goods. Later, Clarke (1971) and Groves 
(1973) studied the public choice problem, in which agents decide whether to undertake a 
public project – e.g. construction of a bridge or highway – whose cost must be borne by 
the agents. This latter analysis formally includes any choice from a finite set. In 
particular, it includes the Vickrey analysis for the case of discrete assets. We limit 
attention in this chapter to the case of finite choice sets to bypass technical issues 
associated with infinite choice sets, particularly issues associated with the existence of a 
best choice.  

The VCG analysis is the gold standard—the work by which nearly all other mechanism 
design work is judged and in terms of which its value is assessed. As we will see in later 
chapters, there are deep and surprising connections between the VCG theory and many 
other parts of auction theory.  

2.1 Formulation 
We begin the theoretical development in this section by introducing notation and 

defining direct mechanisms and VCG mechanisms.  

Thus, let {0,..., | | 1}N N= −  denote the set of participants, with participant 0 being the 
mechanism operator. Let X denote the set of possible decisions with typical element x. 
For chapters 2-5, we omit any analysis of the incentives to participate, assuming that the 
set of participants is exogenously given. An outcome is a pair ( , )x p  describing a 
decision x and a vector of positive or negative payments 0 1 | | 1( , ,..., )Np p p p −=  by the 
participants. For example, in a first-price sealed-bid auction, the decision x is a vector 
where 1ix = if agent i gets the object and zero otherwise.  The associated vector of 
payments is p where 0i ip b p= = −  if i bids ib  and wins, and in that case, 0jp =  for the 
other bidders.  

For most of our analysis, we also assume that each participant i values outcomes 
according to ( )( , ), ( , )i i i iu x p t v x t p≡ −

G
, that is, i’s payoff corresponding to outcome 

( , )x p  is i’s value of the decision x, which depends only on i’s own type it , minus the 
payment that i must make. This quasi-linear specification of the utility function plays an 
indispensable role in the formal analysis of this chapter. The assumption of quasi-
linearity implies that bidders are able to make any cash transfers described by the 
mechanism, that there exists a cash transfer that exactly compensates any individual for 
any possible change in outcomes, and that redistributing wealth among the participants 
would not change this compensatory transfer. These assumptions represent better 
modeling approximations for some situations than for others. For example, if the bidders 
are firms with ample liquidity, the assumptions might be a very good approximation of 
reality, but if they are consumers with significant credit constraints that apply to the 
transactions, then the assumptions might be an unacceptably bad fit.  
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Recall that “performance” means the function that maps environments into outcomes. 
Given our assumptions about the two-part description of outcomes, the performance of 
any mechanism can be also described in two parts. The decision performance maps types 
into decisions x, while the transfer performance maps types into payments or transfers. 
When the decision x allocates goods, we shall sometimes also call x the “allocation 
performance.”  

The VCG analysis sometimes attempts to achieve efficient performance subject to the 
constraint that transfers add up to zero. Given the assumptions described above, a 
decision x is efficient if it maximizes the total value ( , )i i

i N
v x t

∈∑ . For example, in an 
auction of a single good, the final allocation is efficient if it awards the good to the bidder 
who values it the most.  In the models studied here, by construction, net payments always 
add up to zero, because the seller/mechanism designer receives any sums that the buyers/ 
bidders pay.  

In some publicly run auctions, the design objective is efficiency as defined above, 
although revenues (the total transfer to the mechanism designer) may also be an 
important goal. In private sector auctions, revenues are always an important goal and 
often the only one.  

Sometimes, the designer wants to run an auction in which 0 0p ≡ , that is, in which 
there is never any net transfer to the auction designer. These balanced budget 
mechanisms are useful, for example, in regulatory contexts where the regulator is not 
authorized to contribute or collect money from the regulated parties. They also arise in 
the theory of the firm, where the mechanism operator is similarly restricted. As we will 
see later, there is often a tension in mechanism design between achieving efficient 
outcomes and ensuring a balanced budget.  

The VCG mechanisms are incentive-compatible direct mechanisms. This means that 
(1) S = Θ  and that (2) the strategy profile ( )( )i i i

i N
t tσ

∈
=  is an equilibrium. In words, the 

first condition means that each participant is required to report a possible type to the 
mechanism operator. We will sometimes speak of direct mechanisms as being pairs 
( , )x p , leaving the strategy set implicit. The second condition, incentive compatibility, 
means that reporting one’s type truthfully is an equilibrium according to whatever 
solution concept we have chosen. For VCG mechanisms, we focus on dominant strategy 
implementation, so the relevant solution concept is that each participant plays a dominant 
strategy.  

One appeal of incentive-compatible direct mechanisms is that they spare participants 
the need for elaborate strategic calculations: truthful reporting serves each participant’s 
individual interest.  Choosing dominant strategies as the solution concept, an incentive 
compatible direct mechanism is one for which truthful reporting leads to as high a payoff 
as any other strategy for all possible types of opponents and all possible actions that these 
opponents may take. For example, as discussed in chapter 1, it is always optimal for a 
bidder in a second-price sealed-bid auction for a single good to bid his valuation. 
Moreover, this truthful bidding strategy is the only strategy that is always optimal, so it is 
a dominant strategy. Thus, the second-price auction is a dominant-strategy incentive-
compatible direct mechanism. 



 

 35  

The operator of a VCG mechanism uses the reported types to compute the maximum 
total value ( , , )V X N t

G
 and a corresponding total-value-maximizing decision ˆ( , , )x X N t

G
 

as follows:   

 ( , , ) max ( , )j j
j Nx X

V X N t v x t
∈∈

= ∑
G

 and (2.1) 

 ˆ( , , ) arg max ( , )j j
j Nx X

x X N t v x t
∈∈

∈ ∑
G

. (2.2). 

One might think that such a direct approach would be doomed to failure, because each 
participant seems to have an incentive to misrepresent his preferences to influence the 
decision in his favor. However, the participants’ incentives depend not only on the 
decision but also on the cash transfer, which is the clever and surprising part of the VCG 
mechanism.  

The VCG mechanism eliminates incentives for misreporting by imposing on each 
participant the cost of any distortion he causes. The VCG payment for participant i is set 
so that i’s report cannot affect the total payoff to the set of other parties, N i− . Notice 
that 0 N i∈ − , that is, the set includes the mechanism designer whose payoff is the 
mechanism’s net receipts.  

With this principle in mind, let us derive a formula for the VCG payments. To capture 
the effect of i’s report on the outcome, we introduce a hypothetical “null report,” which 
corresponds to bidder i reporting that he is indifferent among the possible decisions and 
cares only about transfers. When i makes the null report, the VCG mechanism optimally 
chooses the decision ˆ( , , )ix X N i t−− . The resulting total value of the decision for the set 
of participants N i−  would be ( , , )iV X N i t−− , and the mechanism designer might also 
collect a payment ( )i ih t−  from participant i. Thus, if i makes a null report, the total 
payoff to the participants in set N i−  is ( , , ) ( )i i iV X N i t h t− −− + .  

The VCG mechanism is constructed so that this same amount is the total payoff to 
those participants regardless of i’s report. Thus, suppose that when the reported type 
profile is t

G
, i’s payment is ˆ ( , , ) ( )i i ip X N t h t−+

G
, so that ˆ ( , , )ip X N t

G
 is i’s additional 

payment compared to what i would pay if he made the null report. The decision 
ˆ( , , )x X N t

G
 generally depends on i’s report, and the total payoff to members of N i−  is 

then ˆ ˆ( ( , , ), ) ( , , ) ( )j j i i i
j N i

v x X N t t p X N t h t−
∈ −

+ +∑
G G

.  We equate this total value with the 

corresponding total value when i makes the null report:  

 ˆ ˆ( , , ) ( ) ( ( , , ), ) ( ) ( , , )i i i j j i i i
j N i

p X N t h t v x X N t t h t V X N i t− − −
∈ −

+ + = + −∑
G G

. (2.3) 

Using (2.1), we solve for the extra payment as follows: 

 
ˆ ˆ( , , ) ( , , ) ( ( , , ), )

ˆ ˆ( ( , , ), ) ( ( , , ), )

i i j j
j N i

j i j j j
j N i j N i

p X N t V X N i t v x X N t t

v x X N i t t v x X N t t

−
∈ −

−
∈ − ∈ −

= − −

= − −

∑
∑ ∑

G G

G   (2.4) 
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According to (2.4), if participant i’s report leads to a change in the decision x̂ , then i’s 
extra payment ˆ ( , , )ip X N t

G
 is specified to compensate the members of N i−  for the total 

losses they suffer on that account.  

We now introduce some definitions:  

Definitions.  

1. A Vickrey-Clarke-Groves (VCG) mechanism ( )ˆ ˆ, ( , )x p hΘ +  is a direct 
mechanism in which x̂  satisfies (2.2), p̂  satisfies (2.4) (for all N, X, t and 
i N∈ ), and payments are determined by ˆ ( , , ) ( )i i ip X N t h t−+

G
.  

2. A participant is pivotal if ˆ ˆ( , , ) ( , , )ix X N t x X N i t−≠ −
G

.  

3. The pivot mechanism is the VCG mechanism in which 1 ... 0Nh h= = ≡ .  

In words, a participant is pivotal if consideration of his report changes the decision, 
compared excluding the participant or attributing the null report to him. According to 
(2.4), if participant i is not pivotal, then ˆ ( , , ) 0ip X N t =

G
. In the pivot mechanism, the 

only participants who make or receive non-zero payments are ones who are pivotal. 

Vickrey first introduced the pivot mechanism in a model where the decision x allocated 
a fixed quantity of a single divisible good. In the auction context, a bidder is not pivotal if 
he acquires a zero quantity. So, the pivot mechanism in the Vickrey model is an auction 
in which losing bidders neither make nor receive payments.  

2.2 Always Optimal and Weakly Dominant Strategies 
In this section, we verify that the VCG rules do indeed ensure that it is always optimal 

for the participants to report truthfully, regardless of the reports made by others. We also 
demonstrate that reporting truthfully is often a dominant strategy, that is, it is the only 
strategy that is always optimal.  

There are circumstances in which reporting truthfully, although always optimal for the 
VCG mechanism, is not a dominant strategy. For example, suppose that two parties are 
considering sharing the rental of a boat, which costs $200. One party values the rental 
either at $300 or at $0, and its reported value is restricted to lie in the set {$0, $300}. The 
other party’s value is some amount between $0 and $150 and its report is restricted to lie 
in the interval [$0, $150]. In this example, the pivot mechanism prescribes that the boat is 
rented if and only if the first party’s value is $300 and, in that case, the first party pays 
$200. The second party always pays $0 and his report does not affect the outcome. 
Consequently, any report by the second party is always optimal and any report of $200 or 
more by the first party is always optimal when his value is at least $200.  

The preceding example is constructed so participants can sometimes predict that 
certain reports will be irrelevant. In less contrived examples, one expects that truthful 
reporting will be a dominant strategy.  
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We formalize these claims using the following definitions. Truthful reporting is an 
always optimal strategy if condition (i) below holds and it is a dominant strategy36 if, in 
addition, condition (ii) holds:  

(i) for all it− , ( )ˆ ˆarg max ( , , , ), ( , , , )
i

i i i i i i i i

t
t v x X N t t t p X N t t− −∈ −

�
� � .  

(ii) if i it t≠ , then for some it− , 
( ){ }ˆ ˆarg max ( , , , ), ( , , , )

i

i i i i i i i i

t
t v x X N t t t p X N t t− −∉ −

�
� � . 

To rule out contrived examples like the boat rental example, we will use the following 
condition: 

All reports are potentially pivotal: For all i N∈  and ,i i it t ∈Θ� , there exists i it− −∈Θ  
such that ˆ( ( , , , ), ) ( , , )j i i j

j N
v x X N t t t V X N t−

∈
<∑

G� .  

This condition asserts that for any false report it�  by bidder i, there is some type profile 
it−  of the other participants such that the false report leads the mechanism to choose a 

suboptimal outcome. When this condition holds, no participant can be sure that a false 
report is harmless.  

Theorem 2.1. In any VCG mechanism, truthful reporting is an always optimal strategy. 
If all reports are potentially pivotal, then truthful reporting is a dominant strategy.  

Proof. To show that truthful reporting is always optimal, fix the profile t
G

 of actual 
types. When bidder i reports type it� , the decision chosen is ˆ( , , , )i ix X N t t−� . So, given the 
formula for i’s payment, his payoff is: ( | )i it tΠ =

G� ˆ( ( , , , ), )i i i iv x X N t t t− −�  
ˆ ( , , , ) ( )i i i i ip X N t t h t− −−� . Using (2.4), the gain that i enjoys from the deviation is 

therefore ( | ) ( | )i i i it t t tΠ − Π =
G G� ˆ ˆ( ( , , , ), ) ( , , , ) ( )i i i i i i i i iv x X N t t t p X N t t h t− − − − − − � �  

ˆ ˆ( ( , , ), ) ( , , ) ( )i i i i iv x X N t t p X N t h t− − − = 
G G

ˆ( ( , , , ), )j i i j
j N

v x X N t t t−
∈

−∑ �

ˆ ˆ( ( , , ), ) ( ( , , , ), ) ( , , ) 0j j j i i j
j N j N

v x X N t t v x X N t t t V X N t−
∈ ∈

= − ≤∑ ∑
G G� . This proves that 

truthful reporting is always optimal. 

By the assumption that all reports are potentially pivotal, for all i it t≠� , there exists it−  
such that ( | ) ( | )i i i it t t tΠ − Π =

G G� ˆ( ( , , , ), ) ( , , ) 0j i i j
j N

v x X N t t t V X N t−
∈

− <∑
G� . Hence, by 

definition, truthful reporting is a dominant strategy.  ■  

The formal proof implements the following simple intuitive argument. The VCG 
payments are defined so that i’s report cannot affect the total payoff of the other 
participants. If i reports truthfully, the mechanism maximizes the total actual payoff. If i 
reports falsely in any way that changes the decision, then the change in total payoff must 
be negative and must be equal to the change in i’s own payoff. So, reporting truthfully is 

                                                 
36 A strategy for a player in a normal form game is dominant if (1) it is a best reply to every opposing 
strategy profile and (2) there is no other strategy with the same property. The definition in the text 
specializes this definition to the direct revelation games we are studying.  
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optimal. Moreover, if every false report is sometimes pivotal, then it is sometimes 
suboptimal, so it is dominated by reporting truthfully.  

The most widely known example of a pivot mechanism is the “second-price” auction. 
In the private-values auction model, a bidder’s value for any decision depends only on 
the goods the bidder acquires, and not on the goods acquired by the other bidders: 

( , ) ( , )i i i i iv x t v x t= , where 1ix =  if the bidder acquires the good and 0ix =  otherwise. 
The value of not acquiring the good is normalized to zero: (0, ) 0i iv t = . Let us simply 
write iv  for (1, )i iv t .  

Since losing bidders are not pivotal (because their presence does not affect the 
allocation), they pay zero in the pivot mechanism. According to (2.4), the price a winning 
bidder pays in this mechanism is equal to the difference between two numbers. The first 
number is the maximum total value to the other participants, including the seller, when i 
does not participate in the auction, which is max j

j i v≠ . The second number is the total 
value to the other bidders when i wins, which is zero. Thus, when bidder i wins, he pays 
max j

j i v≠ , which is equal to the second highest bid. For this reason, the pivot mechanism 
for the one good case is called the second price auction.  

Vickrey originally introduced the second-price auction as a model of ascending 
auctions, such as those now commonly used at internet auction sites. To develop the 
connection, we take special notice of the fact that auction sites like eBay and Amazon 
Auction encourage bidders to use a proxy bidder facility. The bidder tells the proxy a 
maximum price that it is willing to pay—its “maximum bid.” The proxy keeps this 
information secret and bids on of the bidder’s behalf in the ascending auction. Whenever 
it does not have the high bid, it raises the bid by one increment, provided that does not 
exceed than the specified maximum bid. If every bidder were to use a proxy, then the 
result would be that the bidder who has specified the highest maximum price acquires the 
item and pays a price (approximately) equal to the second highest such price. If we 
replace the phrase “maximum price” with “bid price,” then this is precisely the same rule 
that describes the outcome of a Vickrey auction for a single good. In the language of 
game theory, the English auction with proxy bidders and the second-price auction are 
strategically equivalent: there is a one-to-one mapping between the strategy sets such that 
corresponding strategy profiles lead to identical outcomes.37  

We will henceforth use the term “Vickrey auction” to refer to the pivot mechanism in 
auction environments. By inspection of (2.4), the price paid by any participant 0i ≠  is 
equal to the loss imposed on other participants to adjust the decision to account for i’s 
values, which is always non-negative. In contrast, prices paid in the more general VCG 
mechanism can be negative if ih  is sometimes negative. The possibility of negative 

                                                 
37 This theoretical account fairly describes Amazon Auction, but the rules are slightly different at eBay. 
eBay uses a fixed ending time after which no more bids are accepted. The ordering and timing of bid 
submissions can be relevant in an eBay auction. Indeed, “sniping” (waiting until the last few seconds to 
bid) is a common and viable strategy at eBay, but is almost totally absent at Amazon Auction, where an 
auction cannot end until there have been no new bids for ten minutes. See Roth and Ockenfels (2003).   
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payments to some participants raises a question about whether the sum of the payments to 
participants 0i ≠  is positive, negative, or zero.  

2.3 Balancing the Budget 
In public goods applications, the designer may want to ensure that the total payments to 

and from the participants excluding the mechanism operator add up to zero. This is called 
“balancing the budget.” If the mechanism designer is a public authority, this means that 
the authority runs neither a surplus nor a deficit on this project. The next theorem 
establishes no VCG mechanism can always balance the budget in every environment and 
under every possible set of realized preferences.  

Definition. A direct mechanism ( , )x p  satisfies budget balance if for all finite Θ  and 
all t ∈Θ
G

, the sum of all transfers is zero: ( , , ) 0i
i N

p X N t
∈

=∑
G

.  

Theorem 2.2. No VCG mechanism satisfies budget balance.  

Proof. To prove the theorem, it suffices to present one environment for which no VCG 
mechanism can balance the budget for all type profiles. Here is such an environment.  

Suppose there are two participants besides the mechanism operator: {0,1,2}N = . There 
is a single good to be allocated whose values to participants 1 and 2 are 1 {1,3}v ∈  and 

2 {2,4}v ∈ , respectively. According to the VCG mechanism described by : N Nh →\ \ , 
the payments corresponding to the value profiles in {1,3} {2,4}×  are these: 

 Participants’ VCG Payments for the Four Value Profiles 

  (1,2) (3,4) (1,4) (3,2) 

Participant 1 1(2)h  1(4)h  1(4)h  12 (2)h+  
Participant 2 21 (1)h+  23 (3)h+  21 (1)h+  2 (3)h  
Total  1 21 (2) (1)h h+ +  1 23 (4) (3)h h+ +  1 21 (4) (1)h h+ +  1 22 (2) (3)h h+ +  

Notice that, regardless of the choice of 1h  and 2h , the sum of the total payments in the 
first two columns minus the corresponding sum in the last two columns is 1. 
Consequently, there is no choice of 1h  and 2h  such that all the column totals are zero: no 
balanced budget VCG mechanism exists.  ■ 

Theorem 2.2 still allows that there are some environments in which the VCG 
mechanism does always balance the budget. Mostly, these are environments in which 
some one participant—usually the mechanism operator—has just one possible type. In 
such cases, one can balance the budget simply by having the other participants make their 
VCG payments to the specified participants.  

2.4 Uniqueness 
Can another mechanism besides the VCG mechanism implement efficient decisions 

with dominant strategies? The answer depends on additional assumptions about the 
environment. For example, if there is a buyer whose value lies in the set {0,10} and a 
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seller whose cost of supplying a good is five, then the following direct mechanism 
implements an efficient outcome in dominant strategies. In the mechanism, each party 
must report a value from its set of possible types. The seller has no choice but to report a 
cost of 5. If the buyer reports a value of 10, trade occurs at a price of 8; otherwise, there 
is no trade and no transfers occur. By inspection, it is a dominant strategy for both sides 
to report truthfully and the outcome is always efficient. A VCG mechanism that makes 
no transfers when there is no trade is a pivot mechanism, and the pivot mechanism in this 
case sets a price of 5. It follows that the suggested mechanism is not a VCG mechanism.  

The preceding example relied on the discrete nature of the type space. According to the 
next theorem, when the type space is smoothly connected, only the VCG mechanisms can 
implement efficient outcomes in dominant strategies.  

Theorem 2.3. Suppose that for each i, [0,1]iΘ =  (or simply that iΘ  is smoothly path 
connected38) and that for each decision outcome x, ( , )i iv x t  is differentiable in its second 
argument. Then any efficient, incentive-compatible direct mechanism is a VCG 
mechanism.  

The version of theorem 2.3 stated here was first proved by Holmstrom (1979), 
generalizing earlier work by Green and Laffont (1977) , who had employed more 
restrictive assumptions about the type space. We postpone the proof to the next chapter, 
which contains several other closely related analyses.  

2.5 Disadvantages of the Vickrey Auction  
Despite its attractive features, the Vickrey auction has important disadvantages that 

make it unsuitable for most applications. In this section, we illustrate these disadvantages. 
We give a more detailed analysis of certain of the disadvantages in chapter 8, where the 
Vickrey design is pitted against certain leading alternatives.  

The disadvantages of the Vickrey auction are divided into three kinds: practical 
disadvantages, “monotonicity problems,” and merger-investment disadvantages.  

2.5.1 Practical Disadvantages 
In this subsection, we discuss certain practical difficulties of implementing a Vickrey 

auction on account of factors that are omitted from the formal model.  

One such problem is that a Vickrey auction can severely tax bidders’ computational 
abilities. For example, consider a Vickrey auction to sell twenty spectrum licenses. In 
principle, each bidder must submit bids on every combination of licenses he might win, 
but there are more than one million such combinations. If the bidders must incur even a 
small cost to determine a value for each distinct combination of licenses, then the cost of 
running the Vickrey auction makes it impracticable. For some applications, this cost is 
not too onerous. For example, if the licenses are sufficiently similar, then a bidder might 
simply specify a value for each different number of licenses, or might adjust that for 

                                                 
38 A set Θ is smoothly path connected if for every two points ,θ θ ′∈ Θ  there is a differentiable function 

: [0,1]f → Θ  such that (0)f θ=  and (1)f θ ′= . 



 

 41  

differences in the licenses. At least for the general case, allowing bids on all packages 
imposes costs that are too high for a realistic design.  

A second practical problem is that real bidders often face serious budget limitations, for 
which the Vickrey design does not account. In the presence of such constraints, a bidder 
in a Vickrey auction may have no always-optimal strategy. For example, consider an 
auction with two identical goods and a bidder with values of 20 for one unit of a good 
and 40 for the package, but with a total budget of 10. This bidder has no always-optimal 
strategy in the Vickrey auction. If there credit restrictions or large penalties for default, 
then bids exceeding the bidder’s budget can be ignored. If bidder 1’s sole competitor bids 
10 for one unit and 19 for two, his best reply is to bid 10 for one unit (and 10 for two 
units as well). However, if the competitor bids 9 for one unit only, then the best reply is 
to bid 0 for one unit and 10 for two units.  

A third practical problem is that the Vickrey design may force the winning bidder to 
reveal too much information. A bidder might fear that its value information could be 
leaked, disadvantaging it in subsequent negotiations with the auctioneer or other buyers 
or suppliers (Rothkopf, Teisberg and Kahn (1990)).  

2.5.2 Monotonicity Problems 
A different set of disadvantages of the Vickrey auction arises from the fact the 

payments are determined by a non-monotonic function of the bidders’ values. We 
illustrate the problems that raises with a series of examples, borrowed from Ausubel and 
Milgrom (2002). A formal analysis that identifies the set of auction environments in 
which these disadvantages are relevant is presented in chapter 8, as part of a comparison 
of the relative advantages of several multi-object auction designs.  

Here, we provide a series of examples illustrating the monotonicity problems that the 
Vickrey auction can suffer. In the Vickrey auction, (1) adding bidders can reduce 
equilibrium revenues, (2) revenues can be zero even when competition is ample, (3) even 
losing bidders can have profitable joint deviations in which they increase their bids in 
concert to win items while creating lower prices for themselves, and (4) bidders can 
profitably use shill bidders, intentionally increasing competition in order to generate 
lower prices.  

Consider a Vickrey auction of two identical spectrum licenses.  Bidders 1 and 2 are 
new entrants who each need two licenses to establish a business of economic scale. 
Bidder 1 is willing to pay up to $1 billion for the pair of licenses while bidder 2 is willing 
to pay up to $900 million. If these are the only bidders in the auction, then the auction is 
effectively a second price auction for the pair of licenses. Bidder 1 will acquire the two 
licenses for a price of $900 million. 

Now, suppose instead that there are two additional bidders. Bidders 3 and 4 are both 
incumbent wireless operators.  Each seeks a just single additional license to expand the 
capacity of its network.  Suppose each incumbent is willing to pay up to $1 billion for a 
single license.  If the Vickrey auction is used and all bidders play their dominant 
strategies, then the two incumbents will acquire the licenses. Since the licenses are given 
to those who value them the most, this outcome is efficient and results in a total value of 
$2 billion.   
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One might expect that increasing the number of bidders and their maximum total value 
for the pair of licenses would increase the seller’s revenue, but that is not the case: the 
total price paid by the winning bidders is zero!  To see why, let us compute the price paid 
by bidder 3. According to (2.4), this price is the opportunity cost to the other bidders of 
the license that bidder 3 wins.  More specifically, it is the maximum value of the two 
licenses to the other three bidders, which is $1 billion, minus the maximum value of a 
single license to those bidders, which is also $1 billion.  The difference of zero is bidder 
3’s price and bidder 4’s price is determined in the same way.  

Notice that the declining revenue problem vanishes if the first two bidders regard the 
licenses as substitutes. For example, suppose that instead of bidding only $1 billion for 
two licenses, bidder 1 is also willing to pay $500 million for one license and similarly 
bidder 2 is willing to pay $450 million for one license. Then, bidders 3 and 4 must each 
pay $500 million for a license and the seller’s revenue climbs from $900 million to $1 
billion.  

The next two variations exploit the feature of the Vickrey auction that, when goods are 
not substitutes, prices may decrease as the bids increase or the set of bidders expands.  

First, we modify the preceding example. As before, bidders 1 and 2 each want only a 
pair of licenses and are willing to pay $1 billion or $900 million for the pair, respectively. 
In the modified example, however, each of bidders 3 and 4 has a value of $400 million 
for a single license.  If the bidders play their dominant strategies, they win no licenses 
and earn payoffs of zero.  If, however, they act in concert, both raising their bids to $1 
billion for a single license, then the prices are determined just as above: situation is the 
one we have already examined: bidders 3 and 4 win the two licenses for a total price of 
zero. Thus, the Vickrey auction provides opportunities and incentives for collusion 
among the low-value, losing bidders.  

Next, we consider another variation. In this one, there are only three bidders, with the 
first two described just as above. In this variation, the third bidder is also a new entrant 
and also has value only for the pair of licenses, but its value is lower than that of the first 
two bidders. It is willing to pay just $800 million for the pair of licenses, compared to 
$900 million and $1 billion for the other two bidders. Still, bidder can win the licenses 
profitably by entering the auction with two identities, as bidders 3 and 4, and having 3 
and 4 each bid $1 billion for a single license. The result, just as before, is that bidders 3 
and 4 win, each acquiring a single license for a price of zero. Thus, by combining the 
tactics of shill bidding and loser collusion, a bidder in the Vickrey auction whose values 
are too low to be assigned any licenses at the efficient allocation can profitably win both 
licenses and force the seller to accept a zero price.  

Standard auctions do not suffer the monotonicity problems plaguing the Vickrey 
auction.  For example, if the seller simply takes sealed bids and awards licenses to the 
highest bidders at prices equal to the winning bids, then none of the monotonicity 
problems occur: Adding bids and bidders cannot reduce prices; introducing shill bids 
cannot reduce anyone’s price, and losers cannot become winners except by paying higher 
prices.  

These monotonicity problems are significant practical defects. In section 2.5.3 below, 
we reexamine these examples to see whether they are in some sense exceptional, that is, 
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whether they are unlikely to arise in practice. We find that, to the contrary, monotonicity 
problems can only be ruled out in cases where goods are likely to be substitutes, which is 
a small subset of the possible cases.39  

2.5.3 The Merger-Investment Disadvantage 
The Vickrey auction also suffers another important disadvantage, distinct from those 

described above. This one arises even when the auctioneer’s objective is efficiency rather 
than revenue, and when shill bidding and collusion are impossible. The problem is that 
the Vickrey design can distort the bidders’ investment and merger incentives ex ante 
(before the auction).40  

To illustrate, we return to the first example of the previous section, in which bidders 1 
and 2 value only the pair of licenses and have values of $1 billion and $900 million, 
respectively. Suppose that, before the auction, bidders 3 and 4 could merge and, by 
coordinating, increase the total value of the licenses by 25% from $2 billion to $2.5 
billion. Even though such a merger would increase the maximum total value, the parties 
would not profit by merging. Recall that the unmerged firms paid a total of zero and 
enjoyed net profits of $2 billion. The merged firm, however, would pay $1 billion in a 
Vickrey auction, leaving it a net profit of just $1.5 billion.  

In this example, the Vickrey auction discourages a merger by reducing the joint profits 
of the merging parties. Thus, even by the standard of efficiency, the Vickrey mechanism 
can have significant disadvantages.  

In analyzing mergers, as in studying collusion and shill bidding, whether the assets 
being auctioned are substitutes proves important.  In the Vickrey auction, if the bidders 
regard the goods as substitutes, then winners generally can reduce their prices by 
merging. Thus, Vickrey auctions tend to favor mergers when goods are substitutes. For 
example, suppose that there are four bidders for three items. Each of the first three 
bidders has a value of 2 for a single item and the fourth bidder has a value of 1. The 
Vickrey outcome is that the three high-value bidders acquire single items for a price of 1. 
If the first two bidders merge, the allocation of goods is the same: the merged bidder gets 
two units and bidder three gets one unit. Bidder 3’s price is unchanged—it pays a price of 
1 for its unit—but the merged bidder pays a total of 1 for its two units, so its average 
price is ½ per unit. This price reduction is typical for the case when goods are substitutes.  

If the government wants to auction assets to an industry in which it wishes to promote 
competition or encourage entry, e.g. electrical power generation, it may properly view 
with suspicion rules that promote mergers and favor larger bidders.  

                                                 
39 In an unpublished result, Daniel Lehmann has shown that with more than two items, the restriction that 
items be substitutes fails generically. That is, treating the valuation functions as a vector, for any valuation 
v where goods are substitutes, almost every valuation in any neighborhood of v fails to satisfy the 
substitutes condition.  
40 Several authors have developed analyses based on the observation that there are no such distortions for 
single item auctions. With the set of bidders fixed, since any bidder’s profit is equal to his contribution to 
social surplus, the bidder has correct incentives for any investments that affect only his own values. The 
same applies to bidders’ decisions about how much information to acquire about their own values 
Bergemann and Valimaki (2002). 



 

 44  

As our examples have shown, however, Vickrey auctions do not always promote 
mergers. In our telecommunications auction example, we found that merged firms may 
pay relatively high prices and may even find it profitable to use shills to divide demand 
among two smaller bidders. If shills are impossible, then the Vickrey auction may 
discourage profitable and welfare-enhancing mergers. Taken together, the various 
examples establish that Vickrey auctions can be too favorable to mergers or too 
discouraging.  

2.6 Conclusion 
The Vickrey-Clarke-Groves theory provides important insights into what mechanism 

design can achieve. In the class of environments with quasi-linear preferences, the VCG 
mechanisms provide every participant with a dominant strategy, which is to reveal his 
type truthfully. When bidders do report honestly, the decision selected is the total-value-
maximizing one. Moreover, the VCG mechanisms are the only mechanisms that exhibit 
these two properties without restrictions on the possible set of values.  

Offsetting these advantages of the VCG mechanisms are certain problems. Using the 
VCG mechanism to decide how much of a public good to produce may prevent balancing 
the budget. Budget balance presents no obstacle to using the VCG mechanism to conduct 
an auction, however, since the auctioneer is quite happy to pocket any surplus that the 
mechanism generates.  

Besides the budget balance problem, the Vickrey auction suffers a variety of other 
drawbacks. Some of these are practical, associated with the complexity of the auction, its 
inability to accommodate budget constraints, and the information it demands from the 
bidders. Another set of drawbacks are the monotonicity problems, which include the 
possibility that increased competition can lead to reduced seller revenues, that revenues 
can be very low or zero even when competition is substantial, that losing bidders may 
have profitable ways to collude, and that a single bidder can sometimes benefit by 
pretending to be several independent bidders. The third set of drawbacks concern 
distortions in merger and related investment decisions.  

We return to the monotonicity problems in chapter 8, where we will find that there are 
potentially present in a wide range of environments. They are reliably absent only if all 
bidders regard all the goods being sold as substitutes. In chapter 8, we will identify an 
alternative mechanism that matches the advantages of the Vickrey design when goods are 
substitutes but avoids some of the disadvantages of the Vickrey design.  

In the interim chapters, the VCG mechanism plays a very different role – as a 
benchmark for assessing the performance of alternative mechanisms.  
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Chapter 3: 
The Envelope Theorem and Payoff Equivalence 

Mechanisms are defined very generally and can take a wide variety of forms. The sheer 
size and variety of the set of mechanisms would seem to make it hard to use in an 
economic analysis. Yet such uses are now routine, largely following the pattern set in the 
early analyses by Myerson (1981) and Holmstrom (1979).  

Myerson had posed the following question: which mechanism should a seller use to 
sell a single indivisible good to maximize his expected revenue, if he can choose among 
all possible augmented mechanisms? To answer this question, known as the optimal 
auction problem, Myerson derived a lemma establishing that a certain payoff formula 
holds for to all feasible augmented mechanisms at Bayes-Nash equilibrium and bounds 
the expected revenues associated with any mechanism. He demonstrated that standard 
auction designs with a well chosen reserve price sometimes achieve the bound.41  

Holmstrom asked whether any mechanisms besides the Vickrey-Clarke-Groves 
mechanisms could implement efficient decisions in dominant strategies. He, too, derived 
a lemma establishing that a certain payoff formula holds for all feasible mechanisms at a 
dominant strategy solution. He then demonstrated that only the VCG payment scheme 
prescribes payments consistent with that formula.  

The two payoff formulas, which we will sometimes call Myerson’s lemma and 
Holmstrom’s lemma, are closely analogous to Hotelling’s lemma and Shepard’s lemma 
from demand theory. All four lemmas are derived from the envelope theorem. Each can 
be stated as either a restriction on a derivative or as a restriction on an integral.  

Myerson’s treatment of the optimal auction problem made secondary use of a single 
crossing condition that arises naturally in the auction problem, but which is not needed to 
derive the main results of the theory. This chapter explores the implications of the 
envelope theorem and its related lemmas for a variety of incentive problems, without 
relying on single crossing. The next chapter explores the additional conclusions that can 
be derived when the assumption of single crossing is added.  

3.1 Hotelling’s Lemma 
To emphasize the close connection between incentive theory and ordinary demand 

theory, we begin our analysis by reviewing Hotelling’s lemma.42 This lemma relates the 
supply behavior of a price-taking firm to its maximum profits.  

                                                 
41 Myerson derived the formulas using the so-called revelation principle, which holds that any performance 
that can be Bayes-Nash implemented using any mechanism can also be Bayes-Nash implemented using an 
incentive-compatible direct revelation mechanism. This extra conclusion, however, has no independent 
significance for the study of auctions. As we shall see, it is the payoff formula of Myerson’s lemma that lies 
at the heart of auction theory and its various extensions.  
42 In general, incentive problems are quite close to various problems that arise in traditional demand theory 
and the theory of the firm. Other examples are emphasized by Bulow and Roberts (1989) and Klemperer 
(2002), who underline the connections between auction theory and monopoly pricing theory.  
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Let X denote the firm’s set of feasible choices and let ( ) max x Xp p xπ ∈= i  denote the 
firm’s maximum profits as a function of the market price vector Lp +∈\ . In its usual 
textbook form, Hotelling’s lemma asserts that if π is differentiable at p, then the firm’s 
net supply for product j satisfies *( ) /j jx p pπ= ∂ ∂ .43 So, if the firm makes its choices to 
maximize profits, then one can recover its choices from knowledge of the maximum 
profit function π.  

One can also reverse this relationship and write the formula as expressing the firm’s 
profits in terms of its supply choices. For, suppose the firm produces good 1 and buys the 
other goods as inputs. Using the Fundamental Theorem of Calculus, if π is differentiable,  

 1 1 *
1 1 1 1 1 10 0

( ) (0, ) ( , ) (0, ) ( , )
p p

p p s p ds p x s p dsπ π π π− − − −= + = +∫ ∫ . (3.1) 

Graphically, this corresponds to the familiar statement that the producer surplus is the 
area between the supply curve and the vertical axis, as shown in Figure 1.  

 
Combining both forms of the statement, we have the following:  

Hotelling’s lemma. If π is differentiable at p, then for each product j, *( ) /j jx p pπ= ∂ ∂ . 

Moreover, if π is absolutely continuous, then 1 *
1 1 10

( ) (0, ) ( , )
p

p p x s p dsπ π − −= + ∫ . 

Like the lemmas to follow, Hotelling’s lemma in integral form relies only on a weak 
assumption. It does not require that the production set be convex or that *

1x  is 
differentiable or continuous, or even that it exists everywhere. The hypothesis that π is 

                                                 
43 For example, see Mas Colell, Whinston and Green (1995), Simon and Blume (1994), or Varian (1992).  

Figure 1: The shaded area between a firm’s supply 
curve and the vertical is the firm’s producer surplus. 

Price 

Quantity 
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absolutely continuous is all that is needed. A sufficient condition for that in terms of 
primitives of the problem is given immediately below.  

3.2 The Envelope Theorem in Integral Form 
Results similar to Hotelling’s lemma play a central role in mechanism design analysis. 

In graduate economics texts, the envelope theorem is traditionally reported in 
differentiable form and often relies on assumptions about the convexity or topological 
structure of the choice set X. Such assumptions are not satisfactory for applications to the 
theory of mechanism design, because a participant’s choice may not have the necessary 
structure. For example, it may choose a message to send to the mechanism operator from 
a set of messages X that lacks a “nice” structure. Moreover, even if the structure of X is 
not a problem, the maximum value function V may not be differentiable everywhere. For 
our applications, what is needed is a theorem that verifies a formula like (3.1) without 
restrictive assumptions on the choice set.  

We derive such a formula by studying a family of maximization problems, 
parameterized by [0,1]t ∈  by studying the related functions, as follows:  

 ( ) sup ( , )
x X

V t u x t
∈

=  (3.2) 

 { }*( ) | ( , ) ( )X t x X u x t V t=  ∈ =  (3.3) 

 * * *( ) ( ) for all  such that ( )x t X t t X t∈ ≠ ∅  (3.4) 

The function V is the value function. It is also sometimes called the “envelope 
function” because of its graphical representation. If, for each x, one plots the function 

( , ) : [0,1]u x →i \ , then V is the upper envelope of these functions.  

The function *( )X t  is the set of optimal solutions for problem (3.2). For some values 
of the parameter, this set may be empty. Any function * :[0,1]x X→  satisfying (3.4) is a 
selection from *X . Envelope theorems establish a relation between the value function V 
and any selection *x  from *X . The integral form envelope theorem reported here is due 
to Milgrom and Segal (2002).   

Theorem 3.1 (Integral Form Envelope Theorem). Suppose that ( , ) :[0,1]u x ⋅ →\  has 
the properties that  

1. there exists a real-valued function 2 ( , )u x t  such that for all x∈X and every 

[ , ] [0,1]a b ⊂ , 2( , ) ( , ) ( , )
b

a
u x b u x a u x s ds− = ∫ , and  

2. there exists an integrable function :[0,1]b +→ \  (that is, 
1

0
( )b s ds < ∞∫ ) such 

that 2| ( , ) | ( )u x t b t≤  for all x∈X and almost all t∈[0,1].   

Further suppose that that *( ) arg max ( , )x XX t u x t∈≡ ≠ ∅  for almost all [0,1]t ∈ . Then for 
any selection *( )x t  from *( )X t ,  
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 * * *
20

( ) ( ( ), ) ( (0),0) ( ( ), ) .
t

V t u x t t u x u x s s ds= = + ∫  (3.5) 

Proof. First, we show that V is absolutely continuous. Let 

0

( ) ( ) .
t

B t b s ds= ∫  

For any , [0,1] with t t t t′ ′′ ′ ′′∈ < ,  

 
2

2

| ( ) ( ) | sup | ( , ) ( , ) |

sup ( , )

sup ( , )

( ) ( ) ( ').

x X

t

tx X

t

t x X
t

t

V t V t u x t u x t

u x t dt

u x t dt

b t dt B t B t

∈

′′

′∈

′′

′ ∈

′′

′

′′ ′ ′′ ′− ≤ −

=

≤

′′≤ = −

∫

∫

∫

  

Therefore, given ε >0, there exists a δ >0 such that for any non-overlapping intervals 
[ , ]i ia b ,  

1 1

1

( ) | ( ) ( ) |

| ( ) ( ) | .

k k

i i i i
i i

k

i i
i

b a B b B a

V b V a

δ ε

ε

= =

=

− < ⇒ − <

⇒ − <

∑ ∑

∑
 

This establishes that V is absolutely continuous, and hence is differentiable almost 
everywhere. Let t be a point of differentiability. Since ( )*( ) ( ),V t u x t t=  and 

( )*( ) ( ),V t u x t t′ ′≥ , it follows that  

 
* *( ) ( ) ( ( ), ) ( ( ), )V t V t u x t t u x t t

t t t t
′ ′− −

≥
′ ′− −

. (3.6) 

Since V is differentiable at t, letting t t′ ↓  leads to *
2( ) ( ( ), )V t u x t t′ ≥  and letting t t′ ↑  

leads to *
2( ) ( ( ), )V t u x t t′ ≤ . Hence, *

2( ) ( ( ), )V t u x t t′ =  at every point of differentiability of 
V. Equation (3.5) then follows from the fundamental theorem of calculus.  ■  

The integral form envelope theorem applies to problems in which the objective 
function ( , )f x t is parameterized but the set of feasible strategies X is not. In mechanism 
design problems, if the agent’s action is to report information, then every type t chooses 
from the same feasible set. In that case, if an augmented mechanism design specifies a set 
of strategies S and an outcome function :x S → Ω , then the participant is effectively 
choosing an outcome from the feasible set ( )X x S= ⊂ Ω  to maximize his own payoff—a 
problem to which we can apply the theorem. Equation (3.5) then restricts the 
performance functions x that can be implemented on [0,1]-type space.  
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The second condition of the Integral Form Envelope theorem about the integrable 
bounding function b is indispensable.44  

3.3 Quasi-linear Payoffs 
In this section, we specialize our analysis to the most extensively analyzed set of 

mechanism design models—those in which participants have quasi-linear preferences. 
The various subsections explore the implications that can be derived using these models 
by applying Holmstrom’s lemma and Myerson’s lemma, which are the special forms of 
the envelope theorem for this class of mechanism design models.  

Throughout this section, an outcome is a pair ( , )x pω = , where x is a decision from 
some finite set 1{ ,..., }KX x x=  and 1( ,..., )Np p p=  is a vector of cash payments from the 
participants to the mechanism operator, and any participant’s payoff is given by: 

 ( , , ) ( , ) .i i i i i iu x p t v x t p= −  (3.7) 

In particular, each participant cares about his own cash payment, but not about payments 
made by other participants. To describe the full performance function in this context, it is 
convenient simply sometimes to omit the outcome function and write ( )( ) ( ), ( )t x t p tω =

G G G
 

instead of ( )( ( )) ( ( )), ( ( ))t x t p tω σ σ σ=
G G G

. We will use these two notations 
interchangeably.  

The outcome function ( , )x pω =  in this set-up comprises allocation and payment 
functions 1: ... Nx S S X× × →  and 1: ... N Np S S× × → \ . If we suppose that ω is 
implemented by some always-optimal strategy for participant i, then the strategy is 
optimal when the others are playing equilibrium strategies corresponding with their true 
types. Suppose that 2

iu  has the integrable bound b required by the envelope theorem. 
Then, when agent i has type τ , its maximal value is:  

 ( )( )( , ) max , ( ) ,i i
i i i i i i iV t u t t

σ
τ ω σ σ− − −

∈
= S .  (3.8) 

For economy of notation, we sometimes describe outcomes in 0-1 vector form, as 
follows. We identify each possible outcome 1{ ,..., }k Kx x x∈  by a canonical basis vector 

K
kz ∈\  with a 1 as its kth coordinate and all other coordinates zero, so the outcome set 

can be described by the 0-1 vectors 1{ ,..., }KZ z z= . We then describe the decision 

                                                 
44 Here is an example to show that the conclusion of the theorem is not guaranteed if is the bounding 
condition is dropped. Let (0,1]X =  and ( , ) ( / )f x t g t x= , where g is any continuously differentiable, 
single-peaked function with a maximum value of g(1). In this example, for all (0,1]t ∈ , * ( ) { }X t t=  and 

( ) (1)V t g= . For t=0, however, * ( ) [0,1]X t =  and the value is (0) (0) (1)V g g= < , so the function V is not 
absolutely continuous, contrary to the conclusion of the theorem.  

To see that the bounding condition fails in this example, define 0sup ( )sB sg s> ′= . Then, the relevant 
bound is ( )(0,1] 0( ) sup ( / ) / sup ( ) / /x sb t g t x x sg s t B t∈ >′ ′= = = , where we obtain the bound by substituting 

/s t x= . The bound ( ) /b t B t=  is not integrable.   
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performance function of the augmented mechanism as a function of the types by ( )z t , 
where :z ZΘ → . We represent the scalar-valued function ( , )i iv ti  by the vector ( )i iv t , 
where the kth component is ( ) ( , ) ( )i i i i i i

k k kv t v x t z v t= = ⋅ . Also, just as we sometimes write 
( ) ( ( ))x t x tσ=
G G

, we may also write ( ) ( ( ))z t z tσ=
G G

.  

3.3.1 Holmstrom’s lemma 
In this section we use the just-developed notation to obtain Holmstrom’s lemma, which 

is a formula for the values and payments associated with any dominant strategy 
mechanism.  

Holmstrom’s lemma. Suppose that ( )iv ⋅  is continuously differentiable and let iV  be 
participant i’s full-information maximum value, as defined by (3.8). Then,  

 
0

( , ) (0, ) ( , )
i

i i i i i dvV t V t z s t ds
ds

τ

τ − − − 
= + ⋅ 

 
∫ . (3.9) 

In particular, if iV  is differentiable at τ, then ( , ) ( , ) ( ) /i i i iV t z t dv dτ τ τ τ τ− −∂
∂ = ⋅ . 

Participant i’s payments must satisfy:  

 
0

( , ) (0, ) ( , ) ( ) ( , )
i

i i i i i i i dvp t V t z t v z s t ds
ds

τ
τ τ τ− − − −= − + ⋅ − ⋅∫ . (3.10) 

Proof. Applying the envelope theorem to (3.8) using the quasi-linear payoffs of (3.7),  

 ( )( )20
0

( , ) (0, ) ( ), ( ) , ( , )
i

i i i i i i i i i dvV t V t u s t s ds z s t ds
ds

τ
τ

τ ω σ σ− − − − −− = = ⋅∫ ∫ . (3.11) 

Rearranging terms yields (3.9). Taking the derivative with respect to τ yields 
( , ) ( , ) ( ) /i i i iV t z t dv dτ τ τ τ τ− −∂

∂ = ⋅ . Substituting ( , ) ( , ) ( ) ( , )i i i i i i iV t z t v p tτ τ τ τ− − −= ⋅ −  into 
(3.9) and rearranging terms again leads to (3.10).  ■  

3.3.2 The Green-Laffont-Holmstrom Theorem 
In the study of dominant strategy mechanisms, one of the central questions is how to 

characterize the complete set of mechanisms that (1) satisfy the relevant incentive 
constraints and (2) implement efficient decision performance. In chapter 2, we found that 
the VCG mechanisms have both of these properties. Are there any others?  

The Green-Laffont-Holmstrom theorem shows that, provided the set of preferences 
satisfies a certain connectedness property, the VCG mechanisms are the only dominant 
strategy incentive compatible mechanisms to implement efficient outcomes. The 
connectedness condition is implicitly included in the statement of Holmstrom’s lemma 
through the assumption that the valuation function iv  is differentiable. As we have seen, 
equation (3.10) necessarily holds for any mechanism that implements z using dominant 
strategies. That leads to the next theorem.  
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Theorem 3.2. Suppose that for each i, iΘ  is smoothly path connected45 and that ( )i iv t  
is continuously differentiable. Then any direct mechanism such that  

(i) the decision outcome rule is the efficient rule x̂  and  

(ii) truthful reporting is an always-optimal reply, that is,  arg max i
i

t
t ∈ �  

( )( ( , )) ( , )i i i i i iv x t t p t t− −−� �  

is a VCG mechanism. (That is, given the pivot mechanism payments ˆ ip  there exist 
functions ih  such that for all t

G
, ˆ( ) ( ) ( )i i i ip t h t p t−= +

G G
.) In particular, the Vickrey 

auction (pivot mechanism) is the unique such mechanism in which bidders who acquire 
no goods (“losing bidders”) pay zero.  

Proof. Fix any two distinct points ,i i it t ∈Θ�  and let : [0,1]i iτ → Θ  be a differentiable 
function satisfying (0)i itτ =  and (1)i itτ = � . Let ˆ (0, )i iV t−  be the payoff to player i of 
type it  in the pivot mechanism. Let (1) ˆ( , )iz s t−  express the VCG outcome ˆ( ( ), )i ix s tτ −  
in 0-1 vector form, (2) ˆ ( , )ip s t−  be the payment rule of the pivot mechanism when the 
types are ( ( ), )i is tτ − , and (3) ( ) ( ( ))i i iv s v sτ=� . Then, according to Holmstrom’s lemma:  

 
1

0

ˆˆ ˆ ˆ(1, ) (0, ) (1, ) (1) ( , )
i

i i i i i i i dvp t V t z t v z s t ds
ds

− − − −= − + ⋅ − ⋅∫
�� . (3.12) 

Given any other dominant strategy mechanism that implements the efficient decision x̂  
with value function V, define ˆ( ) (0, ) (0, )i i i i i ih t V t V t− − −= − . Applying Holmstrom’s 
lemma again,  

 

1

0

ˆ ˆ(1, ) (0, ) (1, ) (1) ( , )

ˆ( ) (1, ).

i
i i i i i i i

i i i i

dvp t V t z t v z s t ds
ds

h t p t

− − − −

− −

= − + ⋅ − ⋅

= +

∫
��

 (3.13) 

Since it�  was arbitrary and since ( )i ih t−  does not depend on it� , this payoff formula 
applies to all types. Hence, it is a VCG formula.  

In the Vickrey auction, ˆ( ) (0, ) (0, ) 0i i i i i ih t V t V t− − −= − =  since both terms are zero.  ■   

The use of the envelope theorem in this proof is typical, so it is worthwhile to build 
intuition by restating the argument in words. Holmstrom’s formula (3.10) is the technical 
part. It establishes a necessary condition for how a bidder’s cash payments can vary with 
his type, given the rule z specifying decision outcomes. Together, the decision outcome 
and the payoff of the lowest type fix a unique payment rule. For the Vickrey auction, the 
lowest type is a bidder who always loses the auction has a payoff of zero. Generally, the 

                                                 
45 This means that for any two distinct points ,i i it t ∈Θ� , there exists a differentiable function 

: [0,1]i iτ → Θ  satisfying (0)i itτ =  and (1)i itτ = � . The function iτ  is the path connecting  it  to it� .  
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VCG mechanism corresponding to the function h is the unique mechanism with 
properties (i) and (ii) in which a losing bidder i pays the amount ( )i ih t− .   

Expressing the participant’s maximal payoff as the integral of the partial derivative of 
the payoff function has long been an important step in optimal mechanism design 
problems.  Mirrlees (1971), Holmstrom (1979), Laffont and Maskin (1980), Myerson 
(1981), Riley and Samuelson (1981), Fudenberg and Tirole (1991), and Williams (1999) 
all derived integral conditions in particular models by restricting attention to piecewise 
continuously differentiable choice rules or even narrower classes. However, it may be 
optimal to implement a choice rule that is not piecewise continuously differentiable.  One 
example is the class of trading problems with linear utility described in chapter 6.5 of 
Myerson (1991).  The integral form envelope theorem gives us the necessary tool for 
dealing with the full range of possibilities.  

We next see that very much the same argument can be applied in the context of 
Bayesian equilibrium. As in the dominant strategies application, the formula sharply 
limits the payment rules that can apply at equilibrium.  

3.3.3 Myerson’s lemma46 
In practice, many designers, regulators and observers of auctions have falsely high 

expectations about how changes in the rules can affect prices and payoffs. Many believe 
auction procedures can affect expected selling prices and bidders’ payoffs without 
affecting the way the goods are allocated.  

According to current economic theory, an auction designers’ ability to manipulate 
prices and payoffs without changing allocations is much more limited. Here, we examine 
what the auction design can do when bidders play Bayes-Nash equilibrium strategies, 
bidding optimally given their beliefs about others’ types and strategies.  

Definition. A strategy profile σ is a Bayes-Nash equilibrium of the mechanism 
, )ω(S in environment ( ), ,[0,1] , ,N u πΩ N of Γ if for all it ,47  

 
( )( )

( )( )
( ) arg max , ( ) ,

arg max , ( ) , ( | ).

i i

i i

i i i i i i i i

S

i i i i i i i

S

t E u t t t

u t t d t t
σ

σ

σ ω σ σ

ω σ σ π

− −

∈

− − −

∈

 ∈
 

= ∫
�

�

�

�
 (3.14) 

In most of this chapter, we study a standard independent private values model. This 
entails the assumptions that  

(i) the types are [0,1]iΘ = ,  

(ii) payoffs are quasi-linear, as described above, and bidders are risk neutral,  

                                                 
46 Most expositions of incentive theory treat payoff equivalence and revenue equivalence as a single result, 
but that seems to me a mistake. That treatment not only obfuscates the close connections between incentive 
theory and demand theory, it also impedes applications to models with risk averse decision makers or in 
which outcomes are inefficient. The approach taken here makes it straightforward to treat these additional 
developments.  
47 In this expression iE  refers to an expectation computed with respect to the beliefs of player i.  
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(iii) values are “private” ( ( , ) ( , )i i iv x t v x t≡ ),  

(iv) types satisfy the weak statistical independence condition that ( | ) ( )i i i i it t tπ π− −≡ , 
and 

(v) the conditions of the integral form envelope theorem (theorem 2.2) are satisfied.  

With these assumptions, expected payoffs can be written as follows:  

 ( )( ) ( ) ( ), ( ) , , ( ) ( ) , ( )i i i i i i i i i i i i i i i iE u t t t E z t v t p tω σ σ σ σ σ σ− − − − − −   = −  
� � i  (3.15) 

Let ( )i iV t  denote the expected maximum expected payoff of player i of type it  in the 
game. Then,  

 ( ) ( )( ) max , ( ) ( ) , ( )i
i i i i i i i i i i i iV t E z t v t p t

σ
σ σ σ σ− − − − = − �
� i . (3.16) 

In close analogy to Holmstrom’s lemma, we have the following: 

Theorem 3.3 (Myerson’s lemma/Payoff Equivalence Theorem). Consider a standard 
independent private values model and suppose that σ is a Bayes-Nash equilibrium of the 
game corresponding to ( ), , , ,[0,1] , ,N vω πΩ N S  with full performance ( , )x p . Then, 
expected payoffs satisfy: 

 
0

( ) (0) [ ( ) | ]
i

i i i i dvV V E z t t s ds
ds

τ

τ = + = ⋅∫
G

. (3.17) 

In particular, if iV  is differentiable at τ, then ( ) [ ( ) | ] ( ) /i i i iV E z t t dv dτ τ τ τ τ∂
∂ = = ⋅

G
. 

Expected payments must satisfy:  

 
0

[ ( ) | ] (0) [ ( ) | ] ( ) [ ( ) | ]
i

i i i i i i i i i dvE p t t V E z t t v E z t t ds
ds

τ

τ τ τ τ= = − + = ⋅ − = ⋅∫
G G G

. (3.18) 

Proof. Equation (3.17) follows directly from (3.16) and the envelope theorem. The 
derivative form of the theorem follows by differentiating (3.17) with respect to τ. At 
equilibrium, a player’s expected payoff is ( ) [ ( ) | ] ( ) [ ( ) | ]i i i i iV E z t t v E p t tτ τ τ τ= = ⋅ − =

G G
. 

Substituting that into (3.17) and rearranging yields (3.18).  ■   

If we compare two different auction mechanisms in which the lowest types of bidders 
always lose and pay zero, then (0) 0iV =  for both. If the outcome function z is also the 
same for both then, according to the theorem, bidders’ expected payoffs and payments 
are also the same. Provided our model of strategic bidders is right, this conclusion 
contradicts intuitive claims that one can change bidder payoffs by manipulating rules 
without reducing efficiency.  

3.3.4 Revenue Equivalence Theorems 
The (risk-neutral) payoff equivalence theorem applies to bidder payoffs, but it also has 

immediate implications for the seller’s expected revenues. The original theorem of this 
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sort is the Myerson-Riley-Samuelson revenue equivalence theorem, which applies to 
auctions of a single good. We begin with a recent extension reported by Williams (1999).  

As above, ˆ ˆ( , )x p  denotes the Vickrey-Clarke-Groves pivot mechanism.  

Theorem 3.4. Consider a standard independent private values model and suppose that σ 
is a Bayes-Nash equilibrium of the game corresponding to ( ), , , ,[0,1] , ,N vω πΩ N S  with 
full performance ˆ( , )x p . Then, the expected payment to the mechanism operator is the 
same as for the VCG mechanism ˆ ˆ( , )x p h+  with ( ) [ (0, )]i i i i ih t E p t− −≡ .  

Proof. Since the always-optimal equilibrium of the VCG mechanism is also a Bayes-
Nash equilibrium, Myerson’s lemma applies with ( , )x p� �  equal to the Vickrey mechanism 

ˆ ˆ( , )x p h+  and (0) 0iV = . So, the expected total revenue is ( )i
i

E p t
∈

  = ∑
G

N
 

[ ( ) | ]i i
i

E E p t t
∈

  = ∑
G

N
ˆ ˆ[ ( ) | ] ( )i i i

i i
E E p t t E p t

∈ ∈
   =   ∑ ∑

G G
N N

  ■  

The famous revenue equivalence theorem of auction theory is a special case:  

Theorem 3.5. Suppose that, in addition to the assumptions of theorem 3.4, the 
environment is one with a single indivisible good for sale. Let v(1), v(2),… denote the order 
statistics of the bidder valuations for the single good, from highest to smallest. Then, the 
total expected payment by participants in the mechanism is (2)[ ]E v .  

Proof. Observe that v(2) is the sales revenue associated with the Vickrey mechanism in 
this environment and apply theorem 3.4.  ■  

The revenue equivalence theorem is the best known theorem in auction theory. The 
history of the theorem begins with Vickrey, who computed equilibria for four different 
auction mechanisms and made the then-surprising discovery that the expected revenues 
were exactly the same in each of them. Simultaneous contributions by Myerson (1981) 
and by Riley and Samuelson (1981) implicitly established the reason in terms of the 
envelope and payoff equivalence theorems, as described above.  

One important use of the revenue equivalence theorem is as a benchmark for analyzing 
cases when the assumptions of the theorem do not hold.  In the next chapter, we will see 
how budget constraints, risk aversion, endogenous quantities, and correlation of types all 
lead to systematic predictions comparing expected revenues from different kinds of 
auctions, even ones with the same decision performance. Of course, mechanisms with 
different decision performances will also have different levels of expected revenue.  

3.3.5 The Myerson-Satterthwaite Theorem 
Another famous early problem of mechanism design theory is designing efficient 

exchange between a buyer and a seller when both have uncertain types. These situations 
are often known as the bilateral monopoly or bilateral trade problem.  Earlier 
developments in transaction cost economics and bargaining theory had treated it as an 
axiom that exchange will take place whenever that is necessary for efficiency. This 
“efficiency axiom” is explicit in the derivations of the Nash bargaining solution, the 
Kalai-Smorodinsky solution, and the Shapley value, as well as in many treatments of the 
so-called “Coase theorem.”  
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Doubts about the efficiency axiom are based partly in concerns about bargaining with 
incomplete information. After all, a seller is naturally inclined to exaggerate the cost of 
his good while a buyer is inclined to pretend that her value is low.  Shouldn’t we expect 
these exaggerations to lead sometimes to missed trading opportunities? Is the problem of 
exaggeration in bargaining a fundamental one? Or, can a bargaining mechanism or 
protocol be designed that eliminates the incentive to exaggerate? How would it work?  

To evaluate the answers, we use a simple model with a single indivisible good for sale. 
There is one potential buyer and one potential seller with values ( )b bb v t=  and 

( )s ss v t= , respectively. With quasi-linear preferences, there are gains from trade 
precisely when b s> . Let ( )bp t  and ( )sp t  denote the payments made by the buyer and 
seller at equilibrium of some mechanism when the type profile is t. We assume that bv  
and sv  are smooth and bounded, so that the envelope theorem applies.  

Let us start with the observation that this environment is a special case where we can 
apply the VCG mechanism. In particular, the pivot mechanism (the VCG mechanism in 
which 0s bh h≡ ≡ ) might seem a plausible candidate to solve the problem. It specifies 
that trade should take place and transfers should be made only when the reported values 
satisfy b s> . When trade takes place, the seller receives a payment of b while the buyer 
pays s. With payments determined in this way, the buyer and seller both find it always 
optimal to report their values truthfully, regardless of what the other reports. When they 
do report truthfully, the efficient allocation decision is implemented with always-optimal 
strategies, but there is a budget deficit because whenever trade takes place: b s> . In 
chapter 2, we observed that, in general, there is no VCG mechanism that always exactly 
balances the budget.  Is this a serious problem? Is there any mechanism that can both 
implement efficient outcomes and achieve budget balance at a Bayes-Nash equilibrium?  

The Myerson-Satterthwaite theorem shows that, under certain conditions, there exists 
no mechanism for which the decision performance function always maximizes the total 
value. The theorem employs the solution concept of Bayes-Nash equilibrium. 

Theorem 3.6. Suppose that, in addition to the assumptions of theorem 3.3, the 
participants and the designer have identical prior beliefs: 1 ... Nπ π π= = = . Further 
suppose that the types are statistically independent, the parties have identical prior 
beliefs, and bv  and sv  are continuously differentiable. Consider any trading mechanism 
and Bayesian-Nash equilibrium at which (i) trade occurs at equilibrium exactly when 
b s> , (ii) sellers of type 1 and buyers of type 0 never trade, and (iii) no payments are 
made when no trade transpires. Then, the mechanism incurs an expected payment deficit 
equal to the expected gain from trade, that is, the total expected payments satisfy 

[ ( ) ( )] [max(0, )]b sE p t p t E b s+ = − − .48  

                                                 
48 Notice that no assumptions are made here about the distributions of types. In their original treatment, 
Myerson and Satterthwaite imposed the weaker condition that trade occurs exactly when (i) b>s and (ii) b 
and s are both in the supports of their respective distributions, and found that efficient trade without deficits 
could sometimes be achieved when supports are disjoint. For example, if the buyer’s value is distributed on 
[½,1], the seller’s cost on [0,½], and each is restricted to reporting a type in the corresponding interval, then 
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Proof.  The Vickrey mechanism is a mechanism that satisfies the conditions of the 
theorem. It specifies that trade occurs when b s> , and that when trade occurs the seller 
receives a price of b and that the buyer pays a price of s. For every (b,s)-realization, each 
player enjoys a payoff of ( ) max(0, )b s b s+− ≡ − —the entire gain from trade. Any other 
mechanism with the same decision performance results in the same total expected gains 
from trade [( ) ]E b s +−  and, by the payoff equivalence theorem, has the same total 
expected payoff of 2 [( ) ]E b s +−  for the buyer and seller. The expected deficit 

[ ( ) ( )]b sE p t p t− +  is the excess of the total expected payoff over the total expected 
surplus: [( ) ]E b s +− .  ■ 

Application: Auctions Versus Lotteries 
Despite calls by Coase (1959) and others for the Federal Communications Commission 

(FCC) to allocate spectrum frequencies by auction, the U.S. Congress didn’t give the 
FCC the authority to assign wireless operating rights by auction until 1993.  Prior to 
1993, the U.S. Congress had granted the FCC the power to assign rights to the spectrum 
by lottery.  Although allocating spectrum by lottery eliminated the long bureaucratic 
procedures and delays of the previous system of comparative hearings, it introduced 
various inefficiencies of its own.49   

In the debates surrounding the initial spectrum auctions, some observers suggested that 
lotteries can be turned into an efficient mechanism by allowing winners to re-sell their 
rights to others who value the rights more.  Citing the Coase theorem, they argued that 
once transferable licenses are in the hands of private parties, the parties themselves will 
negotiate to a jointly profit-maximizing ownership configuration.  Therefore, they 
concluded, the form of the initial auction does not matter for efficiency.   

Theoretical arguments can influence the F.C.C. staff’s recommendations to the 
Commission, which in turn help shape policy.  Economists advocating auctions to the 
F.C.C. staff countered the proponents of lotteries with an argument combining the 
Myerson-Satterthwaite and Vickrey theorems.  If a single license were awarded at 
random by lottery to one of two symmetric applications, then the Myerson-Satterthwaite 
theorem implies that no feasible bargaining protocol can guarantee an efficient result.  
But the Vickrey theorem, shows that an auction mechanism exists that guarantees an 
efficient result.  Therefore, the initial allocation mechanism can affect the efficiency of 
the final allocation: auction design does matter. The FCC staff was influenced by this 
argument and was led to pay careful attention to the expected efficiency of the allocations 
created by the auctions.  

3.3.6 The Jehiel-Moldovanu Impossibility Theorem 
Jehiel and Moldovanu (2001) apply payoff equivalence to demonstrate limits on 

mechanisms’ ability to implement efficient allocations when participants don’t have 

                                                                                                                                                 
the Vickrey-Clarke-Groves mechanism that always sets a price of ½ implements efficient trade with zero 
deficit.  
49 Some of these were described in chapter 1.  
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private values. Without the private values assumption, a bidder might know something 
that, if revealed, could affect another bidder’s choices.  

An example to illustrate the general possibilities is the classic used-car model of 
adverse selection, in which the owner of a used car has private information about the 
condition of the car. The seller’s information could certainly affect the buyer’s decision 
about whether to buy at some specified price. Partly for that reason, a seller may try to 
convince the buyer that his motive for selling the car is not that the car is in bad 
condition. For example, the seller’s advertisement might include a phrase like: “Moving, 
must sell.”  

For an auction-related example, suppose there is a certain piece of land for sale just 
outside of a city. Participant #1 is a developer plans to build a shopping center on the land 
to attract urban customers. Participant #2 is a mining company interested in a possible 
mineral deposit beneath the surface. The value of the land as a shopping center also 
depends on whether nearby properties will be used for noisy or dirty mining operations—
something about which the mining company knows more than the developer. Given that 
the value of the land to the developer depends on information held by the mining 
company, is there any mechanism that allocates the land efficiently?50   

One might think of many ways to try to achieve efficient allocation, for example by 
providing a cash bonus to the mining company depending on what information it 
acknowledges about the value to the developer. However, the spirit of the Jehiel-
Moldovanu theorem is that, unless the mining company’s information can be 
independently verified, there is no way that it can be used to implement efficient 
decisions.  

Intuitively, the logic of the theorem is simple. Suppose some agent j has observed a 
signal s that does not bear on his own values but is relevant to determining the efficient 
allocation. Since the signal s does not affect either what j can report or j’s preferences 
over allocations, it cannot affect his maximal payoff. Suppose, for sake of illustration, 
that when s is higher, the efficient allocation always assigns more of certain valuable 
goods to j. Then, by the payoff formula of the envelope theorem, j’s maximal payoff must 
be higher when s is higher, which contradicts the previous conclusions. Therefore, it must 
be impossible to implement the efficient allocation. The formal account develops this sort 
of contradiction thoroughly for both dominant strategy models and Bayesian equilibrium 
models, without any special assumption about how s affects the efficient allocation.  

We begin with the interdependent values model in which there is a single item for sale. 
To allow the possibility that each bidder may have information that is relevant to each 
other bidder, we represent each bidder’s type by an N-vector 1( ,..., )=i i i

Nt t t , where i
jt  

represents any information that bidder i may have about the value of the item to bidder j. 
We take the components of the type profile t to be jointly distributed according to a 
atomless distribution on [0,1]N×N. Bidders’ types are assumed to be statistically 
independent. For analytical simplicity, we specify that the full information value of the 
item to bidder i is ( )−+i i i

i it v t .  
                                                 
50 It’s quite common in auctions of business assets such as spectrum licenses that competitors’ plans affect 
the value of a license or that losers are not indifferent about the identity of the auction winner. 
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The first issue is to determine whether there is some clever payment scheme that results 
in efficient allocation performance in always-optimal or dominant strategies. Thus, 
suppose that there is some allocation performance z that is implemented in always-
optimal strategies, where ( )iz t

G
 is the probability that the item is assigned to bidder i and 

( )ip t
G

 is the corresponding payment. Using the integral form envelope theorem, the 
payoff achieved by bidder i when the type vector is t

G
 is:  

 
( )( ) ( ){ }

( )
ˆ

0

ˆ ˆ( , ) max , ( ) ( ) , ( )

(0, , ) ( , ), ( )
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i
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i i

V t t z t t v t p t

V t t z s t t ds

σ
σ σ σ σ

σ σ

− − − − − −

− − −
− −

= + −

= + ∫
 (3.19) 

Regard these expressions as functions of it  with it−  held fixed. Since the right-hand 
expression on the first line of (3.19) does not depend on i

it− , the expression on the second 

line must be a function of i
it  alone. Hence, the integrand satisfies ( )( , ), ( )i i i i i

iz s t tσ σ − −
− ≡  

( )( ,0), ( )i i i iz s tσ σ − −  almost everywhere. To summarize: 

Theorem 3.7. In the interdependent values model with a single good for sale, suppose 
the decision ˆ( )z t depends non-trivially on i

it− . Then, there exists no mechanism that 
implements the allocation performance ẑ  in always-optimal strategies.  

It follows, of course, that there exists no mechanism that implements the efficient 
allocation performance in dominant strategies, since that is a special case. Jehiel and 
Moldovanu asked a related question. Does there exist an augmented mechanism that 
allocates efficiently when the solution concept is Bayesian-Nash equilibrium?51  

Theorem 3.8. Let ˆ( )z t  be the efficient allocation performance function and assume that 
ˆ( ) ( )i iE t E z t ≡    depends non-trivially on i

it− .52 Then, no mechanism exists that Bayes-
Nash implements the allocation performance ẑ .  

Proof. Suppose that some augmented mechanism (S,Ω,σ) is specified such that σ is a 
Bayes-Nash equilibrium of the associated Bayesian game. Let the outcome function Ω 
consist of a decision outcome function z and a payment function p. The corresponding 
equilibrium payoff value for an individual i is:  

 
( ) ( ) ( )
( ) ( ) ( )

ˆ

ˆ

ˆ ˆ( ) max , ( ) ( ) , ( ) |

ˆ ˆ ˆmax , ( ) , ( ) ( ) , ( )

i

i

i i i i i i i i i i i i i i
i i

i i i i i i i i i i i i i i i
i i

V t E z t t v t p t t

E z t t E z t v t p t
σ

σ

σ σ σ σ

σ σ σ σ σ σ

− − − − −

− − − − − − −

 = + − 

   = + −   
(3.20) 

                                                 
51 In their original treatment, Jehiel and Moldovanu treat the case of many goods. Although the notation is 
more involved, that case can be treated by methods similar to the ones used here.  
52 For example, if the functions vi are all increasing, then the efficient decision function ˆ ( )iz t is 

nonincreasing in i
it− . To this we add the non-degeneracy condition that that function is not constant.  
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where the last step uses the statistical independence of the types. Hence, ( ) ( ,0)i i i
iV t V t=  

is actually a function of i
it  alone. Using that and the integral form envelope theorem,  

 

( )

( )

0

0

( ,0) (0,0) ( ,0), ( )

( , ) (0, )

( , ), ( ) .

i
i

i
i

t
i i i i i i i

i

i i i i i
i i i

t
i i i i i

i

V t V E z s t ds

V t t V t

E z s t t ds

σ σ

σ σ

− −

− −

− −
−

 − =  

= −

 =  

∫

∫

 (3.21) 

Since these functions of i
it  are equal everywhere, the integrands must be equal almost 

everywhere:  

 ( ) ( )( , ), ( ) ( , 0), ( )   a.e.i i i i i i i i i
iE z s t t E z s tσ σ σ σ− − − −

−
   =     (3.22)  

This contradicts the hypothesis that ˆ( ) ( )i iE t E z t ≡    depends non-trivially on i
it− .  ■ 

These two theorems establish some important limits on what mechanisms can achieve. 
We will see later that there are specialized auction models with adverse selection in 
which standard auction mechanisms, such as the English auction, sometimes achieve 
efficient results. The key condition in establishing such conclusions is that any 
information that bidders have is more relevant to them than to any other bidder—a 
condition explicitly ruled out by our formulation in this section.  

3.3.7 Myerson-Riley-Samuelson Revenue-Maximizing Auctions 
In this subsection, we return to the optimal auction question posed by Myerson (1981), 

discussed in the introduction to this chapter.  A similar theory of revenue-maximizing 
auctions was also developed independently at about the same time by Riley and 
Samuelson (1981). While Myerson’s original proof relied on the revelation principle to 
limit attention to direct incentive compatible mechanisms, we simplify his analysis here 
by using the Integral Form Envelope Theorem. 

Consider an auction for a single good whose value to individual i is ( )i iv t . Each 
:[0,1]iv +→ \ is a strictly increasing, continuously differentiable function, and the types 

are independently and uniformly distributed. Note that these assumptions do not imply 
that the values ( )i iv t  are identically distributed: the value distributions are given by the 
functions 1( )iv −  which can be any strictly increasing, smooth, bounded distribution.53  

Definitions.  

1. An augmented mechanism ( , , )ω σS  is voluntary if for every player i and type 
it , the maximal expected utility satisfies ( ) 0i iV t ≥  (where the utility of non-

participation has been normalized to zero).  

                                                 
53 One can also dispense with the upper bound by taking the type spaces to be [0,1).  
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2. The expected revenue from the augmented mechanism ( , , )ω σS  is 

 1 1
1

( , , ) ( ( ),..., ( ))N i N N
i

R E p t tω σ σ σ
=

 =  ∑S  

3. The augmented mechanism ( , , )ω σS  is expected-revenue-maximizing if for 
any other voluntary augmented mechanism ( , , )ω σ� � �S , ( , , ) ( , , )R Rω σ ω σ≤� � �S S . 

For the next theorem, it is convenient to write 1ix =  in case individual i is awarded the 
item and 0ix =  otherwise.  

Theorem. 3.9. Consider a standard independent private values model with a single 
good for sale. For each i, define ( ) ( ) (1 ) /i i i i i i im s v s s dv ds≡ − −  (marginal revenue as a 
function of price) and suppose that im  is an increasing function.54 Further suppose that 

1(0) ... (0)Nv v= = . Then an augmented mechanism is a revenue-maximizing mechanism 
if satisfies (0) 0iV =  and has the following decision performance function:  

 ( )1  if ( ) max 0,max ( )
( )

0  otherwise

i i j j
j ii m t m t

x t ≠
 >= 


 (3.23) 

Furthermore, at least one such mechanism exists.  

Proof. Given any decision performance x, the probability that bidder i receives the 
good when its type is it  is [ ( ) | ]i iE x t t . Hence, by the envelope theorem, bidder 1’s 
maximal payoff when its type is 1t  satisfies:  

 

1
1 1 1 1 1 1 1 1

10

11 1 1 1 2 1
10 0 0

( ) (0) [ ( , ) | ]

... ( ,..., ) ... .N N

dvV V E x s t t s ds
ds

dv x s s ds ds ds
ds

τ

τ

τ −− = =

=

∫

∫ ∫ ∫
 (3.24) 

So, bidder 1’s ex ante expected payoff must satisfy:  

 

( )

1

11 1 11 1 1 1 1 2 1
10 0 0 0

11 1 1 1 1 1
10 0

11 1 1 1 1 1
10 0

1 1 1 1 1 1 1 1 1

0 0

[ ( )] (0) ... ( ,..., ) ...

... ( ,..., ) ...

... (1 ) ( ,..., ) ...

... ( ) ( ) ( ,..., ) ...

N N

N N

s

N N

N N

dvE V t V x s s ds ds ds d
ds
dvd x s s ds ds
ds

dvs x s s ds ds
ds

v s m s x s s ds ds

τ
τ

τ

− =

=

= −

= −

∫ ∫ ∫ ∫

∫ ∫ ∫

∫ ∫

∫ ∫

 (3.25) 

                                                 
54 This corresponds to the common condition in monopoly pricing theory that marginal revenue is a 
decreasing function of the quantity offered for sale. An equivalent formulation that is common in the 
literature specifies the marginal revenue condition in terms of the distribution of values, 1( )i iF v −= . The 

condition then becomes ( )1 ( ) / ( )i i i i iv F v f v− −  is increasing in iv .  
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where the second equality follows from the first by changing the order of integration. A 
similar expression holds for the other bidders.  

For any realized type profile t
G

, the total ex ante payoff to all bidders plus the revenue 
to the seller adds up to ( ) ( )x t v t⋅

G G
, so the seller’s expected revenue must be: 

 

1
1 1 1 1

1 10 0

1 1 1 1
1 10 0

1 1 1

0 0

( , , ) [ ( ) ( )] [ ( )]

... ( ,..., ) ( ) ... [ ( )]

... ( ,..., ) ( ) ... (0)

... max(0, max ( )) ...

N i i
i

N Ni N i i N i i
i i

N Ni N i i N i
i i

i i N

R E x t v t E V t

x s s v s ds ds E V t

x s s m s ds ds V

m s ds ds

ω σ
=

= =

= =

= ⋅ −

= −

= −

≤

∑
∑ ∑∫ ∫
∑ ∑∫ ∫

∫ ∫

G G
S

 (3.26) 

The inequality follows because ( )ix t  is the probability the good is assigned to bidder i 

and hence satisfies ( ) 0ix t ≥  and 
1

( ) 1N i
i

x t
=

≤∑ . 

This proves that the specified performance, if feasible, gives an upper bound on the 
revenue. For feasibility, we display a mechanism that achieves that bound. It is the direct 
mechanism with decision performance (3.23) and these payment functions:  

 ( )( )1( ) max(0,max ( )  if ( ) 1
( ) ( )

0  otherwise

i i j j i
j ii i i v m m t x t

p t p t
−

≠−
 == = 


G
 (3.27) 

It is immediate that (0) 0iV =  (type 0 never wins and never makes or receives a 
payment).  

Finally, observe that for all types, truthful reporting is an always-optimal strategy. For 
any report i may make, he can acquire the good only by paying a price ( )i ip t− , and the 
allocation rule specifies that that i acquires the item precisely when ( ) ( ) 0i i i iv t p t−− > . 
Thus, by reasoning analogous to the second price auction analysis, bidding truthfully is 
always optimal.  ■  

An interesting corollary of this theorem is that certain standard auctions with 
reservation prices can sometimes be expected revenue maximizing auctions. Indeed, 
suppose that we add to the assumptions of the theorem the extra assumption that 

1 ... Nv v v= = =  so that 1 ... Nm m m= = = . If the seller sets a reserve price of * 1(0)r m−= , 
then the Vickrey auction with reserve *r  achieves the decision performance specified in 
the theorem: a bidder wins if and only if its type is highest and ( ) 0im t > . Moreover, type 
0 bidders always lose, (0) 0iV = . So, the Vickrey auction and, as we shall see in the next 
chapter, other standard auctions with reserve r* are expected-revenue maximizing 
auctions in this class of symmetric environments.   

3.3.8 The McAfee-McMillan “Weak Cartels” Theorem 
McAfee and McMillan (1992) were among the first to study the theory of “bidding 

rings,” which are groups bidders who make collusive agreements about how to divide the 
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items for sale in an auction.55 Ring members might try to agree before the auction which 
of them will be the winner, with the understanding that other bidders will make no bids or 
low bids in the auction. In that way, the winner may be able to get the item for a low 
price, possibly even at the reserve, enhancing its own profit.  

Rings face a series of problems if they are to operate effectively. One is to enforce 
agreements, which might be done in a series of auctions by threatening to retaliate against 
those who violate the ring rules. A second problem is to prevent new bidders from 
entering when the prices in a series of auctions seem low. A third is how to divide the 
spoils. This can be a serious problem since, as McAfee and McMillan state, most of the 
U.S. Department of Justice’s bid-rigging convictions begin when one of the cartel 
members turns in other members because he is unhappy with his share of the profits. To 
avoid leaving incriminating records, cartels often avoid making cash payments among 
their members, and that restriction limits what the cartel members can achieve.  

We call a ring that cannot make cash payments among its members a “weak ring.” One 
might think that the members of the ring could hold discussions and tailor their dealings 
to take advantage of their information, allocating the goods most often to those with the 
highest values. What complicates the problem is that, with no side payments to use to 
divvy up the profits, bidders will have little incentive to reveal their information even to 
fellow ring members. McAfee and McMillan show that, under a certain condition, a weak 
cartel cannot extract any useful information from its members: it can do no better than to 
randomize the allocation among its members.  

In our treatment of the McAfee-McMillan model, we assume that the seller sets a 
reserve price of r and that participants express interest if and only if their values are at 
least r. Types are statistically independent and uniformly distributed on [0,1] and i’s 
value is given by ( )i iv t , where 1(0) ... (0)Nv v r= = = . Given the augmented mechanism 
devised by the ring, let ( )i ix t  denote the probability that bidder i of type it  acquires the 
item and let [ ( )]i i ix E x t= . The corresponding random allocation is the allocation that 
assigns the item to individual i with probability ix  regardless of the vector of types. This 
random allocation is certainly feasible since the original mechanism is so. Since a player 
of type zero has no way to earn a positive profit, 1(0) ... (0) 0NV V= = = .  

As Vickrey first observed, ( )ix i  is necessarily nondecreasing. If it were otherwise, then 
a bidder could “rectify” the relationship between its bids and types, leaving its expected 
payments unchanged but increasing [ ( ) ( )]i i i iE x t v t .56  

Theorem 3.10. Consider a standard independent private values model for a single good 
and suppose that (1 ) /i i it dv dt−  is a decreasing function. Then, any mechanism by which 
the weak ring allocates the asset among its members that differs non-trivially from a 
random allocation is ex ante Pareto dominated by its corresponding random allocation.  

                                                 
55 See Graham and Marshall (1987) for a detailed description of ring operations.  
56 This argument and related ones will be developed more fully in the next chapter. 
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Proof. Let ( )i iV t  and ( )i iV t  denote the expected payoff of type i from the proposed 
mechanism and the corresponding random allocation, respectively. Then, the ex ante 
utility from the proposed mechanism is: 

 

1 1

0 0 0

1 1 1

0 0

1 1

0 0

1

0

[ ( )] ( ) ( )

( ) (1 ) ( )

(1 ) ( )

(1 ) ( ) ... [ ( )]

i
i i i i

i i
i i

s

i
i

i
i i i

dvE V t V d x s dsd
ds

dv dvd x s ds s x s ds
ds ds
dvs ds x s ds
ds
dvs x s ds E V t
ds

τ
τ τ τ

τ

= =

= = −

< −

= − = =

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

∫

 (3.28) 

The second equality follows from the envelope theorem. After reversing the order of 
integration, the strict inequality follows from a majorization theorem (stating that the 
expected value of the product of an increasing and a decreasing function is less than the 
product of the expectations).57 Then, reversing the initial series of steps establishes that 
the RHS of the inequality is the expected payoff from the corresponding random 
allocation.  ■  

Given the assumption that iv  is increasing and that types are uniformly distributed on 
[0,1], the inverse function 1( )iv −i  is the distribution of bidder values, which we may also 
write as iF  with density if . The condition that (1 ) /i i it dv dt−  is decreasing is thus 
equivalent to the condition that ( )1 ( ) / ( )i iF v f v−  is decreasing. Accordingly, the 
condition is sometimes called the “increasing hazard rate” condition. As we have seen, a 
similar condition arises in the analysis of expected-revenue-maximizing auctions.  

The McAfee-McMillan theorem expresses a clear limit on what a weak ring can 
accomplish. Without cash payments, the ring can do no better than to randomize the right 
to bid among its members and let one of them win at the reserve price.58 To create greater 
profits by allocating the item more efficiently, the ring would need to require a member 
who claims a high value to pay more than the reserve price. In a weak ring, that extra 
payment would go to the seller. Hence, subject to the stated assumption about the 
distribution of values, this leaves the ring worse off than with a simple randomization.  

                                                 
57 This is equivalent to the theorem that increasing and decreasing functions of the same random variable 
have a negative covariance. 
58 Athey, Bagwell and Sanchirico (2003) amplify this conclusion using a repeated games model in which 
the bidders observe the price, but not the identity of the winner, after the auction. In their model, like the 
one in the text, the ring would like to promote the efficient outcome by arranging for the ring member with 
the highest value to win the auction. However, the ring’s inability to identify the winner makes the ring 
“weak” despite the repeated game, so (subject to a condition on the distribution of values) the ring can do 
no better than to randomize the allocation among its members. This conclusion changes if the winning 
bidder’s identity is revealed after each auction; see Athey and Bagwell (2001).   
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3.3.9 Sequential Auctions and Weber’s Martingale Theorem59 
In this section, we investigate the pattern of prices that emerges when several identical 

items are sold one at a time, in sequence, when each bidder can buy only one item. We 
find that if the prices are announced after each sale, then the sequence of prices forms a 
martingale. This means that the expectation of the n+1st price given the prior prices is 
equal to the nth price. This property of sequential auctions is especially interesting 
because empirical tests suggest that actual prices in art and wine auctions contradict this 
prediction: they follow a declining pattern.60  

To formulate the problem, suppose that there are k identical items for sale and N 
bidders and each bidder limited to receive just one item. The items are to be sold in a 
sequence of auctions using a rule in which the highest bidder wins and only the winner 
pays. Let the auction rules be such that, given any information nI  that may become 
available after n items have been sold, there is a symmetric, increasing equilibrium bid 
function 1( | )n nIβ + ⋅  that applies to the bidding for item 1n + . Then, at equilibrium, the 
highest type bidder wins the first item, the second highest wins the second item, and so 
on.  

Let np  denote the price paid for the nth item, (1) ( ),..., Nt t  denote the order statistics from 
among the bidder types, and 0I  denote null information. 

Theorem 3.11. At any equilibrium 1{ }k
n nβ β == of any auction game satisfying the 

conditions described above, the sequence of prices and information 1( , )k
n n np I =  satisfies 

( 1)
1 1[ | ] [ ( ) | ]k

n n nE p I E v t I+
− −= . If the auctions are first-price or second-price auctions and 

nI  is the sequence of past prices 1{ ,..., }np p , then 1( , )k
n n np I =  is a martingale.  

Proof. We focus on bidder 1 and suppose he has not yet won an item when the first 
1m −  items have been sold. We apply Myerson’s lemma to the game starting with the 

sale of item m, which has the same decision outcome as the Vickrey auction. 
Consequently, the expected total payments by bidder 1 given the information 1mI −  must 
also be the same:  

 1 ( ) ( 1) 1 ( )
( 1)

1 1{ } { }
1 | ( )1 |n m k

k
k

n m mt t t t t
n m

E p I E v t I−
+

− −= > ≥
=

   =    
∑  (3.29) 

For m k= , bidder 1 wins at that round if 1 ( )kt t=  and then ( 1)
1 1[ | ] [ ( ) | ]k

k k kE p I E v t I+
− −= . 

By symmetry, the identity of the winning bidder for the nth item is independent of the 
price np , so  

 [ ] [ ]1 ( ) 1 ( )1 1 1 1{ } { }

11 | 1 | | |
1n nn m m n m n mt t t t

E p I E I E p I E p I
N m− − − −= =

   = =    + −
 

                                                 
59 The analysis of sequential auctions originates with Weber (1983) and Milgrom and Weber (2000). Some 
additional results about the martingale property are reported in the original sources.  
60 See Ashenfelter (1989) and Ashenfelter and Graddy (2002).  
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and similarly  

 
( 1) 1 ( ) ( 1) 1 ( )

( 1) ( 1)
1 1 1{ } { }

( 1)
1

( )1 | 1 | ( ) |

1 ( ) | ,
1

m k m k
k k

m m mt t t t t t

k
m

E v t I E I E v t I

k m E v t I
N m

− −
+ +

− − −> ≥ > ≥

+
−

     =     
+ −  =  + −

 

so equation (3.29) becomes:  

 [ ] ( 1)
1 1

1 1| ( ) |
1 1

k
k

n m m
n m

k mE p I E v t I
N m N m

+
− −

=

+ −  =  + − + −∑ . (3.30) 

Using (3.30), we may conclude that [ ] ( 1)
1 1| ( ) |k

n m mE p I E v t I+
− − =    for all m n k≤ ≤ . 

For otherwise there is some n�  that is the largest value of n for which the equality fails. 
Then using (3.30) with m n= � , [ ] ( 1)

1 1| ( ) |k
n n nE p I E v t I+

− − =  � � � , so for m n≤ , 

[ ]1|n mE p I − =�  [ ]1 1[ | ] |n n mE E p I I− − =� �
( 1) ( 1)

1 1 1[ ( ) | ] | ( ) |k k
n m mE E v t I I E v t I+ +

− − −   =   � , which 
is a contradiction.  

If the auction is a second-price auction (respectively, first-price auction), then by 
inverting the bid functions, the information nI  is (1) ( 1)( ,..., )nt t −  (respectively, 

(2) ( )( ,..., )nt t ) so [ ] ( 1)
1 1 1| ( ) |k

n m m mE p I E v t I p+
− − − = =  , by Myerson’s lemma.  ■ 

3.3.10 Risk Averse Payoff Equivalence 
In the models studied above, bidder payoffs are the expected value received minus the 

expected amount paid. This specification incorporates two kinds of assumptions about 
bidder preferences. The first is that each bidder is risk-neutral, meaning that he is 
indifferent among transfer schemes with the same expected transfer. The second is that 
there are no “wealth effects” on choices under uncertainty: changing a bidder’s wealth by 
making taxing him or giving him a transfer before presenting the bidder with a risky 
choice would not alter his most preferred choice. In particular, wealth transfers do not 
affect bidding decisions.  

Introducing risk aversion into the auction model can invalidate both of these 
assumptions. The loss of risk neutrality is obvious, but general utility functions also 
introduce wealth effects in the choice of risky prospects. That can be important in auction 
models because bidders with higher types are “wealthier” than bidders with lower types 
in the sense that they have larger expected payoffs from an auction.  

In this section, we separate the risk aversion effect from the wealth effect by using a 
model of bidder preferences with constant absolute risk aversion and ordinal utility that is 
quasi-linear in money. Only this specification eliminates wealth effects both for all 
choices among risky prospects.  

We study a class of auctions in which losing bidders pay nothing and the lowest type of 
each bidder always loses. Let us normalize the utility payoff of a losing bidder to be zero 
and specify that each bidder i has a constant coefficient of absolute risk aversion ir . 
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When i wins, his utility payoff is ( ) ˆ1 exp ( ) 1 ( ) ( )i i i i i i i ir v t p v t u p − − − = −   where 

( )ˆ ( ) exp ( )i i i i iv t r v t = −   and ( ) expi i i iu p r p =   .   

Theorem 3.12. Consider an auction game in which bidder payoffs display constant 
absolute risk aversion, as specified above. Suppose that σ is a Bayes-Nash equilibrium of 
a game with full performance ( , )x p  in which a bidder of type 0 always loses and losing 
bidders always pay zero. Define ( ) ( , )i i iX t E x t t− ≡   . Then, the equilibrium expected 
utility of bidder i of type t is 

 
0

1ˆ( ) ( ) ( ) (0) ( )
ˆ ( )

t
i i i i i

iV t X t v t X dX s
v s

 
= − + 

 
∫  (3.31) 

In particular, two auction games with the same decision performance function x specify 
the same expected utility ( )iV t  for each type of each bidder. 

Proof. Given the strategies of the other bidders, when bidder i of type t plays strategy 
(“bids”) b, his expected utility is ( )ˆ( , ) ( , ) 1 ( ) ( ( , ))i i i i ib t E x b t v t u p b tπ − − = −  .61 Define 

( ) ( , ) ( ( , ))i i i i it E x t t u p t tϕ − − =   . Then the bidder’s equilibrium expected utility is 

( )ˆ( ) ( , ) 1 ( ) ( ( , ))i i i i i iV t E x t t v t u p t t− − = −  = ˆ( ) ( ) ( )i i iX t v t tϕ− . To establish (3.31), we 

must show that 
0

1( ) (0) ( )
ˆ ( )

t
i i i

it X dX s
v s

ϕ = + ∫ . 

By the envelope theorem and using the boundary condition (0) 0V = , we obtain a 

second expression for expected utility: ( ) max ( , )i
bV t b tπ= = 20

( ( ), )
t i s s dsπ σ =∫  

0
ˆ ( ) ( )

t i iv s s dsϕ′−∫ . Equating the two expressions leads to ˆ( ) ( ) ( )i i iX t v t tϕ− =  

0
ˆ ( ) ( )

t i iv s s dsϕ′−∫ . Differentiating with respect to t: ˆ( ) ( ) ( ) 0i i idX t v t d tϕ− = . By 

assumption, (0, ) 0ip t− =  and (0) 1iu = , so (0) (0)i iXϕ =  and 

0

1( ) (0) ( )
ˆ ( )

t
i i i

it X dX s
v s

ϕ = + ∫ .  ■  

Several things about this analysis merit comment. First, although the result asserts that 
payoffs are the same for different bidders in a class of auctions, it does not follow that the 
payoffs are the same for the seller. In the risk-neutral case, the seller’s revenue is equal to 
the total surplus minus the bidder’s payoffs, but here that identity no longer applies. In 
fact, we will see in the next chapter that bidder risk aversion in this model creates a 
revenue advantage for the first-price auction compared to the second-price or ascending 
auction.  

                                                 
61 It is in this expression that we utilize the assumption that losing bidders always pay zero and so have a 
normalized utility of zero.  
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Second, the risk-averse payoff equivalence result is more limited than the 
corresponding risk-neutral version, because it applies only when losing bidders always 
pay zero. For example, although the theorem typically applies to the expected payoffs in 
standard first- and second-price auctions, it does not apply if participation is endogenous 
and requires the payment of an entry fee.  

Finally, we emphasize again that our use of constant absolute risk aversion is merely an 
analytic technique, similar to ones that have been used to good effect elsewhere in 
auction theory and principal-agent theory.62 This technique does not prejudge the 
importance of wealth effects, any more than calculating a pure substitution effect in 
consumer theory prejudges the importance of income effects in that theory. Wealth 
effects can be studied separately and the relative importance of the two effects will 
naturally vary across different applications.  

3.4 Conclusion 
This chapter organizes some of the major results of mechanism design theory using the 

envelope theorem and the related lemmas of Holmstrom and Myerson.  

To emphasize the close connection between demand theory and incentive theory, we 
begin by proving Hotelling’s lemma in its two forms. In the integral form, it asserts that 
producer surplus is equal to a certain integral representing the area between the supply 
curve and the vertical axis.  

The same kind of formula can be derived for the more abstract choice spaces of 
mechanism design theory, but this requires first introducing an extended envelope 
theorem. The theorem implies Hotelling’s lemma when the parameter used is the price at 
which goods can be sold. It implies Holmstrom’s lemma when the parameter is the 
mechanism participant’s type and the participant maximizes his payoff knowing the 
opposing type profile it− . It implies Myerson’s lemma when the parameter is the 
mechanism participant’s type and the participant maximizes his expected payoff, not 
knowing the opposing type profile it− . 

Holmstrom’s lemma leads to the Green-Laffont-Holmstrom theorem, which holds that 
if the set of possible values is smoothly connected, then all augmented mechanisms that 
implement efficient outcomes in dominant strategies are VCG mechanisms.  

Myerson’s lemma leads to the famous revenue equivalence theorem, which holds that if 
the set of possible values is smoothly connected, then all augmented mechanisms that 

                                                 
62 For example, Milgrom and Weber (1982) use constant absolute risk aversion to study the effects of 
revealing statistical information on auction prices. One effect is that such information tends to reduce risk 
on average. Abstracting from wealth effects, that always increases the average price that a bidder is willing 
to pay. For any smooth utility specification without constant absolute risk aversion, there always exist 
examples of gambles and statistical information such that the wealth effect of the revealing information 
works against, and is larger than, the risk reduction effect.  

Similarly, Holmstrom and Milgrom (1987) introduce a principal-agent model with constant absolute risk 
aversion to abstract from the effect that an agent’s past compensation may have on his current risk 
averseness. The optimality of linear compensation contracts such as commissions for sales agents or piece 
rates for factory workers hinges on a set of assumptions, including that one.   
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implement efficient outcomes in Bayes-Nash strategies lead to the same expected 
revenues as the Vickrey auction.  

The remaining theorems of the chapter explore the restrictions on mechanism 
performance that the preceding results imply. We derive the Myerson-Satterthwaite 
theorem by examining the payoffs that bargainers must achieve if efficient bargaining 
outcomes are to be realized. Those payoffs add up to twice the surplus available for 
distribution. Accordingly, we conclude that efficient bargaining outcomes cannot 
generally be implemented (unless a donor is available to cover the cash shortfall).  

The Myerson-Riley-Samuelson optimal auction theorem identifies the auction design 
that maximizes the seller’s expected revenue in a class of environments. The analysis 
works by expressing the seller’s expected revenue as the expected total surplus minus the 
bidders’ total expected profits, using Myerson’s lemma to obtain an expression for the 
latter. Maximizing the revenue expression identifies the decision performance associated 
with the highest possible expected revenue.  

The Jehiel-Moldovanu theorem evaluates the possibility of implementing efficient 
performance in a different set of environments. Using the envelope theorem, we find that 
to implement efficient performance, each bidder’s maximum profit function must depend 
on any unique information that bidder has about the value of the allocation to other 
bidders. By direct inspection, we find that the maximum payoff function cannot have that 
property, and the contradiction implies that implementing the efficient outcome must be 
impossible. 

The McAfee-McMillan weak cartels theorem examines what members of a cartel can 
achieve for themselves when the members are unable to make cash transfers among 
themselves. By the envelope formula, there is an exact correspondence between the 
allocation performance that the cartel implements and the payoffs that the members 
achieve. Examination of the payoff formula leads to a simple answer when a certain 
increasing hazard rate condition is satisfied. Then, the random mechanisms, in which the 
item is allocated to cartel members according to some pre-specified probabilities, form a 
Pareto-dominating class: any other mechanism leads to expected payoffs that are weakly 
lower for every bidder than the expected payoffs of some random mechanism.  

Weber’s martingale theorem examines a sequence of auctions when bidders want to 
acquire just one unit. By Myerson’s lemma, at the start of each auction, the expected 
price for each item must be the expectation of the Vickrey price, given the bidders’ 
information. This leads to the conclusion that the sequence of prices must form a 
martingale.  

Last, to highlight that the envelope analysis applies to models where the various 
lemmas fail, we establish a payoff equivalence result for risk averse bidders with constant 
absolute risk aversion. The failure of the revenue equivalence theorem for this model 
establishes that the payoff equivalence result is distinct from revenue equivalence. 
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Chapter 4:  
Bidding Equilibrium and Revenue Differences 

This chapter has two main purposes. The first is a technical one: showing how to 
identify candidate equilibrium strategies in a variety of auction forms and to verify 
whether the candidate strategies actually form an equilibrium. This part of the analysis 
uses various “single crossing conditions” extensively. Researchers have analyzed several 
different single crossing conditions; in this chapter we describe and relate these 
conditions and highlight their significance.  

The second purpose is to investigate the comparative performance of different auctions 
when some of the assumptions of chapter 3 do not hold. For example, we show in a 
“standard” symmetric single-good auction model, although expected revenues are the 
same for the first- and second-price auctions, revenues are riskier in the second-price 
auction. Consequently, a risk-averse seller prefers a first-price auction. In the same 
model, introducing bidder risk aversion prevents application of the revenue equivalence 
theorem and leads to higher average prices in the first-price auction than in the second-
price auction. Hence, bidder risk aversion also makes sellers favor the first-price auction 
design. In a procurement auction in which competitive bids determine prices but the 
buyer afterwards determines quantities, we show that first-price auctions yield lower 
prices than second-price auctions and that both bidders and buyers may favor the first-
price design. On the other hand, introducing a certain type of positive statistical 
dependence (“affiliation”) among the buyers’ types leads to the conclusion that prices are 
higher, on average, in a second-price or ascending auction.  

This chapter has four main subsections. The first explains and analyzes the single 
crossing conditions that are central to the entire chapter. The second uses these conditions 
to derive and verify equilibrium in different types of auctions. The third develops the 
most commonly used method for comparing revenues in auction models that depart from 
the standard model. The final subsection studies revenue-maximizing auctions in the one 
good case.  

4.1 The Single Crossing Conditions  
This section defines several kinds of single crossing conditions and shows the 

relationships among them. 

The term “single crossing condition” can cause confusion because different authors use 
it to mean different things. In the three most commonly used definitions, the domain of 
the function is either \ , 2\  or 3\ , while the range is always \ .  

The most basic definition applies to one-dimensional domains. Let the domain be any 
set { , }X ⊂ ∪ −∞ +∞\ . Then the function : { , }f → ∪ −∞ +∞\ \  satisfies the single 
crossing condition if for all t > t′, ( ) 0 ( ) 0f t f t′ > ⇒ >  and ( ) 0 ( ) 0f t f t′ ≥ ⇒ ≥ ; it 
satisfies the strict single crossing condition if for all t > t′, ( ) 0 ( ) 0f t f t′ ≥ ⇒ > . 
Intuitively, the strict single crossing condition holds when the function crosses zero only 
once, and only from below. The ordinary single crossing condition is similar, but it 
allows the possibility that the function intersects the x-axis along an entire interval, rather 
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than just at a single point. Thus, non-decreasing functions and increasing63 functions 
satisfy the ordinary and strict single crossing conditions, respectively. Figure 1 illustrates 
three other functions that satisfy strict single crossing.  

In this book, we use the one-dimensional property only as a building block for the 
higher dimensional conditions. Higher dimensional versions of the property are useful for 
the exercise known as sensitivity analysis or comparative statics analysis.  

We begin with the simplest kind of comparative statics analysis on a choice problem 
where the decision maker chooses a real variable x and the parameter is a real variable t. 
The objective is a function ( , )g x t  mapping a subset of 2\  to \ .  We shall say that g 
satisfies the “single crossing differences” condition or the “strict single crossing 
differences” condition if, for any 'x x> , the function defined by ( ) ( ', ) ( , )f t g x t g x t= −  
satisfies the corresponding one-dimensional single crossing condition. Thus, g satisfies 
single crossing differences if for all t > t′, ( , ) ( , ) 0 ( , ) ( , ) 0g x t g x t g x t g x t′ ′ ′ ′− > ⇒ − >  and 

( , ) ( , ) 0g x t g x t′ ′ ′− ≥ ⇒  ( , ) ( , ) 0g x t g x t′ − ≥ .  Figure 2 below illustrates these 
relationships for x x′ > .  

The following invariance property reveals some of the structure of the single crossing 
differences conditions. For any increasing function :h →\ \ , ( , )g x t  has the (ordinary 
or strict) single crossing differences property if and only if ( ( , ))h g x t  has the same 
property. This fact suggests several ways to verify the property. For example, if ( , )g x t  is 
differentiable, then if either one of the following two conditions holds for all ( , )x t , the 
single crossing differences property holds as well: 

 (i) 
2 ( , ) 0g x t

x t
∂

≥
∂ ∂

 or (ii) ( , ) 0g x t >  and 
2 log ( , ) 0g x t

x t
∂

≥
∂ ∂

.  

                                                 
63 “Increasing” means the same thing as “strictly increasing,” that is, ( ) ( )x y f x f y> ⇒ > . If the domain 
of f is only partially ordered, then x y>  means that x y≥  and x y≠ . 

Figure 1: These three functions all satisfy the strict single crossing condition. 
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Condition (i) implies single crossing differences because it implies that for any x x′> , 

the difference ( , ) ( , )g x t g x t′− =  1( , )
x

x
g s t ds

′∫  (where 1 /g g x= ∂ ∂ ) is non-decreasing in t 

and so crosses zero only once and only from below. To show that condition (ii) also 
guarantees single crossing differences, just set ( ) log( )h x x= .  

Conditions (i) and (ii) are both commonly used in auction theory. If x is the probability 
that a bidder wins an item, b(x) is what the bidder must bid to win with probability x, and 
t is his value for the item, then the bidder’s expected payoff is ( , ) ( )g x t xt xb x= − , which 
satisfies condition (i). If the bidder is not risk neutral, condition (i) does not apply, but 
condition (ii) does apply to a reformulated version of the bidder’s problem in which x is 
the amount bid and p(x) is the probability of winning. Then, the expected payoff is 

( , ) ( ) ( )g x t p x u t x= − . Without loss of generality, we may limit attention to bids for 

which ( ) 0u t x− > . On that domain, if the function log( ( ))z u z→  is concave, then 
( , )g x t  satisfies the second of the conditions listed above.  

Note that although the sufficient conditions cited are symmetric in the two arguments 
( , )x t , the single crossing differences conditions are not. For example, the condition that 
g is strictly monotonic (either increasing or decreasing) in x implies single crossing 
differences, but the condition that g is strictly monotonic in t does not.  

A slightly stronger version of the single crossing differences condition will help us 
conduct our analysis using integrals and derivatives. We use subscripts here to denote 
partial derivatives, letting 1( , ) /g x t g x= ∂ ∂  and 2 ( , ) /g x t g t= ∂ ∂ . A function g satisfies 
the “smooth single crossing differences” condition if it satisfies the single crossing 
difference condition and, in addition, has the property that for all x ∈\ , if 1( , ) 0g x t =  
then for all 0δ > , 1( , ) 0g x t δ+ ≥  and 1( , ) 0g x t δ− ≤ . The single crossing differences 
condition implies that for 0ε > , if ( , ) ( , ) 0g x t g x tε+ − = , then for all 0δ > , 

( ) ( ) ( ), ,f t g x t g x t′= −  

t

( ),g x t′

t

( ),g x t

Figure 2: The function g satisfies single crossing differences because, for x x′ > , 
the difference function f has the one-dimensional single crossing property. 
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( , ) ( , ) 0g x t g x tε δ δ+ + − + ≥ ≥ ( , ) ( , )g x t g x tε δ δ+ − − − . The smooth single crossing 
differences condition strengthens the ordinary condition by requiring that the preceding 
inequality hold even when ε is infinitesimal.  

4.1.1 The Monotonic Selection Theorem  
The next three theorems summarize important, general consequences of the single 

crossing differences conditions. The first is a theorem from Milgrom and Shannon 
(1994). Following our earlier practice, we limit the parameter space to [0,1]. 

Theorem 4.1 (Monotonic Selection).64 The function : [0,1]g × →\ \  satisfies the strict 
single crossing differences condition if and only if for every finite65 set X ⊂ \ , every 
optimal selection *( , )x t X ∈ arg max ( , )x X g x t∈  is non-decreasing in t.  

Proof. We first show that if g satisfies the strict single crossing differences condition, 
then every optimal selection is non-decreasing.  Let x be a selection from 
arg max ( , )x X g x t∈ ; let t0<t1; and take *

0 0( , )x t X x=  and *
1 1( , )x x t X= . Optimality 

implies that 0 0 1 0( , ) ( , ) 0g x t g x t− ≥  and 0 1 1 1( , ) ( , ) 0g x t g x t− ≤ . These two inequalities and 
strict single crossing differences imply that 1 0x x≥ . Hence, the condition implies that the 
selection *x  is non-decreasing in t.  

Next, we show that if g does not satisfy the strict single crossing differences condition, 
then there is some optimal selection that is not non-decreasing. Suppose that the strict 
single crossing differences condition does not hold. Then there is some 0 1t t<  and 0 1x x>  
such that that 0 0 1 0( , ) ( , ) 0g x t g x t− ≥  and 0 1 1 1( , ) ( , ) 0g x t g x t− ≤ . Since the statement of 
the theorem must hold for every finite set X, consider 0 1{ , }X x x= , and let 

* *
0 0 1 1( , ) ( , )x t X x x x t X= > = . Then, the optimal selection *( , )x Xi  is decreasing.  ■   

As we have seen, single crossing conditions sometimes hold in auction models. In a 
typical application, t will be the bidder’s type and x will be some other variable, such as 
the probability of winning or the amount bid. The single crossing condition then implies 
that the probability of winning, or the bid itself, must be a nondecreasing function of the 
bidder’s type.  

4.1.2 The Sufficiency Theorem 
The sufficiency theorem connects single crossing ideas with ideas used in the envelope 

theorem to provide a useful tool for the analysis of equilibria in auctions.  

The envelope theorem and the monotonic selection theorem imply that, under certain 
conditions, if *( ) ( )x t X t∈ = arg max ( , )x X g x t∈ , then (1) ( ( ), )g x t t  satisfies the envelope 
integral formula and (2) x  is a nondecreasing function. The next theorem turns this 

                                                 
64 There is also a version of the monotonic selection theorem establishing the equivalence between the weak 
single crossing condition and the existence of some monotonic selection. See Milgrom and Shannon 
(1994).  
65 We limit attention to finite sets to ensure that the maximum exists so that the selection is well defined.  
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around. Under a different set of assumptions, conditions (1) and (2) imply that 
*( ) ( )x t X t∈ =  arg max ( , )x X g x t∈ .  

One of these assumptions is a regularity condition. Recall that any nondecreasing 
function x  can be discontinuous only at its jumps. So, x  can be expressed as 

J Cx x x= + : the sum of a jump function and a continuous function. We denote the jump 
function by 

,
( ) ( )J t J s t

x t sλ−∈ ≤
= +∑  

,
( )

t J s t
sλ+∈ <∑  where ( )sλ−  and ( )sλ+  are the sizes of 

the left- and right-hand jumps at s, and we denote the continuous function by Cx .  

Any nondecreasing function x  is differentiable almost everywhere. It will be 
convenient below to let ( )x t′  denote the derivative where it exists and to set ( ) 0x t′ =  
elsewhere. The regularity condition for the next theorem is that the continuous part of x  

is absolutely continuous. Therefore, for all t and t̂ , 
ˆ

ˆ( ) ( ) ( )
t

C C t
x t x t x s ds′− = ∫ . Although 

the regularity condition excludes functions like the Cantor function that are continuous 
but not absolutely continuous, it covers all of the functions that we will encounter below.  

Theorem 4.2 (Sufficiency). Suppose that ( , )g x t  is continuously differentiable and has 
smooth single crossing differences. Further suppose that J Cx x x= + , where Jx  is a jump 
function (as described above) and Cx  is absolutely continuous. If 

(1) ( )x t  is non-decreasing and 

(2) the envelope formula holds: 2
0

( ( ), ) ( (0),0) ( ( ), )
t

g x t t g x g x s s ds− = ∫ ,   

then ( )x t  is a selection from *( ) arg max ( , )x XX t g x t∈= .  

Proof. Since x  is nondecreasing, for all t, ˆ
ˆlim ( ) ( ) ( ) ( )t t x t x t x t x t+ −↓ ≡ ≥ ≥  

ˆ
ˆlim ( )t t x t↑≡ . Let J denote the set of jump points of x  and consider s J∈ . By (2), 

( ( ), )g x t t  is continuous, so ( ( ), ) ( ( ), ) ( ( ), )g x s s g x s s g x s s+ −= = . By single crossing, for 
all t s> , ( ( ), ) ( ( ), ) ( ( ), )g x s t g x s t g x s t− +≤ ≤  and for all t s< , ( ( ), ) ( ( ), )g x s t g x s t− ≥ ≥  

( ( ), )g x s t+ .  

If s J∉ , then x  is continuous at s. Hence, by condition (2) of the theorem, 
2( ( ), ) ( ( ), )d

ds g x s s g x s s= . Applying the chain rule, 2( ( ), ) ( ( ), )d
ds g x s s g x s s= +  

1( ( ), ) ( )g x s s x s′ . So, either 1( ( ), ) 0g x s s =  or ( ) 0x s′ =  (which includes, by convention, 
the possibility that x  is not differentiable at s). In the former case, by smooth single 
crossing differences, for all t s> , 1( ( ), ) 0g x s t ≥  and for all t s< , 1( ( ), ) 0g x s t ≤ . Since 

( ) 0x s′ ≥ , it follows that for t s> , 1 1( ( ), ) ( ) ( ( ), ) ( )g x s t x s g x s s x s′ ′≥  and the reverse 
inequality holds for t s< .  

So, for ˆt t> , 
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( )

( ) ( )

( )

( )

1
ˆ,ˆ

1
ˆ,ˆ

ˆ( ( ), ) ( ( ), )

( ( ), ) ( ) ( ( ), ) ( ( ), )

ˆ ˆ( ( ), ) ( ( ), ) ( ( ), ) ( ( ), )

( ( ), ) ( ) ( ( ), ) ( ( ), )

( ( ), ) ( ( ), ) (

t

s J t s tt

t

s J t s tt

g x t t g x t t

g x s t x s ds g x s t g x s t

g x t t g x t t g x t t g x t t

g x s s x s ds g x s s g x s s

g x t t g x t t g x

+ −
∈ < <

− +

+ −
∈ < <

− +

−

′= + −

+ − + −

′≥ + −

+ − +

∑∫

∑∫
( )ˆ ˆ ˆ ˆ( ), ) ( ( ), ) 0.t t g x t t− =

 (4.1) 

where the inequality holds for each term of the integrand and summand. Similarly, for 
ˆt t< ,  

 
( )

( ) ( )

ˆ

1
ˆ,

ˆ( ( ), ) ( ( ), ) ... ( ( ), ) ( ) ( ( ), ) ( ( ), )

ˆ ˆ ˆ ˆ( ( ), ) ( ( ), ) ( ( ), ) ( ( ), ) 0.

t

s J t s tt

g x t t g x t t g x s s x s ds g x s s g x s s

g x t t g x t t g x t t g x t t

+ −
∈ < <

+ −

′− = ≤ + −

+ − + − =

∑∫  

Hence, ˆ( ( ), ) ( ( ), )g x t t g x t t≤  for all ˆ,t t .  ■ 

Necessity of “Smooth” Single Crossing 
This subsection establishes we can generally dispense with the extra assumption of 

“smooth” single crossing differences only when the choice set is discrete.  

In the proof of theorem 4.2, we analyze the jump and continuous parts of x  separately. 
The jump part corresponds to the sums in (4.1) and the continuous part corresponds to the 
integrals. The analysis of the jumps requires only the ordinary single crossing differences 
condition. Therefore, the conclusion of the theorem applies to discrete choice sets under 
this assumption, regardless of whether the objective function satisfies smooth single 
crossing.  

We use an example to establish that ordinary single crossing differences is not 
sufficient when the choice set is [0,1]. Let 2: [0,1]g → \  be given by 3( , ) ( )g x t x t= − . 
Since g is increasing in x, it satisfies strict single crossing differences. Consider the 
function ( )x t t= , which is increasing and continuously differentiable. Observe that 

( ( ), )g x t t  satisfies the envelope formula, because 2( ( ), ) 0 ( ( ), )g x t t g x t t= = . Moreover, 
since 3max ( , ) (1 ) 0g x t t= − >  for 1t < , it follows that *( ) ( )x t X t∉ . So, weakening the 
assumption of theorem 4.2 to strict single crossing would invalidate the theorem.  

According to theorem 4.2, the fact that *( ) ( )x t X t∉  must imply that some condition of 
the theorem fails, so the function g must not satisfy smooth single crossing. For 
completeness, we verify that, as follows: for t̂ t< , 2

1 1
ˆ ˆ( ( ), ) 3( ) 0 ( ( ), )g x t t t t g x t t= − > = .  

4.1.3 The Constraint Simplification Theorem 
In mechanism design, we sometimes want to identify as completely as possible the set 

of performance functions that can be implemented. If the payoff function satisfies the 



 

 78  

Good 2

Good 1

Figure 3: In the traditional consumer theory, where the consumer has 
convex preferences and faces a straight line budget set, a steeper 
indifference curve leads to more consumption of the first good.  

New indifference curve 

Old indifference curve 

strict single crossing differences condition and the integrable bound condition, then the 
monotonic selection theorem and envelope theorem establish that conditions (1) and (2) 
above—monotonicity and the envelope formula—are necessary conditions for optimality. 
According to the sufficiency theorem, a different set of assumptions implies that they are 
sufficient. In models where all of the relevant assumptions hold, conditions (1) and (2) 
are necessary and sufficient for optimality. This fact characterizes the set of feasible 
performance functions.  

Theorem 4.3 (Constraint Simplification). Suppose that the function : [0,1]g × →\ \  is 
continuously differentiable and satisfies the strict and smooth single crossing differences 
properties. Further suppose that there is an integrable function ( )b t such that 

2sup | ( , ) | ( )x g x t b t≤ . Let :[0,1]x →\  have range X and suppose that J Cx x x= + , where 

Jx  is a jump function and Cx  is absolutely continuous. Then ( )x t  is a selection from 
*( )X t =  arg max ( , )x X g x t∈  if and only if the following two additional conditions are 

satisfied:  

(3) ( )x i  is non-decreasing  

(4) the envelope formula holds: 20
( ( ), ) ( (0),0) ( ( ), )

t
g x t t g x g x s s ds− = ∫ . 

The constraint simplification theorem has been a workhorse of optimal mechanism 
design, because it characterizes the performance functions ( )x t  a mechanism can 
implement when the participants act optimally, in their own interests. We will see such 
applications later in the chapter.  
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4.1.4 “Mirrlees-Spence” Representation Theorem 
There is a long tradition in consumer theory of evaluating the change in a rational 

consumer’s choice from a budget set as his preferences shift. For example, if the 
consumer’s indifference curve becomes steeper, then he will generally elect to consume 
more of the good on the horizontal axis (Figure 3). Given a parameterized utility function 

( , , )U x y t  for a two-dimensional goods space, indifference curves are steeper with 
increases in t when their slope 1 2/ ( , , ) / ( , , )dy dx U x y t U x y t= −  is increasing in t.  

Precisely the same mathematical condition arose again in the celebrated optimal 
taxation and signaling analyses by James Mirrlees (1971) and A. Michael Spence (1973). 
The main analytical difference between the Mirrlees and Spence models and their 
predecessors is that the choice set is not limited to a budget set—a line segment—but can 
take more general shapes, as shown below. Even so, a steeper indifference curve still 
induces greater consumption of the good on the horizontal axis (Figure 4).  

This mathematical condition—that the indifference curve through any point becomes 
steeper with increases in t—implies that two indifference curves corresponding to 
different types can cross only once. Indeed, if an indifference curve for type t>t′ were to 
cross the t′-curve twice, then there must be one crossing from above and one crossing 
from below, violating the assumption that the t-curve is steeper than the t′-curve at any 
point of crossing. This property that indifference curves cross once is the reason that the 
Mirrlees-Spence condition is often called a “single crossing condition.”  

In simple bidding models, choice occurs in a one-dimensional space: the bidder 
chooses a bid. However, the bid determines a two-dimensional outcome—a price and 
allocation of the good. This fact creates a close connection between the single crossing 

Good 2

Good 1

Old indifference curve

New indifference curve 

Figure 4: Even with the non-convex choice set, steeper indifference 
curve still leads to more consumption of the first good. 
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conditions for one- and two-dimensional choice problems. The next result summarizes 
this connection.66  

Theorem 4.4 (Mirrlees-Spence Representation). Suppose that  

(i) 3:h →\ \ is twice continuously differentiable function with 2 0h ≠  and 1| |h  
bounded, and  

(ii) for every 4( , , , )x x y t′ ∈\ , there exists y′∈\  such that ( , , ) ( , , )h x y t h x y t′ ′ = .  

Then, the following are equivalent: 

(1) h satisfies the Mirrlees-Spence condition, that is, for all ,x y ∈\ , 

1 2( , , ) / | ( , , ) |h x y t h x y t  is nondecreasing in t.   

(2) For every continuously differentiable function f, the function 2:fg →\ \  
defined by ( , ) ( , ( ), )fg x t h x f x t=  satisfies the smooth single crossing 
differences condition.  

Proof. To show (2) (1)⇒ , fix ˆˆ ˆ, ,x y t ∈\ . Set ˆ ˆ( ) ( )f z y z xα= + −  where 

1 2
ˆ ˆˆ ˆ ˆ ˆ( , , ) / ( , , )h x y t h x y tα = − . Then, 1 1 2

ˆˆ( , ) 0fg x t h hα= + = . So, smooth single crossing 

implies that 1
ˆ1 2

2 ˆ

ˆ ˆ( , , )ˆ ˆ ˆ0 ( , ) ( , , )
ˆ ˆ( , , )

f
t t

t t

h x y tg x t h x y t
t t h x y t

α=

=

  ∂ ∂
≤ = +  ∂ ∂   

 

1
2

2 ˆ

ˆ ˆ( , , )ˆ ˆ( , , ) 0
ˆ ˆ( , , )

t t

h x y th x y t
t h x y t

α
=

  ∂
= + +  ∂   

, which implies that h satisfies the Mirrlees-

Spence condition.   

To show (1)⇒(2), we first show that (1) implies fg  has single crossing differences. 
Let :f →\ \  be an arbitrary function. Suppose x̂ x> � , ˆ ˆ( )y f x= , and 

ˆ ˆ( , , ) ( , , )h x y t h x y t≥� �� � . We must show that for any t t> � , ˆ ˆ( , , ) ( , , )h x y t h x y t≥ � � .  

Suppose not. Since h is continuous in t, there exists ˆ [ , )t t t∈ �  such that 
ˆ ˆˆ ˆ( , , ) ( , , )h x y t h x y t= � � . Let ˆ{( ( ), ( )) | [ , ]}x s y s s t t∈ �  satisfy ( ) ( )x s x s tλ= + − ��  where 

ˆˆ( ) /( ) 0x x t tλ = − − >��  and, for all s, define ( )y s  so that ˆ ˆ( ( ), ( ), ) ( , , )h x s y s t h x y t= � � . By 
assumption, such a function y(s) exists. Then, ( )x s λ′ =  and  

 2 1
ˆ ˆ( ( ), ( ), ) ( ( ), ( ), )dy dxh x s y s t h x s y s t

ds ds
= −  or 1

2

ˆ( ( ), ( ), )
ˆ( ( ), ( ), )

dy dx h x s y s t
ds ds h x s y s t

= −  

Define 2 2( , , ) / | ( , , ) | 1h x y t h x y tσ = = ±� �� � � � . Then, since ˆ ˆ( )x t x=  and ( )x t x=� � ,  

                                                 
66 For additional development of the relationship between single crossing conditions and the Mirrlees-
Spence condition, see Milgrom and Shannon (1994), Edlin and Shannon (1998a), Edlin and Shannon 
(1998b).   
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ˆ

1 2

ˆ
1

2
2

1

2

ˆ ˆ( , , ) ( , , ) ( ( ), ( ), )

[ ( ( ), ( ), ) ( ( ), ( ), ) ]

( ( ), ( ), ) | ( ( ), ( ), ) |
| ( ( ), ( ), ) |

ˆ( ( ), ( ), )
ˆ| ( ( ), ( ),

t
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t
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t

dh x y t h x y t h x s y s t ds
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dx dyh x s y s t h x s y s t ds
ds ds

h x s y s t dy h x s y s t ds
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λ

− =

= +

 
= + ⋅ 

 

≥

∫

∫

∫

�

�

�

� �

ˆ

2| ( ( ), ( ), ) |
) |

0

t

t

dy h x s y s t ds
ds

σ
 

+ ⋅ 
 

=

∫
�

 (4.2) 

Since / 0dx ds > , the inequality in (4.2) follows from (1) (because the integrand is 
everywhere larger with functions evaluated at t). The final equality follows because, by 
construction, the integrand is everywhere zero.  

We now show fg  has the smooth single crossing differences property. Suppose that f 
is differentiable and ( , ( ), ) / 0dh x f x t dx = . Suppose 2 0h > everywhere and consider any 
t̂ . Then, ˆ( , ( ), ) /dh x f x t dx =  1 2

ˆ ˆ( , ( ), ) ( , ( ), ) ( )h x f x t h x f x t f x′+  which has the same sign 
as 1 2

ˆ ˆ( , ( ), ) / ( , ( ), ) ( )h x f x t h x f x t f x′+ , which is greater or less than 

1 2( , ( ), ) / ( , ( ), ) ( ) 0h x f x t h x f x t f x′+ =  as t̂  is greater or less than t. Accordingly, fg  has 
the smooth single crossing property when 2 0h >  and a similar argument holds when 

2 0h < .  ■  

Condition (ii) of the theorem asserts that the second good is sufficiently important that 
it can be used to compensate for any change in quantity of the first good. This condition 
is satisfies in all existing auction models and in any model where ordinal preferences are 
quasi-linear. For quasi-linar models, the Mirrlees-Spence condition takes a particularly 
simple form.  

Theorem 4.5 The function ( , , ) ( , )h x y t y g x t= +  satisfies the Mirrlees-Spence 
condition if and only if ( , ) /g x t x∂ ∂  is increasing in t.  

The condition that ( , ) /g x t x∂ ∂  is increasing in t is a differentiable version of the 
condition known as “increasing differences” or “isotone differences.”  The function g has 
increasing differences when for all 'x x>  and ' ,t t>  

 ( , ) ( , ) ( , ) ( , )g x t g x t g x t g x t′ ′ ′ ′− > −  (4.3) 

This condition is stronger than single crossing differences because the latter requires only 
that the left-hand side of (4.3) must be positive whenever the right-hand side is. The 
increasing differences condition is useful both in our analysis and in comparative statics 
generally.  
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4.2 Deriving and Verifying Equilibrium Strategies 
In this section, we use the preceding theorems to derive the equilibrium strategies for a 

class of auctions in which the highest bidder wins.67 In the first few games that we study, 
a bidder who bids b gets an expected payoff of 

 ( ) ( ) ( )i i i iX b v t p b− , (4.4) 

where vi(ti) is i’s value and X 
i(b) and pi(b) are, respectively, the bidder’s probability of 

winning and expected payment when  he makes a bid of b. If vi is differentiable and 
( )i itβ  is the bid that maximizes (4.4), then we may define ( ) ( ( ))i i i i ix t X tβ= . 

Suppressing the bidder superscript i, the envelope integral formula implies that the payoff 
of a bidder of type t satisfies:  

 
0

( ) (0) ( ) ( )
t

V t V v s x s ds′= + ∫ . (4.5) 

We may assume without loss of generality that ( )v i  is nondecreasing68, which implies 
that the payoff (4.4) has single crossing differences. If ( )v i  is increasing, then the payoff 
has the strict single crossing differences property, so the bidder’s probability of winning 
is necessarily nondecreasing in his type. If a bidder can win only by making the highest 
bid, then by the monotonic selection theorem, any bidder’s optimal bid function must be 
nondecreasing.  

The first few examples all employ the auction model that has been most intensively 
studied and most often incorporated into other analyses—the symmetric, risk-neutral 
independent private values model, which we will sometimes call the “benchmark” or 
standard model. In this model, there are N bidders, indexed by n, and a single item for 
sale.69 The types are assumed to be statistically independent and identically distributed 
according to some continuous density. A bidder who acquires nothing but pays a price p 
has payoff –p; a bidder of type t who acquires the good enjoys a payoff of ( )v t p− . 
Bidders are risk neutral.  

The above formulation is redundant. We can specify a completely general model by 
setting ( )v t t=  and eliminating v from the model. Alternatively, without loss of 
generality, we can specify that each type is uniformly distributed on [0,1] and impose any 
increasing distribution F of bidder values by setting 1( )v F t−= . The first approach is 
more common in the literature. The second approach using distributional strategies has 
two advantages: (1) it easily generates predictions about bid distributions for use in 
empirical work and (2) it unifies analysis of models with discrete or continuous value 
distributions.70 In this chapter, we maintain flexibility by allowing the types to have any 

                                                 
67 Klemperer (2002) suggests a similar procedure for deriving equilibria in certain games related to auction 
games.  
68 If v were not nondecreasing, we could re-label the types to make it so.  
69 The following analysis generalizes to cases with multiple items for sale provided that each bidder is 
limited to winning at most a single item. 
70 For more about this approach, see Milgrom and Weber (1985).  
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distribution F on [0,1] with a corresponding density f and each bidder’s value to be any 
differentiable, nondecreasing function of the bidder’s type.  

4.2.1 The Second-Price Auction with a Reserve Price 
A useful standard with which to compare other auctions in this section is a variation of 

Vickrey’s second price auction in which the seller sets a minimum acceptable bid or 
“reserve price” of r. The auction then determines the allocation just as if the seller had 
bid r. If no other bid exceeds r, the item remains with the seller; otherwise, the highest 
bidder acquires the item for a price equal to the second highest actual bid, or for the price 
of r if  exceeds the second highest bid.  

As in chapter 2, bidders in this model have dominant strategies: each bidder always 
finds it best to bid his value for the item. If t(1) and t(2) denote the highest and second-
highest types, then the dominant strategy leads to a price of max[v(t(2)),r] if v(t(1)) > r, and 
otherwise to no sale. These strategies constitute a Bayes-Nash equilibrium, for any 
distribution of types.  

In the Vickrey auction, neither the seller’s nor the bidders’ equilibrium payoffs 
depends on the tie-breaking rule. Nevertheless, since ties are possible if v is not strictly 
increasing, it will prove convenient to compute payoffs in the event of ties as if the 
winner is the bidder with the highest type.  

4.2.2 The Sealed Tender or “First-Price” Auction 
Following Vickrey’s introduction of the “second-price” sealed-bid auction, it became 

common for economists to refer to standard sealed-bid auctions as “first-price” auctions. 
These are simply sealed-bid auctions in which the highest bid wins and the highest 
bidders pays a price equal to his bid. Alternatively, if the bidders are sellers, a standard 
sealed-bid auction is one in which the low bidder wins and receives the corresponding 
price.71 For simplicity, we assume that if two or more bidders make the same highest bid, 
then the item is awarded to one of the high bidders, at random. In addition, we introduce 
a reserve r so that no award is made unless some bid exceeds r.  

We look for a symmetric equilibrium in this auction, that is, a strategy 
:[0,1] {0} ( , )rβ → ∪ ∞  such that the symmetric strategy profile (β,…,β) is a Nash 

equilibrium. A bidder who does not meet the reserve price is said to bid zero. Let us 
assume that there is some ˆ (0,1)t ∈  such that ˆ( )v t r= , that is, the reserve is more than 
some possible types would be willing to pay but less than others would be willing to pay.  

A preliminary analysis sharply limits the set of potential equilibrium strategies.72 
Observe, first, that it is a dominant strategy for a bidder with value ( )v t r<  to bid 0. For 
bidders with ( )v t r> , it is a dominated to bid less than r or more than ( )v t . Moreover, 

                                                 
71 Mathematically, there these two cases are indistinguishable. A bid to sell can be modeled as an exchange 
at a negative price. In that case, the “high bid” is the one closest to zero, so the same theory applies. In 
some actual auctions of packages of contract obligations, it is unclear whether the package has positive or 
negative value, so any practical distinction between buying and selling blurs as well.  
72 Griesmer, Levitan and Shubik (1967) pioneered preliminary analysis of this sort, restricting the range of 
functions that can be equilibrium bidding functions.  
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there are no symmetric equilibria in which players make dominated bids with positive 
probability. For example, if there were an interval of types with ( )v t r<  that bid r or 
more, then the event that every bidder’s type lies in that interval would have positive 
probability. But then, types in this interval would have negative expected payoffs 
(negative payoffs in the identified event and zero payoffs in the complementary event). 
Negative expected payoffs are inconsistent with equilibrium since every bidder can earn 
zero simply by bidding zero.  

In a symmetric equilibrium, higher bids necessarily entail a strictly higher probability 
of winning. If v is increasing, then the payoff function satisfies the strict single crossing 
differences property, so the monotonic selection theorem implies that any symmetric 
equilibrium strategy β is non-decreasing.  

More strongly, any symmetric equilibrium bid function β must be strictly increasing on 
the sub-domain of types for which ( )v t r> . If it were not, then the auction would end in a 
tie with probability 0ε > , with several bidders bidding the same amount b r>  and each 
strictly preferring to win at price b. In that case, a bidder planning to bid b could increase 
his expected payoff by bidding slightly more, say b b′ > . This change would increase his 
probability of winning by ε at a cost of at most b b′ − , which can be chosen to be 
arbitrarily small, proving that the original candidate strategy is not an equilibrium.  

With an increasing symmetric equilibrium strategy, the bidder with the highest type 
wins, provided his value for the good exceeds r. Consequently, the decision performance 
of this auction is the same as that of the Vickrey auction with a reserve price r. Since both 
auctions also produce an equilibrium payoff of zero to a bidder of type 0, Myerson’s 
lemma implies that the expected payoffs of all types must be identical in the two 
auctions. Thus, the only possible symmetric equilibrium strategy is the one that makes 
the expected payments in the two auctions the same for all types ˆt t> . We analyze the 
case of bidder #1 of type 1 ˆt t t= > , introducing the notation 2max( ,..., )NT t t= . If all 
bidders adopt the increasing equilibrium strategy, β, then bidder 1’s expected payment 
must satisfy: 

 

{ }
1

1 1

ˆ

1 2

ˆ

( ) ( ) [max( , ( ))1 ]

ˆ( ) ( ) ( )

ˆ ˆ( ) ( ) ( )( 1) ( ) ( )

N
T t

t
N N

t
t

N N

t

t F t E r v T

r F t v s dF s

v t F t v s N f s F s ds

β −
<

− −

− −

=

= ⋅ +

= + −

∫

∫

 (4.6) 

In the first line of (4.6), the expression on the left-hand side is the expected payment by 
bidder #1 in the first-price auction: it pays β(t) when it wins and 0 otherwise, and it wins 
when the N–1 types t2,…,tN are all less than bidder #1’s realized type, which occurs with 
probability 1( )NF t− . The expression on the right-hand side is the corresponding expected 
payment in a Vickrey auction: the bidder in such an auction wins when T t<  and pays 
max( , ( ))r v T .  
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Provided that v is increasing, equation (4.6) identifies the unique candidate for the 
equilibrium strategy. By Theorem 4.6, the strategy is a symmetric equilibrium strategy.  

Theorem 4.6. In the benchmark model, (with symmetric, risk neutral bidders with 
independent private values), the strategy given by ( ) 0tβ =  for ˆt t<  and otherwise by  

 
1 2

1 1
ˆ

ˆ( ) ( ) ( )ˆ( ) [max( , ( )) | ] ( ) ( 1) ( )
( ) ( )

tN N

N N
t

F t f s F st E r v T T t v t N v s ds
F t F t

β
− −

− −= < = + − ∫  

is a symmetric equilibrium strategy. If v is increasing, it is the unique symmetric 
equilibrium strategy.  

Remarks. This theorem applies whether values are discretely or continuously 
distributed. Suppose bidders have values of 5 or 10, each with probability ½. To model 
this case,let v be any smooth, nondecreasing function with 1 1

4 2( ) 5 for ( , )v t t= ∈  and 
3

4( ) 10 for ( ,1)v t t= ∈  and let F be the uniform distribution on 31 1
4 2 4( , ) ( ,1)∪ . One can 

model any discrete distribution of values in a similar manner. These constructions meet 
the requirements that F have a corresponding density f and that v be non-decreasing and 
differentiable.  

When v is not strictly increasing, the distribution of values may have an atom. Despite 
the possibility of an atom in the distribution of values, the distribution of bids is still 
atomless and still has a density. Effectively, β then describes a mixed strategy, 
incorporating instructions for how a bidder should randomize. If for types t and t’, 

( ) ( )v t v t′= , then the bidder is indifferent between bidding ( )tβ  or ( )tβ ′  in each case, so 
the best replies and equilibrium are not unique.  But when the distribution of values has 
an atom, distinct equilibrium bidding strategies differ only in the ways they resolve 
bidders’ indifferences. 

Proof of Theorem 4.6. By construction of the equilibrium strategies, the corresponding 
payoffs satisfy the envelope condition and we have already observed that weak single 
crossing always applies. Since the identified strategy is nondecreasing, the sufficiency 
theorem implies that no bidder of any type has a better reply among bids in the range of 
the bid function. Next, we consider bids outside that range.  

Since the strategy implied by (4.6) is continuous and increasing on ˆt t≥ , the range of 
the bid function is the interval [ , (1)]r β . By definition, the only permissible bid lower 
than r is 0, so the only permissible bids possibly outside the range of the bid function are 
bids of zero or (1)b β> . The first of these is never a profitable deviation, because it earns 
a payoff of zero Any bid (1)b β>  wins with probability one given that all bidders play 
their equilibrium strategy and generates a payoff of ( ) ( ) (1)v t b v t β− < − , so it is less 
profitable than bidding (1)β . Hence, ( )tβ is a best reply on the whole set of permitted 
bids.  

If v is increasing, then our previous arguments, together with the monotonic selection 
theorem, imply that the equilibrium β must be increasing. Then the envelope condition, 
which is necessary for optimality, can be written in the form (4.6), so any symmetric 
equilibrium strategy must coincide with the one we have identified.  ■   
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The proof consists of two parts, both of which are indispensable. One part verifies that 
there is no profitable deviation in the range of the equilibrium bid function β. The other 
verifies that bids outside the range of β cannot lead to higher expected payoffs than bids 
in the range. To see why this latter step is essential, consider the strategy according to 
which every type of every bidder bids 10. This is a monotonic strategy and the 
corresponding payoffs satisfy the envelope condition. Each type of each bidder is 
maximizing its profits over bids in the range of the bid function, because that range is a 
singleton. Yet, this is not an equilibrium, because some bidder types would do better to 
bid more than 10 and others would do better to bid less.  

Next we turn to a question about the empirical implications of auction theory. Laffont, 
Ossard and Vuong (1995) investigated the consistency of empirical distributions of bids 
with equilibrium bidding behavior. Given data about the distribution of bids, when can 
we find a distribution of values (or, equivalently, a function v) that  would produce 
equilibrium bidding consistent with the observed outcome? For this analysis, it is 
convenient to use the distributional strategy formulation, taking F to be the uniform 
distribution on [0,1].  

Theorem 4.7. A distribution of bids G with corresponding density G′>0 is consistent 
with the equilibrium in the benchmark model with r = 0 for some increasing value 
function v and a uniform distribution of types if and only if ( )1

1 ( )
G b

N G bb ′−+  is an increasing 
function of b for b ≥ 0. In that case, the value function that is consistent with G is 

1
1

1( ) ( )
1 ( ( ))

tv t G t
N G G t

−
−= +

′−
.  

Proof. Differentiating the equilibrium strategy equation (4.6) with respect to t we 
obtain: 

 
1 2 2( ) ( ) ( 1) ( ) ( ) ( ) ( )( 1) ( ) ( )N N Nt F t N t F t f t v t N F t f tβ β− − −′ + − = −  

Using the assumption that types are uniformly distributed on [0,1], we obtain: 

 1 2 2( ) ( 1) ( ) ( )( 1)N N Nt t N t t v t N tβ β− − −′ + − = −  

or 

 ( )( ) ( )
1

t tv t t
N
β β

′
= +

−
 

Substituting ( )t G b=  and ( )b tβ=  leads to: 

 1 ( )( ( ))
1 ( )

G bv G b b
N G b

= +
′−

 (4.7) 

Since v and G are increasing functions, the right-hand side must necessarily be increasing 
as well. 

Conversely, suppose the right-hand side expression in (4.7) is increasing in b. Then, 

one can use (4.7) to calculate 1
1

1( ) ( )
1 ( ( ))

tv t G t
N G G t

−
−= +

′−
, which is increasing in t 
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since ( ( ))v G b  is increasing. To recover (4.6), we simply reverse the steps.  Substituting 
( )t G b=  and ( )b tβ= , we have 

 

1( ) ( )
1 ( ( ))

1 ( ) ( )
1

tv t t
N G t

t t t
N

β
β

β β

= +
′−

′= +
−

 

where we obtain the second equality by differentiating the expression ( ( ))t G tβ=  with 
respect to t: 1 ( ) ( )G b tβ′ ′= . It follows that β is the equilibrium bid function 
corresponding to v when 0r = .  ■73  

Laffont et al. (1995) used the inversion technique above to estimate the distribution of 
values that is consistent with bids in an oral auction of eggplants in a marketplace in 
southern France.  Much of the structural econometric literature on auctions proceeds in a 
similar manner.  See Laffont (1997) for a survey of this work.  

4.2.3 The War of Attrition Auction 
The “war of attrition” auction was initially developed as a model of competition 

between two animals of the same species for food or a mate. The same model has also 
been used to analyze economic phenomena, such as exit in oligopoly (Fudenberg and 
Tirole (1986)) and disputes over government budgets (Alesina and Drazen (1991)).  

In the biological version of the model, two hungry animals fight over food until one of 
them gives up and retreats. The battle is costly to both because it demands energy and 
imposes a risk of injury. A strategy for each animal specifies how long to fight before 
giving up, which we may call the animal’s “bid,” b. The animal that makes the higher 
bid, max(b1, b2), wins. The fight lasts until time 1 2min( , )b b , when one animal quits. Both 
animals pay 1 2min( , )b b , which is the cost of time spent in battle.  

Animals differ in how hungry they are, that is, in how much they value winning the 
contest, so each chooses a bid depending on its type. If each animal optimizes against the 
strategies played by the others in the population, then the population strategy will be a 
function : [0,1]β → \  that is a symmetric equilibrium of the game.  

In view of the interpretations, we set the reserve price in the all-pay auction game to 
zero. Then, arguing as for the first-price auction, the equilibrium strategy β must be an 
increasing function of the bidder type. A bidder of the lowest type must expect always to 
lose, so he must bid zero at any equilibrium, for otherwise he could benefit by deviating 
and changing his bid to zero. Hence, by Myerson’s lemma for the case N=2, any pure 
strategy equilibrium must equate a bidder’s expected payment in the both-pay auction 
with his expected payment in a Vickrey auction with no reserve price:  

                                                 
73 One can extend Theorem 4.6 to cover cases in which r > 0 and cases in which both ( )v i  and ( )1

1 ( )
G b

N G bb ′−+  
are nondecreasing, rather than strictly increasing.  
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 ( )
0 0

( ) ( ) 1 ( ) ( ) ( ) ( )
t t

WA WAs f s ds F t t v s f s dsβ β+ − =∫ ∫  (4.8) 

The left-hand side is the bidder’s total expected payment in a both-pay auction, which is 
the sum of his expected payment when he wins and his expected payment when he loses.  
The right-hand side is his expected payment in a Vickrey auction with zero reserve and 
N=2. Differentiating both sides of (4.8) with respect to t yields:  

 ( )1 ( ) ( ) ( ) ( )WAF t t v t f tβ ′− = . 

Equation (4.8) always implies that (0) 0WAβ = , so the unique solution is: 

 
0

( )( ) ( )
1 ( )

t

WA
f st v s ds
F s

β =
−∫ . (4.9) 

By inspection, WAβ  is non-decreasing. By construction, if all bidders use this strategy, 
then their payoffs satisfy the envelope formula. Hence, the sufficiency theorem applies: 
no bidder can benefit by deviating to another bid in the range of WAβ . It is easy to see that 
no bidder can strictly increase its payoff by bidding outside that range, so Theorem 4.8 
follows. 

Theorem 4.8. In the benchmark model, the unique symmetric pure strategy equilibrium 
of the war-of-attrition auction game is the strategy defined by (4.9).  

The preceding reasoning illustrates the use of the sufficiency theorem for verifying 
equilibrium bidding strategies. Given a proposed equilibrium strategy, one first verifies 
that it satisfies the envelope equation, which often holds by construction of the strategy. 
If ( )tβ is increasing and there is no better bid outside the range of ( )tβ , then the 

sufficiency theorem implies that ( )tβ  is a best reply for each bidder and therefore an 
equilibrium strategy.  

4.2.4 The All-Pay Auction 
Another auction design in which losers pay is the all-pay auction, which is sometimes 

used to model bribery. The party offering the highest bribe receives a contract or some 
other valuable consideration. Although only the highest bidder receives the prize, every 
bidder pays an amount equal to his own bid. One can again use Myerson’s lemma to 
establish that with N players, the only possible equilibrium strategy equates the bid 
(which is also the bidder’s expected payment) with a bidder’s expected payment in the 
Vickrey auction with zero reserve. The candidate strategy is therefore:   

 1

0

( ) ( )( 1) ( ) ( )
t

N
AP t v s N F s f s dsβ −= −∫  (4.10) 

The left-hand side is the payment by the briber of type t, while the right-hand side is the 
corresponding expected payment made in a Vickrey auction with N players.   
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Theorem 4.9. In the benchmark model, the unique symmetric pure strategy equilibrium 
of the all-pay first-price auction game is the strategy defined by (4.10).  

The proof of Theorem 4.9 uses the sufficiency theorem and resembles others in this 
chapter.  

4.3 Revenue Comparisons in the Benchmark Model 
In this section, we present five variations of the benchmark auction model in which 

expected revenues differ systematically and predictably among the standard auction 
formats. The conditions that invalidate the revenue equivalence theorem in the five 
variations are (1) bidding costs, (2) risk aversion, (3) budget constraints, (4) post-auction 
choices of quantity by the auctioneer, and (5) correlation among bidder types. To 
simplify notation, we assume except where noted that types are independently and 
uniformly distributed and that values ( )v t  are a smooth, increasing function of the type.  

We study bidding costs and risk aversion in the same section because they occur in 
models where payoff equivalence for bidders may obtain even though the revenue 
equivalence theorem does not hold. Bidding costs are modeled as the costs of 
participating in an auction while the auction is running, so shorter auctions lead to lower 
costs. What is interesting in the bidding cost model is that the length of the auction is 
endogenous. For example, bidders may make jump bids to bring the auction to an early 
completion.  

Risk aversion, as we saw in the last chapter, does not necessarily payoff equivalence, 
but it increases bids in first-price auctions. The reason is that risk-averse bidders trade 
lower profits for a greater likelihood of winning by increasing their bids. This effect, 
which is absent in second-price auctions, increases revenue in first-price auctions.  

Budget constraints also induce variation in auctions’ performance. The constraints are 
more damaging in second-price auctions than in first-price auctions, because the 
equilibrium bids are higher in (unconstrained) second price auctions.  

In some procurement auctions, bidders submit price bids to a buyer who takes the best 
bid and then determines what quantity to buy. This quantity decision systematically 
affects the comparison among auctions. If the buyer tends to buy a larger quantity at 
lower prices, then the bidder in a first-price auction bids less than he otherwise would, 
because the higher quantity he sells partly offsets his reduced markup. There is no similar 
effect in the second-price auction, so prices tend to be lower in the first-price auction.  

Positive correlation among bidder types is yet another source of systematic variation, 
operating through what Milgrom and Weber (1982) called the “linkage principle.” 
Surprisingly, a bidder with a high type cannot avoid paying a higher average price in a 
second-price auction by bidding as if his type were lower. Because the second highest bid 
is positively correlated with his own type, the expected price he pays for any given bid is 
an increasing function of his type. This direct “linkage” of the price to the bidder’s type 
raises the prices that higher types pay and reduces their profits in the second-price 
auction, but not in the first-price auction. Because this linkage effect does not affect the 
efficiency of the outcome, it raises the average revenue in the second-price auction above 
that of the first-price auction.  
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In a later chapter, we illustrate other applications of this principle. We will find, for 
example, that if the seller has verifiable private information correlated with the bidder’s 
information, then revealing it links the bids to the information revealed, which can also 
increase prices.74 

4.3.1 Payoff Equivalence without Revenue Equivalence 

Risk Averse Sellers 
In the symmetric independent private values model, although the expected payoffs are 

the same for the first- and second-price auctions, the variability of payoffs differs. In a 
first-price auction, losers always earn zero and a bidder of type t who wins receives 
payoff ( )v t b− . In contrast, a bidder of type t who is informed that he has won still faces 
additional uncertainty: he still does not know what price he will pay.  

Two propositions below explore the consequences of the additional risk associated 
with second price auctions. We find, first, that the extra risk facing a winning bidder in a 
second price auction induces more randomness in the seller’s payoff as well.  So, if the 
bidders are risk neutral but the seller is risk averse, then the seller should prefer the first-
price auction. Theorem 4.10 below formalizes this intuition.  

Let t(1) and t(2) denote the first and second order statistics among (t1,…,tN.) Then, the 
seller’s realized equilibrium revenue is { }(1)

(1)
( )

( )1FP v t r
tβ

≥
 in the first-price auction and 

( ) { }(1)
(2)

( )
max , ( ) 1

v t r
r v t

≥
 in the second price auction.  

Theorem 4.10. In the benchmark model, for any strictly concave utility function 
function U,  

 { }( ) ( ) { }( )(1) (1)
(1) (2)

( ) ( )
( )1 max , ( ) 1FP v t r v t r

E U t E U r v tβ
≥ ≥

   ≥      
. 

That is, the seller’s expected utility is higher in the first-price auction than in the second 
price auction.  

Proof. Without loss of generality, we may normalize so that U(0)=0. Then,  

  

( ) { } ( ) { }

( ) { }

( ) { }

( ) { }

(1) (1)

(1)

(1)

(1)

(2) (2) (1)
( ) ( )

(2) (1)
( )

(2) (1)
( )

(1)
( )

max( , ( ) 1 max( , ( ) 1 |

max( , ( ) | 1

max( , ( ) | 1

( ) 1 .

v t r v t r

v t r

v t r

FP v t r

E U r v t E E U r v t t

E E U r v t t

E U E r v t t

E U tβ

≥ ≥

≥

≥

≥

    =         
  =    
  ≤    
 =   

 

                                                 
74 When revealing information affects the allocation of the good(s), then doing so need not benefit the 
auctioneer. See Perry and Reny (1999) for an example.  
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The first step uses the law of iterated expectations; the second follows because the 
indicator function is measurable with respect to t(1); the third uses Jensen’s inequality75; 
and the last follows from our earlier characterization of the equilibrium bidding strategy 
(namely, when (1)( )v t r> , (2) (1)( ) max( , ( )) |FP s E r v t t sβ  = =  ).  ■   

The heart of the proof is the observation that, given t(1), the price in the second-price 
auction is a random variable with mean (1)( )FP tβ . Consequently, the seller’s revenues in 
a second price auction have the same mean and greater “riskiness” than in a first price 
auction. Accordingly a risk averse seller prefers the first price auction in the benchmark 
model.  

Risk Averse Bidders 
In chapter 3, we found (using a particular symmetric model) that when bidders have 

constant absolute risk aversion, the first and second price auctions generate the same 
expected payoffs. Conditional on his type (but not on the amounts of the other bids), a 
winning bidder in a second-price auction faces a price risk. If the bidder is risk averse, his 
expected utility is therefore less than his value minus the expected price. The payoff 
equivalence theorem therefore implies that the average price must be less in the second 
price auction than in the first price auction.  

This conclusion also holds more in models more general than the benchmark. A 
bidder’s risk aversion does not change her dominant strategy in a second price auction, 
but it increases her equilibrium bid in a first price auction. Bidders’ risk aversion 
increases bids in a first price auction because raising one’s bid slightly in a first price 
auction is analogous to buying partial insurance: it reduces the probability of a zero 
payoff and increases the probability of winning, although with a lower profit margin. 
Risk averse bidders value fairly priced insurance, so they bid more than they would if 
they were risk neutral.   

To compare revenues when bidders are risk averse, we must first characterize the 
equilibrium bidding strategy U

FPβ  used by an expected utility maximizing bidder in the 
first-price auction. Once again, the constraint simplification theorem is crucial. 
Throughout our analysis, we make the normalization that (0) 0U = . Then,if the greatest 
opposing bid has distribution H, a bidder of type t who bids b receives an expected payoff 
of: 

 ( ) ( ( ) ) ( )b U v t b H bΠ = −  (4.11) 

A bidder of type t can plainly restrict attention to bids b ≤ v(t) and can equivalently 
maximize the logarithm of his objective function: ( ) ( )ln ( ) ln ( ( ) )b U v t bΠ = − +  

( )ln ( )H b . Since v is increasing, if ( )ln ( )U ⋅  is concave, then Theorem 4.5 implies that 

( )ln ( )bΠ  satisfies single crossing differences. Then, the bidder’s best reply strategy β to 
any competing strategies must be a non-decreasing function. By arguments like those in 
section 4.2.2, the equilibrium bid function must actually be increasing. If the bid function 
                                                 
75 Recall that Jensen’s inequality states that for any convex function f, [ ] ( )( ) [ ]E f x f E x≥ .  
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is differentiable and the bids satisfy the first-order optimality conditions, then the 
envelope condition is necessarily satisfied.76 So, an increasing function satisfying the 
first-order conditions is indeed an equilibrium.  

Theorem 4.11.77 Suppose ( )ln ( )U ⋅  is concave and differentiable and define t* by 

v(t*) = r. Then, the unique symmetric equilibrium strategy U
FPβ  of the first price auction is 

the solution to the following differential equation with boundary condition *( )U
FP t rβ = :   

 
( )
( )

( ( ) ( )1
( ( ) ( )( )

U
FP

UU
FPFP

U v t tN
U v t tt t

β

ββ

′ −−
=

′ −
 (4.12) 

Proof. The bidder’s problem is to maximize: 

( ) ( ) ( )ln ( ) ln ( ( ) ) ln ( ) .b U v t b H bΠ = − +  

The first-order condition is: 

( ( ) ) 1 ( ) 0.
( ( ) ) ( )

U v t b dH b
U v t b H b db

′ −
− + ⋅ =

−
 

Suppressing the super- and subscripts of U
FPβ , since ( ) 11( ) ( )

N
H b bβ

−−= ,  

1 ( ) 1 ,
( ) ( )

dH b N
H b db t tβ

−
⋅ =

′
 

so 

( ( ) ) 1 0.
( ( ) ) ( )

U v t b N
U v t b t tβ

′ − −
− + =

′−
 

By inspection, since , 0U U ′ >  for positive arguments, the solution to (4.12) has a non-

negative derivative ( )U
FP tβ ′  everywhere, so the function U

FPβ  is increasing. Since we 
obtained the solution from the first-order condition, the corresponding expected payoffs 
satisfy the envelope formula. Hence, by the constraint simplification theorem, the 
solution function U

FPβ  is a best reply to itself.  ■   

The next theorem asserts that in a first-price auction, the equilibrium bid function is 
higher when bidders are risk averse than when they are risk-neutral. The proof compares 
the derivatives of the equilibrium bid functions for the two cases. Similar comparisons of 
derivatives arise repeatedly in this chapter and the next. The following lemma 
summarizes the key step in these arguments.  We will call it the “value ranking lemma” 
because, we most frequently use it to obtain a comparison or “ranking” of the bidders’ 
value functions.  

                                                 
76 To see this, suppose that ( ( ), ) 0bf b t t =  and that b is differentiable. Then, ( ( ), ) ( ( ), ) ( )d

bdt f b t t f b t t b t′= +  
( ( ), )tf b t t = ( ( ), )tf b t t , and the integral formula follows by the fundamental theorem of calculus.  

77 Charles Holt, Jr. first proved this result. 
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Value ranking lemma: Suppose f and g are differentiable functions with the properties 
that (i) ( ) ( )f t g t≥  and (ii) for all t t≥ , if ( ) ( )f t g t<  then ( ) ( )f t g t′ ′≥ . Then, 

( ) ( )f t g t≥  for all t t≥ . 

Proof: Suppose to the contrary that (i) and (ii) hold and that for some t t> , 
( ) ( )f t g t< . Let sup{ [ , ] | ( ) ( )}t s t t f s g s= ∈ ≥� . Then, for all ( , ]s t t∈ � , ( ) ( )f s g s<  and 
( ) ( ) 0f t g t− =� � . By the mean value theorem applied to the function f g− , there exists 

ˆ ( , ]t t t∈ �  such that ˆ ˆ ˆ( ) ( ) ( ( ) ( )) /( ) 0f t g t f t g t t t′ ′− = − − < , contrary to condition (ii) of the 
lemma. So, no such t exists.   ■ 

The next theorem asserts that, at equilibrium in a first price auction, risk averse bidders 
bid more than risk neutral bidders 

Theorem 4.12. Let FPβ  be the symmetric equilibrium strategy in a first-price auction 
with reserve r for risk neutral bidders and let U

FPβ  be the symmetric equilibrium strategy 
with a differentiable, strictly concave utility function U. Then, for all types t > t*, 

( ) ( )U
FP FPt tβ β< .  

Proof. The boundary condition is ( ) ( )U
FP FPt tβ β∗ ∗= . Since for all, *t t> ,  

 
( )
( )

( ) ( )1
( ) ( )( )

U
FP
UU
FPFP

U v t tN
U v t tt t

β

ββ

′ −−
=

′ −
 and  

 1 1 ,
( ) ( )( ) FPFP

N
v t tt t ββ

−
=

−′
 

it follows that 

 
( )

( )
( ) ( ) ( )( ) 1

( ) ( ) ( ) ( )

U U
FP FPFP

U
FP FP

t U v t tt N
v t t t U v t t

β ββ
β β

′ ′′ ⋅ −−
= =

− −
. (4.13) 

Since U is strictly concave and (0) 0U = , it follows for 0x >  that '( ) ( )xU x U x< . 

Combining that inequality with ( ) ( )U
FPx v t tβ= −  and using (4.13) and ( ) 0U

FP tβ ′ > , we 
have: 

 
( )
( )

( ) ( )( ) ( )( )
( ) ( ) ( ) ( )( ) ( )

U U
FPUFP FP

FP UU
FP FPFP

U v t tt tt
v t t v t tU v t t

ββ ββ
β ββ

′ −′ ′
′= <

− −−
. 

Hence, for all t>0, ( ) ( ) ( ) ( )U U
FP FP FP FPt t t tβ β β β′ ′> ⇒ < , and applying the value ranking 

lemma, we get ( ) ( )U
FP FPt tβ β<  for all *t t> .  ■  

Jump Bids in Auctions with Costly Bidding 
We next study a model in which each bidder’s cost of participating in an auction 

includes the cost of his time. This model is a simplified version of one presented by 
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Avery (1998), who argues that time costs are plausibly important in many kinds of 
ascending auctions.  

To account for time costs, we expand our description of the outcome of an auction to 
include the identity of the winner, the price, and the amount of time that each bidder is 
active. Although the second-price and ascending auctions are strategically equivalent in 
models where only the winner’s identity and the price matter, they are not strategically 
equivalent here because the payoffs differ: the ascending auction requires bidders to 
spend a positive amount of time bidding while the second-price auction has zero duration.  

Suppose the auctioneer raises the bids continuously in time. Bidders can drop out of the 
auction at any time, but that decision is irreversible. Suppose that bidders receive no 
information about others’ bids before the end of the auction. Then, one can describe a 
strategy by a number or “bid” designating the highest price at which the bidder will 
remain active. As in the second-price auction, the highest bid determines the winner and 
the second-highest bid determines the price. We select units so that prices rise by one 
money unit per unit of time. Bidders incur a cost of c per unit of time while they are 
active.  

The point of our model will be to explore the tactic of “jump bidding” to intimidate 
other bidders. A bidder may open with a high bid to make competitors think: “That guy is 
determined to bid high. There is no point wasting valuable time participating in this 
auction since I’ll likely lose. I’ll drop out now.”  

In the equilibrium studied below a high opening bid of B will indeed “intimidate” 
certain bidders who would otherwise have bid more than B. Moreover, in equilibrium, 
bidders who make jump bids benefit both by shortening the auction and, sometimes, by 
getting a lower price. Jump bidding increases a bidder’s payoff in relation to its payoff if 
it doesn’t jump, but it doesn’t follow that allowing jump bidding benefits bidders at the 
expense of the seller. We will find that, to the contrary,  the seller benefits on average 
from the jump bids—obtaining higher expected equilibrium revenues.  

Payoff equivalence provides valuable intuition about the impact of jump bidding on 
revenues. In this model, the highest type bidder still wins. So, applying the envelope 
theorem, the level of bidding costs c does not affect the equilibrium expected profits of 
any type of bidder, regardless of whether there is jump bidding. In equilibrium, the jumps 
reduce the average duration of the auction, so the total expected surplus is higher. Since 
the seller’s revenue is equal to that total surplus minus bidder profits, it is the seller who 
benefits on average from jump bidding.  

Consider a bidder of type t who chooses a strategy (or “bid”) b that wins with 
probability ( )p b , results in expected participation time of ( )bτ  as an active bidder, and 
generates an expected payment of ( )bπ . Note well that the “bid” in this formula is not a 
number, but a plan for bidding in the auction. Then, the auction yields an expected profit 
of ( ) ( ) ( ) ( )v t p b c b bτ π− − , so if the optimal strategy is *b , then the envelope formula 

asserts that *

0
( ) (0) ( ( )) ( )

t
V t V p b s v s ds′− = ∫ . In this formula, expected profits depend in 

the usual way on the probability of winning, but they do not depend on the time cost c. If 
the highest type bidder always wins then, the envelope formula prescribes that the 
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equilibrium profits are independent of the bidding costs c and the same as in a second 
price auction (for which time costs are zero). This observation enables us to guess the 
equilibrium strategy.  

We first analyze an ascending auction in which jump bidding is not permitted. Suppose 
the game has a strictly increasing symmetric equilibrium bid function cβ . Then, by direct 
calculation, the expected payoff of a bidder of type t must be:  

 1 1 1 1

0 0

( ) ( ) ( ) ( ) ( )(1 ) ( ) ( )
t t

N N N N
c c cV t v t t c s d s t t s d sβ β β− − − − 

= − + − − 
 
∫ ∫ . (4.14) 

This formula expresses the bidder’s maximal payoff as the expected value received minus 
the time costs incurred (whether the bidder wins or loses) and minus the expected 
payments made. As argued above, this payoff must be the same as the expected payoff in 
a second-price auction without any time cost, which is:  

 1 1 1

0 0

( ) ( ) ( ) ( ) ( )
t t

N N NV t v s s ds v t t v s d s− − −′= = −∫ ∫ . (4.15) 

Equating the right-hand sides of (4.14) and (4.15) and differentiating with respect to t 
leads to the differential equation: ( ) ( )cv t tβ− = 2 11

1 (1 ) ( )N N
cN ct t tβ− −

−
′− . We solve this 

differential equation to identify the equilibrium.  

Theorem 4.13. Suppose that 0 (0)v<  and 0 (0)v′< . In the symmetric ascending 
auction model with no jump bidding allowed and a zero reserve price, there is a 
symmetric equilibrium strategy satisfying 

 
2

1

( ) ( )(0) 0 and ( ) ( 1)
1

N
c

c c N

v t t tt N
c t
ββ β

−

−

−′= = −
−

 (4.16) 

Proof. Since p is increasing in b, the expected payoff function ( ) ( ) ( ) ( )v t p b c b bτ π− −  

has increasing differences as a function of ( , )b t . The solution has ( ) 0c tβ ′ > , so the 
proposed strategy is increasing. By construction, the solution satisfies the first-order 
condition and so it satisfies the envelope formula. Hence, by the sufficiency theorem, 
there are no profitable deviations from this strategy to bids in the range of cβ . No bids 
below the range of the equilibrium strategy are possible, and bids above the range leads 
to the same payoff as (1)cβ .  ■   

Equation (4.16) implies that if (0) 0v > , then ( ) ( )c t v tβ <  for all 1t < . Without time 
costs, bidders would bid up to ( )v t . So, at equilibrium, bidders bid uniformly less in the 
ascending auction with time costs than in the corresponding auction without them. 
Consequently, revenues are uniformly lower than in the sealed-bid second price auction. 
Although we used the payoff equivalence relationship to guess the equilibrium strategy, 
the revenue equivalence theorem does not apply.  

According to (4.16), (0) 0cβ =  and, if 2N > , then (0) 0cβ ′ =  as well, even though 
(0) 0v > . Thus, low type bidders bid much less than their values. This contrasts sharply 
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with the equilibrium bidding strategies for the benchmark case with 0c = , for in that case 
even low type bidders bid all the way up to their values. Intuitively, when c > 0 and 

2N > , bidders with very low types find the probability of winning to be so small that 
any substantially positive bid earns negative expected profits. As costs go from zero to 
something positive, the equilibrium strategies change discontinuously. 

If bidders can make jump bids, the equilibrium analysis changes. In addition to 
intimidating other bidders, bidders can avoid some time costs by “jump bidding.” Against 
these advantages, bidders must weigh the disadvantage that a jump bid can jump over the 
maximum price anyone else would have been willing to pay, leading the bidder to “pay 
too much” for the item.  

What might an equilibrium with jump bidding look like? In our simple model, we 
allow bidders at the opening of the auction to jump to some specified number B. The 
auctioneer tells everyone when someone has jumped to B, but provides no further 
information.  

Under these assumptions, each bidder must make four decisions. First, will this bidder 
jump at the opening bid? Second, if the bidder does jump, how high (b1) should he 
continue to bid after the jump before dropping out? Third, if nobody jumps, how high 
(b2) should the bidder continue before dropping out? Fourth, if the bidder does not jump 
but the auctioneer announces that someone has jumped, how high (b3) should he continue 
before dropping out? A bidder’s plans for situations that will not arise under its planned 
strategy are irrelevant. So, limiting attention to reduced strategies, we may specify that if 
the bidder plans not to jump, then 1 0b =  and, otherwise, 2 3 0b b= = . Let us say that a 
“bid” for any given type in this game is the triple 1 2 3( , , )b b b b=  and a strategy is a triple 

1 2 3( , , )β β β β=  mapping types into bids.  

The symmetric equilibrium strategy is characterized in theorem 4.14 below. We derive 
it here using the envelope formula and an analysis of boundary conditions. We look for a 
symmetric equilibrium in which (i) bidders jump exactly when their types exceed some 
cut-off t̂  and (ii) the winner is always the bidder with the highest type.  

We begin by examining equilibrium bidding for ˆt t< . At equilibrium, bidder payoffs 
for types in this range must satisfy the following equation: 

 1 1 1 1 1
2 2 2

0 0

ˆ( ) ( ) ( ) ( ) ( )( ) ( ) ( )
t t

N N N N NV t v t t c s d s t t t s d sβ β β− − − − − 
= − + − − 

 
∫ ∫ . (4.17) 

Equation (4.17) is similar to (4.14). The difference reflects the fact that in a model with 
jump bidding, if some bidder has a type greater than t̂ , then that bidder jumps at the 
outset of the auction and bidders with types less than t̂  drop out and do avoid any 
bidding costs.  

We can characterize the bidding strategy for types ˆt t<  by equating the envelope 
expression for ( )V t  in (4.15) with the expression in (4.17) and differentiating with 
respect to t. This leads to a differential equation, which we report as (4.19) in the 
theorem.  
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For bidders with ˆt t> , we use a similar method. The relevant payoff formula is  

 
( ) ( )1 1 1

1 1
ˆ

1 1
1

ˆ

( ) ( ) ( ) ( ) ( ) (1 )

ˆ ( ) ( ).

t
N N N

t

t
N N

t

V t v t t c s B d s t B t

Bt s d s

β β

β

− − −

− −

 
= − − + − − 

 

− −

∫

∫
 (4.18) 

The first term in (4.18) is the value of the item when the bidder wins. The second is the 
time cost incurred. After a jump to B, bidders incur time costs to the extent they bid 
above B. The last two terms correspond to cash payments. The winning bidder after a 
jump pays B if nobody else jumps, and otherwise pays the second highest “bid.”  

We can characterize the bidding strategy for types ˆt t>  by equating expressions (4.15) 
and (4.18) and differentiating with respect to t. This again leads to the differential 
equation, which we report as (4.20) in the theorem below.  

The last piece is to determine the smallest type t̂  that jumps. At equilibrium, if bidders 
jump exactly when there types are above t̂ , then a bidder of type t̂  who does not jump 
expects to win when no competitor jumps and his expected payment is the amount 
expressed on the right-hand side of (4.21). Thus, condition (4.21) requires that any 
bidder’s expected payment be exactly the same whether he bids up to 2

ˆ( )tβ  without 
jumping or jumps but drops out immediately in case someone else jumps as well.  

Theorem 4.14. In the symmetric ascending auction model with jump bidding to B 
allowed and a zero reserve price, there is a symmetric equilibrium strategy β. At this 
equilibrium, there is a type t̂  such that all types ˆt t≤  do not jump and they drop out if 
anyone else jumps ( 1 3( ) ( ) 0t tβ β= = ).  At equilibrium, 2( )tβ  satisfies:  

 2 (0) 0β =  and ( )
2

2
2 1 1

( ) ( )( ) 1 ˆ

N

N N

v t t tt N
c t t
ββ

−

− −

−′ = −
−

.  (4.19) 

Types ˆt t>  do jump (hence 2 3( ) ( ) 0t tβ β= = ) and 1β  satisfies  

 1
ˆ( )t Bβ =  and 

2
1

1 1

( ) ( )( ) ( 1)
1

N

N

v t t tt N
c t
ββ

−

−

−′ = −
−

.  (4.20) 

The type t̂  satisfies:  

 
ˆ

1 1
2

0

ˆ (1 ) ( ) ( )
t

N NBt c s d sβ− −= + ∫ . (4.21) 

At equilibrium,  

 2
ˆ ˆ( ) ( )t v t Bβ = > .  (4.22) 

Remarks. Jump bidding successfully intimidates bidders in the identified equilibrium; 
that is, competitors who are do not jump themselves all drop out immediately after a 
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jump. According to (4.22), the intimidated bidder types include ones that, but for the 
jump, would have been prepared to bid strictly more than B.  

Proof. By construction, the strategies satisfy the envelope derivative formula for all 
types except possibly t̂  and, by (4.21), the payoff function is continuous at t̂ . Hence, the 
envelope integral formula holds everywhere. Also by construction, higher types win with 
higher probabilities and payoffs satisfy the increasing differences property. So, by the 
sufficiency theorem, there is no profitable deviation within the range of the equilibrium 
strategy. By inspection, there is also no profitable deviation for any type outside the range 
of the proposed strategy, so the strategy is an equilibrium strategy. 

For all ˆ[0, )t t∈� , we have: 

 [ ]

[ ]

ˆ

2 2 2

ˆ 2

2 1 1ˆ[ , ]

2ˆ[ , ]

ˆ( ) ( ) ( )

1 min ( ) ( ) ˆ

1 min ( ) ( )

t

t

t N

N Nt t t
t

t t t

t t s ds

N sv t t ds
c t s

N v t t
c

β β β

β

β

−

− −∈

∈

′− =

−
≥ −

−

−
= − ⋅ ∞

∫

∫

�

�
�

�

�

 

This implies that for all t� , the minimum term is zero. Hence, by continuity, 
2

ˆ ˆ( ) ( ) 0v t tβ− = . 

By the envelope formula, the expected profit of type t̂  is positive, so ˆ( )B v t< .  ■ 

Theorem 4.15. In the equilibrium with jump bidding determined by (4.19)-(4.21), every 
type of every bidder earns the same profit as in the equilibrium without jump bidding 
determined by (4.16), and bidders with types less than t̂  incur lower time costs in the 
auction with jump bidding.  

Proof. By Myerson’s lemma, since (0) 0V =  in both auctions and the decision 
performance is the same, the expected payoff of each bidder type is identical for the two 
auctions.  

For ˆt t≤ , comparing (4.16) and (4.19), either 2 ( ) ( )ct tβ β> or 2 ( ) ( )ct tβ β′ ′> . Since 

2(0) (0) 0cβ β= = , it follows by the value ranking lemma that 2 ( ) ( )ct tβ β>  for all types 
ˆ(0, ]t t∈ . Since the sum of expected payments and time costs of the bidders is the same 

in the two auctions but the bidders expect to pay more in the auction with jump bidding 
when ˆt t≤ , their expected time costs must be less in that auction than in the auction 
without jump bidding.  ■ 

Curiously, although bidders with types greater than t̂  may save significant amounts of 
time by jump bidding, no general theorem proves that, in equilibrium, they always save 
time in this way.   
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4.3.2 Budget Constraints 
Following Che and Gale (1998), we modify the benchmark model by assuming that 

each bidder has a limited budget and can never pay more than a fixed sum B. To simplify 
the exposition, we assume that v is strictly increasing and that there exist types tr and tB 
such that v(tr) = r and v(tB) = B. This change hardly affects our analysis of bidding in the 
Vickrey auction. Bidders still have a dominant strategy, which is to bid min(B,v(t))—the 
lesser of the actual value or the available budget. The argument is similar to the one for a 
model without budget constraints.  

We previously argued that in a first price auction, ties cannot occur at equilibrium 
between bidders with values above r, because each bidder would have an incentive to 
increase his bid very slightly. In that way, he would incur an arbitrarily small cost while 
discretely increasing his chances of winning profitably, and such a possible deviation is 
inconsistent with Nash equilibrium. The same argument still holds for prices below the 
budget limit B. However, ties can occur at B, because increases in bids above B are 
infeasible. We infer that the symmetric equilibrium bid function, if one exists, must be 
strictly increasing on the domain of types for which v(t) > r up to the lowest type tF that 
bids B.  

Applying the envelope formula as before, we conclude that the equilibrium payoffs for 
types less than tF must coincide with their payoffs in the unconstrained first-price auction, 
so the bid functions must coincide as well.  Since all higher types will bid B, such a bid 
must occur with positive probability. Therefore, the equilibrium bid function must jump 
at the argument tF; otherwise any bidder with a slightly lower type than tF would bid B 
instead, because doing so wins the auction with a discretely higher probability but incurs 
only a slightly higher cost.  

We can identify the lowest type tF that bids B by equating its expected profit from 
bidding B to that specified by the envelope formula. Here, there is no loss of generality in 
assuming that F is the uniform distribution on [ ]0,1 , so 1 1( ) .N NF s s− −= We maintain that 
assumption in these calculations:  

 ( )1 ( ) ( ) ( )
F

r

t
N

F F
t

s v s ds v t B P t− ′ = −∫  (4.23) 

where: 

 1 1 1
0

( ) ( 1, ) (1 ) (1 )N N k k
F F Fk

P t C N k t t k− − − −
=

= − − +∑ . (4.24) 

The left-hand side of (4.23) is the bidder’s expected profit according to the envelope 
theorem. The right-hand side is the expected profit from bidding B, obtained by 
multiplying the winner’s profit v(tF)-B by the probability of winning ( )FP t , as given by 
(4.24).  

To derive (4.24), note first that when the bidder ties with k other bidders, he wins with 
probability 1(1 )k −+ . Hence, the probability ( )FP t  is equal to the sum over k of the 
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probability of a tie involving k other bidders at bid B times 1(1 )k −+ . In expression (4.24) 
C(N,k) denotes ( )!/ !( )!N k N k− .  

Theorem 4.16. There is at most a single solution Ft  to (4.23). When a solution exists, it 
corresponds to the unique budget-constrained symmetric equilibrium of the auction, 
which is given by: 

 
( )  if 

( )
          if 
FP F

FB
F

t t t
t

B t t
β

β
≤

=  >
 (4.25) 

Proof. Observe that the derivative of the left-hand-side of (4.23) with respect to tF is 
1 ( )N

F Ft v t− ′ while that of the right-hand side is ( )( ) ( ) ( ) ( )F F F FP t v t v t b P t′ ′+ − . The first 
term of the derivative of the right-hand side is larger than the derivative of the left-hand 
side78 and the second term of the derivative of the right-hand side is positive. Hence, 
viewing the left- and right-hand sides of (4.23) as functions of Ft , the slope of the left 
hand side is always less than the right hand side. So, there is at most one solution to 
(4.23). By the arguments in the text preceding the theorem, if a symmetric equilibrium 
strategy exists, it must satisfy (4.25).  

By the constraint simplification theorem, no type can strictly profit by deviating to any 
bid in the range of βFB. The only feasible bids not in that range are the bids b∈(βFP(tF),B). 
Given the equilibrium hypothesis that the other players adopt the strategy βFB, bidding 
βFP(tF) wins against precisely the same type vectors as any such bid b and reduces the 
bidder’s price conditional on winning, so no such bid can be a strict improvement. Hence, 
the strategy βFB, is a symmetric equilibrium strategy.  ■  

The theorem covers the case in which a solution to (4.23) exists. It can fail to exist in 
two ways. One possibility is that the left-hand side of (4.23) is larger than the right-hand 
side for all values of Ft . In that case, one can identify the equilibrium by setting ( 1Ft = ) 
in (4.25): the budget constraint does not bind.  The second possibility is that left-hand 
side is smaller than the right for all values of Ft . In that case, one can identify the 
equilibrium by setting ( 0Ft = ) in (4.25): all bids are B and the auction allocation is 
entirely random.  

The next theorem compares the effects of the budget constraint on the performance of 
the two kinds of auctions.  

Theorem 4.17. The expected revenue from the first-price auction with reserve r and 
budget constraint B is greater than that of the corresponding Vickrey auction. The first 
price auction yields the same decision performance and expected revenue as a Vickrey 
auction with reserve r and budget v(tF) > B.  

Proof. By the preceding theorem, the first-price auction with budget constraint B and 
where tF is the lowest type that bids B generates the following allocation performance: 
(i) no award if the highest type has v(t(1)) < r, (ii) type t(1) wins if t(1) ≤ tF and v(t(1)) > r, 
                                                 
78 ( )FP t is a sum of positive terms, including the term 1N

Ft
− .  
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(iii) a random award among bidders of types greater than tF if t(1) > tF. This performance 
is precisely the same as in the Vickrey auction with budget constraint ( ) ( )F Bv t v t B> = .  
Therefore, Myerson’s lemma implies that the two auctions have the same expected 
payments.  The allocation performance differs from that of the Vickrey auction with 
budget constraint B, where the lowest type to bid B is B Ft t< . Clearly, a Vickrey auction 
with a lower budget constraint produces lower expected revenue.  ■    

The intuition behind the proof is that the likelihood of high payments varies among 
auction designs so the designs vary in how much budgets constrain bidders. The highest 
payment made by any type in the first-price auction is less than that in the second-price 
auction, because high value bidders always pay less than their values in a first-price 
auction. This suggests that budget constraints are less likely to bind in a first price 
auction. The theorem proves a stronger statement—that the first-price auction duplicates 
the allocation of a second price auction with a higher budget limit. Therefore, in 
particular, it generates more revenue than a second-price auction with the same budget 
limit.  

4.3.3 Endogenous Quantities 
When buyers conduct auctions, the quantities they buy often depend on the price they 

pay. For example, consider a large company trying to procure hotel rooms for its 
traveling management team in a particular city.  Each hotel offers a price per room to the 
large company in a competitive auction.  Once the company receives the bids, individual 
travelers decide how frequently to travel and whether to use the company travel service to 
reserve rooms. Thus, the quantity of hotel room-nights sold will depend both on the 
winning bidder and on the winning bid. Hansen (1988) has shown that this endogenous 
quantity choice has effects on bidding incentives similar to those of risk aversion. That is, 
endogeneity of the quantity traded reduces bids in a first-price auction without changing 
incentives in the second-price auction.  

To facilitate comparisons with earlier results, we continue to assume that bidders are 
buyers, but now we assume that buyers have a per unit value v(t) and are happy to buy 
multiple units, while the seller supplies a number of units, S(p), that increases with its 
price p. Clearly, in this case, the incentives in a second-price auction are just the same as 
when S ≡ 1.  

Argument that by now are familiar imply that in analyzing the first price auction we 
can restrict attention to strictly increasing bid functions. The equilibrium bidding function 
β = ES

FPβ  must solve: 

 ( )( ) 11( ) arg max ( ) ( ) ( )
N

b
t v t b b S bβ β

−−∈ −  (4.26) 

where v(t)-b  is the “profit” margin on each unit, ( ) 11( )
N

bβ
−− is the probability of winning 

and S(b) is the “supply” function stipulating the quantity supplied by the seller given bid 
b.  

Theorem 4.18. Suppose S is increasing and differentiable, log( ( ))S b  is concave, and 
(0) 0v′ > . Define t* by v(t*) = r. Then, the unique symmetric equilibrium strategy 
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ES
FPβ β=  of the first price auction with endogenous supply function S solves the 

following differential equation with boundary condition *( )t rβ = :   

 1 1 ( ( ))
( ) ( ) ( ) ( ( ))

N S t
t t v t t S t

β
β β β

′−
= −

′ −
. (4.27) 

Proof.  Taking the logarithm of the objective (4.26) and then evaluating the first-order 
optimality condition at ( )b tβ=  leads to (4.27). Using (4.27), *( )t rβ =  , and the 
concavity of log( ( ))S b , the bid function ( )tβ is nondecreasing.79 By the usual argument, 

( )tβ  is the unique candidate for a symmetric equilibrium. Furthermore, by construction, 
the equilibrium bid satisfies the first-order conditions and hence the envelope integral 
formula. By the constraint simplification theorem, β is a symmetric equilibrium 
strategy.  ■  

Theorem 4.19. Suppose S is increasing and differentiable, log( ( ))S b  is concave, and 
(0) 0v′ > . Define t* by v(t*) = r. Let FPβ  and ES

FPβ  be the equilibrium bid functions in a 
first-price auction with reserve r for exogenous supply  (S′ = 0) and endogenous supply 
( ESS ′  > 0) respectively. Then, for all types t>t*, ( ) ( )ES

FP FPt tβ β< . In other words, bidders 
bid more when supply is responsive to bids.  

Proof. By (4.27), if ( ) ( )ES
FP FPt tβ β>  then ( ) ( )ES

FP FPt tβ β′ ′< . Given the boundary 
condition ( ) ( )ES

FP FPt tβ β∗ ∗= , the conclusion follows from the value ranking lemma.  ■   

In this model, since equilibrium for the second price auction does not depend on the 
supply function, the expected price for the second price auction is ( )FP tβ  when the 
winner’s type is t. Hence, with endogenous supply, first-price auctions lead to higher 
average prices.  

4.3.4 Correlated Types 
When real bidders participate in an auction, they sometimes use their own values as 

initial estimates of other bidders’ values. For this procedure to make sense, types must 
enjoy a positive statistical association rather than being independent as we’ve previously 
assumed. Here, we treat the model of correlated types introduced by Milgrom and Weber 
(1982).  

                                                 
79 By inspection, *( ) 0tβ ′ = . We show that there can be no interval *( , ) [ ,1]t t t⊂  such that ( ) 0tβ ′ =  and 

for all ( , )t t t′∈ , ( ) 0tβ ′ < . If there were such an interval, then ( ) ( ) 0
t

t
t s dsβ β′ ′′= <∫  for all ( , )t t t∈ . 

Then, setting ˆ log( )S S= , differentiating both sides of (4.27) and multiplying by -1, we have 

( ) ( )2 2
( 1)( ( ) ( )) ( ) ( ) ˆ( ) ( ( ))

( ) ( ) ( )
N t t t v t t t S t

t t v t t
β β β β β
β β

′ ′′ ′ ′− + − ′ ′′= +
′ −

. Since ( ) 0tβ ′ <  and Ŝ  is concave, the right hand 

side of this equation is positive. For the left hand side to be also positive, we must have ( ) 0tβ ′′ >  for all 

( , )t t t∈ , which contradicts ( ) ( ) 0
t

t
t s dsβ β′ ′′= <∫ .  
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When types are correlated, the problem of choosing an expected-profit maximizing bid 
(ignoring ties) becomes: 

 max( ( ) ) ( | )−i i i
Bb

v t b F b t  (4.28)  

in which FB is the conditional probability distribution of the highest opposing bid given 
the bidder’s type.  

The bidder’s problem in this model differs from that of other models in that the 
probability that a bid b wins depends jointly on the bid and the bidder’s type rather than 
on the bid alone. We may limit attention to bids ( )i ib v t<  as higher bids would be 
unprofitable. Taking logarithms, the problem becomes: 

 max ln( ( ) ) ln ( | )− +i i i
Bb

v t b F b t  (4.29) 

If vi is increasing, the first term satisfies the condition of increasing differences and 
therefore smooth single crossing differences. If the bid induces a positive value of FB and 
if the second term also has increasing differences, then the entire objective has the strict 
single crossing differences property.  

In a symmetric two bidder model, if there is a symmetric, increasing equilibrium 
strategy β, then ln ( ( ) | ) ln ( | )β =j i j i

BF t t F t t , where the unsubscripted F denotes the joint 
distribution of the bidders’ types. It follows by a routine calculation that if ln ( | )j iF t t  
has increasing differences, then so does ln ( | )i

BF b t .  

Theorem 4.20. In the two-bidder symmetric model with dependent types, suppose that 
ln ( | )j iF t t  is continuously differentiable and has increasing differences and (0) 0v′ > . 
Then, the unique symmetric, increasing equilibrium bid function βFP  satisfies 

(0) (0)β =FP v  and 

 1 ( | ) 1
( | ) ( ) ( )( ) FPFP

f t t
F t t v t tt ββ

=
′ −

. (4.30) 

Proof. The bidder’s optimization problem is: 

 1max ln( ( ) ) ln( ( ( ) | ))β −− +
b

v t b F b t  

which yields first-order condition: 

 
1

1
1

1 ( ( ) | ) ( ) 0
( ) ( ( ) | )

β β
β

−
−

−

−
+ ⋅ =

−
f b t d b

v t b F b t db
 

and therefore (4.30) since 1( )β − =b t . As ( )FP tβ  satisfies the first-order optimality 
condition, it must satisfy the envelope condition. Both ( | )f t t  and ( | )F t t  are positive by 
assumption and, at any solution to (4.30), ( ) ( ) 0FPv t tβ− >  for all 0t > . Then, by 

inspection of (4.30), ( ) 0FP tβ ′ >  for t > 0. Hence, by the constraint simplification 
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theorem, FPβ is a best reply, and therefore a Nash equilibrium.  Note, trivially, that no 
bids outside the range of ( )FP tβ  can pay more for any types than some bid in the range.   

Moreover, every Nash equilibrium bidding strategy must, for the usual reasons (see 
section 4.2.2), be continuous, increasing, and differentiable, so it must satisfy (4.30) by 
the definition of best response and β(0) = v(0). The bid function is unique since no ties 
are allowed and no other boundary conditions are possible.  ■  

Next, we compare the expected profits and revenues for the first- and second-price 
auctions. The key to our analysis is that the expected price paid by the winning bidder in 
the second price auction increases in the bidder’s type, even holding his bid fixed. This 
happens in our model because of the assumed positive correlation between bidder types.80 
Because there is no such effect in the first-price auction, bidder profits increase faster as a 
function of type in that auction, generating different payoffs in the two auctions.  

We begin by proving that a bidder’s expected payment in the second-price auction 
increases in his type, even holding his bid fixed.  

Lemma. Suppose ln F  has increasing differences. Then, (1) ( | )F s t  is non-increasing 
in its second argument and (2) the function ( | )p s t =�  ( ) | ,j j iE v t t s t t < =   is non-
decreasing in its second argument.  

Proof. Since ln F has increasing differences, for any ˆt t> , ˆln ( | )F s t− =  
ˆ ˆln (1 | ) ln ( | )F t F s t− ≤  ln (1 | ) ln ( | ) ln ( | )F t F s t F s t− = − . Hence, ˆ( | ) ( | )F s t F s t≤ . 

Since s is arbitrary, the distribution ( | )F ti  first-order stochastically dominates ˆ( | )F ti , 
that is, for all s, ˆ( | ) ( | )F s t F s t≤ , which proves (1). Therefore, since v is increasing, p�  is 
increasing in its second argument.  ■  

Theorem 4.21. In the two-bidder symmetric model with dependent types, suppose that 
ln ( | )j iF t t  is continuously differentiable and has increasing differences, that is, 

2 ln ( | ) / 0F x y x y∂ ∂ ∂ ≥ . Then, the expected payoff for each type of bidder is less in a 
second-price auction than in the first-price auction.   

Proof. A bidder’s expected payoff in the second-price auction when it bids ( )v s is 
( )( ) ( | ) ( | )v t p s t F s t− � , which is its value ( )v t  minus the price it expects to pay ( | )p s t� , 
conditional on bidding ( )v s  when its type is t, times the conditional probability ( | )F s t  
that the opposing type is less than s. Let us imagine that the bidder optimizes by choosing 
s and set ( )( ) max ( ) ( | ) ( | )SP sV t v t p s t F s t= − � ; this is the bidder’s equilibrium payoff. 

The maximum occurs at s t= . Therefore, by the envelope theorem, ( )SPV t′ =  

( ) ( )2 2( ) ( | ) ( | ) ( ) ( | ) ( | )v t p t t F t t v t p t t F t t′ − + −� � . Substituting ( | ) ( )p t t v t= −�  
( ) / ( | )SPV t F t t  leads to:  

                                                 
80 More precisely, types must be positively correlated conditional on lying in any product set. This 
affiliation condition is explored and exploited in chapter 5.  
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 ( )2 2
( )( ) ( ) ( | ) ( | ) ( | )

( | )
SP

SP
V tV t v t p t t F t t F t t
F t t

′ ′= − +� . (4.31) 

Arguing similarly for the first-price auction using ( )( ) max ( ) ( ) ( | )FP sV t v t s F s tβ= −   
leads to: 

 2
( )( ) ( ) ( | ) ( | )

( | )
FP

FP
V tV t v t F t t F t t
F t t

′ ′= + . (4.32) 

Also, (0) (0) 0FP SPV V= = . Note that 2 ( | ) 0F t t ≤ , by the lemma. Hence, from (4.31) and 

(4.32), at every point t, if ( ) ( )FP SPV t V t<  then ( ) ( )FP SPV t V t′ ′≥ . It then follows from the 
value ranking lemma that ( ) ( )FP SPV t V t≥  for all 0t ≥ .  ■  

When there are more than two bidders, a similar analysis is possible. In that analysis, 
we replace the requirement that ln ( | )j iF t t  have increasing differences with a a similar 
condition on the joint cumulative distribution F�  of i's type and the highest type among 
the N-1 other bidders. See chapter 5 for a more complete development.  

4.4 Expected-Revenue Maximizing Auctions  
Among the most famous results in auction theory is the Myerson-Riley-Samuelson 

theorem about auctions that maximize the seller’s expected revenues. Although the 
original analyses assumed bidders’ types were their valuations, we can present the results 
more intuitively using the distributional strategies discussed in section 4.2.  

We assume that each bidder’s type ti is uniformly distributed on [0,1] and that the value 
of an item to bidder i is an increasing, differentiable function, vi(ti). Using formula (4.5), 
bidder i’s ex ante expected payoff from the auction is therefore: 

 

1

0 0
1 1

0
1

0

( ) (0) ( ) ( )

(0) ( ) ( )

(0) (1 ) ( ) ( ) .

t
i i i i i

i i i

s

i i i

dE V t V v s x s dsdt
ds

dV dt v s x s ds
ds

dV s v s x s ds
ds

  = + 

= +

= + −

∫ ∫

∫ ∫

∫

 (4.33) 

  Before formulating the seller’s problem, we first consider the constraints, that is, what 
decision performance is feasible in this setting. We then derive a formula for the seller’s 
payoff and conveniently express it in terms of mechanism performance. To determine 
what performance we can implement, we revert to mechanism design notation similar to 
chapter 2, writing i’s payoff function as ui, the performance function (combining 
allocations and transfers) as z, and the type space as Θi instead of [0,1].  

Definition. The performance function z is (Bayesian) incentive-compatible if and only 
if for all ˆi it ∈ Θ , ˆ( ( , ), ) | ( ( , ), ) |i i i i i i i i i iE u z t t t t E u z t t t t− −   ≥    .  
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The definition states that a performance function is incentive compatible if, when 
participant i’s type is ti, the participant never strictly prefers that the mechanism choose 
an outcome as if i’s type were actually ˆit . The significance of incentive-compatibility 
lies in the revelation principle.  

Revelation Principle for Bayes-Nash Equilibrium. The Bayes-Nash equilibrium σ of an 
augmented mechanism ( , , )ω σS  achieves performance z if and only if the performance 
function is incentive-compatible.  

Proof. If z is not incentive-compatible, then for some ˆ,i it t ,  

( )( )
( )( )

( ), ( ) , | ( ( , ), ) |

ˆ ˆ( ( , ), ) | ( ), ( ) , |

i i i i i i i i i i i i

i i i i i i i i i i i i

E u t t t t E u z t t t t

E u z t t t t E u t t t t

ω σ σ

ω σ σ

− − −

− − −

   =   
  < =   

 

so the player of type ti strictly prefers to deviate from ( )i itσ  to ˆ( )i itσ , contradicting the 
assumption that σ is a Bayes-Nash equilibrium. In other words, given the players’ true 
types, performance z can be achieved if and only if the performance function is incentive 
compatible so all players report their types truthfully.  

Conversely, if z is incentive compatible, then, by inspection, the strategies ( )i i it tσ =  
constitute a Bayes-Nash equilibrium of the direct mechanism.  ■  

We now formulate the seller’s revenue-maximization problem. Notice first that the 
total ex ante joint payoff to buyer i and the seller from sales to buyer i is:  

 
1

0
( ) ( )i i iTV v t x t dt= ∫ , (4.34) 

so the seller’s expected revenue from such sales is: 

 
1 1

0 0

1

0

( ) ( )

( ) ( ) (0) (1 ) ( )

(0) ( ) (1 ) ( )

i i i i i

i
i i i i

i
i i i

E p t TV E V t

dvv t x t dt V s x s ds
ds

dvV v s s x s ds
ds

   = −   

= − − −

 
= − + − − 

 

∫ ∫

∫

 (4.35) 

The seller’s problem is therefore: 

 

1,
max ( )

subject to
(PC)   ( ) 0   for all ,

ˆ ˆ ˆ(IC)    ( ) ( , ) | ( ) ( ) ( , ) | ( )  for all , ,

N i i
ix p

i i i

i i i i i i i i i i i i i i i i i i

E p t

V t i t

v t E x t t t p t v t E x t t t p t i t t

=

− −

 
 

≥

   − ≥ −   

∑

(4.36) 

where (PC) designates the “(voluntary) participation constraint” and (IC) the “incentive 
constraint.” The participation constraint requires that the bidder always do at least as well 
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by participating in the mechanism as by refusing to do so. The incentive constraint 
requires the mechanism to be incentive compatible.  

The problem (4.36) can be simplified in several ways. First, using the constraint 
simplification theorem, the incentive constraint can be replaced by:  

(IC′) 

0

  non-decreasing for 1,...,

( ) ( ) ( ) ( ) (0) ( ) ( )  for 1,..., , [0,1]

i

t
i i i i i i i

x i N

V t v t x t p t V v s x s ds i N t

 =

 ′= − = + = ∈


∫
 

where the second expression is from the envelope theorem. We may rewrite  bidder i’s 
expected payment as: 

 
0

( ) ( ) ( ) ( ) (0)
t i

i i i i idvp t v t x t x s ds V
ds

= − −∫  

Second, since the envelope formula implies that V 
i is nondecreasing, the participation 

constraint reduces to  

(PC′) V 
i(0) ≥ 0  for i=1,…, N. 

Bulow and Roberts (1989) have suggested an analogy between the optimal auction 
problem and the standard monopoly-pricing problem. If one sets the price so as to sell a 
unit to the bidder if its type is t or greater, then the probability of a sale will be 1 t− . This 
probability is the expected quantity sold, so the function (1 ) ( )iP t v t− =  is interpretable 
as the inverse demand function. Selling an expected quantity of 1 t−  at price vi(t) 
generates expected total revenues of ( ) ( )(1 )i iTR t v t t= −  (see Figure 5). The 
corresponding “marginal revenue” is:  

 
( ) ( )(1 ) ( ) (1 ) ( )

( ) ( ) (1 )
(1 )

i i i
i i

d t v t d t v t dvMR t v t t
d t dt dt

− −
= = − = − −

−
. (4.37) 
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The optimal auction maximizes expected profits by selling to buyers whose types t 

satisfy ( ) 0.MR t >   The expression (1 )
idvt

dt
−  is the inverse hazard rate associated with 

the distribution Fi . To see this recall that the inverse hazard rate is 1 1
( )

i

i i

F
h t f

−
= , and 

since  1( )i iv F −= , we know that ( )i i iF v t=  or ( ) 1
i i i

i i

dF v dv
dv dt

= .  Therefore, 

1i

i i

dv
dt f

= or 1(1 ) .
i i

i
i i

dv Ft
dt f

−
− =  

Using equation (4.37) to define MRi, we may rewrite (4.35) more compactly and 
intuitively as: 

 
1

0

( ) (0) ( ) ( )i i i i i i i iE p t V MR s x s ds  = − +  ∫ . (4.38) 

The two uses are related by81: 

 ( ) ... ( , )i i i i i ix t x t t dt− −= ∫ ∫  (4.39) 

                                                 
81 The notation xi does double duty here as a function of either the real variable it  or the vector variable t

G
.   

v∗  

1-t ( ) 0MR t∗ =

( )v t

v  

0 1

Figure 5: The valuation function v plays a role in the theory of revenue-
maximizing auctions similar to that of the inverse demand function in 
monopoly theory. Notice that the quantity shown on the horizontal axis is 1-t.  
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Since the ( )ix ⋅ are probabilities, they must satisfy 1( , ..., ) 0i Nx t t ≥ and 
1

( ) 1N i
i

x t
=

≤∑
G

 

for all type vectors 1( ,..., )Nt t t=
G

. The seller’s total expected revenue, in terms of the 
allocation performance function x, is  

 

1

1 1 1 0

1

1 1

[ ( )] (0) ( ) ... ( , )

(0) ... ( ) ( , ) ...

N N N
i i i i i i i i i i

i i i

N N
i i i i i i N

i i

E p t V MR s x s s ds ds

V MR s x s s ds ds

− −

= = =

−

= =

= − +

 = − +  
 

∑ ∑ ∑∫ ∫ ∫

∑ ∑∫ ∫
 (4.40) 

Using (4.40), we can rewrite the problem of maximizing expected revenues  as:  

1

, 1 1

0

max (0) ... ( ) ( , ) ...

( , )  is nondecreasing in  for 1,...,
(IC )                         

( ) ( ) ( ) (0) ( ) ( )  for all , [0,1]

N N
i i i i i i N

x p i i

i i i i i

t
i i i i i i

V MR s x s s ds ds

x t s ds t i N

p t v t x t V v s x s ds i t

−

= =

− −

 − +  
 

 =

′
′= − − ∈

∑ ∑∫ ∫

∫

∫

1
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( , ) 0      for 1,..., ,  ( , ) [0,1]
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( , ) 1   for ( , ) [0,1]

i

i i i i i N

N
i i i i i N

i

V i N

x s s i N s s

x s s s s

− −

− −

=






′ ≥ =

 ≥ = ∈



≤ ∈

∑

 (4.41) 

The first condition of (IC) follows from the fact that ( )ix ⋅  is nondecreasing, and the 
(Prob) constraints reflect the facts that xi is a probability and that the seller owns only one 
unit.  

4.4.1 Myerson-Riley-Samuelson Theorem 
As for other monopoly pricing problems, the solution here is easiest to characterize 

when the marginal revenue functions are decreasing in quantities (here denoted by 1-si). 
With this assumption (which implies that each MRi function is increasing in the bidder’s 
type), verifying the solution to (4.41) is straightforward.  

Theorem. 4.22. If each of the functions MRi is increasing, then an optimal solution to 
(4.41) is given by:  

 

1 1

0

1 if ( ) max{0, ( ),..., ( )}
( )  for 1,..., , [0,1]

0 otherwise

(0) 0

( ) ( ) ( ) ( ) ( )  for 1,..., , [0,1]

i i N N
i N

i

t
i i i i i

MR t MR t MR t
x t i N t

V

p t v t x t v s x s ds i N t

 =
= = ∈


=

′= − = ∈∫

G G

 (4.42) 

The corresponding maximal revenue is { }1 1max 0, ( ),..., ( )N NE MR t MR t   .  
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Remark: In the event of a tie for the highest MRi, the allocation rule may randomize 
among the tie bids.  

Proof. Consider the relaxed problem in which we relax the constraint that ( )x ⋅ is 
nondecreasing. The proposed solution described by (4.42) maximizes the integrand in the 
objective in problem (4.41) subject only to the constraints (PC) and (Prob) for each 
realization of types. Consequently, it maximizes expected revenue if the proposed 
solution is feasible. To check feasibility, we only need to check that (IC) is satisfied.  

The expected payment condition (which is the integral form envelope condition in this 
problem) is implied by the assumption imposed on the value function. The monotonicity 
condition holds because the assumption (in the statement of the theorem) that MRi(.) is 
increasing implies that xi(ti,t-i) is nondecreasing in ti.  ■  

Examples 
According to the theorem, the expected-revenue-maximizing auction is any auction 

that allocates the good according to (4.42) and charges the corresponding expected price, 
with each V 

i(0) = 0. Two examples illustrate the application of the theorem.  

The first example is the symmetric case in which vi=v for all i. Define t* to be the 
solution to MR(t*) = 0, or if MR is everywhere positive, let t* = 0. In the symmetric case, 
the Vickrey auction with reserve * *( )r v t=  allocates the good to the bidder with the 
highest type whenever that his value exceeds r*. Given the assumption that MR is 
increasing, this performance is precisely what the first equation of (4.42) requires. Since 

*(0) ( ) 0V V t= =  for the Vickrey auction, we conclude that the auction maximizes the 
seller’s expected revenue over all possible mechanisms.  

The Vickrey auction, however, is not the only expected-revenue-maximizing auction. 
In the first-price auction with reserve r*, the lowest type to participate is again t*. Again, 

*(0) ( ) 0V V t= =  and a bidder wins if and only if his type is highest and exceeds t*. 
Hence, the first price auction with reserve r* is another expected-revenue-maximizing 
auction.  

There are still more expected-revenue-maximizing auctions. In the first- and second-
price all-pay auctions, if the reserve is set to * * 1( )Nr t − , then a bidder makes a positive bid 
if and only if his type exceeds *t  and wins when that condition holds and, in addition, his 
type is highest. Again, *(0) ( ) 0V V t= = , so these auctions, too, are expected-revenue-
maximizing auctions in the benchmark model.  

Our second example uses an asymmetric model. Suppose the valuation functions differ 
by a shift parameter: ( ) ( )i iv t v tα= +  for some increasing function v(t). A seller may 
wonder, in this case, how to respond optimally to the advantages that some buyers enjoy 
on account of a high value of iα . The answer turns out to depend on the inverse hazard 
rate 1/ ( ) (1 ) ( )h t t v t′= − , because ( ) ( ) 1/ ( )i iMR t v t h t= − .  

Suppose first that h is increasing, as is true for many distributions arising in statistical 
theory. Let s and t satisfy ( ) ( )=i jv s v t  and let α α>i j , so that bidder i is “stronger”—that 
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is, tends  to have higher values. Then >t s  because ( ) ( )α= +i iv t v t  and ( ) ( )>h t h s  as 
( )v t  is increasing in its argument, and ( ) ( )<i jMR s MR t . Given (4.42), the optimal 

policy in this case is to bias the award away from efficiency to favor the “weaker” bidder, 
that is, the bidder with the lower value of the shift parameter. By “handicapping” the 
stronger bidder in this way, the seller can get a higher price on average because the 
stronger bidder now has to increase his bid.  

Of course, a decreasing hazard rate reverses this conclusion. Thus, optimal selling 
policies with asymmetric bidders can be quite subtle, depending sensitively on details of 
the environment.  

Bulow and Roberts used the marginal revenue concept to highlight the connection 
between the theory of expected revenue-maximizing auctions and the theory of monopoly 
pricing. The simplest case arises when N = 1. In that case, we may drop the superscripts 
identifying the bidder, and fix V(0)=0. The monopolist’s problem is to determine a price 
that maximizes its total expected revenue. To sell a total expected quantity 1-s, it must set 
a price of v(s), for if v is increasing, all types greater than s will buy one unit and all 
lower types will buy nothing. We again limit attention to the case in which the 
monopolist’s marginal revenue declines continuously in total expected sales 1-s, that is, 
in which the function ( )MR s  is continuous and increasing. In that case, the expected-
revenue-maximizing policy is to set the price equal to * *( )r v t= , where t* is determined 
as before by MR(t*) = 0. Such a price yields the following allocation performance: 

 
1 if ( ) 0

( )
0 otherwise

≥
= 



MR t
x t  (4.43) 

By inspection, this solution is a special case of the solution in theorem 4.22.  

Next, let us take account of all N bidders. Imagine that a seller has to decide to which 
of N separated markets to allocate a marginal unit that has just become available. The 
type vector 1( ,..., )Nt t t=

G
 describes current conditions in the markets. The seller 

maximizes his expected total revenue by allocating that unit to the market in which 
marginal revenue is highest and by withholding the unit altogether if the highest marginal 
revenue is negative. That is precisely the rule prescribed by (4.42).  

4.4.2 Bulow-Klemperer Theorem 
A result of Jeremy Bulow and Paul Klemperer offers another illustration of the power 

of the theory of optimal auctions. Bulow and Klemperer compared the gains from setting a 
reserve price optimally against the gains to adding one more bidder to the auction. For 
simplicity, we assume that (0) 0=v . This assumption would seem to make it especially 
important to set a suitable reserve price, since otherwise the auction revenue could be 
very low. In a second price auction, the revenue could be close to zero, even if some 
bidder were willing to pay a high price.  

The formal analysis, however, delivers a subtly different conclusion.  
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Theorem 4.23. The expected revenue from an auction with N+1 bidders and no reserve 
is at least as high as the revenue from the corresponding auction with N bidders using 
revenue-maximizing reserve price, 1(0)MR− .  

Proof. The theorem 4.22 gives the revenue in the second case. In the first case, the 
expected revenue is { }1 1 1 1max ( ),..., ( )+ +  

N NE MR t MR t . The definition of iMR  implies 

that 
1

1

0
0

( ) ( ) (1 ) ( ) 0i i i
t

E MR t MR s ds t v t
=

  = = − − =  ∫ . Jensen’s inequality implies that for 

any random variable z and constant A, [ ]max( , ) max( , [ ])≥E A z A E z . Taking 
1 1( )+ += N Nz MR t , we have: 

 

[ ]
{ }

{ }
{ }

[ ]

1 1 1 1

1 1 1 1 1

1 1

Auction Revenue, 1 bidders & no reserve

max ( ),..., ( )

max ( ),..., ( ) | ,...,

max ( ),..., ( ),0

Auction Revenue,  bidders & optimal reserve

+ +

+ +

+

 =  
  =   
 ≥  

=

N N

N N N

N N

E N

E MR t MR t

E E MR t MR t t t

E MR t MR t

E N

 (4.44) 

which proves the theorem.  ■  

4.4.3 The Irregular Case 
So far, we have limited attention to the case where iMR  is increasing. The problem in 

the general case is that the performance function xi prescribed by the theorem will fail to 
be nondecreasing when iMR  is not nondecreasing, so the incentive compatibility 
constraint in (4.41) will not be satisfied.  

In monopoly pricing, the corresponding problem is that the marginal revenue function 
may be increasing over some intervals. In that case, the total revenue function TR will not 
be concave, so for a given expected quantity, a randomized output sometimes leads to 
higher total expected revenues than a deterministic output. For example, by randomizing 
½-½ between quantities q and q′ , the seller can earn a total expected revenue of 
1 1

2 2( ) ( )TR q TR q′+ . As a function of expected output, the seller’s maximum total 
revenue is the concave hull of the total revenue function, that is, the smallest concave 
function m( )TR q  that satisfies m( ) ( )TR q TR q≥  for all q.  

The auction problem has an analogous structure. Define 
1

( ) ( )= ∫i i

t
TR t MR s ds ; this is 

the total expected revenue enjoyed by the seller if it sets the price v(t) and sells with 
probability 1− t . Let 

j
TR  be the concave hull of jTR ; this is the revenue the seller can 

achieve by randomizing its price. Let ( ) /= −
i i

MR dTR t dt  be the corresponding marginal 
revenue function. Then, the expected revenue maximizing allocation rule assigns the item 
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to the bidder with the highest marginal revenue ( )
i iMR t , provided that is positive. In the 

event of a tie, it randomizes the allocation:  

( )1 1
1 0 if ( ) max 0, ( ),..., ( )

( ,..., )
1/  otherwise

i Ni N
i N MR t MR t MR t

x t t
N

 ≠= 


 (4.45) 

where ( ){ }1 1# : ( ) max 0, ( ),..., ( )
i Ni NN i MR t MR t MR t= =  is the number of tying bidders. 

In contrast to the allocation performance specified in the theorem, the function xi is 
guaranteed to be non-decreasing everywhere. The reason is that 

i
MR  is nondecreasing 

everywhere, because 
i

TR  is concave. We omit the formal proofs.  

4.5 Conclusion 
This chapter introduced the various single crossing conditions and their implications, 

especially the constraint simplification theorem. These enable us to provide a compact 
analysis of a large set of equilibrium models and to develop the celebrated optimal 
auction theory. We analyzed the standard auctions, the war of attrition and the all-pay 
auction this way.  

The chapter also analyzed several variations of the benchmark model in which the 
revenues of the first- and second-price auctions differ. We found that the first price 
auction leads to higher average revenues when the benchmark model is modified to 
incorporate risk aversion, budget constraints, or endogenous quantities. Positive 
correlation of bidder types favors the second price auction.  

We also used the tools of the chapter to characterize the feasible performance of an 
auction and used that to revisit the optimal auction problem.  

The next two chapters develop more lessons of traditional auction theory for evaluating 
some common auction practices.  
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Chapter 5:  
Interdependence of Types and Values 

Most of the models in chapters 2-4 are independent private values models. Values are 
private if each player’s value for any outcome depends only on his own type and 
independent if types are statistically independent. The only exceptions so far are the 
Jehiel-Moldovanu model of chapter 3, which discards the private values assumption, and 
the correlated-types example of chapter 4, which relaxes the independence assumption. 

Relaxing the private values and independence assumptions raises a host of new issues. 
When bidders do not know their own values, the connection between bids and values is 
naturally weaker and the bidder with the highest value may win less often. Bidders’ 
ignorance of their values leads us to study what information bidders are likely to acquire, 
whether they’ll share this information or keep it secret, and whether the auctioneer can 
improve the outcome by gathering and disseminating information on its own. The 
independence assumption is an essential premise of the Myerson’s lemma and the 
revenue equivalence theorems. Relaxing this assumption forces us to reevaluate the most 
basic results of auction theory.  

In this chapter, we study issues raised by the two possible kinds of interdependence. 
Section 5.1 investigates the kinds of simplifying assumptions that are “reasonable” and 
“useful” in auction models. Section 5.2 explores the consequences of statistically 
interdependent types in an optimal auction model. Section 5.3 studies the empirically 
successful “drainage tract model,” which treats bidding for oil on tracts adjacent to a 
previously developed tract. Section 5.4 introduces a model that relaxes both the private 
values and statistical independence assumptions.  

5.1 Which Models and Assumptions are “Useful”? 
Students sometimes ask their teachers whether a particular assumption is “reasonable” 

in a particular auction model. The answer is to be found only by restating the question: 
what is a useful assumption?  

Real auctions occur in many different situations. There is no reason to expect that any 
single set of tractable simplifying assumptions will describe all the situations well—or 
will even describe any of them well. The test of the suitability of assumptions is whether 
they are simple enough to make the analysis tractable while still capturing enough 
essential features of the situation to be useful for the intended purpose, which may be to 
make quantitative predictions or to lend qualitative insights into some issue.  

Model builders can sometimes profit by using theoretical analyses to evaluate 
simplifying assumptions, exploring consequences of the assumptions within the model or 
developing implications of the same assumptions in a wider model. In this section, we 
use theory in these ways to investigate some common assumptions used in auction 
models.  
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5.1.1 Payoffs Depend Only on Bids and Types 
In the preceding chapters and throughout mechanism design theory, it is usually 

assumed that a participant’s payoff depends only on the outcome x and the vector t
G

 of 
participant’s types, ( , )ju x t

G
, but that does not always describe the reality accurately. For 

example, consider an auction for the right to extract minerals from a certain piece of 
property, when no one can determine in advance the quantity of minerals in the ground or 
the cost of extraction. The winning bidder’s ultimate payoff will depend on the resolution 
of these uncertainties. Given this situation, some theorists have written the bidder’s 
payoff as a function of the outcome x and some vector y of random variables, ˆ ( , )ju x y , 
where y may include both the type profile and unobserved variables.  

What are the consequences of these alternative formulations? We show in this section 
that for the limited purpose of characterizing equilibrium bidding strategies as functions 
of the bidders’ types, one can assume without loss of generality that payoffs depend only 
on the auction outcome and bidder types. For suppose that the actual payoffs ˆ ( , )ju x y  
depend on the outcome and a vector y of observed and unobserved quantities. Then the 
expected payoff to any strategy profile in this model is exactly the same as in a model 
with the payoffs given by ˆ( , ) ( , ) |j ju x t E u x y t =  

G G
.  

To verify this claim, observe that the expected payoff to bidder j in the original game, 
given strategy profile σ and j’s type, is 

 ( ) ( ) ( )ˆ ˆ( ( )), | ( ( )), | | ( ( )), |j j j j j jE u x t y t E E u x t y t t E u x t t tσ σ σ      = =      
G G G G G

. 

The left-hand side is the expected payoff in the game with payoff function ˆ ju  and the 
right-hand is the same in a game with payoff function ju . Since the two expected payoffs 
are identical, the equilibrium behavior is identical as well. One might say that the vector 
y of random variables can always be “integrated out” from the original payoff function to 
leave a payoff function that depends only on the type profile.  

The significance of this finding is that, when types are exogenous, the equilibrium 
strategies depend only on the information in the reduced form payoff ( , )ju x t

G
.  Still, 

when we want our model to relate equilibrium payoffs to bidders’ information, it can be 
helpful to work with a more detailed payoff function. For example, suppose that we wish 
to investigate whether the degree of uncertainty about the volume of recoverable 
hydrocarbons increases profits in an auction of oil leases. Even though bidder 
information is unobservable so the equilibrium theory cannot be directly tested, if there 
are usable instruments for the degree of uncertainty and if profits are observable, then the 
more detailed model can generate testable predictions. Similarly, one may be able to test 
how improvements in bidders’ ability to estimate recoverable oil affect the bidders’ 
strategies, profits, and entry decisions as well as the auction revenues, and the efficiency 
of the auction outcome.  

If bidders choose what information to collect or if the seller chooses what information 
to disseminate, then the types are not exogenous and equilibrium analysis may require 
more than a reduced form model. Equilibrium analysis requires that the model include all 
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potentially observable information. A model with potentially unobserved information 
allows us to analyze bidders’ choices about what information to gather and the seller’s 
choice about what information to disseminate.  

5.1.2 Types are One-Dimensional and Values are Private 
Here, we evaluate the twin assumptions that a bidder’s type is one-dimensional—a real 

number—and that bidders have private values. If bidders have private values then no 
bidder has information that another bidder might find useful for estimating his value. One 
might ask: Is that reasonable? Wouldn’t bidders want to learn something about one 
another’s values? To answer these questions that, we need to distinguish different kinds 
of information that a bidder may acquire.  

We adopt a model similar to that of the Jehiel-Moldovanu theorem in chapter 3, with a 
single item for sale. Bidder j’s information is a vector 1( ,..., )j j j

Nt t t=
G

, in which only the 
component j

it  is directly relevant to bidder i’s payoff. We allow that i’s payoff when he 
wins the item may depend on information of the other bidders; it is 1( ,..., )N

i iv t t  minus the 
amount he pays. We also assume for now that the types are statistically independent 
across bidders and we denote other bidders’ strategies by jσ − . From statistical 
independence, it follows that the probability that j wins with any given “bid” b is 
independent of j’s type, so: 

{  wins}( )1 | Pr{  wins} ( , ) |

Pr{  wins} ( , ) ( , )

j j j j j j j j
b j j

j j j j
j j j

E v t t b E v t t

b E v t f b

τ τ τ

τ τ

−

−

   = = =   
 = = 

G

 

Given the mechanism, bidder j’s expected payoff when he bids b with type jt
G

 is:  

 ( , ) ( , ( )) ( , ) ( )j j j j
j jf b t E Payment b t f b t g bσ − − − = −  . (5.1) 

It follows that j’s expected-payoff-maximizing bid given his type jt  depends only on j
jt  

and not on j
jt− , so the value for j of the information j

jt−  is zero!  

This conclusion is significant if we suppose that there is some positive cost to 
collecting and evaluating the information j

jt− . In that case, since bidder j’s value of that 
information is zero, he will not collect it at equilibrium. On one hand, this conclusion 
extends the Jehiel-Moldovanu result, which holds that even if such information were 
available for free, the auctioneer could not take advantage of it. We add here that, subject 
to our assumption that gathering information is costly, the bidder would not bother to 
gather such information in the first place.  

This argument establishes that, under the other specified assumptions, bidder types are 
endogenously one dimensional, and that dimension includes only the information that is 
directly relevant to bidder j’s own payoff.  

Even if bidders only gather one-dimensional information about their own values, that 
still does not establish the appropriateness of the private values assumption. For example, 
suppose there are just two bidders and the bidders’ types, 1 1 1

1 2( , )t t t=  and 2 2 2
1 2( , )t t t= , are 
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independent. Further suppose that bidder one observes only the one component, 1
1t , of its 

type that affects its value and similarly that bidder two observes only 2
2t . What can we 

say about bidder 1’s expected value conditional on the observed components of the type 
profile, that is, about 1 1 2 1 1 2 1 2

1 2 1 1 1 2ˆ ( , ) ( , ) | ,v t t E v t t t t =   ? Does it follow that 1 1 2
1 2ˆ ( , )v t t  depends 

only on its first argument? 

The answer is “no,” because 2
1t  may be correlated with 2

2t . For example, suppose 
bidder 2 is assessing his value for an oil field. That value will depend on variables 
particular to bidder 2, but it will depend mostly on the volume of hydrocarbons in the 
field, which also affects the value of the field to bidder 1. For this reason, 2

1t and 2
2t  will 

tend to be high or low together. Consequently, a high value of 2
2t  will be significant to 

bidder 1, since it suggests bidder 1’s value is also high. 1v̂  may therefore increase in both 
arguments if 2

1t and 2
2t  are correlated.  

Notice that even the conclusion that types are effectively one dimensional rests upon 
the assumption that different players’ types are statistically independent. Without that 
assumption, a bidder’s observations could affect not only his values but also his beliefs 
about others’ values, about their beliefs, and so on, ad infinitum. Such beliefs cannot 
generally be summarized by a one dimensional type, and bidders could have an incentive 
to learn about one another’s types in order to forecast the competing bids.  

5.1.3 Types are Statistically Independent 
Statistical independence is a special, knife-edge assumption, whose role in the analysis 

of auctions has long been questioned. In auctions of assets, bidders often estimate the net 
revenue the asset can generate, which is sensitive to demand and technology. To the 
extent that bidders are estimating the same underlying variables, their estimates will often 
be positively correlated.  

To illustrate this tendency, consider an auction for oil-drilling rights in which each 
bidder’s type is her estimate of the amount of oil in the ground. Suppose that the actual 
value of the oil is a non-degenerate random variable y with mean µ and that bidder j’s 
estimate is j jt y ε= + , where 1ε , 2ε  and y are mutually independent. Then, 

1 2( , ) ( ) 0Cov t t Var y= > . So, independent errors induce positively correlated types. 

This source of correlation is especially important in some of the most empirically 
successful auction models, which use the polar opposite of the private values 
assumption—the common value assumption.82 In auctions for oil and gas drilling rights 
(and other mineral rights), the value of the rights to the bidders depends mainly on how 
much oil and gas is in the ground and how easily it can be extracted. Common value 
models assume that this is the only kind of information bidders have. Most often, the 
models assume that the good has exactly the same value to each bidder. Under this 
assumption, since the allocation of the good has no impact on efficiency, analyses of 
efficiency focus on the resources used by the auctioneer and bidders in the auction. Most 
                                                 
82 Wilson (1967), Ortega-Reichert (1968), and Wilson (1969) analyzed the first common value models.  
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published analyses of common value auctions focus on the revenues associated with 
alternative auction procedures.  

5.2 Statistical Dependence and Revenue-Maximizing Auctions 
Statistical dependence among types in the optimal auction model fundamentally 

changes the solution to the optimal auction problem. Indeed, the solution changes 
discontinuously when we move from statistically dependent to statistically independent 
types. Cremer and McLean (1985) showed that with even a small amount of statistical 
dependence, an expected revenue maximizing auction for the seller always produces 
efficient outcomes and always reduces all bidders’ profits to zero, so that the seller’s 
expected revenue equals the value of the item to the bidder who values it most.  

We review the Cremer-McLean analysis in more detail below. First, however, let us 
recall why the seller in a model with independent types cannot reduce bidders’ profits to 
zero while still selling the item with a positive probability. We saw in chapter 3 that in 
the independent private values model, each bidder’s expected profit is completely 
determined by the function ( )j jx t , which specifies the probability that a bidder of type 

jt  wins the good. Applying the envelope theorem, the bidder’s expected payoff is 

0

( )( ) (0) ( )
j

j j j dv sV V x s ds
ds

τ
τ = + ∫ . In the auction designs we have studied, it is always 

true that (0) 0jV = , but the portion of the bidder’s profits due to the second term of the 
sum —sometimes called an information rent—is positive if the good is sold at all and 
values are an increasing function of the bidder’s type.  

The key to constructing a revenue-maximizing auction with statistical dependence 
among types is to link a first-price auction with certain side bets. Suppose that the rules 
require a bidder who bids b for the item in the first-price auction to enter a bet that 
depends on b. The bet is designed to have an expected payoff of zero to the bidder if the 
bidder’s value is b and otherwise to have an expected payoff that is quite negative. These 
side bets lead bidders to bid truthfully, leave the bidders with expected profits of zero, 
and allow the auction to assign the item to the bidder with the highest value for a price 
equal to that value.  

The side bets are easiest to construct when the number of types is finite; we limit 
attention here to this case.83 Suppose that there are N bidders and the possible types of 
bidder j are the elements of a finite set {1,..., }jM . The private value of the good to bidder 
j is ( )j jv t , where jv  is invertible.   

Let ( | )j j jP t t−  denote the conditional probability function for bidder j. The values of 
the function can be tabulated in a matrix jP  with jM  rows (indexed by jt  and denoted 
by ( )j jP t ) and i

i j M≠×  columns (indexed by jt− ). For example, suppose there are 3 
bidders and the sets of possible types are {1,…,4}, {1,…,8} and {1,…,5}. Then, the 
matrix 2P  is a 8 20× matrix. The key assumption is the following one, which states that 
no type’s beliefs can be expressed as a convex combination of the beliefs of other types.  
                                                 
83 McAfee and Reny (1982) extend the result to certain models with infinite type spaces.  
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(A) Non-degenerate Statistical Dependence. For each j, the matrix jP  described 
above has full row rank.  

Consider a modified first-price auction in which: (1) bidder j is permitted to bid only 
amounts in the set { (1),..., ( )}j j jv v M ;(2) the usual rules of a first-price auction determine 
the winner and payment; and (3) if bidder j bids ( )j jv t  and the opposing bidders bid 
amounts ( )j jv t− − , then the seller pays bidder j the amount ( , ).j j jB t t−  We call such an 
auction the first-price auction with side bets B. 

Theorem 5.2.1. Suppose that the distribution of types satisfies assumption (A) (“non-
degenerate statistical dependence”). Then, there exists a system of side bets B such that 
the first-price auction with side bets B has these properties: (1) it is incentive-compatible, 
(2)  it yields zero expected profit for each type of each bidder, and (3) conditional on the 
realized type profile t

G
, the expected revenues are equal to ( )1 1max ( ),..., ( )N Nv t v t .   

Proof. As a result of non-degenerate statistical dependence, each belief ( )j jP t  lies 
outside the convex hull ˆ ˆ{ ( ) | }j j j jVex P t t t≠ . By the separating hyperplane theorem,84 
there exists a vector ( )j jh t  with i

i j M≠×  elements such that for all ˆ j jt t≠ , 

( )ˆ( ) ( ) ( ) 0j j j j j jh t P t P t⋅ − > . Moreover, since each belief vector is a probability vector, 

we can choose ( )j jh t  so that ( ) ( ) 0j j j jh t P t⋅ =  and ˆ( ) ( ) 1j j j jh t P t⋅ ≤ −  for all ˆj jt t≠ .85 

Let 
,

max ( )j
j j

j t
B v t=  and ( ) ( )j j j jB t Bh t= . By construction of the mechanism, the 

expected profit of a bidder j of type jt  who bids ( )j jv t  is zero (that is, he pays his value 
when he wins and makes additional payments that, by construction, have expected value 
zero). However, the expected profit of a bidder j of type jt  who bids ˆ( )j jv t  ( ˆ j jt t≠ ) is 
bounded above by  

ˆ ˆ( ) ( ) ( ) ( )j j j j j j j jv t v t P t B t− + ⋅  

ˆ ˆ( ) ( ) ( ) ( )j j j j j j j jv t v t P t B h t= − + ⋅ ⋅  

ˆ( ) ( )j j j jv t v t B≤ − − 0.≤  

We obtain the first equality by substituting for ˆ( )j jB t ; the first inequality uses 
ˆ( ) ( ) 1j j j jP t h t⋅ ≤ − ; and the second inequality uses 

,
max ( )j

j j
j t

B v t= ( ).j jv t≥  Note that 

ˆ( ) ( )j j j jv t v t−  is the bidder’s profit from the auction when the bidder is of type jt and 

                                                 
84  See, for example, Royden (1968).  
85 Suppose jh  satisfies ( ) ( ) 0j j j jh t P t α⋅ = ≠ . Let ˆ

ˆ( ) max ( ) ( ) 0j
j j j j j

t
t h t P tλ α= − ⋅ > . Then, let 

( ) ( )ˆ ( ) ( ) / ( )j j j j j

ii
h t h t tα λ = −   for all i. Hence, ˆ ( ) ( ) ( ) / ( ) 0j j j j jh t P t tα α λ⋅ = − =  and 

ˆ ˆ( ) ( ) ( ) / ( ) 1j j j j j jh t P t t tλ λ⋅ ≤ − = −  for ˆ j jt t≠ . 
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reports type ˆ jt  and wins, and - ˆ( ) ( )j j j jP t B t⋅ is the expected loss from the side bet. Since 
all non-truthful bids make losses, we have established incentive-compatibility. 

Since all bidders bid their values, the bidder with the highest value receives the item for 
a price equal to that value, and the expected value of the side bets is zero. Thus claim (3) 
about expected revenue holds.  ■ 

Theorem 5.2.1 is provocative; it is an extreme implication of the theory of optimal 
auctions. The proof relies on condition A, which asserts that no type’s beliefs are a 
probability mixture of the beliefs of other types. In that case, we can find bets that break 
even for only one type and that lead to huge expected losses for all other types of the 
same bidder. By bundling the bet with a bid, incentives for truthful bidding are ensured.  

The theorem describes nothing that is found in practice and reminds us of how 
important it is to check the practical reasonableness of solutions suggested by a model 
before implementing any practical policy based on the model. The theorem also suggests 
a long list of questions a careful designer should ask about any mechanism. We consider 
some of these below.  

Is the mechanism of Theorem 5.2.1 unrealistically sensitive to the Theorem’s 
assumptions about the distribution of types? In the present model, solutions require 
increasingly large side bets as the beliefs of different types become close. However, when 
beliefs do not depend on the types—i.e. when types are independent—the revenue-
maximizing mechanism does not use side bets at all. The sensitivity of the conclusions to 
the assumptions is disturbing.  

Does the mechanism designer have the information necessary to implement a 
mechanism like that of Theorem 5.2.1? This question relates to the first one. The 
sensitivity of the solution to the designer’s assumptions means that the designer needs 
very accurate information to get good results. Robert Wilson (1987), in what has come to 
be known as the “Wilson doctrine,” has argued that useful auction designs must be 
independent of the fine details of unknowable bidder valuations and beliefs.  

Does the model capture the situation modeled in a way that is useful for making 
predictions, or does it simplify reality excessively for reasons of tractability? The 
Cremer–McLean mechanism exploits bidders’ beliefs to induce truthful bidding. Neeman 
(2001) argues that the model is unrealistic in assuming that one can infer a bidder’s value 
from his beliefs about other bidders’ types. If we drop that assumption and formulate a 
model where beliefs and values can vary separately, then the Cremer-McLean conclusion 
must change. is necessarily different. To see why, suppose a bidder has a two-
dimensional type 1 2( , )t t  in which his value is 1( )v t  and his probability of winning with a 
bid of b is 2( | )p b t . Then, his payoff is 1 2 1 2 2( , ) max ( ) ( | ) ( | )bV t t v t p b t X b t= − , where 

2( | )X b t  is his expected payment when he bids b. If his optimal bid in any mechanism is 

1 2( , )t tβ  then, by the envelope theorem, 1 2 1 1 1 2 2( , ) / ( ) ( ( , ) | )V t t t v t p t t tβ′∂ ∂ = . This implies 
that a bidder’s expected profits are increasing in 1t  on the domain of types that sometimes 
win at auction, so bidder profits cannot always be zero. Nevertheless, the optimal 
mechanism still generally involves side-bets that allow the seller to exploit the correlation 
between values and beliefs.  
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Could the mechanism designer really implement this mechanism if he wanted? In real 
auctions, bidders frequently refuse to participate if the proposed mechanism seems 
strange or unfair. Many might apply those adjectives to a mechanism that links bids to 
side bets. Precedent and familiarity often limit the set of practically feasible designs. 

5.3 Wilson’s Drainage Tract Model 
Wilson (1969) developed the drainage tract model to describe bidding in the first-price 

auctions for rights to extract oil from tracts on the US outer continental shelf. A drainage 
tract is a tract adjacent to one already being developed by some oil company—the 
neighbor—whose activities give it particularly good information about the geology of the 
drainage tract. For example, the neighbor may have found bountiful oil near the boundary 
that separates its tract from the drainage tract, or it may have found only “dry holes” 
without recoverable oil. To model the neighbor’s superior information, Wilson assumed 
that the neighbor knows the value V. In this model, the competitor’s value is also V, but 
the competitor has only public information to use in estimating that value.  

The drainage tract model has subsequently received plentiful attention from both 
theoretical and empirical researchers. In a series of subsections, we will characterize the 
equilibrium of the model, the expected profits enjoyed by the neighbor and the 
corresponding revenues for the seller, how those profits and revenues are affected by 
research by the neighbor and non-neighbor and by whether the seller collects and reveals 
information. We will also study second-tier effects, concerning whether a neighbor or 
non-neighbor who gathers information wants his competitor’s to know that. Among our 
findings is that the neighbor wants it to be known that he is well informed, because the 
better informed he is believed to be, the more timidly his competitors are inclined to bid. 
Reversely, the poorly informed non-neighbors prefer that the neighbor believe they are 
poorly informed, because he will bid less aggressively under those circumstances.  

It is convenient to assume that the neighbor—bidder 1—observes a type 1t , and that 
the value of the lease is 1( )V v t=  to all bidders, where v is nondecreasing. The non-
neighbors are uninformed and have types 2 ,..., Nt t .  By the monotone selection theorem, 
we lose no generality in assuming that all bidders use nondecreasing bid functions 

: [0,1)jb +→ \ .  

5.3.1 Equilibrium86 
We first state the equilibrium for the case of two bidders. The model is one of a first-

price auction.  

Theorem 5.3.1. Suppose that v  is continuously differentiable, nondecreasing, and has 
positive right-hand derivative at zero. Then the two-bidder drainage tract auction model 
has a unique Nash equilibrium. At equilibrium, the neighbor and non-neighbor bidders 

                                                 
86 The equilibrium characterizations in this section are based primarily on Engelbrecht-Wiggans, Milgrom 
and Weber (1983) and the extensions developed by Hendricks, Porter and Wilson (1994). Weverbergh 
(1979) was the first to identify a Nash equilibrium in a version of the drainage tract model.  
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both bid 
0

1( ) ( )
s

b s v r dr
s

= ∫ . The non-neighbor receives an expected profit of zero, 

conditional on winning: 1 1[ ( ) | ( ) ] 0E v t b t x x< − =  for all x in the range of b.  

Remarks. The equilibrium strategy prescribes that each bidder of type s bid 
1 1[ ( ) | ]E v t t s< .  Although the setting is very different from the two-person independent 

private values model, the equilibrium bid functions in the two models are identical! At 
equilibrium in the drainage tract model, the non-neighbor randomizes: His type bears no 
relation to the value of the tract or his rival’s type, but he uses it to select a bid randomly.  
To provide the neighbor with appropriate incentives, the non-neighbor must randomize in 
a way that reproduces the bid distribution he would have generated in the two-person 
independent private values model, in which his value is 2( )v t  instead of 1( )v t .  The non-
neighbor is willing to randomize because, given the bidding strategy of the neighbor, all 
bids in the range of the bid function have the same expected payoff of zero. The neighbor 
is willing to play the same equilibrium strategy as in the independent private values 
model because, given the strategy of the non-neighbor, it faces the same decision 
problem in both games.  

Proof. We begin by verifying that the proposed strategies constitute an equilibrium. 
The payoff maximization problem for bidder 1 is: 

 ( ) 1max ( ) ( )
x

v s x b x−−  

The first order condition is ( )1 10 ( ) ( ) ( )d
dxb x v s x b x− −= − + − . Recall that by the inverse 

function theorem 1

( )
( ) 1/ ( )d

dx x b s
b x b s−

=
′= . Also, if b is an equilibrium strategy, then 

( )x b s=  maximizes bidder 1’s payoff. Substituting ( )x b s= , 1( )s b x−= , 
1

( )
( ) 1/ ( )d

dx x b s
b x b s−

=
′=  into the first-order condition leads to 0 ( ) ( ) ( )sb s v s b s′= − + − . 

We can rewrite this equation as [ ( )] ( )d
ds sb s v s= . Integrating both sides, we obtain 

0

1( ) ( )
s

b s v r dr
s

= ∫ .   

By construction, ( )b s  satisfies the first-order condition for all s, so it must satisfy the 
envelope formula. Since ( ) ( ) 0v s b s− ≥ , we see from the first-order condition that b  is 
also increasing.87  Bidder 1 has no more profitable bid outside the range of b : bidding 
b(1) dominates any bid higher than (1)b and any bid less than (0)b  does no better than 
bidding (0)b . By the constraint simplification theorem, if bidder 2 plays the strategy b , 
then bidder 1’s best reply is to play strategy .b   

When bidder 2’s type is s, his expected payoff from making any bid ( )b s  in the range 
of b  is: 

                                                 
87 This conclusion also uses our assumption that (0) 0v+′ > .  
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 ( ) ( )1 1

0

( ) ( ) ( ) | ( ) 0
s

v b s d s E v t t s b sτ τ  − = < − = ∫  

By inspection, bidder 2 cannot earn a higher expected payoff by bidding outside the 
range of b , so the prescribed bid of ( )b s  is a best reply. Therefore, the proposed 
strategies constitute an equilibrium.  

Note that the preceding equation also establishes the last statement of the theorem: for 
x in the range of b, say ( )x b s= , 1 1 1 1[ ( ) | ( ) ] ( ) | ( ) 0E v t b t x x E v t t s b s < − = < − =  .  

Next, we show that the equilibrium is unique. We begin with the familiar arguments of 
chapter 4, which impose necessary conditions for any equilibrium. First, the range of the 
bid functions 1b  and 2b  must be the same and must be a convex set, for otherwise some 
type could profitably reduce its bid without reducing its probability of winning. Second, 
since bidder 2 randomizes, the bids in the support of the randomization must have equal 
expected profits. Third, bidder 2’s lowest equilibrium bid 2(0)b  never wins, so bidder 2 
must earn a zero expected profit from all his bids and we must have 1 2(0) (0) (0)b b v= = . 
Fourth, player 1 makes only profitable bids: 1( ) ( )b s v s≤ . Fifth, bidder 2’s bid 
distribution must be atomless, except possibly at (0)v , for otherwise bidder 1 could profit 
by increasing his bid slightly when the bid falls just below the atom. Given the identical 
ranges of the bid function, bidder 1’s bid distribution must be atomless everywhere, for 
otherwise 2 would have a strictly profitable bid. Last, bidder 1’s strategy must be 
nondecreasing and, since it is atomless, it must be strictly increasing.  

If bidder 1 uses the increasing strategy 1b b=  and bidder 2 bids x, then bidder 2 wins 
when 1( )b t x<  and earns a payoff of 1( )v t x− , so his expected payoff from a bid of 

(0)x b>  is:  

 
1( )

0

( ( ) ) 0
b x

v s x ds
−

− =∫ . 

Substituting ( )x b r= , bidder 1’s equilibrium strategy must satisfy: 

 
0

( ( ) ( )) 0
r

v s b r ds− =∫  

Therefore, 

 
0

1( ) ( )
r

b r v s ds
r

= ∫ . 

The preceding argument establishes that bidder 1 has a unique equilibrium strategy 
1b b= .  

Now suppose that player 2 bids according to the increasing strategy 2b . Then, its bid 
distribution F is the inverse, that is, 2( ( ))F b s s= . Then, when bidder 1’s type is s, bidder 



 

 128

1’s payoff maximization problem is max ( ( ) ) ( )x v s x F x− . The first-order condition for 
bidder 1’s problem evaluated at his equilibrium bid ( )x b s=  is 

( )1( ) ( ( )) ( ) 0F x v b x x f x−− + − = . We rewrite this equation as a differential equation: 

( )1ln( ( )) 1/ ( ( ))d
dx F x v b x x−= − . The rewritten equation is valid for (0) (0)x v b> = , 
because ( ) ( )v s b s>  for 0s > .  

Since the supports of the bid distributions for the two bidders are identical, they must 
make the same highest bid: 2 1(1) (1)b b= . Recalling that 2 1b F −= , we have 

2 11 ( (1)) ( (1))F b F b= = . Thus, the differential equation ( )1ln( ( )) 1/ ( ( ))d
dx F x v b x x−= −  

and boundary condition 11 ( (1))F b=  completely determine F, so bidder 2’s equilibrium 
strategy is also unique.  ■ 

The equilibrium has a feature that is common in game theoretic models but 
nevertheless puzzling: bidder 2 is indifferent among his various bids and his strategy 
fixes probabilities to make bidder 1’s optimization problem have the prescribed solution. 
The puzzle is how such a pattern of behavior might arise in reality, e.g. how the bidders 
might learn to bid in this fashion. This puzzle is beyond the scope of this book, so we 
leave to others the problem of explaining how this “equilibrium” could arise over time.  

When there is one neighbor, but multiple non-neighbors participate in the auction, then 
there are many equilibria, but all are closely related to the equilibrium identified in 
theorem 5.3.1.  

Theorem 5.3.2. Suppose there are one neighbor ( 1j = ) and N-1 non-neighbors 
( 2,...,j N= ), where 2N ≥ . Suppose the value function v is continuously differentiable 
with (0) 0v′ > . Let 1b b=  denote an increasing strategy for the neighbor and 2( ,..., )Nb b  
denote increasing strategies for the non-neighbors. Let 1( )j jF b −= , 1,...,j N= , denote 
the corresponding bid distributions (with 1F F= ). Then, the strategy profile 

2( , ,..., )Nb b b  constitutes a Nash equilibrium if 1 1( ) ( ) |b s E v t t s = ≤   and for all x in the 

range of b, 2( ) ( )... ( )NF x F x F x= . Each non-neighbor’s expected profit is zero 
conditional on his equilibrium bid and the event that his bid wins.  

Proof. Note that when a non-neighbor, say bidder 2, wins with a bid of x, its expected 
profit is 1 1 1 1[ ( ) | ( ) , 2] [ ( ) | ( ) ] 0j jE v t b t x j x E v t b t x x< ≠ − = < − = . The first equality 
follows because types are independent; the second follows from theorem 5.3.1. 
Therefore, the prescribed strategies for the non-neighbors are best replies to the strategies 
of the other bidders.  

When 1t s= , the neighbor solves: 2max ( ( ) ) ( )... ( )N
x v s x F x F x− =  

max ( ( ) ) ( )x v s x F x− . This payoff function is identical to the one studied in theorem 
5.3.1, so bidding ( )b s  is a best reply for bidder 1 of type s. Hence, the strategies form a 
Nash equilibrium.  ■ 
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Theorem 5.3.2 derives two more surprising conclusions from the model, namely, that 
the neighbor’s bidding behavior is independent of the number of opposing bidders and 
that his expected payoff is similarly independent. Since the non-neighbors are indifferent 
about their bids, any bid distribution with the same support as the neighbor’s bid 
distribution is a best reply. The condition that the non-neighbors’ bids all earn zero 
expected profit determines the neighbor’s bids, and the condition that the neighbor’s 
strategy is a best reply determines the distribution of the non-neighbors’ maximum bid. 

Hendricks, Porter and Wilson (1994) test the conclusions of the model about bidding 
and profits using data on oil leases on drainage tracts on the outer continental shelf. They 
found fewer relatively low bids among non-neighbors than the model predicted, but were 
otherwise unable to reject even the most striking of the model’s predictions. They 
estimated that non-neighbors earned zero profits and that neighbors earned positive 
profits. The bid distribution of the neighbor and the bid distribution of the highest bid 
among the non-neighbors are the same and they do not vary with the number of non-
neighbors. The following diagram, drawn from their paper, plots the bid distributions: 

 
As the plot shows, high non-neighbor bids were comparatively scarce in the range 

between about $60,000 and $1 million, but matched the bid distribution of the high 
neighbor bid in the higher range of bids. To account for this pattern of bidding, the 
authors suggested modifying the preceding model by allowing the seller to set a random 
reserve price that may be correlated with the value. Because we introduce the methods 
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required to analyze correlated bids later in the book, we restrict attention here to a 
variation of their model in which the reserve price is not correlated with the value.  

Theorem 5.3.3. . Suppose there are one neighbor ( 1j = ) and N-1 non-neighbors 
( 2,...,j N= ), where 2N ≥ . Suppose the value function v is continuously differentiable 
and (0) 0v′ > . Let G denote the distribution of the random reserve price r  set by the 
seller and assume that G is continuously differentiable. Let 1 1( ) ( ) |b s E v t t s = ≤  . 
Assume that there is some reservation value r such that: 

(1) x r∀ < , 1ln ( ) / ln ln ( ) / lnd G x d x d b x d x−≥  and 

(2) x r∀ >  1( ) ( )G x b x−> .   

Given a profile of increasing strategies 1( ,..., )Nb b , let 1( )j jF b −=  be the corresponding 
bid distributions. Then 1( ,..., )Nb b  is a Nash equilibrium if the following two conditions 
hold:  

 
2

1

( ) for  
( ) ( )... ( )

( ) for 
N G x x r

G x F x F x
b x x r−

    ≤
= 

   ≥  (5.2) 

and  

 
( ) 1

1
1

arg max ( ) ( ) for  ( )
( )

( ) for  ( )
x r v s x G x s b r

b s
b s s b r

−
≤

−

 −     ≤= 
                                     ≥

 (5.3) 

Each non-neighbor’s expected profit is zero, conditional on his equilibrium bid and the 
event that his bid wins. 

Proof. By construction 1b  is nondecreasing in s.88 Using our previous analysis, for 
1( )s b r−≥ , 1( ) ( )b s b s=  solves the maximization problem ( ) 1max ( ) ( )x r v s x b x−

≥ −  and 

hence satisfies the corresponding first-order condition. By construction, 1( ) b s satisfies 
the first-order condition for the problem ( )max ( ) ( )x r v s x G x≤ − for 1( )s b r−≤ . It is clear 
that there are no bids outside the range of b1 that generate higher expected payoffs. 
Hence, by the constraint simplification theorem, 1b  is a best reply for the neighbor 
(bidder 1).  

Consider the family of maximization problems: ( )max log ( ) ( , )x r v s x H x λ≤ − +  where 
1( , ) ln( ( )) (1 ) ln ( )H x G x b xλ λ λ −= + − . By the assumption that 

                                                 
88 By inspection, 1b  is increasing on the domain where 1( )s b r−<  and on the domain where 1( )s b r−>  and 

1b  is continuous at 1( )s b r−= .  
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1ln ( ) / ln ln ( ) / lnd G x d x d b x d x−≥ , ( , )H x λ  is supermodular.89 From theorem 5.3.2, we 
know that ( )b s  solves the problem for 0λ =  while by construction we know that 1( )b s  
solves it for 1λ = . Since ( , )H x λ is supermodular and, hence, has single-crossing 
differences, the monotone selection theorem implies that 1( ) ( )b s b s≥ . It follows that if a 
non-neighbor bids any amount x r≤ , then his expected profit, conditional on winning, is 

1 1 1 1 1( ) | ( ) ( ) | ( ) 0E v t x b t x E v t x b t x   ≥ − ≤ ≥ − =    , where the equality follows from 
theorem 5.3.2. So, for a non-neighbor, any bid less than r  earns a non-positive payoff. 
By construction, bids above r  in the range of b lead to zero profits by theorem 5.3.2. Any 
bid 1(1) [ ( )]x b E v t> =  always wins but earns negative expected profits 1( [ ( )] 0),E v t x− <  
and any bid (0)x b<  always loses.  So, each non-neighbor’s strategy is a best reply as 
well.  ■ 

At any equilibrium, introducing a reserve cannot reduce the neighbor’s bid. If the 
probability that the seller’s reserve is greater than some number x is low, then the 
equilibrium is supported by having the non-neighbors bid above that level sufficiently 
often to make the probabilities match those of theorem 5.3.2. That is consistent with 
equilibrium for the non-neighbors, because they are indifferent about their bids. It is also 
consistent with equilibrium for the neighbor, since his problem is the same as in the 
preceding analysis. If the probability that the seller’s reserve exceeds some number x is 
high, then the neighbor’s bids are adjusted to be a best reply to those bids and the non-
neighbor’s do not place bids in that range.  

5.3.2 Profits and Revenues90 
The theorems presented thus far in this section conclude that non-neighbors always 

earn zero profits, but what of the neighbor? Here we derive a formula for the neighbor’s 
profits when there is no reserve price or, more generally, when 1( ) ( )G x b x−≥  for all x, i.e. 
when the seller’s reserve does not crowd out non-neighbor bids at any level. In such 
cases, the probability that a neighbor of type s wins is just s, so by the envelope theorem, 
the maximum expected profit of a neighbor of type t is: 

 
0 0

( ) (0) ( ) ( )
t t

t V sv s ds sv s ds′ ′Π = + =∫ ∫ . (5.4) 

The corresponding ex ante expected profit of the neighbor is therefore: 

 
1 1 1 1 1

0 0 0 0 0

( ) ( ) ( ) (1 ) ( )
t

s

t dt sv s dsdt dtsv s ds s sv s ds′ ′ ′Π = = = −∫ ∫ ∫ ∫ ∫ ∫ . (5.5)  

In the applications to follow, it will be important to keep track of the information on 
which bids are based. In the next theorem, we use the subscript V  to mean that the 

                                                 
89 Observe that 1/ ln[ ( ) / ( )]H G x b xλ −∂ ∂ = . Condition (1) of the theorem holds that this expression 
increases in x, so ( , )H x λ is supermodular.  
90  The results of the next three sections are due to Milgrom and Weber (1982b).  
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neighbor observes the value or value estimate V. Later, we will replace that subscript with 
whatever information the neighbor is supposed to have observed.  

Theorem 5.3.4. Suppose that v is nondecreasing and continuously differentiable and 
define 1( ) Pr{ ( ) }VH x v t x= ≤ .91 Then, conditional on ( )v t w= , the neighbor’s expected 
profit is:  

 
0

( ) ( )
w

V Vw H z dzΠ = ∫ , (5.6) 

the neighbor’s ex ante expected profit is:  

 
0

( )(1 ( ))V V VH z H z dzπ
∞

= −∫ ,  (5.7) 

and the seller’s expected revenue is 1[ ( ) ]VE v t π− .  

Proof. Perform the change of variables ( )z v s=  and ( )Vs H z=  wherever ( ) 0v s′ > . 

Then, using (5.4) with ( )v t w= , 
0 0

( ) ( ) ( ) ( )
t w

V Vw t sv s ds H z dz′Π = Π = =∫ ∫ . Similarly,  

 0 0 0

0 0

( ) ( ) ( ) ( )

( ) ( ) (1 ( )) ( )

w

V V V V V

V V V V
y

w dH w H y dydH w

dH w H y dy H y H y dy

π
∞ ∞

∞ ∞ ∞

= Π =

= = −

∫ ∫ ∫

∫ ∫ ∫
.  ■ 

Theorem 5.3.4 puts the profit and revenue expressions into a form that is handy for 
further analysis.  

5.3.3 Bidder Information Policy 
Information is valuable for decision making when it makes better decisions possible. In 

classical decision theory, the value of information cannot be negative. Relevant 
information allows more accurate decisions and irrelevant information can just be 
ignored.  

In game theoretic models, a similar claim holds when the information gathering 
process is unobserved: the decision maker can simply use the information to make better 
decisions. But information in games can also have a second effect: it can alter the way 
others behave, even if they don’t learn the information. For example, in the drainage tract 
model, the (uninformed) non-neighbor’s strategy depends on what the (informed) 
neighbor knows. In general games, information can either help or harm the informed 
party. These effects create incentives for the party to reveal or conceal the extent of its 
information.  

                                                 
91 If v is invertible, then HV is the inverse of v.  
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In this section, we explore how each bidder’s information affects others’ bids by asking 
the following questions. Does improving the neighbor’s information make the non-
neighbor bid more timidly or more aggressively? If the neighbor acquires additional 
information, would he prefer that the non-neighbors know he has acquired it? Or, would 
he prefer to conceal his access to the extra information? If the non-neighbor gains access 
to information, would he prefer to reveal or conceal that access?  

We begin by evaluating the value of information to the neighbor. Suppose that the full 
information value of the tract is V and that the neighbor observes a random variable X 
that provides information relevant to V. If the neighbor could also observe a random 
variable Y that provides additional information about V, would he prefer to observe Y 
even if the non-neighbors were aware of his observing Y? If he observed Y, would he 
want the non-neighbors to be aware he had obtained this additional information? Are 
these incentives uniform, or do the answers to the preceding questions depend on the 
realizations of X and Y?  

As we have seen, the neighbor’s profits do not depend on the number of non-
neighbors, so we simplify the discussion by focusing on the case of just two bidders. We 
begin by studying the neighbor’s profits in two auction games, distinguished by whether 
the neighbor observes (and is believed to have observed) just X or both X and Y. Let 

[ | ]XV E V X=  and [ | , ]XYV E V X Y=  and let XH  and XYH  be the respective distributions 
of these two random variables. Let XF  and XYF  be the equilibrium bid distributions for 
the non-neighbor in the two games and let  

 ( ) max ( ) ( )X x Xw w x F xΠ = −  and ( ) max ( ) ( )XY x XYw w x F xΠ = −  (5.8) 

be the neighbor’s expected profit in the events that XV w=  or XYV w= , respectively. 
With these definitions, we can state the main result: 

Theorem 5.3.5. For every possible realization of X and Y, ( ) ( )X XYw wΠ ≤ Π . (That is, 
the neighbor’s expected payoff is higher if the non-neighbor believes he has observed 
both X and Y.)  

Proof. In view of theorem 5.3.4 (particularly (5.6)), we have: 

 
0

( ) ( )
w

X Xw H z dzΠ = ∫  and 
0

( ) ( )
w

XY XYw H z dzΠ = ∫ . (5.9) 

By the law of iterated expectations, [ ] [ [ , ] ] [ ] .XY XE V X E E V X Y X E V X V= = =  So, XYV  

is a “mean-preserving-spread” of XV  and hence, for every number w, 

0 0

( ) ( )
w w

X XYH z dz H z dz≤∫ ∫ .  ■  

 

The neighbor’s expected profit, given its value estimate, depends on how the non-
neighbor bids, which depends, in turn, on what the non-neighbor believes. According to 
theorem 5.3.5, the non-neighbor bids “more timidly” when he believes the neighbor is 
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better informed; that is, the maximum expected profit that the neighbor can earn is 
uniformly higher in that case.  

One way to proceed would be to create a model in which it is uncertain whether the 
neighbor observes just X or both X and Y. If the neighbor can either make unverifiable 
announcements or offer proof he has observed Y, what information will he provide in 
equilibrium? In equilibrium, the neighbor will offer proof whenever he observes both 
variables; he will never conceal his information gathering. The non-neighbor will base 
his strategy on proven statements but will ignore the neighbor’s unproven 
announcements, which might include false claims about the information the neighbor has 
observed. The analysis would follow in the path of Grossman (1981) and Milgrom 
(1981a).  

Rather than developing that model, we focus on the stark contrast between the 
neighbor’s and non-neighbor’s incentives to reveal or conceal information gathering 
capabilities. Suppose it is common knowledge that the neighbor observes X and Y and 
everyone anticipates the non-neighbor will observe nothing.  Suppose that, contrary to 
expectation, the non-neighbor manages to observe Y. Would he, like the neighbor, wish 
to publicize that fact? Or, if he could, would he prefer to convince the neighbor by his 
silence that he has not observed anything? 

If the non-neighbor reveals publicly that he has observed Y, then the only private 
information in the model will be the neighbor’s observation X. We have already seen that, 
in such cases, the non-neighbor earns an expected profit of zero. In contrast, if the 
neighbor believes that the non-neighbor is uninformed, the non-neighbor’s expected 
profits are generally positive. Given those beliefs and any realization of X and Y, the 
neighbor never bids more than [ ]E V .92 Hence, whenever [ | ] [ ]E V Y E V> , the non-
neighbor can earn an expected profit of [ | ] [ ] 0E V Y E V− >  simply by bidding [ ]E V . 
Consequently, the non-neighbor’s optimal disclosure policy is strikingly different from 
the neighbor’s:  

Theorem 5.3.6. Suppose it is common knowledge that the neighbor observes X and Y. 
Then, for every realization of Y, if the non-neighbor learns Y, his expected profit is at 
least as high if the neighbor believes he has not learned Y. 

We observed above that we could embed the neighbor’s decision to reveal his 
acquisition of information in a larger game in which he only observes Y with some 
probability, and obviously we could do the same for the non-neighbor. Theorem 5.3.6 
suggests that there is no equilibrium of the larger game in which the non-neighbor always 
reveals  the fact that it has observed Y.   

5.3.4 Seller Information Policy 
The seller cares as much as the bidders about who knows what, because the distribution 

of information can affect the expected sales price or the efficiency of the allocation 
(although the second effect is obviously absent from common value models like the 
drainage tract model). In managing leases of oil rights on federal lands, the US 

                                                 
92 The neighbor bids [ | ]XY XYE V V w<  so he never bids more than [ | ] [ ] [ ]XY XY XYE V V E V E V< ∞ = = . 
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Department of the Interior requires the company developing a tract to make periodic 
reports the Department uses in determining royalty payments. Before drainage tract 
auctions, the government could reveal some of the information in those reports to other 
bidders. The government also could itself conduct research such as seismic studies to 
reveal information about the value of various government-owned properties. In this 
section, we investigate the effects of policies like these on seller revenues.  

We first model the policy of revealing bidder-generated information. Suppose the 
neighbor observes the pair ( , )X Y  and reports Y to the government (the seller). If the 
seller does not make Y public then, in analogy to (5.7), the neighbor’s ex ante expected 
payoff is: 

 
0

( )(1 ( ))XY XY XYH z H z dzπ
∞

= −∫ , 

where ( ) Pr{ }XY XYH z V z= ≤ . If the seller publicly announces Y, the non-neighbor’s 
beliefs about the neighbor’s estimate are ( | ) Pr{ | }XY XYH z Y V z Y= ≤ . The neighbor’s 
expected profit conditional on Y is therefore: 

 ( )
0

( ) ( | ) 1 ( | )XY XYY H z Y H z Y dzπ
∞

= −∫ . 

Theorem 5.3.7. When the seller makes the bidder’s report Y public, the neighbor’s 
expected profit falls:  

 [ ]( ) XYE Yπ π≤ . (5.10) 

and the seller’s expected revenue rises.   

Proof. When the seller discloses Y, the neighbor’s expected payoff is : 

 

[ ] ( )

( )

[ ] [ ]( )

( )

0

0

0

0

( ) ( | ) 1 ( | )

( | ) 1 ( | )

( | ) 1 ( | )

( ) 1 ( )

XY XY

XY XY

XY XY

XY XY XY

E Y E H z Y H z Y dz

E H z Y H z Y dz

E H z Y E H z Y dz

H z H z dz

π

π

∞

∞

∞

∞

 
= − 

 

= −  

≤ −

= − =

∫

∫

∫

∫
 

where the inequality follows Jensen’s inequality and the last step holds by the law of 
iterated expectations (because [ ]{ } { }( ) 1 1 | ( | )

XY XYXY V z V z XYH z E E E Y E H z Y≤ ≤
    = = =     ).  

Since the non-neighbor’s expected profit is zero in both cases, the seller’s expected 
revenue rises from [ ] XYE V π−  to [ ] [ ( )]E V E Yπ− .  ■ 
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Now we examine the seller’s decision to generate his own information. Intuitively, this 
kind of information can have two effects. First, as when the seller reveals the neighbor’s 
information, the seller’s disclosure tells the non-neighbor something about the value of 
the drainage tract and, thus, makes the neighbor’s information less private. Intuition 
suggests, and the following analysis confirms, that this effect always reduces the 
neighbor’s expected profit and increases the seller’s expected revenue. However, there is 
a second effect that can either increase or decrease the bidder’s expected profits, 
depending on whether the seller’s information is a substitute or a complement to the 
neighbor’s information for the purpose of estimating the value of the drainage tract. 

We now formalize these two effects. Suppose that the neighbor observes X and the 
seller observes Y, where both are real-valued random variables. Denote the respective 
conditional expectations by [ ]( ) |v x E V X x= =  and [ ]ˆ( , ) | ,v x y E V X x Y y= = = .  
Assume that both v  and v̂  are continuously differentiable and increasing in x, with 

( ) 0v x′ >  and 1̂ ˆ( , ) ( , ) / 0v x y v x y x= ∂ ∂ > . Let XG  be the distribution function for X. Then, 
using expression (5.5) and substituting ( )Xs G x=  and so ( ) ( )v s v x= , we obtain the 
neighbor’s ex ante expected profit when Y  is not revealed:  

 ( )
1

0 0

(1 ) ( ) ( ) 1 ( ) ( )X Xs s v s ds G x G x v x dx
∞

′ ′− = −∫ ∫ .  

Similarly, when Y is revealed, the neighbor’s ex ante expected profit is  

 ( ) 10
ˆ1 ( | ) ( | ) ( , )X XE G x Y G x Y v x Y dx

∞ −  ∫ .  

So, the change in the neighbor’s expected profit when the seller reveals Y is: 

 ( ) ( )1
0 0

ˆ1 ( | ) ( | ) ( , ) 1 ( ) ( ) ( )X X X XE G x Y G x Y v x Y dx G x G x v x dx
∞ ∞ 

′∆ = − − − 
 
∫ ∫ . (5.11) 

Our objective is to analyze this change ∆. 

Theorem 5.3.8. The change in the neighbor’s expected profits when the seller reveals 
his own private information Y is ∆ and the change in the seller’s expected revenue is -∆,  
where P W∆ = + ,  

 ( ) ( ){ }
0

1 ( | ) ( | ) 1 ( ) ( ) ( )X X X XP E G x Y G x Y G x G x v x dx
∞

′= − − −  ∫  (5.12) 

and 

 ( ) [ ]1
0

ˆ1 ( | ) ( | ) ( , ) ( )X XW E G x Y G x Y v x Y v x dx
∞ 

′= − − 
 
∫ . (5.13) 

For all X and Y, 0P ≤ .  

Proof. Compute P W∆ = +  by adding (5.12) and (5.13) to get (5.11). As the non-
neighbor’s expected profit is zero, the seller’s expected revenue is the expected value of 
the tract minus the neighbor’s expected revenue, so the change in the seller’s expected 
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revenue is -∆. Using ( ) [ ]( ) [ ]1 ( | ) ( | ) 1 ( | ) ( | )X X X XE G x Y G x Y E G x Y E G x Y− ≤ −    

(1 ( )) ( )X XG x G x= −  (by Jensen’s inequality and the law of iterated expectations), 
multiply both sides by ( ) 0v x′ >  and integrate to establish that 0P ≤ .  ■  

Theorem 5.3.8 decomposes the total effect on revenue of the seller’s announcement 
into the sum of two terms. The publicity effect P shows how the neighbor’s expected 
profit would change if the information Y contributed nothing to the neighbor’s value 
estimate, that is, if ˆv v= . In that case, the only effect of revealing Y would be to give the 
non-neighbor some information about the neighbor’s estimate. The theorem’s assertion 
that 0P ≤  emphasizes that this effect always reduces the neighbor’s expected profit.  

The weighting effect W depends on the term 1̂( , ) ( )v x Y v x′− , which shows how the 
observation of Y amplifies or reduces the impact of the observation X on the neighbor’s 
estimate of the value. If the term 1̂( , ) ( )v x Y v x′−  is everywhere negative, then 0W < ; we 
call this the case of informational substitutes. To illustrate this case, suppose that 

0ˆ( , ) x yv x y b b x b y= + +  with , 0x yb b > . Then, ˆ( ) ( , [ | ])v x v x E Y X x= = =  

0 [ | ]x yb b x b E Y X x+ + = . So, if [ | ]E Y X x=  is increasing, then 1̂( , ) ( ) 0v x Y v x′− < . 
When the observations are informational substitutes, revealing Y further reduces the 
neighbor’s profits.  

Corollary 5.3.9. If X and Y are informational substitutes, then 0∆ < .93  

The weighting effect is zero when the seller’s information is poorer than the 
neighbor’s, that is, when Y X ε= +  for some error term ε that is independent of the other 
random variables in the model. In that case, learning Y has no effect on the neighbor’s 
estimate. 

It is also possible that X and Y are informational complements ( 0W > ), that is, that 
revealing Y increases the usefulness of the neighbor’s private information X. For 
example, suppose that XX V ε= +  where Xε  is an independent error term and suppose 

( )v x a bx= + . Naturally, 1b < . Suppose that XY ε= . Then, revealing information makes 
results in ˆ( , )v x y x y= − , so revealing Y increases the weight assigned to X in estimating 
V. In this case, 0W > : the weighting effect benefits the neighbor when the information Y 
is revealed. Moreover, in this specification, X and Y are independent, so 

( ) ( | )X XG x G X Y≡  and hence 0P = . In this example, the seller does strictly worse by 
revealing its information Y. 

5.4 Correlated Types Model Interdependent Values 
Several of the results in this section use the notion of affiliation, which Milgrom and 

Weber (1982a)  introduced to the auction literature. Affiliation captures the idea that 
higher values of one variable make higher values of the others relatively more likely. We 
begin this section by presenting important results about affiliation we’ll use. In the 

                                                 
93 Milgrom and Weber (1982b) show that a sufficient condition for X and Y to be informational substitutes 
is that ( , , )X Y V  be affiliated. Section 5.4 defines affiliation and explores some of its consequences..  
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subsections to follow, we study two models of ascending auctions that differ in how 
much bidders can infer from earlier bids, characterizing the equilibrium in each case. We 
study the efficiency and revenues of these ascending auctions and compare them to first-
price auctions. We also study how the seller’s policy about revealing or concealing 
information affects the auction outcomes.  

5.4.1 Affiliation 
The definition of affiliation uses concepts from lattice theory. Recall that given two 

points , Nx y ∈\ , we write x y≥  to mean that 1 1,..., N Nx y x y≥ ≥  and x y>  to mean 
x y≥  and x y≠ . The meet is defined by ( )1 1min( , ),...,min( , )N Nx y x y x y∧ =  and the 

join by ( )1 1max( , ),...,max( , )N Nx y x y x y∨ = . A function : N Mf →\ \  is isotone if 
( ) ( )x y f x f y≥ ⇒ ≥ . A particularly important condition for this chapter is affiliation, 

which we now define.  

Definition. Suppose the random variables 1,..., NX X  have joint density f.94  Then, the 
random variables are affiliated if and only if ( ) ( ) ( ) ( )f x f y f x y f x y≤ ∧ ∨  , .Nx y∀ ∈\  

To see how the definition captures our intuitive description of affiliation, let N=2 and 
consider 1 1x y>  and 2 2x y< . Then we can rewrite the affiliation condition, which is 

1 2 1 2 1 2 1 2( , ) ( , ) ( , ) ( , )f x x f y y f x y f y x≤ , as 1 2 1 2 1 2 1 2( , ) / ( , ) ( , ) / ( , )f x x f y x f x y f y y≤ . 
Dividing both the numerator and denominator on the left-hand side by the marginal 
density 2 2( )f x  and on the right-hand side by 2 2( )f y leads to 

1 2 1 2 1 2 1 2( | ) / ( | ) ( | ) / ( | )f x x f y x f x y f y y≤ . Thus, the original condition is equivalent to 
the intuitive statement that a higher value of 2X  makes higher values of 1X  relatively 
more likely.  

Notice that (letting log(0) = −∞ ) the affiliation inequality is equivalent to the statement 
that the logarithm of the joint density function f is supermodular:  

log ( ) log ( ) log ( ) log ( ).f x f y f x y f x y+ ≤ ∧ + ∨  

We say that a function f satisfying the above condition exhibits log-supermodularity and 
call the corresponding inequality the affiliation inequality. When the random variables 

1,..., NX X  are statistically independent, they are trivially affiliated; the affiliation 
inequality holds with equality.  

The observation that affiliation is log-supermodularity reminds us that order-preserving 
transformations of the underlying variables don’t affect the property. This fact is 
important for our theory because when bidders’ strategies :[0,1)ib → \  are increasing, 
the vector of bids is an order preserving transformation of the unobserved vector of types.  

                                                 
94 Milgrom and Weber (1982a) give a general definition that applies even when the random variables have 
no densities. They establish that it is equivalent to the definition above for random variables that do have a 
joint density. Athey (2001) analyzes the existence of monotonic equilibrium using log-supermodularity and 
related conditions.  See also Athey (2002).  
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To illustrate the principle in the context of auctions, let tf  and bf  denote the joint 
densities of the bidders’ types and bids respectively. For convenience,assume for now 
that these densities exist and are positive and that the equilibrium bid function is 
differentiable. Fix two type profiles t̂  and t�  and corresponding bid profiles 

( )1 1ˆ ˆ ˆ( ),..., ( )N Nb t b tβ =  and ( )1 1( ),..., ( )N Nb t b tβ =� � � , which we write compactly as 
ˆ ˆ( )b tβ =  and ( )b tβ =� � .95 Since bidder strategies are increasing in type, the cumulative 

density of types must equal the cumulative density of bids: ˆˆ ˆ( ) ( ) ( ( ))t b bF t F F b tβ= = . One 
derives the relation between the corresponding densities by differentiating N times, as 
follows. First, 1 1 1 1/ ( / ) ( )t bF t F b tβ ′∂ ∂ = ∂ ∂ ⋅ ; next, 

2 1 2 2 1 2 1 1 2 2/ ( / ) ( ) ( )t bF t t F b t b tβ β ′ ′∂ ∂ ∂ = ∂ ∂ ∂ ⋅ ⋅  and so on, until we reach the following: 

 

1 1

1 1

1 1 1

1 1 1

ˆˆ ˆ ˆ( ) ( ) ( )... ( )

( ) ( ) ( )... ( )
ˆˆ ˆ ˆ( ) ( ) ( )... ( )
ˆˆ ˆ ˆ( ) ( ) ( )... ( ).

N N
t b

N N
t b

N N N
t b

N N N
t b

f t f b t b t

f t f b t b t

f t t f b t t b t t

f t t f b t t b t t

β

β

β β

β β

′ ′=

′ ′=

′ ′∨ = ∨ ∨ ∨

′ ′∧ = ∧ ∧ ∧

�� � �

�� � �

�� � �

 (5.14) 

For each ,i  the set ˆ{ , }i it t� = ˆ ˆ{ , }i i i it t t t∧ ∨� � , so ˆ( ) ( )j j j jb t b t′ ′⋅ =�  ˆ ˆ( ) ( )j i i j i ib t t b t t′ ′∧ ⋅ ∨� � . 
Hence, combining the four equations of (5.14) and simplifying, we obtain: 

ˆ ˆˆ ˆ( ) ( ) ( ) ( )
ˆˆ( ) ( ) ( ) ( )

t t b b

t t b b

f t t f t t f f
f t f t f f

β β β β
β β

∧ ∨ ∨ ∧
=

� �� �
�� . 

Affiliation is the requirement that the ratios in the preceding equation exceed one, so the 
bids are affiliated if and only if the types are affiliated.  

The next several results facilitate application of the theory of affiliated random 
variables to auctions. The first states that affiliation of every pair of variables in a set 
implies affiliation of the setand that, if the density function is smooth, one can check 
affiliation using a simple derivative formula.  

Theorem 5.4.1.  The function f is log-supermodular if and only if for every i j≠ , ijx− , 
ˆi ix x>  and ˆj jx x> , ˆ ˆ ˆ ˆ( , , ) ( , , ) ( , , ) ( , , )i j ij i j ij i j ij i j ijf x x x f x x x f x x x f x x x− − − −≤ . If f is positive 

and twice continuously differentiable, then f is log-supermodular if and only if 
2 log( ( )) / 0i jf x x x∂ ∂ ∂ ≥ .  

One can restate both parts of this theorem simply as theorems about supermodular 
functions. Proofs can be found in Topkis (1978) or Topkis (1998).  

                                                 
95 Here, as above, we read the notation to respect the structure of the game, in which each bidder’s bid 
depends just on his own type. Thus, ˆ ˆ( )j j jb tβ =  and ( )j j jb tβ =� � .  
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Theorem 5.4.2. If 2:f + →\ \  is log-supermodular, then 1

1 2 20
( , ) ( , )

x
g x x f s x ds= ∫  is 

log-supermodular. 

Proof: Let 1 1ˆx x>  and 2 2ˆx x> . Then,  

 

1 11

1 1

1 1 1

2 2
2

1 2 1 2ˆ ˆ1 2 1 20
ˆ ˆ ˆ

1 2 1 22 2
2

1 2 1 20 0 0

ˆ( , ) ( , )
( , ) ˆ ˆ ˆ( , ) ( , ) ˆ( , ) ( , )1 1

ˆ ˆ ˆ( , ) ( , )ˆ( , ) ( , )( , )
ˆ ˆ ˆ( , ) ( , )

x xx

x x
x x x

f s x f s xds dsf s x ds f x x f x xg x x g x x
g x x g x xf s x f s xf s x ds ds ds

f x x f x x

= = + ≥ + =
∫ ∫∫

∫ ∫ ∫
 

The inequality follows because 1

1 1

( , )
ˆ( , )

f s x
f x x

−

−

 is increasing in 1x−  for 1ˆs x>  and decreasing 

in 1x−  when 1ˆs x< .  ■  

Theorem 5.4.3. If 1 2( , )f x x  is a log-supermodular probability density on 2
+\ , then  

(1) the conditional density 1 2( | )f x x  is log-supermodular, 

(2) the conditional cumulative distribution function 1 2( | )F x x  is log-supermodular, and 

(3) the conditional cumulative distribution function 1 2( | )F x x  is non-increasing in 2x . 

Proof. To show  (1), note that the conditional density is 1 2 1 2 2 2( | ) ( , ) / ( )f x x f x x f x= , 
so 1 2 1 2 2 2ln ( | ) ln ( , ) ln ( )f x x f x x f x= − . It follows that 1 2( | )f x x  is log-supermodular if 
(and only if) 1 2( , )f x x  is log-supermodular. 

To show (2), note that 1

1 2 20
( | ) ( | )

x
F x x f s x ds= ∫  and apply theorem 5.4.2. 

To show (3), fix 1x  and let 2 2ˆx x> . By (2), 1 2 1 2ˆ( | ) / ( | )F x x F x x ≥  

2 2ˆlim ( | ) / ( | )
x

F x x F x x
→∞

=  1, so 1 2 1 2ˆ( | ) ( | )F x x F x x≥ .  ■  

Notice that according to part (3), affiliation implies that certain conditional 
distributions are ordered by first-order stochastic dominance. The following result 
demonstrates another important property of affiliation: if a set of variables is affiliated, 
then any subset of the variables is also affiliated.  

Theorem 5.4.4. If 1( ,..., )nf x x  is a log-supermodular probability density, then 

1 1 1 1( ,..., ) ( ,..., , )n ng x x f x x s ds− −= ∫  is also a log-supermodular probability density.  

Proof. It is trivial that g is a probability density and the log-supermodularity result is 
trivial for the case n=2. Accordingly, suppose that 3n ≥ . It suffices to prove the result 
for any pair of variables ,i jx x  where 1 , 1i j n≤ ≤ − , so we focus on the case 1, 2i j= = . 
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Fix 3 1( ,..., )ny x x −=  (y is null if n=3) and let 1 1̂x x>  and 2 2ˆx x> . Since 

1 2ˆ ˆ( | , , )f s x x y = 1 2

1 2

ˆ ˆ( , , , )
ˆ ˆ( , , , )

f x x y s
f x x y t dt∫

, it follows that: 

 

1 21 2 1 2
1 2

1 2 1 21 2

1 2 1 2
1 2 1 2

1 2 1 2

1 2

ˆ( , , , )ˆ ˆ( , , ) ( , , , ) ˆ ˆ( | , , )
ˆ ˆ ˆ ˆ( , , ) ( , , , )ˆ ˆ( , , , )

( , , , ) ( , , , )ˆ ˆ ˆ( | , , ) ( | , , )
ˆ ˆ( , , , ) ( , , , )

( , , , )

f x x y s dsg x x y f x x y s f s x x y ds
g x x y f x x y sf x x y s ds

f x x y s f x x y sf s x x y ds f s x x y ds
f x x y s f x x y s

f x x y s

= =

≤ ≤

=

∫ ∫∫

∫ ∫

1 2

1 21 2

( , , ) .
ˆ( , , )ˆ( , , , )

ds g x x y
g x x yf x x y s ds

=∫
∫

 

The first inequality follows because, by log-supermodularity, the integrand is everywhere 
larger. Two observations imply the second inequality. First, by part (3) of theorem 5.4.3, 
the distribution 1 2 1 2ˆ ˆ ˆ( | , , ) ( | , , )F s x x y F s x x y≤  for all s.  The conditional distribution 
given 1 2ˆ, ,x x y  is thus higher in the sense of first-order stochastic dominance than the 

conditional distribution given 1 2ˆ ˆ, ,x x y .96 Second, the ratio 1 2

1 2

( , , , )
ˆ( , , , )

f x x y s
f x x y s

 is non-

decreasing in s (by log-supermodularity of f). The inequality then follows from the 
definition of first-order stochastic dominance.  ■  

Theorem 5.4.5. Suppose the random variables 1,..., NX X  are affiliated. Then, for every 
bounded isotone function : Ng →\ \ , the function ( )h x = [ ]1 1( ,..., ) |NE g X X X x=  is 
isotone.   

Proof: The theorem is obvious in case 1N = . For 2N = , let 1 1ˆx x> . Then, 1ˆ( )h x =  

1 2 1 1 1 2 1 1 1 2 1 1 1ˆ ˆ ˆ[ ( , ) | ] [ ( , ) | ] [ ( , ) | ] ( )E g x X X x E g x X X x E g x X X x h x= ≤ = ≤ = = . The first 
inequality follows from the isotonicity of g. Stochastic dominance implies the second; 
observe that 1( , ) :g x ⋅ →\ \  is nondecreasing and (by theorem 5.4.3, part (3)) that  

2 1 2 1ˆ( | ) ( | )F x x F x x≤ .  

Next, consider 3N ≥  and suppose the theorem holds for all 1m N≤ − . Let 
[ ]1 1 2ˆ ( , ) ( ,..., ) | ,Ng x y E g X X X x X y= = = . Holding 1X x= , the right-hand side 

integrates a function of 1N −  variables, namely, 1( , ) : Ng x −⋅ →\ \ . So, by the inductive 
hypothesis, ĝ  is nondecreasing in y and, by a similar argument, it is also nondecreasing 
in x. Hence, ĝ  is isotone.  

                                                 
96 For the definition of first-order stochastic dominance, see, for example, definition 6.D.1 in Mas Colell, 
Whinston and Green (1995). That reference also includes the characterization of stochastic dominance used 
here.  
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So, ( )h x = [ ]1 1( ,..., ) |NE g X X X x= = [ ]1 1 2 1[ ( ,..., ) | , ] |NE E g X X X X X x= =  

1 2 1ˆ[ ( , ) | ]E g X X X x= . Applying the inductive hypothesis again establishes that this last 
expression is nondecreasing in x.  ■  

Theorem 5.4.6 (Milgrom and Weber). Suppose that the random variables 
1 2( , ,..., , )NX X X Y  have a joint density f that is symmetric in the components of X. Then, 

1 2( , ,..., , )NX X X Y is affiliated if and only if (1) ( )( ,..., , )NX X Y  is affiliated.  

Proof.  The density of (1) ( )( ,..., , )NX X Y  is 
1{ ... }! ( , )1

Nx xN f x y > >  since there are !N  ways 
to arrange the components of ,X  and the indicator yields the value of the density only 
when these components are ordered. This density satisfies the affiliation inequality if and 
only if f does.  ■ 

5.4.2 The Milgrom-Weber Ascending Auction Model 
Ascending auctions follow a variety of formats. Oral outcry versions are the most 

commonly used. In these auctions, bidders call out bids until the auctioneer determines 
that bidding has stopped, and then sells the lot or item at the highest bid price. In auctions 
for fish or livestock, a system of hand signals is often used to convey bids.  The 
auctioneer can also control the progression of prices called out. For example in the so-
called Japanese auctions, the auctioneer raises the price until only one bidder is still 
willing to bid.  

Vickrey introduced the second-price auction as a model of the English ascending 
auction. His now-familiar idea was that each bidder’s optimal strategy would be to bid 
until the bidding reaches his own predetermined reservation price, at which point the 
bidder would withdraw. The winning bidder would then be the one with the highest 
reservation price, and the winning bid would be approximately the second highest 
reservation price.   

Vickrey’s model omits the possibility that bidders learn something during the course of 
the auction that might cause them to change their reservation prices. If bidders can learn 
during the auction, then we need to pay close attention to auction rules influencing what 
bidders observe during the bidding process. For example, suppose that the auctioneer 
continuously raises the required bid and each bidder makes only one decision: when to 
quit bidding. We can think of the bidder as bidding by holding down a button and 
quitting by releasing the button (alternatively, quitting by pressing a button). Quitting in 
this way is assumed to be irreversible. In the version of this model that provides the least 
information to bidders, the auction mechanism provides no feedback to the bidder about 
the number of active bidders or their identities during this process. In this model, one can 
describe any pure strategy with a single reservation price,97 so the Vickrey model 
                                                 
97 This reasoning is slightly informal, conflating strategies with reduced strategies. A strategy in a game 
specifies what a player does at every information set where he must act. So, formally, a bidder’s strategy in 
this game must specify what he would do if he were still active when the required bid rose to x, even if the 
strategy also specifies that the bidder will withdraw when the required bid is x-1. The actual outcomes in 
the auction game described here are completely determined by the lowest bid at which each bidder drops 
out, and two strategies that have the same lowest bid always lead to the same outcome. In game theory, a 
reduced strategy is a class of equivalent strategies in which each member always leads to the same 
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incorporates any learning opportunities that bidders may have. That is, the ascending 
auction without feedback about active bidders is strategically equivalent to the Vickrey 
second-price auction model.  We say that an ascending auction mechanism that offers 
bidders no information about the numbers or identities of active bidders provides minimal 
information in the class of ascending auction mechanisms. 

In real English auctions, bidders usually observe additional information. We discuss 
one model of such a situation below, in which bidders observe the number of other 
bidders who are still active at every moment during the auction. We limit attention, 
however, to button auction models, in which a bidder’s only decision is when to 
withdraw irreversibly from the bidding.98 This model, due to Milgrom and Weber 
(1982a), is the first model of a button auction as well as the first model with general 
interdependent values and correlated types. 

Throughout many of the models analyzed below, the winner’s curse is a key feature. 
The winner’s curse is a form of adverse selection. A bidder who wins in competition 
against well informed bidders must be cognizant that the others’ unwillingness to bid 
higher is unfavorable information about the value of the item. In the drainage tract model, 
we calculated the non-neighbor’s profits in just that way: a non-neighbor wins with a bid 
of b exactly when the neighbor bids less than b, which is informative about the 
neighbor’s estimate of the value. When more than one bidder has relevant information, 
each bidder needs to be aware of the information content of others’ bids when making his 
own bidding decision.  

There can also be an important loser’s curse in multi-object auctions.99  

5.4.2.1 The (Second-Price) Button Auction With Minimal Information 
Assume the payoff to each bidder is the value received minus the amount paid. For 

losing bidders, the value received is zero. The winning bidder i, receives value 
0( , , )i i i iv v t t t−= , where 0t  is a variable that may not be observed by the bidders, such as 

the seller’s information. We assume that v is nondecreasing.  

We begin with the symmetric case, which imposes three restrictions. First, all bidders 
have the same valuation function v, so 0( , , )i i iv v t t t−= . Second, the valuation function is 
symmetric in the other players’ types, that is 1 1 0 1 1 0 (1) ( 1)( , , ) ( , , ,..., )Nv v t t t v t t t t− −= = , 
where (1) ( 1),..., Nt t −   denote the  order statistics (in order from highest to lowest) of 

2 ,..., Nt t . Third, the distribution of types is symmetric in the same way as the valuation 
function.  

                                                                                                                                                 
outcome. So, in this auction game, it is the reduced strategy that specifies only the lowest price at which the 
bidder will drop out.  
98 In doing so, we omit models in which bidders may “jump” to communicate information to other bidders. 
Jump bidding involves significantly (and asynchronously) increasing the current high bid. See Avery 
(1998).  
99 The loser’s curse was first introduced by Pesendorfer and Swinkels (1997). The possibility of a loser’s 
curse has important implications for bidders’ incentives to gather information. A first attempt to study those 
is found in Hernando-Veciana (2003).  
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Consider the button auction with minimal information, which we have seen is 
strategically equivalent to the second-price auction model. Define 

1 1 (1)ˆ( , ) | ,v r s E v t r t s = = =  . If the types are affiliated and symmetrically distributed, 
then by theorems 5.4.5 and 5.4.6, the function v̂  is isotone, that is, nondecreasing in each 
argument. For comparing the following results, it will be convenient to treat v̂  as 
primitive and assume that it is isotone and strictly so in its first argument.  

Theorem 5.4.7 (Milgrom (1981b)). Suppose that the function v̂  is isotone and 
increasing in its first argument. Then, the strategy ˆ( ) ( , )b s v s s=  is a symmetric 
equilibrium strategy of the second-price auction. The equilibrium has the property that if 
any bidder learned the highest opposing type and this type’s bid, the bidder could not 
gain by changing his bid.  

Proof. Suppose players other than bidder 1 play the symmetric equilibrium strategy. 
After learning (1)t  and the corresponding bid (1) (1) (1)ˆ( ) ( , )b t v t t= , bidder 1’s problem is 

( ) (1)
1 (1) (1) (1)

( )
ˆ ˆmax ( , ) ( , ) 1

b t
v t t v t tβ β >

− . If 1 (1)t t> , then any bid (1)( )b tβ >  maximizes the 

bidder’s payoff, including the bid 1( )b t . If 1 (1)t t< , then any bid (1)( )b tβ <  maximizes 
the objective, including the bid 1( )b t .Since 1( )b t  is a best-reply conditional on every 
realization of (1)t , it is an unconditional best-reply.  ■  

An equilibrium in which the players can never gain by changing their strategies even if 
they learn the other players’ types and actions is called an “ex post equilibrium.” 
According to theorem 5.4.7, the identified equilibrium of the second-price auction is an 
ex post equilibrium if there are just two bidders. Recent papers on auction theory have 
given renewed emphasis to ex post equilibria. 

Ex post equilibria in ascending auctions have two attractive features. First, each 
bidder’s ex post equilibrium strategy depends only on the bidder’s own type, so the 
bidder can implement the strategy with that information alone. Second, each strategy is a 
best reply to the strategy of the other players even when the bidder knows all types and 
bids. The strategy is a best reply for any intermediate information structure, so it remains 
a best reply for a wide range of assumptions about bidders’ knowledge.  

In an ex post equilibrium, no player has any incentive to expend effort gathering 
information about other players’ types or actions, because his optimal action does not 
depend on that information. Therefore, by theorem 5.4.7, bidders in a second-price 
auction have no incentive to expend effort gathering information. In contrast, bidders do 
generally have such an incentive in first-price auctions; in particular, they could use 
information about others’ bids to good advantage in choosing their own bids. 
Consequently, the second-price auction can reduce some kinds of bidder costs. The costs 
of participating in an auction are a serious concern for practical auction design, so this 
advantage is significant.  

Several variations of the model used for theorem 5.4.7 have also proved tractable. We 
consider next a pure common value model with two players. There are a multitude of ex 
post equilibria in this case.  
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Theorem 5.4.8 (Milgrom (1981b)). Consider a two-player version of the preceding 
model in which v is symmetric, that is, 1 1 2 2 1 2( , ) ( , )v v t t v t t v= = = . Then for every 
increasing, continuous function :f →\ \ , the strategy profile 1 1( ) ( , ( ))b s v s f s−=  and 

2( ) ( ( ), )b s v f s s=  is an ex-post equilibrium.  

Proof. Consider bidder 1’s ex post problem. After learning 1t  as well as 2t  and the 
corresponding bid 2 2( )b t , bidder 1 solves ( ) 2 2

1 2 2 2
( )

max ( , ) ( ) 1
b t

v t t b tβ β >
− . So, 1 1( )b t  is a 

best reply for all 1t  if 1 1 2 2 1 2 2 2( ) ( ) ( , ) ( )b t b t v t t b t> ⇔ > .  

By construction, if 1 2( )t f t= , then 1 1 1 1 1 2 2 2 2( ) ( , ( )) ( ( ), ) ( )b t v t f t v f t t b t−= = = . Since 
v  is increasing, 1 1 2 2 1 2( ) ( ) ( )b t b t t f t> ⇔ > . By construction, 1 2 2 2( ) ( )t f t b t> ⇔ =  

2 2 1 2( ( ), ) ( , )v f t t v t t< , so 1 1 2 2 2 2 1 2( ) ( ) ( ) ( , )b t b t b t v t t> ⇔ < , as required.  

An analogous argument shows bidder 2’s strategy is also a best reply.  ■ 

Theorem 5.4.8 allows for some extreme equilibria in which the seller’s revenues can be 
very low. For example, let us apply the theorem using the function ( )f s sα=  where α is 
a large positive number. Recalling that the type spaces are [0,1], when bidder 2’s type is 

(0,1)s ∈ , his equilibrium bid is 2 ( ) ( , ) (0, )b s v s s v sα= ≈ . Bidder 1’s equilibrium bid 
when (0,1)s ∈  is 1 1/( ) ( , ) ( ,1)b s v s s v sα= ≈ . Using these approximations, bidder 2’s bids 
are all less than (0,1)v  and bidder 1’s bids are all larger than the same amount. 
Consequently, bidder 1 wins nearly all the time and pays a price of approximately 

2(0, )v t . Extending the example, suppose that ( , )v r s rs= . Then, the price will always be 
approximately 2(0, ) 0v t = . Of course, if this equilibrium were anticipated, bidder 2 might 
be so discouraged that he would not enter at all, particularly if the entry costs were 
significant.  

Are such extreme equilibria plausible? Klemperer (1998) has argued that in situations 
with “almost common values,” extreme equilibria like these may be the only 
“reasonable” equilibria. Klemperer illustrates his point with the wallet game, in which 
two bidders each bid for the sum of the (privately known) contents of the bidders’ 
wallets. Here, the value function ( , )v r s r s= +  is symmetric and isotone, so according to 
theorem 5.4.8, there are many equilibria corresponding to different values of f . What 
happens when one player has a advantage, even an arbitrarily small one, over the other? 
The next theorem shows that extreme equilibria are commonplace and the disadvantaged 
bidder has no chance of winning in any equilibrium in undominated, continuous 
strategies.  

Theorem 5.4.9. Suppose that bidder values are given by 1 1 2( , )v t t  and 2 2 1( , )v t t , where 
each function is continuous, isotone, and strictly increasing in its first argument. Suppose 
that for every possible realization of 1t  and 2t , 1 1 2 2 2 1( , ) ( , )v t t v t t> . Then the following 
bid functions yield an ex post equilibrium in undominated, increasing, continuous 
strategies: 1 1 1 1( ) ( ,1)b t v t=  and 2 2 2 2( ) ( ,0)b t v t= . In this equilibrium, bidder 1 always 
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wins. Moreover, in any Nash equilibrium in undominated, continuous strategies, bidder 1 
wins with probability one.  

Proof.  First, we verify that the proposed strategies form an ex post equilibrium. Since 
1v  and 2v  are isotone, for all 1t  and 2t , 1 1 1 1 1 1 2( ) ( ,1) ( , )b t v t v t t= ≥ >  
2 2 1 2 2 2 2( , ) ( ,0) ( )v t t v t b t≥ = . Since 1 1 2 2( ) ( )b t b t> , bidder 1 always wins. Bidder 1 solves  

( ) 2 2
1 1 2 2 2

( )
max ( , ) ( ) 1

b t
v t t b tβ β >

−  and, by inspection, any bid that always wins is optimal. 

Bidder 2 solves ( ) 1 1
2 2 1 1 1

( )
max ( , ) ( ) 1

b t
v t t b tβ β >

−  and, by inspection, any bid that always 

loses is optimal. So the proposed strategies are mutual best replies and hence form an 
equilibrium.  

At any Nash equilibrium in undominated strategies, bidder 2 of type 2 0t =  bids no 
more than 2 (0,1)v  and bidder 1 of type 1 1t =  bids no less than 1 2(1,0) (0,1)v v> . So, 
there is no equilibrium in undominated strategies at which bidder 2 always wins. Hence, 
if bidder 2 wins with positive probability, then since the bid functions are continuous, 
there exists an open interval of bids that is in the range of both bid functions. Let β be a 
bid in that interval and suppose 1t  and 2t  are types such that 1 1 2 2( ) ( )b t b tβ = = . If 

1 1 2( , )v t t β> , then this cannot be an equilibrium outcome, because bidder 1 would 
benefit by increasing his bid slightly, winning more often when winning is profitable. 
Similarly, if 1 1 2( , )v t t β< , then bidder 1 would do better to reduce this bid. So, at 
equilibrium for any bid in that interval, it must be true that 1 1 2( , )v t tβ =  and similarly 
that 2 2 1( , )v t tβ = . That contradicts our hypothesis that 1 1 2 2 2 1( , ) ( , )v t t v t t>  for all type-
pairs. Hence, all types of bidder 2 win with probability zero and all types of bidder 1 win 
with probability one.  ■  

According to theorem 5.4.9, a small asymmetry can make a huge difference in the 
equilibrium strategies and revenues in the pure common value auction. To illustrate the 
logic of this conclusion, consider a variant of the wallet game in which one participant 
receives an extra dollar whenever he wins. Suppose the wallets are known to contain 
between $0 and $100. Then, according to the theorem, the advantaged bidder bids the 
amount in his own wallet plus $101 in a second price auction, while the other bidder 
timidly bids just the contents of his own wallet. The reason that there is no equilibrium at 
which bidder 2 ever wins is this: suppose that at some other equilibrium, there is some 
price p at which bidder 2 wins if bidder 1’s value is low enough, say less than $15. Then, 
bidder 1 should bid up to p exactly when his wallet contains at least 15p − . But then, if 
bidder 1’s wallet contains (14,15)v ∈  and he bids up to p and wins at that price, the value 
to him is no less than the amount in his own wallet, plus $1, plus the amount in bidder 2’s 
wallet, which is at least 15p − , so his total net winnings are ( 1 15) 0v p p+ + − − > , and 
the original strategies could not be an equilibrium.  

In this example, the average winning bid is just average amount in the timid bidder’s 
wallet. As the theorem suggests, there are other plausible equilibria in this case, but they 
differ little from the equilibrium just described. For example, the timid bidder may bid $1 
more than the contents of his wallet. Still, in equilibrium, the advantaged bidder always 
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wins and the average price does not exceed the average content of the loser’s wallet plus 
$1. The winning bidder’s profit is high and the seller’s revenue is correspondingly low.  

Bulow, Huang and Klemperer (1999) used a common value model to study takeover 
battles, treating these contests as auctions. They show that when a bidder has a small 
toehold in a takeover battle, owning some shares of the target’s stock before the battle 
begins, then equilibrium theory predicts that the bidder can win the takeover battle at an 
alarmingly low price. This application reinforces the lesson that a common value 
environment greatly magnifies small asymmetries.  

So far, we have emphasized revenue comparisons in button auctions, but traditional 
economic theory often focuses on efficiency. Maskin (1992) investigated the existence of 
efficient equilibrium in an asymmetric version of the two-player button auction above. 
Again, we treat 1 1 2( , )v t t  and 2 2 1( , )v t t  as primitive functions.  The following condition 
proves important.  

Definition. Values display (strict) single crossing interpersonal differences (SCID) for 
bidder i if for all j i≠  and all it− , ( | ) ( , ) ( , , )ij i i i i i j j i ijt t v t t v t t t− − −∆ = − —regarded as a 
function of it —has the (strict) single crossing property. That is, SCID holds if ,i it t> �  

( | ) 0ij i it t−∆ ≥ ⇒� ( | ) 0ij i it t−∆ ≥  and ( | ) 0ij i it t−∆ > ⇒� ( | ) 0ij i it t−∆ > , and strict SCID 
holds if ,i it t> �  ( | ) 0ij i it t−∆ ≥ ⇒� ( | ) 0ij i it t−∆ > .  

In words, the SCID property means that if i’s value exceeds j’s value for some profile 
of types, then increasing i’s type cannot reverse that relationship. Intuitively, if such a 
reversal were possible, it would mean that j’s value was more sensitive to i’s information 
than was i’s own value.  

The SCID condition ensures a kind of alignment between a bidder’s incentives and the 
efficiency criterion. In general, a higher type for bidder j suggests he has a higher value 
and so is willing to pay more to win. When SCID holds, a higher type for j also suggests 
bidder j is more likely the efficient winner. According to theorem 5.10 below, this 
alignment is sufficient for the ascending auction to have an ex post equilibrium with 
efficient outcomes. According to theorem 5.4.11, a refinement of the SCID condition is 
also necessary.  

Theorem 5.4.10 (Maskin). Suppose that each iv  is continuous and increasing, 
1 2(0,0) (0,0)v v= , and that players are labeled to satisfy 1 2(1,1) (1,1)v v≥ . If the values 

display strict SCID for both bidders, then there is an increasing function f such that the 
strategies 1 2( , )b b  constitute an ex post equilibrium of the second-price auction game, 
where 1 1 1( ) ( , ( ))b s v s f s−=  and 2 2( ) ( , ( ))b s v s f s= . Furthermore, equilibrium outcomes 
are efficient.  

Proof. Suppose 2 (0,1)t ∈ .  By strict SCID for bidder 2, since 1 2(1,1) (1,1) 0v v− ≥ , it 
follows that 1 2 2 2(1, ) ( ,1) 0v t v t− > . Also, since 1 2(0,0) (0,0) 0v v− = , strict SCID for 
bidder 2 implies that 1 2 2 20 (0, ) ( ,0)v t v t> − . Hence, by continuity of the values, there 
exists a type 1 2ˆ ( )t f t=  such that 1 2 2 2 2 2( ( ), ) ( , ( ))v f t t v t f t= . By strict SCID for bidder 
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1, the 2( )f t  that satisfies this equation is unique. By strict SCID for both bidders, ( )f ⋅ is 
increasing.  

Suppose that the bidders adopt the strategies 1 1 1( ) ( , ( ))b s v s f s−=  and 
2 2( ) ( , ( ))b s v s f s= . By construction, both strategies are increasing. After bidder 1 learns 

bidder 2’s type 2t  and bid 2 2( )b t , bidder 1’s problem becomes  

( ) 2 2
1 1 2 2 2 2

( )
max ( , ) ( , ( )) 1

b t
v t t v t f t

ββ >
− ⋅ . 

Since 1 1 2 2( ) ( )b t b t= ⇔ 1 2( )t f t=  and both the bid functions and f are increasing, it 
follows that  1 1 2 2( ) ( )b t b t> ⇔ 1 2( )t f t> . Thus, if bidders play according to these 
strategies, then 1 wins exactly when 1 2( )t f t> , that is, when 1 1 2 2 2 1( , ) ( , )v t t v t t> . Thus, 
the outcome when bidders use these strategies is always efficient.  

Next, 1 2( )t f t> ⇔  1 1 1 1( , ( ))v t f t− >  1 2 2( ( ), )v f t t = 2 2 2( , ( ))v t f t . Hence, 
1 1 2 2( ) ( )b t b t> ⇔ 1 1 1 1 2 2 2( , ( )) ( , ( ))v t f t v t f t− > = 2 2( )b t .  

The inequality 1 1 1 1 2 2( , ( )) ( )v t f t b t− >  determines when a bid 2 2( )b tβ >  is ex post 
optimal for bidder 1. The conclusion that the inequality holds if and only if 

1 1 2 2( ) ( )b t b t>  means that bidder 1 is playing an ex post best reply. A similar analysis 
applies to bidder 2, verifying that the strategies form an ex post equilibrium.  ■  

The next theorem states the a partial converse of the efficiency result in Theorem 
5.4.10: we cannot achieve efficient outcomes without at least the weak form of SCID.  

Theorem 5.4.11 (Maskin). Suppose that 1v  is continuous and increasing and there exist 
types such that SCID for bidder 1 is violated, that is, 1 1ˆt t∃ > and 2t  such that 

1 1 2 2 2 1ˆ ˆ( , ) ( , )v t t v t t− >  1 1 2 2 2 10 ( , ) ( , )v t t v t t> − . Then there is no ex post equilibrium at 
which outcomes are always efficient.  

Proof. Since 1v  is increasing, by the monotone selection theorem the bid must be 
increasing in type, so bidder 1 must be weakly more likely to acquire the item when his 
type is 1t  than when his type is 1t̂  when 2’s type is 2t . In particular, 1 must sometimes 
acquire the item when the type profile is 1 2( , )t t . However, this outcome is inconsistent 
with efficiency, since 1 1 2 2 2 10 ( , ) ( , )v t t v t t> − .  ■  

5.4.2.2 The Button Auction With Maximal Information 
The symmetric model studied above assumes bidders receive minimal information 

about the numbers and identities of active bidders . In this model, bidders either know 
nothing about others’ bids or cannot draw inferences from them. We now model the 
opposite extreme.  Suppose all bidders are learn whenever any bidder drops out. 
Moreover, the bidders use this information to make inferences about the dropout’s type. 
Of course, with just two bidders, the button auctions with minimal and maximal 
information are equivalent because in neither auction does any bidder learn another’s 
drop-out price before the end of the auction. With more than two bidders, however, we 
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can conceive of the auction as taking place in two stages. During the first stage, N-2 
bidders drop out and their decisions provide information to the last two active bidders. 
When the kth bidder drops out at price kp , each remaining bidder figures that the drop-
out’s type is the kth highest among his competitors, estimates that type to be some number 

( )ˆ N kt − , updates his estimates, and continues accordingly. When only two bidders remain, 
those two effectively bid in a second-price auction. 

In the formal analysis below, we use ( )nt  to denote the nth highest type among the 
competitors of some bidder.  

Since we assume the game to be symmetric, it is convenient to treat bidder 1 as the 
typical bidder and focus on his bidding problem. A (reduced) strategy for this game 
specifies whether bidder 1 drops out when the price reaches some level, given the 
observed history up to that time. Let 1( , ,..., )n nb s p p  describe the lowest price at which 
the bidder of type s will drop out when n bidders have already dropped out at prices 

1 ... np p≤ ≤ . Clearly, 1( , ,..., )n n nb s p p p≥ . 

To facilitate study of variations in bidder information, let v be a primitive value 
function whose arguments include the type profile and the seller’s information 0t  and let 

1( ,..., )Nv t t =  1 0 2 1( , , ,..., ) | ,...,N NE v t t t t t t    be the reduced-form value function when the 
seller reveals no information about her type.  

Theorem 5.4.12. Suppose that v  is continuous, isotone and strictly increasing in its 
first argument. Then, the following strategy, defined inductively, is a symmetric ex post 
equilibrium strategy of the ascending auction:  

 0
( ) ( 1)

1

( ) ( ,..., )
ˆ ˆ( , ,..., ) ( ,..., , ,..., )N n N

n n

b s v s s

b s p p v s s t t− −

=

=
, (5.15) 

where ( )ˆ N kt −  solves  

 ( ) ( ) ( ) ( ( 1)) ( 1)
1 1 1

ˆ ˆ ˆ ˆ ˆ( , ,..., ) ( ,..., , ,..., )N k N k N k N k N
k k kp b t p p v t t t t− − − − − −

− −= =  (5.16) 

and ( )ˆ 0N kt − =  if (0,...,0)kp v≤ .  

Proof. Since v  is continuous and strictly increasing in its first argument, 1( , ,..., )k kb p p⋅  
is continuous and increasing as well.  Hence, there is a unique solution ( )ˆ N kt −  to 

( )
1 1 1

ˆ( , ,..., )N k
k k kp b t p p−

− −=  on the relevant domain.  By construction, if the bidders 
besides bidder 1 adopt the equilibrium strategy, then when bidder 1 wins, regardless of 
his strategy, he pays (1) (1) (2) ( 1)( , , ,..., )Nv t t t t −  to acquire the good. This price is less than 
bidder 1’s value 1 (1) (2) ( 1)( , , ,..., )Nv t t t t −  precisely when 1 (1)t t> . Also, since the symmetric 
equilibrium bid function is increasing, bidder 1 wins using the function only when 

1 (1).t t>   Hence, the ex post best-reply property is satisfied.  ■  

Each of the component strategies nb  reflects a sort of myopic bidding behavior. The 
bidder asks himself: “if everyone else were to drop out right now, before I have a chance 
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to react, would I be happy to be declared the winner?” He remains active in the auction 
just as long as the answer to that question is “yes.” 

To understand the equilibrium strategies better, suppose no bidder has yet dropped out 
( 0n = ). Suppose the price reaches the level 0

ˆ( )b t  when bidder 1’s type is 1t . Bidder 1 
infers from the bidding that the others’ types are all at least t̂ . If bidders 2,..., n  were to 
quit instantly, then bidder 1 could infer that their types were exactly t̂ . In that case, 
bidder 1 would want to acquire the item at price 0

ˆ( )b t  exactly when 
1

0
ˆ ˆ ˆ ˆ ˆ ˆ( , ,..., ) ( ) ( , ,..., )v t t t b t v t t t≥ = , which holds when 1 ˆt t> .  

The analysis is similar when k > 0 bidders have dropped out. If all play the equilibrium 
bidding strategy, then the one can invert the bid function to determine the types of the 
early drop-outs. At equilibrium, the remaining bidders incorporate that information into 
their values and the auction proceeds as an  N k−  bidder auction. The formula for the 
strategy in (5.15) then takes the same form as when no bidders had dropped out; each 
bidder assesses what its value would be if every other bidder dropped out immediately at 
the current price. The only difference is that bidder 1’s conjectures about the first k 
bidders no longer change as the bid increases.  

Riley and Li (1997) have pointed out other equilibria in this auction with different 
strategies but the same outcome. With at least 3N ≥  bidders, one alternative equilibrium 
b�  specifies that the first 2N −  bidders drop out at bids a fraction (0,1)α ∈  of the bids at 
which they dropped out under strategy b, while the last two bidders bid as before: 

 
0

( ) ( 1)

1 ( ) ( 1)

( ) ( ,..., )
ˆ ˆ( ,..., , ,..., ) for 1

( , ,..., )
ˆ ˆ( ,..., , ,..., )  for 1

N n N

n n N n N

b s v s s

v s s t t n N
b s p p

v s s t t n N

α

α − −

− −

=

 < −= 
= −

�

�  

with the inferences ( )ˆ kt  adjusted accordingly. It is routine to verify that this strategy 
combination is an ex post equilibrium, since drop-out levels besides the last one have no 
effect of the outcome of the auction.  

The multiplicity of equilibria indicates the weak incentives losing bidders have to use 
any particular bidding strategy. Those weak incentives may make inferences about the 
losing bids unreliable and suggest that this model may not capture the essence of the real-
world inference problem, where signaling and jump-bidding may play a prominent role.    

In the symmetric equilibrium above, the highest type always wins the auction. When 
does the highest type also have the highest value? We can derive an analog to SCID for 
this model by observing that if 1 2t t s′= = , then 1 2 12( , , )v v v s s t−′ ′= = . Then, a suitable 
version of SCID must imply that increasing bidder 1’s type makes his value higher than 
bidder 2’s value: for s s′> , 12 12( , , ) ( , , )v s s t v s s t− −′ ′> . This inequality implies that the 
highest type in the model has a higher value than any other bidder, so we have the 
following:  
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Theorem 5.4.13. Suppose that v  has the property that for s s′> , 
12 12( , , ) ( , , )v s s t v s s t− −′ ′> . Then, in the equilibrium of theorem 5.4.12, the outcome is 

efficient.  

5.4.2.3 Some Revenue Comparisons 
We next examine the impact of auction design on revenue in ascending auctions. Does 

the theory predict any systematic differences between the button auctions with minimal 
and maximal information? How does revealing seller information influence expected 
revenues?  

For the remainder of this chapter, it will be important to keep track of the difference 
between the primitive form of the value function and its various reduced forms. We 
denote value estimates based on all information by 0( , , )i iv t t t− . The expected value given 
the bidders’ types but not the seller’s information is 0( , ) ( , , ) | ,i i i i i iv t t E v t t t t t− − − =   . 
Finally, the expected value given just bidder 1’s type and the highest opposing type is 

1 (1) 1 1 1 (1)ˆ( , ) ( , ) | ,v t t E v t t t t− =    1 1 0 1 (1)( , , ) | ,E v t t t t t− =   . We also write 
1 (1) 0 1 1 0 1 (1) 0ˆ̂( , , ) ( , , ) | , ,v t t t E v t t t t t t− =   .  

Theorem 5.4.14. Suppose 1( ,..., )Nv t t  is increasing and types are affiliated and consider 
the equilibria identified in theorem 5.4.12. Then,  

 (1) (1) (1) (1) (2) ( 1) 1 (1)ˆ( , ) ( , , ,..., | ,Nv t t E v t t t t t t− ≤   . (5.17) 

That is, the price paid by each type of bidder 1 when he wins in the second-price auction 
is no higher than the conditional expected price he pays given his type 1t  and the highest 
opposing type (1)t  in the button auction with maximal information.  

Proof. The price paid by winning bidder 1 of type s in the second price auction when 
the second highest type is r is ˆ( , )v r r . But,  

(2) ( 1) 1 (1)ˆ( , ) ( , , ,..., ) | ,Nv r r E v r r t t t r t r− = = =   (2) ( 1) 1 (1)( , , ,..., ) | , ,NE v r r t t t s t r− ≤ = =   

by theorems 5.4.6 and 5.4.5 since the density of types is affiliated and v is isotone. The 
right-hand side is the expected revenue in the ascending auction with maximal 
information.  ■ 

The theorem implies that every type of every bidder expects to pay a higher price on 
average in the button auction with maximal information than in the auction with minimal 
information.By (5.17) and the law of iterated expectations,  

(1) (1) 1 (1) (1) (2) ( 1) 1ˆ( , ) | ( , , ,..., |NE v t t t E v t t t t t−   ≤    , so the expected price with maximal 
information is higher.  

We now consider how a seller’s decision to reveal information affects the efficiency 
and revenues of an auction. The two effects can have opposite signs. For example, 
suppose that there are two bidders with values 1 and 3, but only the seller knows which 
bidder has which value. If the seller reveals that information, then a second price auction 
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between the two parties will lead to the bidder with the higher value winning and paying 
a price of 1. If the seller does not reveal that information and positions are ex ante 
symmetric, then each bidder will bid as if his value were 2. The seller’s revenue will be 2 
and, on average, the value to the winner will be 2 as well.  

To focus on other effects, we abstract from such possibilities, turning to a symmetric 
model in which the seller’s information is irrelevant to efficient allocation. For example, 
the seller may have information about the distribution from which types are drawn—
information that, given the bidders’ realized types, does not bear on any bidder’s value.  

Theorem 5.4.15. Suppose 1 0( ,..., , )Nv t t t  is increasing and the types are affiliated. Then, 
in both forms of the ascending auction, a policy of always revealing 0t  cannot reduce the 
expected price paid by any type of winning bidder.100 That is, for s r> , 

 0 1 (1)ˆˆ ˆ( , ) ( , , ) | ,v r r E v r r t t s t r ≤ = =   (5.18) 

and  

 (2) ( 1) (2) ( 1) 0 1 (1) (2) ( 1)( , , ,..., ) ( , , ,..., , ) | , , ,...,N N Nv r r t t E v r r t t t t s t r t t− − − ≤ = =  . (5.19) 

Proof. For  the auction with minimal information, we argue as follows:  

 
0 1 (1)

0 1 (1)

ˆˆ ˆ( , ) ( , , ) | ,

ˆ̂( , , ) | , .

v r r E v r r t t r t r

E v r r t t s t r

 = = = 
 ≤ = = 

 

The inequality follows from theorems 5.4.5 and 5.4.6 using s r> .  

The argument is similar for the auction with maximal information: 

 
(2) ( 1) (2) ( 1) 0 1 (1) (2) ( 1)

(2) ( 1) 0 1 (1) (2) ( 1)

( , , ,..., ) ( , , ,..., , ) | , , ,...,

( , , ,..., , ) | , , ,..., .

N N N

N N

v r r t t E v r r t t t t r t r t t

E v r r t t t t s t r t t

− − −

− −

 = = = 
 ≤ = = 

.  

The inequality again follows from theorems 5.4.5 and 5.4.6 using s r> .  ■  

To use a term we introduced in discussing the drainage tract model, the preceding 
theorem identifies a weighting effect. Observe that in the maximum information model, if 
v does not depend on 0t , then the price effect of revealing that information is zero. In 
contrast, in the first price version of the drainage tract model, revealing information could 
also have the publicity effect of making the bidders’ types more predictable, thereby 
encouraging more intense competition from the losing bidders. No such effect appears in 
the auctions above.  

5.4.3 First-Price Auctions 
Next, we turn to another very common auction form: the standard sealed-bid auction, 

also known as the first-price auction.  As in the preceding section, the types 
                                                 
100 When bidders are risk averse, revealing information may reduce the risk premium assessed by bidders 
and therefore increase their bids. Milgrom and Weber (1982a) analyze this effect.  
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0 1( , ,..., )Nt t t t=  are affiliated and have a density 0 1( , ,..., )Nf t t t  that is symmetric in the 
bidder types, but not necessarily in the seller’s type. We denote by (1) 1( | )f t t  the 
conditional density of the order statistic t(1)  and by (1) 1( | )F t t  the corresponding 
cumulative distribution function.  

Again, we focus our attention on bidder 1’s optimization problem. Given a type 1t s= , 
bidder 1 chooses a bid x to solve: 

 

( )
( )
( )

( )

( )

(1)

(1)

(1)

(1)

1 1
{ ( )}

1 1 (1) 1
{ ( )}

1 1 (1) 1
{ ( )}
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{ ( )}

0
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max ( , ) 1 | , |
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ˆmax ( , ) 1 |
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E E v s t x t t t s

E E v s t x t t t s

E v s t x t s

v s x f s dτ τ τ
−

−
>

−
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−
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>

 − = 
  = − =  
  = − =  
 = − = 

= −
1 ( )

.
x

∫

 

The first equality follows from the law of iterated expectations; the second from the fact 
that the indicator is a function of (1)t ; and the remaining steps follow from the definitions.  

Theorem 5.4.16. The following is a symmetric equilibrium strategy for the first price 
auction:  

 0

ˆ ˆ( ) (0,0) ( , ) ( | ) where

( | )( | ) exp .
( | )

s

s

b s v v dL s

f z sL s dz
F z sα

α α α

α

= +

 
= − 

 

∫

∫
 (5.20) 

Proof. Define ( )
0

ˆ( , , ) ( , ) ( | )
y

U x y s v s x f s dτ τ τ= −∫ . Using numbered subscripts of U to 

denote partial derivatives with respect to the first and second arguments, 
1( , , ) ( | )U x y s F y s= −  and ( )2 ˆ( , , ) ( , ) ( | )U x y s v s y x f y s= − .  

By theorem 5.4.3, ( | )F y s  is log-supermodular, so 
2 ( | )log ( | ) 0

( | )
f y sF y s

s y s F y s
∂ ∂

= ≥
∂ ∂ ∂

.  

Hence, ( , , )U x y s  satisfies the Mirrlees-Spence condition on ˆ( , )x v s y≤  since 

 1

2

( , , ) ( | )
ˆ( , , ) ( ( , ) ) ( | )

U x y s F y s
U x y s v s y x f y s

−
=

− ⋅
 

is nondecreasing in s (because it is negative and its absolute value is decreasing). 
Therefore, by theorem 4.4, the objective has single crossing differences. Hence, we may 
use the constraint simplification theorem to establish that the proposed strategy is optimal 
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for a bidder. We must show that b is increasing and solves the first-order condition (and 
hence the envelope condition).  

Using (5.20), one can verify that b satisfies the differential equation: 

 [ ] ( | )ˆ( ) ( , ) ( )
( | )

f s sb s v s s b s
F s s

′ = − ⋅ . (5.21) 

 

Since ˆ(0) (0,0)b v=  and v̂  is isotone and strictly increasing in its first argument, it 
follows that the solution of differential equation (5.21) must satisfy ˆ( , ) ( )v s s b s> , so 

( ) 0b s′ > and the bid function is increasing.  

Suppose the bidders besides bidder 1 use the strategy b specified in (5.20). Since b is 
increasing, then for all s, ( )b s  is a best reply for 1 if it solves 1max ( , ( ), )x U x b x s− . The 
bid then satisfies the first-order condition at ( )x b s=  if  

 1 20 ( ( ), , ) ( ( ), , ) / ( )
ˆ( | ) ( ( , ) ( )) ( | ) / ( ).

U b s s s U b s s s b s
F s s v s s b s f s s b s

′= +
′= − + −

 (5.22) 

Since b satisfies the differential equation (5.21), it satisfies the equivalent expression 
(5.22). 

Thus, the bid is increasing and satisfies the envelope formula. By the constraint 
simplification theorem, bidder 1 has no better reply in the range of the bid function and 
satisfying the constraint ˆ( , )x v s y≤ . By inspection, any bid x that violates the constraint 
leads to a lower expected payoff than the bid ˆ( , )x v s y=  and any bid above or below the 
range of the bid function produces a lower expected payoff than b(0) or b(1), 
respectively. Hence, b is a best reply for bidder 1.  ■  

The derivation of the equilibrium strategy is quite straightforward. Starting from the 
description of the game and assuming that there is a symmetric, increasing equilibrium, 
one can derive the first-order condition (5.22) and restate it as the differential equation 
(5.21). The boundary condition for this equation comes from the zero-profit condition for 
the lowest type of bidder, who must be just indifferent about winning at his optimal bid. 
Thus, ˆ(0) (0,0)b v= . Solving the differential equation with that boundary condition leads 
to (5.20).  

The next theorem restates the result of chapter 4 holding that the second-price auction 
generates more revenue for each type of winning bidder than the first-price auction.  

Theorem 5.4.17. For each type of bidder, the conditional expected price in the second 
price auction, given that the type wins, is higher than the corresponding bid in the first 
price auction, that is, for all [0,1)s ∈ , (1) (1)ˆ( , ) | ( )E v s t t s b s < ≥  .  

Proof. In this proof, we denote the equilibrium strategy in the first-price auction by Fb  
and we let (1) (1) 1 (1)ˆ( , ) [ ( , ) | , ]Sb s t E v t t t s t t= = < . (Observe that ( , )Sb s t is the price that 
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bidder 1 of type s expects to pay if he bids as if his type were t and his bid wins.) We 
must show that ( ) ( , )F Sb s b s s≤ .  

Suppose bidder 1 of type s bids as if he were of type t and let ( , )v s t =�  
(1) 1 (1)ˆ[ ( , ) | , ]E v s t t s t t= < . Then, the bidder’s maximum value in first-price auction is 

( )( ) max ( , ) ( ) ( | )F F
tV s v s t b t F t s= −� . Similarly, for the second-price auction, 

( )( ) max ( , ) ( , ) ( | )S S
tV s v s t b s t F t s= −� . At equilibrium, a bidder of type s optimally bids 

as his own type t s= , so ( )( ) ( , ) ( ) ( | )F FV s v s s b s F s s= −�  and 

( )( ) ( , ) ( , ) ( | )S SV s v s s b s s F s s= −� . Hence, ( ) ( )F SV s V s≥  if and only if ( ) ( , )F Sb s b s s≤ .  

By the envelope theorem, 2 1( ) ( | )( ( , ) ( )) ( | ) ( , )F FV s F s s v s s b s F s s v s s′ = − +� �  and 

2 1 2( ) ( | )( ( , ) ( , )) ( | ) ( , ) ( | ) ( , )S S SV s F s s v s s b s s F s s v s s F s s b s s′ = − + −� � . Using theorem 5.4.3, 
part (3), 2 ( | ) 0F s s ≤ . So, if there is any 0s >  at which ( ) ( )F SV s V s<  then 

( ) ( , )F Sb s b s s>  and hence ( ) ( )F SV s V s′ ′≥ . However, we have already established that, 
at equilibrium, (0) (0)F SV V= , so ( ) ( )F SV s V s≥  everywhere by the value ranking 
lemma, and hence ( ) ( , )F Sb s b s s≤  everywhere.  ■  

The last theorem in this section establishes that revealing information increases expected 
prices in the first-price auction, just as we have already established for the second-price 
auction. As in the drainage tract model and unlike in our model of the second-price 
auction, there are again two effects at work: a publicity effect and a weighting effect. Both 
effects tend to reduce the winning bidder’s profits.  

Theorem 5.4.18. For each type of bidder, the conditional expected payment in the 
first price auction when the seller reveals 0t , given that the type wins, is higher than the 
bid made by the same type when the seller reveals nothing: 0 (1)( , ) | ( )E b s t t s b s < ≥  .  

Proof. To emphasize the unity of ideas, we present this proof using virtually the same 
words as the proof of 5.4.17 and only slightly vary the notation.  

Let 0 1 (1)( , ) [ ( , ) | , ]B s t E b t t t s t t= = < . (Observe that ( , )B s t is the price that bidder 1 of 
type s expects to pay if he always bids as if his type were t and his bid wins.) We must 
show that ( ) ( , )b s B s s≤ .  

Suppose bidder 1 of type s bids as if he were of type t and let ( , )v s t =�  
(1) 1 (1)ˆ[ ( , ) | , ]E v s t t s t t= < . Then, the bidder’s maximum value in the auction in which the 

seller reveals no information must satisfy ( )( ) max ( , ) ( ) ( | )N
tV s v s t b t F t s= −� . Similarly, 

when the seller reveals his information, the bidder’s maximum value is 
( )( ) max ( , ) ( , ) ( | )I

tV s v s t B s t F t s= −� . In equilibrium, a bidder of type s optimally bids as 

his own type t s= , so ( )( ) ( , ) ( ) ( | )NV s v s s b s F s s= −�  and 

( )( ) ( , ) ( , ) ( | )IV s v s s B s s F s s= −� . Hence, ( ) ( )N IV s V s≥  if and only if ( ) ( , )b s B s s≤ .  
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By the envelope theorem, 2 1( ) ( | )( ( , ) ( )) ( | ) ( , )NV s F s s v s s b s F s s v s s′ = − +� �  and 

2 1 2( ) ( | )( ( , ) ( , )) ( | ) ( , ) ( | ) ( , )IV s F s s v s s B s s F s s v s s F s s B s s′ = − + −� � . Using theorem 5.4.3, 
part (3), 2 ( | ) 0F s s ≤ . So, if there is any 0s >  at which ( ) ( )F SV s V s<  then 

( ) ( , )b s B s s>  and hence ( ) ( )N IV s V s′ ′≥ . However, we have already established that, in 
equilibrium, (0) (0)N IV V= , so ( ) ( )N IV s V s≥  everywhere by the value ranking lemma, 
and hence ( ) ( , )b s B s s≤  everywhere.  ■ 

5.5 Conclusion 
In this chapter, we have relaxed the assumptions common in previous chapters that 

types are statistically independent and that a bidder’s value depends only on his own 
type. These changes raise many new questions and highlight important qualifications to 
the conclusions of the simpler models.  

This chapter first investigated what kinds of information bidders might gather when 
information is costly and types are independent. We found that information about other 
bidders’ values, as opposed to information about what they know, is of no value to a 
bidder in choosing his optimal bid. When types are independent and evaluations are 
costly, that analysis offers a rationale for assuming that bidder types are one-dimensional. 
We showed, however, that this argument loses force when bidder values may be 
interdependent.  

Next, we studied the drainage tract model, which has been empirically successful in 
organizing facts about bidding for offshore oil in certain circumstances. The equilibrium 
in these models has the surprising (and empirically verified) property that the distribution 
of bids for the better informed bidder—the “neighbor”—should be just the same as for 
the less informed bidder—the “non-neighbor.” The model also generates results about 
revenues and profits. Neighbor profits are positive and increasing in the quality of the 
neighbor’s information. Moreover, they are also increasing in the non-neighbor’s 
perception of the quality of the neighbor’s information, so bidders have an incentive to 
convince others that they are well informed. The perceived quality of the neighbor’s 
information may matter because well informed bidders exacerbate the winner’s curse 
suffered by non-neighbors so that, in equilibrium, the non-neighbors bid more timidly, 
allowing the neighbor higher profits.  

The seller can reduce the value of bidders’ private information by gathering and 
disseminating information. Such a policy can help in two ways. To the extent the seller’s 
information makes the neighbor’s information less private, this publicity effect reduces 
the neighbor’s profit to the seller’s benefit. In addition, revealing information changes the 
weight bidders place on the neighbor’s information in estimating value. When the seller’s 
information is a substitute for the neighbor’s information, this weighting effect reinforces 
the publicity effect and further increases the seller’s revenue. However, it is also logically 
possible that the seller’s information complements the neighbor’s information so that the 
weighting effect is negative. It is even possible this effect is large enough to overwhelm 
the publicity effect, lowering seller revenues.  
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After the drainage tract model, we turned attention to symmetric models in with 
correlated types and interdependent values. We found that the two models of the 
ascending auction then have ex post equilibria—equilibria in which no bidder would want 
to change hisbid after learning the others’ bids and types. Such equilibria discourage 
bidders from gathering information about others’ types, since those don’t affect the 
optimal bid. This feature of the ascending auction helps economize on transaction costs.  

We also investigated the efficiency of ex post equilibrium outcomes in a model of any 
asymmetric ascending auction. The equilibrium is efficient if a certain interpersonal 
single crossing condition holds that aligns the bidder’s incentives with those of the 
auctioneer.  

We also investigated the impact on revenue of the seller’s disclosures of his 
information. Generally, the seller’s disclosures reduce bidders’ equilibrium profits and 
increase equilibrium revenues in the ascending auction models through a “weighting 
effect.” Revealing information also reduces bidders’ equilibrium profits and increases 
equilibrium revenues in the first-price auction through a “publicity effect,” which the 
literature has previously called the “linkage principle.” Theory also predicts that because 
of a publicity effect, ascending auctions will generate greater revenue than the first-price 
sealed bid auction.  
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Chapter 6:   
Auctions in Context 

Chapters 2-5 focus on strategies played in the auction and their consequences for 
economic performance. The auction itself, however, is just one part of a transaction, the 
success of which depends even more on what happens before and after the auction. 
Understanding the transaction as a whole requires one to ask who participates and what 
guarantees quality, delivery, and payment.  One must also ask why participants use an 
auction at all rather than another method of transacting.  

To illustrate the challenges of designing procedures for trade, we now discuss two 
idealized transactions – the sale of an asset and the choice of a supplier.  

When an owner sells assets, he must consider what to sell and who might want to buy 
the assets. If the asset is a commodity frequently traded at an auction site—for example, a 
major brand of laptop computer sold online at eBay—then the simplest approach may be 
to list the item for sale at that site. A public auction of this sort reduces the seller’s costs 
of marketing, because the auctioneer supplies most of the required marketing, and 
maintains a physical or online catalog to help buyers find products they want. The 
auctioneer’s reputation for selling this type of asset helps attract buyers. The availability 
of similar products at the auction site makes it hard for the seller to get a higher price by 
conducting his own private auction.  

For specialized assets, however, the situation is quite different. Specialized assets are 
ones with few close substitutes and few potential bidders are likely to value them highly. 
To obtain a high price, the seller must identify and attract the most likely purchasers, so 
independent marketing to seek out such bidders can be especially valuable.  

In practice, auctions for valuable yet highly specialized assets often fail because of 
insufficient interest by bidders. The European auctions for radio spectrum for use with 
“third generation” mobile telephones presents useful case studies; sale prices per capita 
for the spectrum licenses varied enormously across these auctions. In 2000, after auctions 
in England and Germany had generated tens of billions of Euros for government 
treasuries, the Swiss sold licenses at close to the reserve price after only four bidders 
showed up to bid for the four available licenses. In per capita terms, the difference in 
prices was about 30 to 1. While the Swiss example is an extreme one, it is not atypical. 
Spectrum auctions with few participants and low sale prices have also occurred in 
Austria, Israel and Italy.  

A combination of factors likely contributed to the disappointing outcome of the Swiss 
auction. The rules created an all-or-nothing contest, so that only participants who 
expected to win a large license would be willing even to participate. Buyers are naturally 
reluctant to begin an expensive, time-consuming evaluation of an asset when they believe 
they are unlikely to win at a favorable price. High spectrum prices in Germany and 
England likely dissuaded some bidders from participating in the Swiss auction and 
encouraged some to merge to reduce competition in the auction. Despite these problems, 
the Swiss authorities could have achieved a higher price if they wished. The auction rules 
could have provided that if few bidders entered the auction, the government would sell 
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the spectrum in the form of three licenses, rather than four, to create meaningful 
competition.  

Events like the Swiss spectrum auction of 2000 highlight the important roles of 
planning and marketing for asset auctions. The seller or seller’s agent needs to approach 
the right buyers, make sure that there is demand for the assets, package the assets 
appropriately, and convince buyers to participate. A seller who neglects these 
considerations may generate low participation by bidders and low revenue.101  

Marketing performs valuable economic functions by providing information to buyers 
and adapting the terms of sale to their needs. To illustrate the second function, consider 
the sale of factory by auction. The potential buyers and seller may decide together what 
commitments to make to existing workers or what contractual commitments to transfer 
with the factory. Potential buyers may have different regulatory concerns. For example, if 
one buyer is a major supplier in Europe, it may need European Commission approval to 
make the purchase, while another buyer requires no such approval. Sellers must 
anticipate and accommodate such concerns to attract a sufficient number of high value 
buyers to the auction.  

An auction’s timing can also significantly influence the auction’s attractiveness to 
bidders.  For example, in the United States, the most lucrative spectrum auction took 
place under a shadow of litigation. After Nextwave defaulted on obligations to pay for 
spectrum licenses won at an earlier auction, the FCC ordered Nextwave to return the 
licenses. The FCC then scheduled another auction for these same licenses. That auction 
appeared to have raised$17 billion for the Treasury,102 until the bankruptcy judge in the 
Nextwave case ordered the FCC to delay reassigning the licenses. This action left the 
licenses in limbo; neither the bidders nor the FCC knew whether the new buyers of 
Nextwave’s licenses would eventually receive them. These uncertainties cast a shadow 
over all future spectrum auctions, as potential buyers were unsure about what licenses 
they could keep and what sums they were obligated to pay.  

In a typical auction for a company or a large factory, sellers give bidders access to a 
“data room” containing confidential details about the asset. Bidders’ access to 
confidential information provides another reason to select participants in the auction 
carefully. Otherwise, some participants with little serious interest in buying the factory 
might pose as bidders to acquire information they could use to compete more effectively 
with the seller in product or labor markets. The investment bankers who manage these 
sales usually restrict access to the information and, for additional security, may prohibit 
bidders without a bona fide business plan from viewing the confidential information in 
the data room.   

While the seller markets his assets to encourage competition, bidders sometimes adopt 
countervailing strategies. One such countervailing strategy arose in a 1994 US spectrum 
auction,103 in which a single license covering all of southern California was among those 
                                                 
101 Paul Klemperer, who helped design the British spectrum auction, has advocated the use of an “Anglo-
Dutch” auction explicitly designed to have some inefficiency to encourage participation by bidders who do 
not expect to have the highest values for the items being offered.  
102 The auction described is FCC auction #35. 
103 This was auction 4, for the A and B blocks of PCS spectrum. 



 

 162

offered. California’s regional telephone company, Pacific Bell, publicly committed to 
winning this license104 and began an investment program to demonstrate that 
commitment. The investments included large expenditures to buy or lease cell sites, 
which are physical locations in each geographic unit or “cell” of the cellular phone 
system where equipment is placed to transmit and receive radio signals.  

These actions persuaded other companies hoping to operate in southern California of 
Pacific Bell’s commitment to win the license. To ensure their own access to the southern 
California market, they acquired spectrum outside the auction, swapping spectrum and 
buying spectrum rights from smaller cellular operators. The FCC rules limited the 
amount of spectrum companies could control in any market, so bidders who acquired 
spectrum outside the auction became ineligible to bid on the southern California area 
license. Consequently, Pacific Bell faced only one, marginal competitor for the valuable 
southern California license and acquired the license for a bargain price.  

Like asset sales, procurement auctions range from the straightforward to the very 
complex. Although price alone is the basis of choice for a few standardized items, most 
large business purchases weigh price along with a variety of other attributes. These 
include product attributes such as quality and style of the product or service and delivery 
arrangements, contract attributes such as the length of the contract and terms of payment, 
and supplier attributes such as reliability, capacity, and compatibility of order-processing 
and tracking systems.   

Procurement decisions based on price alone may endanger other important attributes 
such as quality and service. Buyers mitigate this risk in a number of ways. In the United 
States, where law requires governments to make procurement decisions according to 
objective criteria, the purchasing agency develops detailed non-price specifications and 
rejects all bids or contracts that do not comply with the exact specifications. While this 
practice may appear fair, it sometimes forces suppliers to make adapt their goods for 
government use, adding fixed costs, reducing scale economies, and increasing prices.  

In the private sector, buyers often develop lists of qualified suppliers and leave 
suppliers on the list only so long as their performance is satisfactory in all respects. 
Buyers can use this pre-qualification process to favor suppliers they believe to have 
greater capacity to meet the buyers’ future needs – for example, those expected to 
improve the quality of their products and services, to reduce future prices, to expand 
capacity if needed, to customize inputs, and so on.105  

                                                 
104 The author, then a consultant to Pacific Bell, appeared on the CNN nightly news the evening before the 
auction affirming that competitors would learn “just how determined we are” at Pacific Bell to win the 
license. In the event, McCaw Cellular, whose owner was a personal rival of the Pacific Bell CEO, decided 
not to allow Pacific Bell to win the license too cheaply. McCaw became Pacific Bell’s only real competitor 
for the southern California license, forcing the price hundreds of millions of dollars higher than it might 
otherwise have been. Even so, the eventual price paid per unit of population was low compared to the 
prices in other market areas containing such a large urban center.  
105 The discussion in the text treats the buyer as a single entity that can set standards, make forecasts, and 
evaluate alternatives in a coherent way. Complications arise when the buyer is a firm having several units 
with independent budget authority. These units typically need to purchase collectively to take advantage of 
the firm’s size in negotiating a low price. Managers must agree on the timing of purchases as well as 
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If auctions are used at all in a purchase of complex goods, they are typically just one 
part of a larger process. A major purchase might start with a request for information 
(RFI) that asks potential suppliers to indicate their ability to provide the goods or services 
in question and suggest specifications for the goods or services. A request for proposals 
(RFP) meeting the buyer’s specifications might follow the RFI. A proposal might specify 
products and services, payments, and how to handle contingencies. Sometimes a request 
for quotes (RFQ) follows or replaces the RFP.  The RFQ asks suppliers to name a firm 
price for a particular package or initiates an auction among the suppliers.  

Additional negotiations may follow receipt of the bids or proposals. Particularly if the 
final proposals differ in several dimensions, the buyer may simply use the auction 
outcome as a starting point from which to bargain. Experienced sellers build some margin 
into their bids in anticipation of the negotiations. This multistage process can be so costly 
relative to any anticipated profit margin for the winner that some sellers will decline to 
participate.  

In this chapter, we will treat auctions as mechanisms having precise rules to determine 
the “best bid” so no negotiations need follow the conclusion of the auction. Although 
more research is needed to understand interactions between the bidding and bargaining 
stages, understanding auctions in simple settings is an important precursor to the analysis 
of more complicated settings.  

To distinguish auctions from negotiations, we define auctions to include mechanisms 
that allow explicit and objective comparison of two or more competing offers that are 
open at the same time. We define bargaining to include mechanisms in which offers are 
short-lived and evaluated one at a time. This dichotomy leaves out situations in which 
multiple offers are available but the comparisons are not objective. Economists have not 
extensively studied mechanisms of this sort, so it is not yet clear whether it is most 
helpful to classify them as auctions or negotiations.  

Bargaining anticipated to occur after the parties sign a contract may as strongly 
influence transactional design as the bargaining that precedes the contract. Bargaining 
may occur during performance of the contract when parties want changes to 
accommodate events the contract did not anticipate. If the parties expect extensive 
revision of whatever contract they sign, then they could benefit from using a cost-plus 
contract, that is, a contract in which the buyer pays the supplier its actual accounting cost 
plus a mark-up. Cost-plus contracts make it easier to negotiate changes, because they fix 
in advance the compensation for any agreed changes. However, cost-plus contracts make 
auctions less useful, because the initial bids play a smaller role in determining the 
eventual cost to the buyer. On the other hand, fixed price contracts, which establish a firm 
price for the contract and negotiations determine the price for any changes, are especially 
useful when the parties expect few changes.  

According to Bajari and Tadelis (2001), these generalities characterize the actual 
pattern of contracting in the US construction industry. They observe that the party 
purchasing construction services can reduce the need for changes with thorough planning. 

                                                                                                                                                 
standards and minimum quantities to be purchased from selected suppliers. If each department’s 
commitment reduces prices for all, free rider problems can interfere with efficient buying arrangements.  
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Prolonged planning, however, delays completion of the project. When speed is essential 
or substantial changes are unavoidable, buyers eschew auctions in favor of finding a 
reliable builder and using a cost-plus contract.  

The main focus on this chapter is bidder participation decisions and how those interact 
with auction design. Most of the existing theory about auctions with entry uses a 
symmetric model in which there are no ex ante differences among potential bidders. The 
theory for that case is well-developed and this chapter discusses it in considerable detail.   

In both asset sales and procurement contexts, businesspeople are often concerned about 
whether and how to run auctions when some bidders are more qualified than others. 
Should the auctioneer encourage participation by less qualified bidders in order to 
increase competition in the auction? Can it be worthwhile to favor new suppliers to 
increase competition, even if those new suppliers are expected to supply poorer quality? 
The theory of auctions with asymmetric potential bidders is much less developed than the 
theory of symmetric auctions, so we explore it in less detail, using a series of examples.  

6.1 The Profit and Surplus Contribution of an Entrant 
We begin by studying a set of models with endogenous entry. Entry is endogenous 

when bidders themselves decide whether to participate in a particular auction. Will 
bidders, acting in their own interests, decide efficiently? Or are they likely to be too 
reluctant or too eager, relative to the efficient standard?  

In our model, the entrant to the auction directly bears the costs of entry, so the question 
boils down to what share of the benefits of entry accrue to the individual entrant. 
Increased entry clearly affects the payoffs of the other participants: it benefits the seller 
by raising the sale price and harms other bidders both by raising the prices that they pay 
when they win and by reducing their chance of winning. What is the net effect of these 
apparent externalities? One might guess that if it is positive, there will be too little entry; 
if negative, too much.  

Our analysis begins with two results. First, in certain private value models, we find, 
surprisingly, that the net external effect of entry is zero: an entrant’s expected profit in a 
second-price auction precisely equals his expected incremental contribution to total 
surplus. In these models, the marginal bidder’s entry decision is just what a social planner 
would want it to be.  

The second result is that, in symmetric models, the total value enjoyed by the bidders 
and the auctioneer is a concave function of the number of bidders or, more precisely 
(since the number of bidders must be an integer), that the expected contribution to 
welfare of the last entrant in a second-price auction declines in the number of entrants. 
This concavity finding will have several important uses below.  

To prove the first result, suppose a potential bidder is considering entry into a second-
price auction. Suppose that entry costs the bidder an amount c, that the highest value 
among the n other bidders is x, and that a bidder enters with value y. If y x< , the bidder 
will lose the auction and make a net loss of c. If y x> , he will win the auction and enjoy 
net earnings of y x c− − . In general, the bidder’s net profit will be ( )y x c+− − , where the 
notation z+  means max(0, )z . Notice that regardless of whether the bidder wins or loses, 
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his payoff exactly equals his incremental contribution to total surplus. This result is our 
first theorem. 

Theorem 6.1. Suppose entry costs are c, the maximum value among existing bidders is 
x, and the last entrant’s value is y. Then, if the entrant decides to enter a second price 
auction, its net profit and its incremental contribution to total surplus both equal 
( )y x c+− − . 

Theorem 6.1 establishes that in a second price auction, the marginal bidder’s entry 
decision aligns perfectly with the objective of maximizing social surplus. If the bidder 
knows x, y, and c at the time of entry, then he finds entry profitable if and only if entry 
his increases the total surplus. Even if the bidder does not know some of the relevant 
information and bases his entry decision on expected profits, the conclusion is the similar: 
he enters if and only if his entry increases the expected total surplus.  

The theorem shows that changing the entry decision of a single potential bidder cannot 
increase surplus, but it does not establish that entry decisions are efficient. For example, 
consider an asymmetric model with a single good for sale and two buyers with values of 
8 and 10. Suppose the cost of entry is 5. If the first buyer enters but the second does not, 
neither buyer can do better by a changing his decision unilaterally. In that event, the total 
surplus will be 3, which is less than the maximum total surplus of 5 that could be 
achieved if the entry decisions were reversed and only the second bidder entered.  

The preceding example indicates the value of examining the efficiency of entry 
decisions in more detail. Thus, suppose there are many potential bidders who have values 
of 1 2, ,...v v  and who make decide in sequence whether to enter a second price auction. If 
the first n potential bidders have already entered the auction, then the highest value 
among them is x=max(v1,…,vn).106  Consider the entry decision of the n+1th potential 
entrant, who has value y.  As we have seen, his net profit from entry and his contribution 
to surplus are the same: both are 1( , , ) ( max( ,..., ))nI n y v y v v c+= − − . By inspection, the 
difference ( , , ) ( 1, , )I n y v I n y v− + = 1( max( ,..., ))ny v v +− −  1 1( max( ,..., ))ny v v + +−   is 
always non-negative, and is positive exactly when 1 1max( ,..., )n nv y v v+ > > . The 
marginal value of entry is (weakly) declining in n and the expected marginal value 

[ ( , , )]E I n y v  is a nonincreasing function of n and strictly decreasing if 

{ }1 1Pr max( ,..., ) 0n nv y v v+ > > > .  

These preliminary conclusions are handy for analyzing symmetric models or models in 
which the order of potential entry is determined in advance, for example, by the 
auctioneer. In both cases, [ ( , , )]E I n y v  is a nonincreasing function of n.  

6.2 Symmetric Models with Costly Entry 
Let us apply the preceding insights to our benchmark model: the symmetric 

independent private values model with a single good for sale. In that model, 

                                                 
106 By convention, the maximum value and maximum type are taken to be zero when n=0.  
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1 2 1 1Pr{ max( ,..., )} [( 1)( 2)] 0n n nv v v v n n+ + −> > = + + > .107 Because this probability is 
strictly positive, the expected profit of an entrant is strictly decreasing in n, the number of 
bidders who have already entered the auction.  

In real auctions as in the models studied in this chapter, participation is costly. For 
example, before bidding for an asset, each bidder needs to study the asset carefully and 
plan how he would use the asset in his business. Identifying the bidder’s value for the 
asset is the first step in preparing a bid. In our models, the bidder decides whether to 
participate and incur this cost before knowing his value. 

There are three groups of models in this chapter. In the first group, the seller designs 
the rules of bidding but exercises no direct control over who enters the auction. The 
interesting issues in this case arise when entry costs are moderate. If the entry cost is low 
enough that all potential bidders will find it profitable to participate, then the analysis 
merges into the analysis of the preceding chapters with a fixed number of bidders N. If 
the entry costs are so high that no bidder can profitably participate, the analysis is trivial. 
When entry costs are moderate, the equilibrium will, with positive probability, involve 
entry by some, but not all, potential bidders.  

We begin by studying a symmetric model in which each bidder’s decision about 
whether to enter is randomized. A bidder who randomizes at equilibrium must be 
indifferent between entering and not entering. Accordingly, entrants must earn zero 
expected profits, so the entire net surplus created by the auction accrues to the seller. This 
observation has important consequences for auction design; for example, it implies that 
an auction maximizes the seller’s payoff if and only if maximizes total net surplus. In 
expectation, the seller bears the burden of all participation costs incurred by bidders, so 
the seller fully accounts for those costs in designing the optimal auction.  

In a second group of models, the seller exercises tighter control over entry. The seller 
can economize on participation costs by coordinating entry into the auction. We will find 
that screening bidders results in less waste, a more predictable number of bidders, and 
higher average revenues for the seller than a process with unrestricted bidder entry. This 
conclusion is particularly striking in the symmetric model, because it holds even when 
the screening process cannot select among bidders based on any actual differences 
between them. Even so, limiting bidder entry can increase the seller’s expected revenues. 
In other models, screening can identify the bidders who are most likely to have high 
values, producing still greater improvements in performance. We assess how much 
sellers can increase revenue with a procedure in which bidders share information with the 
seller before the auction about the extent of their interest in the asset being sold.  

A third kind of model pits an auction mechanism against a negotiation mechanism or a 
hybrid of the two. For our purposes, the distinction between auctions and negotiations is 
that auctions involve a simultaneous comparison of offers while negotiations take place 
sequentially. The advantage of auctions lies in their use of explicit competition to 
determine prices. In our model, the advantage of negotiations is that they economize on 

                                                 
107 By symmetry, the probability that vn+1 is the largest value among the n+2 values is 1/(n+2). Conditional 
on that fact, again by symmetry, the probability that vn+2 is the largest of the remaining values is 1/(n+1). 
Multiplying these ratios gives the expression in the text.  
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participation costs although, in practice, a more important advantage is the ability to 
tailor the deal to the particular buyer and seller. Bargaining achieves economies in our 
model because it sometimes allows a sale to the one of the first entrants, if that entrant’s 
value is sufficiently high, rendering unnecessary the costs of additional entry.  

Hybrid mechanisms that combine the advantages of auctions and bargaining are 
important in practice. In this chapter, we analyze a simple one—auctions with a “buy 
price.” In these auctions, the seller announces that if any buyer offers a certain price, then 
the auction will end immediately and the seller will transact with that buyer at that price. 
This hybrid mechanism combines some of the advantages of auctions (if no bidder is 
willing to offer the buy price) and bargaining (if some bidder accepts the buy price). We 
present a symmetric auction model in which the seller always prefers to use a buy price 
rather than use a simple auction.  

6.2.1 Symmetric Bidders and Uncoordinated Entry 
This section presents a model first studied by Levin and Smith (1994). There are N 

potential bidders, each with no initial information. Bidder i incurs a cost c > 0 to enter 
and learn his type it . In a symmetric equilibrium, each bidder randomizes, entering with 
probability p. If a bidder enters, he bids according to a function β that depends on the 
rules of the auction. We use the distributional strategy formulation in which bidder i’s 
value is ( )iv t , where v is increasing108 and differentiable and types are distributed 
independently and uniformly on [0,1].  

6.2.1.1 Equilibrium in Entry and Bidding Decisions 
First suppose the auction is a first-price auction with reserve price r. Let ρ  be the type 

with value equal to the reserve: ( )r v ρ= . We will consider both the possibility that the 
bidder learns the number of entrants n before he bids and the alternative sealed-bid 
auction in which the seller conceals the number of bidders who participate.  

Chapter 4 characterizes the symmetric equilibrium strategy ( , )nβ i  for the case when 
everyone knows the number of bidders n. When the bidder learns his type it  but has not 
yet learned n, he bids differently. First, the bidder makes a bid exceeding the reserve r 
only if his value is at least r (that is, when it ρ≥ ).  In that event, he expects to outbid any 
particular potential bidder if that bidder does not enter (which occurs with probability 
1-p) or enters but has a lower type (which occurs with probability ipt ). Dropping 
superscripts, the total probability that an entrant of type t ρ≥  bids more than any other 
particular bidder is 1 p pt− + , so the probability that he is the highest bidder in an auction 

with 1N −  other potential bidders is ( ) 1( ) 1 Nx t p pt −= − + . Using the envelope theorem, 
the bidder’s expected net profit when he first learns his type is: 

                                                 
108 All the results reported here extend to the case where v is merely nondecreasing, provided we 
appropriately resolve ties and indifferences. Chapter 3 describes the relevant method. Here, we take v to be 
increasing to limit the amount of text devoted to indifferences and ties.  
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 ( ) 1( ; , , ) 1 (1 ) ( ) .
t NV t p N c p s v s ds
ρ

ρ − ′= − + − −∫  (6.1) 

This value is decreasing in p and N.  

It is convenient to define: 

 ˆ ( , , ) ( ; , , )iV p N E V t p Nρ ρ ≡   .  (6.2) 

As discussed above, we focus on the case of moderate participation costs. This 
condition rules out the two extreme cases in which either ˆ(1, , ) 0V N ρ > , meaning that 
entry is always profitable even if all bidders choose to participate, or ˆ(0, , ) 0V N ρ < , so 
that entry is unprofitable regardless of the entry decisions of the other bidders.  

Our analysis focuses on the remaining case in which a bidder’s optimal entry decision 
depends on what the other bidders do. Define 

 1ˆ( ) max( ,..., ).nt n t t=  (6.3) 

Let n(p) be a random variable that has the binomial distribution with parameters N and p.  

Theorem 6.2. Suppose that the entry cost c is moderate, as defined above. Then, there 
is a unique solution p = p*(N,ρ) to ˆ( , , ) 0V p N ρ =  and the solution lies in (0,1). Further 
suppose that the auction used is a first price auction with reserve ( )r v ρ=  and that the 
auctioneer reveals the number of entrants before bids are placed. Then, there is a unique 
symmetric equilibrium of the model. In equilibrium, each bidder enters with probability 
p*(N, ρ) and an entrant uses the following bid function, conditional on its type, t, and the 
number of bidders, n: 

 ( )( )
0  if 

( , , ) ˆ ˆmax , ( 1) | ( 1)  otherwise.FK

t
t n

E r v t n t n t

ρ
β ρ

<=   − − <  
 (6.4) 

Writing n* for n(p*(N,ρ)), the seller’s ex ante expected revenue is: 

 
( ) { }*

* *

* *
ˆ( )

ˆ( , ) ( ( ), , )

ˆ( ) 1 .

FK FK

t n

R N E t n n

E v t n cn
ρ

ρ β ρ

≥

 =  
 = −  

 (6.5) 

Remark: The subscript FK on the bid and revenue functions indicates that the model 
involves a first-price auction and that each bidder knows how many bidders are present 
when he decides how much to bid. The first expression for RFK(N,ρ) above is the 
expected winning bid. The second is the expected net surplus, that is, the expected value 
of the item to the entrant with the highest value (provided that value exceeds the reserve) 
minus the total expected entry costs.   

Proof. Bidding proceeds as it would without the explicit model of entry, so formula 
(6.4) follows from the analyses of chapter 4.  
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In the entry stage, any mixed strategy solution entails a probability of entry that solves 
ˆ( , , ) 0V p N ρ = . (If instead ˆ( , , ) 0V p N ρ > , any individual bidder could gain by switching 

to the strategy of entering with probability one. Similarly, if ˆ( , , ) 0V p N ρ < , then any 
individual bidder could gain by switching to the strategy of entering with probability 
zero.) Conversely, if all bidders randomize in this way, then bidders are indifferent 
between entering or not, so each bidder finds randomizing between the two to be a best 
reply.  

Since costs are moderate, ˆ(0, , ) 0V N ρ >  and ˆ(1, , ) 0V N ρ < . Then, since V̂  is 
continuous and decreasing in p, there is a unique solution *( , )p N ρ  to ˆ( , , ) 0V p N ρ = .  

The first line of (6.5) is merely the definition of expected revenue. The second line 
follows the observation that for every realization of n*, the net payoff to the bidder with 
the highest type is ( ) ( )( ) { }*

* * *
ˆ( )

ˆ ˆ( ) ( ), , 1FK t n
v t n t n n

ρ
β ρ

≥
− c− . The net payoffs of the n*-1 

other bidders are all–c, while the seller’s payoff is ( ) { }*
* *

ˆ( )
ˆ( ), , 1FK t n
t n n

ρ
β ρ

≥
. Hence, the 

total net payoff is the argument of the expectation in the second line of (6.5).  Since the 
bidders’ expected net payoffs are all zero in equilibrium, the expected seller payoff 
equals the total net payoff.    

Theorem 6.2 describes equilibrium when all bidders know how many rivals participate. 
We now examine the case where the seller can conceal the total number of bidders. In 
this case, bidders perceive the number of bidders to be random. Nonetheless, we can still 
write a  bidder’s expected payoff as ( , ) ( ) ( ) ( )u x t v t x b P b= −  where 

{ }( ) Pr bid  winsx b b=  and ( ) ( )P b bx b=  is the bidder’s expected payment. By 
inspection, u(x,t) has the single crossing differences (SCD) property, so as argued in 
chapter 3, any symmetric equilibrium bidding strategy of the first-price auction must be 
increasing. Consequently, for any probability p of entry, the probability that a bidder of 
type t ρ>  outbids any particular rival is 1 p pt− + , the sum of the probability that the 
other bidder does not enter and the probability that he enters but has a type less than t. So, 
the probability that a bidder of type t wins is ( ) 1( ) 1 Nx t p pt −= − + . Applying the 
envelope theorem, since this formula is the same as when the bidder observes n, the 
expected payoff and expected payment must be the same as well. These observations 
establish the following result.  

Theorem 6.3. Suppose that the entry cost c is moderate, as defined above. Then, there 
is a unique solution p = p*(N,ρ) to ˆ( , , ) 0V p N ρ =  and the solution lies in (0,1). Further 
suppose that the auction used is a first price auction with reserve ( )r v ρ=  and that the 
auctioneer reveals the number of entrants before bids are placed. Then, there is a unique 
symmetric equilibrium of the model. In equilibrium, each bidder enters with probability 
p*(N, ρ) and an entrant uses the following bid function, conditional on its type, t: 

 *

0  if 
( , )

( , , )  otherwise.FN
FK

t
t

E t n

ρ
β ρ

β ρ

<=     
 (6.6) 
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Writing n* for n(p*(N,ρ)), the seller’s ex ante expected revenue is: 
( , ) ( , )FN FKR N R Nρ ρ= . 

Remark: The subscript FN indicates that the model involves a first-price auction and 
that no bidder knows how many other bidders have entered when he chooses his bid.  

The first two theorems analyze first-price auctions. If instead the seller uses a second-
price auction, then the dominant bidding strategy does not depend on the number of 
competitors, so the analysis does not depend on whether the seller announces the number 
of entrants.  

Theorem 6.4. Suppose that the entry cost c is moderate, as defined above. Then the 
second-price auction with reserve ( )r v ρ=  has a unique, symmetric equilibrium. At 
equilibrium, each bidder enters with probability ( , )p N ρ∗ ; an entrant bids zero if v(ti) < r 
and otherwise bids ( , ) ( )S t v tβ ρ = . The seller’s ex ante expected revenue is 

( , ) ( , )S FKR N R Nρ ρ= .  

In summary, the payoff and revenue equivalence results developed in the preceding 
chapters assuming exogenous entry also hold when entry is endogenous and bidders 
randomize entry decisions. Since expected payoffs are the same across auctions, 
incentives to enter and therefore entry decisions are also the same.  

6.2.1.2 Setting the Reserve Price 
In the benchmark symmetric model with a fixed number of bidders n, if the seller sets a 

reserve price of r, then the expected proceeds of the sale are ( ) (1)
(2)

{ ( ) }
[max , ( ) 1 ]

v t r
E r v t

>
= 

{ } ( )(1) (2) (1)Pr ( ) [max , ( ) | ( ) ]v t r E r v t v t r> >  where, as usual, t(1) and t(2) are the highest 
and second highest types. The formula expresses the trade-off involved in setting the 
reserve in the benchmark model: increasing the reserve reduces the probability that any 
transaction takes place, but raises the average price conditional on any transaction 
occurring. The optimal reserve in the benchmark model attracts participation by all types 
whose “marginal revenue” is positive. That is, r* = v(t*), where t* solves 0 = MR(t*) and 
where ( ) ( ) (1 ) ( )MR t v t t v t′≡ − − .   

When entry is endogenous, the analysis changes drastically. The key observation for 
understanding reserve prices in a symmetric model with moderate entry costs is that the 
bidders’ expected profits are zero. The reason is that bidders in the equilibria described 
above randomize their entry decisions, so they must be indifferent between entering and 
not entering, and not entering entails a payoff of zero.  

Since bidders earn zero equilibrium payoff regardless of the reserve, the seller cannot 
squeeze buyer profits by raising the reserve. Increasing the reserve above the seller’s 
actual value blocks efficient trades and discourages efficient entry, reducing the total 
payoff to be shared. Since the seller captures the entire expected net payoff in this case, 
he can never gain by raising the reserve above his own value. Thus, the reserve price that 
maximizes expected revenue is the seller’s value, which is zero in our model.  
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Since we have assumed that the minimum possible bidder value v(0) is non-negative, 
any reserve price in the interval [0, (0)]v  yields the same equilibrium bids and entry 
decisions, and hence the same expected revenue. Consequently, the theorems below 
identify an optimal auction rather than the unique optimal auction. 

Theorem 6.5. Suppose that the entry cost c is moderate, as defined above. Then, the 
reserve price (0)r v=  maximizes expected revenue in each of the three auctions studied 
above: 

 
( ) { }

*
ˆ( ( )),

*

ˆ(0, ( ,0)) arg max ( ( )) 1 ( )

subject to ( , ).

t n pp
p N E v t n p cn p

p p N

ρρ

ρ

≥
 ∈ − 

=
 (6.7) 

Proof. Since the conclusion about expected revenues does not depend on the seller’s 
value, we may assume without loss of generality that the seller’s value is zero. With that 
assumption, the objective in (6.7) equals the total expected surplus generated by the 
auction. Since the entrants have expected total profits of zero in equilibrium, the 
objective equals the seller’s expected revenues.  

Consider the relaxed problem in which we replace the constraint ( , )p p N ρ∗=  with 
the less restrictive constraint p∈[0,1]. We solve this problem in two steps. First, we fix p 
and maximize revenue with respect to ρ, showing that the optimum occurs at 0ρ = . We 
use this solution to characterize the maximal profits ( )G p  in the relaxed problem. Then, 
we choose p to maximize ( )G p , showing that the maximum occurs at * ( , 0)p p N= . 
Finally, we observe that this solution of the relaxed problem is feasible for the original 
problem, so it is an optimum of the original problem.  

The first step is simple. By inspection of (6.7), for all fixed values of p, 0ρ =  
maximizes expected revenue. Substituting 0ρ =  into (6.7), we denote the resulting 

objective by G(p) = ( )ˆ( ( )) ( )E v t n p cn p −  .  

Next, we evaluate the derivative of G. 
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The second equality follows from the facts that the distribution of n(p) is a binomial 
with parameters N and p and that, when n=0, the value of the expectation is zero 
(because, by the convention adopted above, ˆ( (0)) 0v t = ). The third equality uses the 
product rule for derivatives and the fourth combines the sums using the substitution 

1n m= + . By inspection, the next to last expression is the bidder’s expected contribution 
to surplus upon entry when the other N-1 bidders enter with probability p. By Theorem 
6.1, for any entry decisions by the first 1N −  bidders, any realization of the values and 
any entry costs, bidder N’s contribution to surplus in a second-price auction equals his 
realized profit upon entry. The next to last line of 6.8 thus equals ˆ( , ,0)V p N , bidder N’s 
expected profit from entry.  

As previously shown, ˆ( , ,0)V p N  is continuous and decreasing in p. Since costs are 
moderate, the range of the function includes both positive and negative values. Therefore, 
there is a unique solution *( , 0)p p N=  to ˆ( , ,0)V p N = 0. Also, because ˆ( , ,0)V p N  is 
decreasing in p, ˆ( ) ( , ,0)G p NV p N′ =  is decreasing in p. Hence, G is concave and 
achieves its maximum where its derivative is zero, which occurs at * ( , 0)p p N= .  

Since the optimal solution to the relaxed problem is feasible in the original problem 
(6.7), it solves the original problem as well.   

Theorem 6.5 asserts that in the auctions studied above, the optimal reserve does not 
exclude any valuable trade. In the model, that means the seller chooses a reserve of (0)v  
or less. In general, the optimal reserve excludes only inefficient trades, so the optimal 
reserve is equal to the seller’s value of the good. Any higher reserve reduces expected 
total surplus and the seller’s expected total value. It does so by blocking some efficient 
trades and by reducing entry below its efficient level.  

It is crucially important for the preceding analysis that the seller commits to the reserve 
before the bidders make their entry decisions. If potential bidders do not know the 
reserve, then changing the reserve cannot affect their entry decisions. The seller would 
then be tempted to set a positive reserve and even to set the ex post optimal reserve 

* *( )r v t=  where *( ) 0MR t = . If the bidders anticipate such behavior, the equilibrium 
probability of entry will fall, to the seller’s net disadvantage.  

The seller may also want to choose a reserve above her valuation if she uses a non-
public auction, in which only invited bidders may participate. We discuss this rationale 
for limiting trade next.  

6.2.2 Coordinating Entry among Symmetric Competitors 
Why would a profit-maximizing seller ever want to limit participation in an auction? In 

the model of the previous section, independent, uncoordinated entry decisions by 
potential bidders induced a random number of bidders to enter. The entry probability was 
optimal, but only given the constraint that all bidders must make independent entry 
decisions. In the unconstrained problem, the expected total surplus is maximized by some 
deterministic number of bidders, and the seller can maximize her revenues by inviting 
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exactly that number of bidders to the auction. This is strictly better than randomizing, 
because the net surplus is a “strictly concave” function of the number of bidders.  

The next theorem formalizes this argument. To state the theorem, we adopt the notation 
sup{ | }z m m z= ∈ ≤   ] ; this is the “integer part” of z. We also define 

inf{ | } 1z m m z z= ∈ > = +      ] ; this is the smallest integer greater than z. Let 
ˆ( ) ( ( ))H n E v t n nc = −   denote the expected net revenue from the auction when exactly 

n bidders participate and the reserve price is no more than (0)v .  

Theorem 6.6. Let n�  be the random number of bidders in some auction and suppose that 
the support of n�  includes at least three points. Suppose bidders are symmetric and have 
independent private values.  Assume the entry cost c is moderate. Then there is an 
auction with a deterministic number of bidders and a greater expected net surplus, 
involving approximately the same expected number of bidders: 

[ ] [ ] [ ]( )( ) max ( ), (E H n H E n H E n   <    � � � .  

Proof. As we have seen, if the seller’s value is zero, then for any positive integer n, 
H(n) is the expected surplus from the auction, so ( 1) ( )H n H n+ −  is the expected 
contribution of the marginal entrant: ( 1) ( )H n H n+ − = 1( , , ) ( , , )n NE I n v v E I n v v+   =    . 
By the analysis at the beginning of section 6.1, the last expression is decreasing in n. 
Since the support of n�  includes at least three points, H is not linear over the support of 
n� . To extend the domain of H to +\  let ( ) ( ) ( ) ( ) ( )H x x x H x x x H x= − + −               ; this 
linear interpolation is a concave function.  

Let [ ] [ ]q E n E n = −  � �  be the fractional part of [ ]E n� . By Jensen’s inequality,  

 

[ ] [ ]
[ ] [ ]

[ ] [ ]( )

( ) ( )

( ) (1 ) ( )

max ( ), ( ) .

E H n H E n

qH E n q H E n

H E n H E n

<

   = + −   

   ≤    

� �

� �

� �

 (6.9)  

The first inequality is strict because H is concave and not linear on the support of n� . The 
equality simply uses the linear interpolation above. The final inequality follows because 

[0,1]q ∈ .   

Theorem 6.6 suggests a reason why the seller might want to control entry into his 
auction. It asserts that even if pre-qualification of bidders identifies a purely random 
selection of bidders, rather than identifying ones likely to have high values, a pre-
qualification process could still be worthwhile simply as a tool to reduce randomness in 
the number of entrants.  

When the number of entrants is deterministic, the zero expected profit condition of the 
random entry model does not apply. One might wonder whether a reserve is useful in 
such a context. The next result, due to McAfee and McMillan (1987), shows that if it is 
also possible to charge an entry fee, then an auction with a positive reserve price never 
maximizes expected revenue.  
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Theorem 6.7. In the symmetric independent private values model with moderate entry 
cost c, suppose the seller can choose the number of entrants n, the reserve r, and an entry 
fee e for use with a second-price auction, subject to the (“participation”) constraint that 
each bidder’s expected net profit must be non-negative. Then the seller can maximize 
expected revenue by choosing { }ˆ ˆmax | [ ( ( )) ( ( 1))]n m E v t m v t m c= − − > , (0)r v=  and 

ˆ ˆ( ( )) ( ( 1))e E v t n v t n c = − − −  .  

Proof. Suppose the seller’s value is zero. For any given number of entrants n and a 

reserve price ( )v ρ , the expected total surplus is { }ˆ( )
ˆ( ) ( ( ))1 t nH n E v t n ncρ ρ>

 = −
 

. By 

inspection, setting 0ρ = , which is the same as setting the reserve to (0)r v= , maximizes 
total surplus.  

As argued earlier, an entrant’s incremental contribution to surplus ( ) ( 1)H n H nρ ρ− −  
declines with n. Hence, total surplus is maximized by the largest integer n such that 

( ) ( 1) 0H n H nρ ρ− + >  or, equivalently, the largest n such that 
ˆ ˆ( ( )) ( ( 1)) 0E v t n v t n c − − − >  .  

Since the entrant’s expected profits must be non-negative, the seller’s maximum 
expected revenue cannot exceed the maximum expected total surplus. With the specified 
entry fee, the expected net profit of each bidder is zero, and the seller’s expected revenue 
is then equal to the maximized expected net surplus.   

6.2.2.1 Pre-Qualifying Bidders 
The practice of pre-qualifying bidders puzzles some observers. It would seem that 

limited competition can only harm the seller and reduce efficiency, so why would a seller 
wish to do that?  

There are several possible answers. The one explored in the preceding section is that 
inviting just a few bidders can motivate each to participate, reducing the randomness in 
participation and increasing the efficiency of the outcome. A second answer is that pre-
qualification before a bidder gets access to the data room can improve the security of 
confidential business information. A third is that that even when participation is not 
random, it is possible that the bidders who choose to participate are ones with relatively 
low values and that their participation deters higher value bidders. We illustrated that 
possibility by example earlier in this chapter.  

In this section, we delve into the last of these answers. We model prequalification for 
the sale of a valuable asset by adding a preliminary reporting stage to the benchmark 
model. In actuality, a potential buyer’s report might be as complicated as a business plan 
establishing the bidder’s genuine interest in the asset, or it may be a “preliminary bid” or 
“indication of interest” that estimates how much the bidder might bid if he were invited 
to participate in the actual auction. The auctioneer or investment banker who receives the 
report serves as confidential intermediary and uses the reports along with other 
information to choose which bidders to invite. In a billion dollar asset sale, the auctioneer 
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might invite five to ten bidders to make binding bids, based on the indicative bids, bidder 
financial statements, and other information.  

Advocates of the two-stage process say that, in practice, bidders are highly motivated 
to make their indicative bids honestly. They claim that bidders have no motive to 
exaggerate their interest, because, given the substantial cost of bidding, they do not want 
to be invited to make a bid if their chances of winning are slight. Bidders also have no 
motive to understate their interest, because they want to avoid being excluded when their 
actual values are high.109  

Ye (2002) has studied whether these claims about incentives withstand a formal 
analysis. In his model, there are N potential bidders, each with a rough estimate of his 
own value. These initial values are distributed independently and identically. A bidder 
can acquire more information to refine his estimate by incurring  cost c. This models the 
possibilities that the bidder might gather information about the condition of the asset, 
which affects the values of all bidders similarly, or about how the bidder could best use 
the asset. In the model, the auctioneer asks bidders to make preliminary bids based on 
their rough estimates. These indicative bids are non-binding and do not affect the 
transaction price, but the seller invites the n highest bidders from the first round to make 
binding bids in a second round. The invited bidders then incur a cost c before preparing a 
final, binding bid.  

Does this procedure screen bidders effectively, selecting those with the highest value 
estimates to bid in the second round auction? If so, then there must exist an increasing 
equilibrium bid function β that maps the bidders’ initial types into their indicative bids, 
so that the highest bidders have the highest value estimates. Ye finds that, to the contrary, 
there cannot be any strictly increasing bidding equilibrium, so the bidders selected by this 
procedure will not generally be those with the highest values.  

We present a simplified version of Ye’s model, in which we assume that the potential 
bidders’ information at the first stage is perfect, so bidders acquire no new information if 
invited to the second round. One might imagine bidders incur cost c to verify the 
information underlying their indicative bids before making a firm offer.  

Each bidder makes an indicative bid and the seller invites the n highest bidders to make 
final bids in a second-price auction. To focus analysis on the indicative bidding problem, 
we assume that bidders play their dominant strategies at the second stage, so the payoffs 
in the second stage are the Vickrey payoffs minus the entry cost c. Let ib  denote the nth 
highest bid in the indicative bidding stage among bidder i’s competitors and let 

max{ | , }i j j it t j i b b= ≠ ≥� ; it�  is the type of the competitor i must beat to win the final 
auction. Then bidder i’s payoff is:  

 
0 if 

( , , )  if  and 
( ) ( ) otherwise 

i i

i i i i i i i i

i i

b b
b b t c b b t t

c v t v t

 ≤


Π = − > <
− + −

�
�

 (6.10) 

                                                 
109 In addition, the bidders value their relationships with investment bankers and want to avoid acquiring a 
reputation for dishonesty or unfair dealing. We do not analyze that incentive here.  
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In words, i’s payoff is zero if he is not among the n highest bidders in the indicative 
stage; it is c−  is he is among the n highest bidders but loses the final auction; and it is 

( ) ( )i ic v t v t− + − �  if the bidder is selected to make a bid and wins the final auction.  

Theorem 6.8. The reduced form indicative bidding game has no increasing, symmetric 
equilibrium strategy.  

Proof. Let :[0,1]β → \  be any increasing function representing an indicative bidding 
strategy adopted by all potential bidders except bidder #1. We claim that a bidder of any 
type (0,1)it ∈  can earn a higher expected payoff by bidding ( )sβ  instead of the higher 
bid ( )itβ  for any s satisfying 0 ( ) ( )iv t v s c< − < . The change in payoff on account of the 
deviation is: 

 
0 if ( )  or ( )

( ( ), , ) ( ( ), , )  if ( ) ( ) and 
( ) ( ) otherwise 

i i i

i i i i i i i i i i i

i i

t b s b
s b t t b t c t b s t t

c v t v t

β β

β β β β

 ≤ >


Π − Π = > > <
 − +

�
�

. (6.11) 

According to the first line of (6.11), the change of bid has no effect on the payoff if 
neither bids results in an invitation or both do. According to the second line, it changes 
the bidder’s payoff by 0c >  if the higher bid would result in entry and losing the auction 
but the lower bid would result in no entry. Finally, if the higher bid would result in entry 
and winning the auction, but the lower bid would result in no entry, then i it t s> >� , so it 
changes the bidder’s payoff by ( ) ( ) ( ) ( ) 0i i ic v t v t c v t v s− + ≥ − − >� .  

Since all the lines in (6.11) are non-negative and some are positive, ( )sβ  has a higher 
expected payoff than ( )itβ , so strategy β is not a best reply to itself.  ■  

Although the proof applies only to the particular model of indicative bidding specified 
here, the conclusion of the theorem holds in a much wider class of models.  

6.2.2.2 Auctions versus Serial Negotiations 
When bidder participation is costly, an auction with a fixed number of participants 

incurs high participation costs that a seller might avoid by negotiating with a single 
buyer. Before comparing auctions and negotiations, it is helpful first to review some 
results of the theory of sequential search.  

Consider the following model of search by a single agent, which might represent a 
buyer’s search for a valuable good, a seller’s search for a high price buyer, and so on. The 
searcher anticipates encountering a series of alternatives. He incurs costs of c to search 
each item and receives a take-it-or-leave-it offer after he searches each item. Once he 
accepts an offer, his search ends and the searcher’s payoff is the value of the item minus 
the total search costs incurred.  

Suppose the searcher can search a potentially infinite number of items and let R be the 
searcher’s payoff from an optimal search strategy. After searching the ith item, the 
searcher can take the item and enjoy a value ( )iv t  or reject it and continue to search. 
Since the problem is stationary, the searcher’s maximal payoff from continuing to search 
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has value R. The optimal strategy is therefore to accept the item if ( )iv t R>  and 
otherwise to continue to search. Since the problem is stationary, Bellman’s equation takes 
a particularly simple form: max( , ( ))iR E R v t c = −  . It is not difficult to show that there 
is a unique R that solves this equation and that it represents the value of the search 
problem.  

The expected-revenue maximizing selling problem is very much like the optimal 
search problem, as the following result, adapted from Riley and Zeckhauser (1983), 
shows. 

Theorem 6.9. The seller maximizes expected revenue  in the sequential selling 
problem, subject to the constraint that bidders’ expected payoffs are non-negative, by 
setting the price R that solves max( , ( ))iR E R v t c = −   and inviting buyers, one at a 
time, to accept or reject the price of R. At equilibrium, each buyer enters successively. 
Bidder i accepts the offer if and only if ( )iv t R≥ . If the seller follows this policy, each 
buyer’s expected profit is zero and the seller’s expected revenue is R.  

Proof. Assume first that each buyer enters and buys exactly when its value exceeds R. 
Then, the sequence of buyers’ purchase decisions is the same as the searcher’s sequence 
of decisions in the corresponding search problem, so the expected total surplus is R. The 
seller’s expected total revenue is R. Since the problem is stationary, it follows that each 
buyer’s expected payoff must be zero. Hence, entering is a best reply for each buyer.  

The seller’s expected payoff in any equilibrium is bounded above by R, because the 
seller can earn no more in equilibrium than the maximum expected payoff of the search 
problem.   

6.2.2.3 “Buy Prices” 
Advertisements for used cars  in newspapers and on bulletin boards, sometimes include 

a line like: “Will sell for $12,000 or best offer.” Such a statement indicates that the seller 
is ready to negotiate, but wants to collect several offers before deciding if the best offer is 
less than $12,000. Interpreting such a sale as an auction, the $12,000 offer that would end 
the bidding is sometimes called a “buy price.” If the owner doesn’t succeed in selling the 
car she may eventually reduce the buy price.  

The use of a buy price creates a selling mechanism that mixes the characteristics of an 
auction with those of serial negotiations. We showed that in our model of serial 
negotiations, the seller’s optimal strategy is to specify a buy price and never accept any 
lower bid. This conclusion depends on three important assumptions: (1) the seller knows 
the distribution of bidders; (2) the stream of potential buyers is infinite; and (3) the seller 
does not care how long it takes to complete the sale.  

Changing any of these three assumptions would make the model non-stationary, which 
might lead the seller to hold offers that are below his buy price and eventually accept the 
best such offer  – that is, to run an auction. In this section, we approach the question from 
the opposite angle, asking why a seller would ever want to hold an auction without a buy 
price.  
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Bidding costs lie at the heart of the analysis. On one hand, there may be cost economies 
in bringing all buyers together at one time. For example, a major auction of similar goods 
allows the auctioneer to bring many interested buyers and sellers together at once. The 
costs of participation are mostly fixed; a buyer waiting to bid on his most preferred item 
may be able to evaluate and bid on substitutes at negligible incremental cost. Such a cost 
structure would obviate the advantages of serial negotiation. On the other hand, if the 
goods being sold are costly to evaluate—one must drive the used car or study the 
condition of the asset – then either serial negotiations or the use of a buy price might 
economize on such costs.  

To model the latter possibility, suppose that there are N periods, N potential bidders, 
and a moderate entry cost c. Our model is a symmetric one in which the seller is allowed 
to specify a buy price b. In each period, a potential bidder arrives without knowing his 
place in the queue. He considers every possible position in the queue equally likely. If the 
auction is in progress when a new bidder arrives, the bidder can choose to incur the cost c 
to learn his type. He may then pay the buy price b to acquire the item and end the auction, 
or he may instead place a bid less than b. If no bidder takes the buy price, then a second-
price auction determines the outcome.  

By the single-crossing of chapter 4, if bidders are optimizing, then a bidder’s 
probability of acquiring the item is a non-decreasing function of his value and type. Since 
paying the buy price wins with strictly higher probability than bidding less, it follows that 
types of bidders exceeding some threshold type ( )t b  pay the buy price. Accordingly, 
bidders with types less than ( )t b  win precisely when all competing types are lower. 
Since the valuation function v is assumed to be continuous, if ( ) (0,1)t b ∈ , a bidder of 
that type will be just indifferent between taking the buy price or bidding some lower 
amount. We can use this observation to characterize and compute ( )t b .  

Suppose that our model has a symmetric equilibrium. Recall that for any integer n, 
1 1ˆ( 1) max( ,..., )nt n t t −− =  is the highest type among the first n-1 bidders. If bidder n is of 

type t  and takes the buy price, then he wins when ˆ( 1)t n t− <  and earns ( )v t b− . Given 
our assumption that the bidder’s position in the queue is equally likely to be any element 
of {1,…,N}, if the bidder plans to take the buy price, then his expected profit is 
( ) 1

1
ˆ( ) ) Pr{ ( 1) }N

N n
v t b t n t

=
− − <∑ . If, instead, the bidder plans not to take the buy price, 

then he will acquire the good exactly when all other types are less than t . Since the 
bidder of type ( )t t b=  must be indifferent between the two options, t  must solve: 

 ( ) ( ) 1
ˆ{ ( 1) } 1

ˆ ˆ( ) ( ( 1)) 1 ( ) ) Pr{ ( 1) }N
Nt N t n

E v t v t N v t b t n t− < =
 − − = − − <  ∑ . (6.12) 

Turning the problem around, any (0,1)t ∈  corresponds to some buy price. Indeed, 
solving (6.12) for b, the buy price that implements t  is:  

 
( ) ˆ{ ( 1) }1

1

ˆ ˆ( ) Pr{ ( 1) } ( ) ( ( 1)) 1
( )

ˆPr{ ( 1) }

N
t N tn

N

n

v t t n t NE v t v t N
b t

t n t
− <=

=

 − < − − − =
− <

∑
∑

. (6.13) 
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We represent the situation in which the seller sets no buy price by the choice 
ˆ[ ( ( 1))]b E v t N≥ −  or, equivalently, 1t = . According to the next theorem, in this model it 

is always optimal to set 1t < .  

Theorem 6.10. Assume the entry cost c is moderate and the seller sets the reserve r and 
the buy price b. Then, any auction that maximizes expected revenue has  (i) 0ρ =  (so 
that (0)r v≤ ) and (ii) ˆ[ ( ( 1))]b E v t N< −  (so that 1t < ).  

Proof. With moderate costs, it is optimal to set the parameters so that bidders enter with 
positive probability and randomize their entry decisions. In that case, bidders’ expected 
profits are zero and expected revenue equals the expected total surplus.  

The proof of theorem 6.5 establishes that at the optimum, ρ = 0. In view of (6.13), we 
can use the buy price to select any t , so the problem reduces to choosing t  to maximize 
total surplus.  

Consider any selection of t  satisfying (1) ( ) (1)v v t v c> > −  and compare it to the 
choice 1t = . The resulting allocation differs for these two choices if and only if some 
entering bidder other than the last has a type exceeding t . In all such cases, the lower 
buy price saves entry costs of at least c and reduces the value of the allocation by at most 

(1) ( )v v t c− < , so the total surplus in every realization is at least as high. Hence, 1t <  
rather than 1t =  is optimal.    

6.3 Asymmetric Models: Devices to Promote Competition  
In major asset sales and large procurements, it is typically very costly to prepare bids. 

When the likely winner of the auction is not in much doubt, the prospect of incurring 
unrecoverable costs can depress entry. Spectrum auctions in Germany, Italy, Israel and 
Switzerland have all suffered from insufficient entry. Concerns about low participation 
also help explain second supplier policies in business procurement: to negotiate lower 
prices, businesses must avoid excessive dependence on any single supplier, so they 
encourage multiple suppliers to bid in their procurement auctions.  

In this section, we show how a seller can structure an auction to encourage entry, 
increase competition, and promote higher prices. The same considerations apply to 
procurement auctions as well. The ideas presented here resemble ones in the industrial 
organization literature about price discrimination—a group of practices that often 
increases revenues and sometimes also increases efficiency.  

We present several related tactics for increasing participation. The first tactic is the use 
of bidding credits and set-asides, as studied by Ayres and Cramton (1996). In the United 
States, the FCC endeavored to promote the interests of small businesses and minority-
owned companies using two techniques. It (1) set aside some licenses for which only the 
favored businesses could bid and (2), it allowed favored bidders who outbid non-favored 
bidders to pay only a fraction of their winning bids. In various auctions, these fractions 
ranged from 65% to 85%. Another tactic to encourage entry is to allow losing bidders to 
earn some profits when the number of bidders is small. One auction design that uses this 
tactic is the so-called premium auction, in which the highest losing bidder receives a 
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“premium” proportional to the excess of his bid over the next highest bid.110  With a 
small number of bidders, this procedure encourages both entry and aggressive bidding by 
bidders with relatively low values. Another example is the Anglo-Dutch design proposed 
by Klemperer (1998), in which an ascending auction eliminates all but two bidders, who 
then compete with sealed bids.  This design may allow a low value bidder a real chance 
to win. We present each of these ideas using a simple example.  

6.3.1 Example of Set-asides 
Suppose there are two licenses for sale and no bidder is eligible to win more than one 

license. Two large bidders have the highest values for the licenses; their values are 
distributed uniformly on ( , )v v . In addition, two smaller bidders have values distributed 
uniformly on (0, )v . All values are independently distributed and there is an entry cost of 

0c > . The auction rules dictate that the two highest bids win licenses and winning 
bidders pay the third highest bid. (These are simple rules designed to approximate the 
outcome of rules similar to those of the FCC.) In this situation, if the two large bidders 
enter, they are certain to win items.  

When bidders decide whether to enter, they anticipate all entrants will play their 
dominant strategies in the subsequent auction. If c is not too large, then the entry game 
has a unique Nash equilibrium in which only the two large bidders enter. As a result, the 
auction price for each license is the reserve, which we take to be zero. This simple model 
describes an auction with disastrously insufficient competition.  

Can set-asides help? In the same model, suppose that the seller sets aside one of the 
licenses so only small bidders can bid for it. Consider a baseline situation in which one 
large bidder and one small bidder have already committed to enter the auction. If there 
are no additional entrants, the expected total surplus from the set-aside license is the 
expected value 1

2 v  of the small bidder. If a second small bidder enters, then the expected 

value of the set aside license is 22
3 0

2
v

v x x v dx−= ⋅ ⋅∫ . So, the expected addition to surplus 

from entry by a second small bidder is 2 1 1
3 2 6v v v− = .  

Similar calculations apply to the large bidders. Entry by a second large bidder adds 
1
6 ( )v v−  to the expected surplus. Recall that these marginal contributions are also the 
entrants’ expected profits from the auction.  

Suppose first that 6 min( , )c v v v< − . This assumption implies that even after one large 
and one small bidder commit to enter the auction, costs are still low enough for a second 
large bidder and a second small bidder to enter profitably as well. If all bidders enter, the 
outcome is the same as if a separate auction were conducted for each license. The 
expected price in the auction for small bidders is the corresponding expected total surplus 
minus the expected total profits of the two bidders: 2 1 1

3 6 32v v v− ⋅ = . Similarly, the 
expected price in the auction for the large bidders is 1

3 ( )v v v+ − . So, the total expected 

                                                 
110 See Goeree and Offerman (2002).  
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price from the two combined auctions is 1
3v v+ . This is much higher than the revenues 

of the unified auction.  

Set-asides in this example are really a form of price discrimination. A price-
discriminating monopolist often finds it profitable to withhold some supply from a high 
value market to increase the price there, while supplying a low value market. The set-
aside licenses correspond to goods offered only in the low value market. Both setting 
aside licenses and price discrimination require that the seller be able to restrict resale. 
Otherwise, large bidders might refrain from competing in the auction, hoping instead to 
acquire a license cheaply from a smaller bidder after the auction.  

Using set-asides in an auction with entry costs differs from classic price discrimination 
in one important respect. In our example, entry costs amplify the risk that revenues may 
be very low because too few bidders participate. For that reason, a seller can sometimes 
gain much more by setting aside a license than can a monopolist by dividing a market and 
setting different prices for each segment.  

6.3.2 Example of Bidding Credits 
Another device by which the auctioneer can encourage entry by smaller bidders is 

bidding credits. For example, suppose that the seller does not use set-asides in the 
preceding model, but that a small bidder must pay only a fraction of his bid if he wins. 
For example, if the fraction is /v v , then a small bidder with value v  can profitably out-
bid a large bidder with any possible value. Again, if c is small, this rule increases entry by 
smaller bidders and helps the auctioneer get a higher price. 

Promoting entry, however, is not the only reason to use bidding credits. Credits can 
sometimes increase prices even when entry costs are zero, as the following example 
demonstrates. 

Suppose there are only two bidders and their values are distributed uniformly and 
independently on (0,1) and (0,α), respectively, where 1α < . Then, the total expected 
value of the two bidders is 1

2 (1 )α+ . The expectation of the highest value is: 

  
1 2 2 31 1 1

2 6 30 0
( / )x x dx xdx y dy

α α

α
α α α⋅ + + = − +∫ ∫ ∫ . (6.14) 

The three terms on the left-hand side of (6.12) correspond to the three cases, respectively, 
when (1) the first bidder’s value is highest and is less than α, (2) the first bidder’s value is 
greater than α, and (3) the second bidder’s value is highest. Since the total expectation of 
the highest and second highest values is 1

2 (1 )α+ , the expectation of the second highest 

value must be ( )21 1 1
2 6 3α α α+ − . This is the seller’s expected revenue in the absence of 

bidding credits. It converges to zero as α goes to zero.  

If the seller offers a bidding credit so that bidder 2 needs to pay only a fraction α of his 
winning bid, then the winning bid in the auction is just the same as in an auction with two 
bidders whose values are distributed uniformly on (0,1). Hence, the expectation of the 
second highest “value,” and therefore of the winning bid, is 1

3 . Half the time, the 
winning bidder is not entitled to credits, so the seller receives revenue of 1

3 , but half the 
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time a favored bidder wins and the seller gets only 1
3α . So, the expected revenue is 

1
6 (1 )α+ . Since expected revenue is bounded away from zero for all positive α, it 

follows that for small enough α, the expected revenues are higher when the seller uses a 
bidding credit.  

6.3.3 Example of Lot Structure and “Consolation Prizes”  
Another way to encourage entry is to ensure that even bidders without the highest value 

benefit from participating in the auction. In procurement settings, split-award auctions 
sometimes serve this purpose: providing for more than one winner promotes entry by 
more than one bidder into the auction. In many of the FCC spectrum auctions, the 
relatively large numbers of licenses offered have encouraged many small- and medium-
sized bidders to participate. This increased participation can drive up the prices of all 
licenses, even those that would not, by themselves, have attracted the participation of the 
additional bidders.  

Splitting items to encourage entry can also be a risky strategy. With a fixed number of 
bidders, splitting items can often reduce competition and prices by encouraging the 
bidders to accommodate each other.111 The following example illustrates this point.  

Suppose two bidders compete for two identical items.  Each bidder is willing to pay 10 
for the one item and 15 for two. The seller conducts a simultaneous ascending auction, 
which we model as a sealed-bid auction in which the highest rejected bid sets the price. If 
the seller offers the two items as a single lot and resale is impossible, then in equilibrium 
both bidders will bid 15 and the price will be 15. If instead the seller offers the items 
individually and the bidders bid their actual values, then the price for each item will be 5, 
producing total revenue of 10. If bidders are strategic, the outcome could be even worse. 
In the situation described, each bidder would find it in his separate interest to demand one 
unit at prices less than ten and zero units at higher prices. The prescribed strategies 
constitute a subgame perfect equilibrium and induce an equilibrium price of zero.112  

Thus, splitting lots can reduce revenues sharply when the set of participants is fixed, 
but in other circumstances the same tactic can benefit the seller by attracting entry. For 
example, consider a spectrum auction in which three units of spectrum are available. 
Suppose one large bidder has a value of v  per unit for each unit of spectrum and three 
smaller bidders each wish to acquire one unit of spectrum. Suppose that the small 
bidders’ values are 1

4 v , 1
2 v , or 3

4 v  for the first unit acquired and zero for any 
additional units. For simplicity, we assume that exactly one small bidder has each of 
these three values, but that a bidder can only learn which of the three positions he 
occupies by incurring a small positive entry cost: 1

120 c v< < .  

In this situation, if the auctioneer sells the three units of spectrum as a single lot or 
license, then the small bidders won’t bid. If a small bidder enters, he incurs the entry cost 
but cannot win any licenses.  

                                                 
111Anton and Yao (1992) make a similar point about procurement auctions.  
112 See chapter 7 for additional analysis of this class of multi-unit models.  
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If the seller sells the three units as separate licenses, however, a different outcome 
arises. Suppose the seller conducts a  simultaneous ascending auction, which we again 
model as a “highest rejected bid” auction in which the highest rejected bid sets the price. 
It is a dominant strategy for the three small bidders to bid their values in such an auction. 
Given the specified values, any best reply for the large bidder involves winning two 
licenses and bidding less than 1

2 v  for the third license, in which event the price is 1
2 v  

per unit of spectrum. Given our assumption that 1
12c v< , it pays each small bidder to 

enter. Selling licenses individually rather than in a single lot increases the seller’s total 
revenue from zero to 3

2 v .  

6.3.4 Premium Auctions 
Another tactic to attract entry and encourage aggressive bidding is to offer a subsidy to 

the highest losing bidder that increases with his bid. For example, one kind of premium 
auction is an ascending auction in which the highest losing bidder receives a fraction, 
such as 50%, of the difference between his bid and the next highest bid below his. In such 
an auction, a strategy for each bidder is a single number indicating the level at which to 
stop bidding. To avoid technical complications, we resolve any ties in favor of the bidder 
with the higher value and otherwise break ties at random. Roughly, this assumption 
presumes that in the event of ties, the bidder with the lower value stops bidding an instant 
earlier than the higher value bidder.113 

We analyze premium auctions by first studying bidding with a fixed number of bidders 
and then studying the entry decisions that precede the bidding. For the first step, we use a 
simple model with complete information, a single indivisible good for sale, and two or 
three bidders. We assume that the auction is an ascending auction and that resale is 
impossible.  

Suppose there is a single high value bidder with value 1 and a single low value bidder 
with value 1v < . Then, there is a unique pure strategy equilibrium that does not depend 
on v. In equilibrium, both bidders bid 2

3  and the high value bidder wins at that price. The 
high value bidder earns a profit of 1

3 ,  equal to his value minus the price he pays, while 
the low value bidder earns the premium of half the price, which is also 1

3 . Therefore, the 
seller’s net revenue is just 1

3 . In this equilibrium, the low value bidder pays no attention 
to its own value and bids just to capture the premium.  

Next, we add a second low value bidder. There is again a unique pure strategy 
equilibrium. In equilibrium, all three bidders bid 1 and the high value bidder wins at that 
price. The seller pays no premium, because the second and third highest bids are 
identical. In this case, the seller’s revenue is 1 and all bidders earn zero profits.  

Finally, suppose that there is a small positive entry cost c. We look for an equilibrium 
that is symmetric in the entry decisions of the low value bidders, that is, one in which 
both low value bidders enter with the same probability p and in which the high value 

                                                 
113 For justification of this procedure, see Simon and Zame (1990).  
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bidder always enters.114 We suppress the entry cost of the high value bidder, since the 
high value bidder always enters in equilibrium.  

By inspection, no equilibrium with a positive entry cost entails p = 1 and, with small 
enough entry costs, none entails p = 0. With 0 1p< < , the low value bidder must be 
indifferent between entering and earning 1

3(1 )c p− + −  or not entering and earning zero. 
Consequently, the equilibrium probability of entry must be max(0,1 3 )p c= −  and the 
two low value bidders must earn zero expected profits.  

At this equilibrium, the high value bidder earns positive profits if either low value 
entrants fails to enter, so its expected profit (excluding its entry cost) is 

2 1
3(1 ) 1 2 (1 )p p p− + −i i . For 1

3c < , this profit equals (2 3 )c c+ . The seller’s expected 
revenue is the expected total surplus of 1 2 pc−  minus the expected profits of the bidders. 
For 1

3c < , expected revenue is (1 )(1 3 )c c− − .  

According to this model, if entry costs are small and there are enough potential bidders, 
then a premium auction can encourage entry and aggressive bidding, enabling the seller 
to extract nearly the full value of the items sold.  

The analysis above is preliminary and omits some significant features of reality. First, 
if the seller really has the power to choose any selling mechanism, then with complete 
information he might just fix a price and make a take-it-or-leave-it offer to the high value 
bidder. The simple model above does not adequately address the balance of bargaining 
power between seller and buyers.115 Second, if costless bargaining is possible after the 
auction, then the high value bidder would be unlikely to accept such a small profit in the 
auction. He might do much better to bid low in the auction and then bargain with the low 
value auction winner. Third, uncertainty about values, would discourage low value 
bidders from bidding much above their own values, thereby attenuating the premium 
auction’s ability to raise prices. Until all of these complications are addressed, the case 
for premium auctions remains uncertain.  

6.3.5 Dutch vs. English Auctions and the “Anglo-Dutch” Design 
Researchers frequently compare Dutch and English auctions, or first-price and second-

price auctions. The English and second-price auctions claim efficiency as an advantage, 
but that efficiency can sometimes cost sellers a great deal of revenue.  

Suppose two bidders bid for a single item. The high value bidder is known to have 
value v  for the item. The other bidder’s value is distributed on (0, )v . In an English 
auction, if both bidders enter, then the low value bidder is sure to lose. So, if there is an 
entry cost, this bidder never enters in equilibrium. In any pure strategy equilibrium, the 
price is zero and the auction fails for lack of participation. It is even possible that there is 
a pure strategy equilibrium in which only the low value bidder enters, so the English 
auction need not always be efficient.  

                                                 
114 There can also be an equilibrium in this model in which only the low value bidders enter.  
115 Bargaining power may be the most important feature of the auction. If a seller cannot commit to keep an 
item but can commit to sell if the conditions of the auction are met, and if resale cannot be restricted, then 
auctions are often the most effective means of sale. See Milgrom (1986).  
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Next, consider the Dutch auction and suppose that the large bidder is certain to enter. 
In any equilibrium, the large bidder has equilibrium expected profit 0π > , so he never 
bids more than v π− . Consequently, the second bidder earns positive expected profits in 
equilibrium whenever his value exceeds v π− . Thus, in equilibrium the Dutch auction 
always has some inefficient outcomes, in which bidders without the highest value acquire 
the item. Consequently, if entry costs are small enough, it pays for low-value bidder to 
enter.  

If the seller conceals the number of bidders and sets a zero reserve, then even for 
relatively high entry costs, the low value bidder enters with positive probability in any 
equilibrium. The proof is by contradiction. If the low value bidder never entered, then the 
high value bidder would always bid zero. But then, so long as c v< , entry would be 
profitable—a contradiction. Thus, the Dutch or sealed-bid design can encourage entry, 
particularly when the number of participants is kept secret.  

To capture advantages of both the English and Dutch auction designs, Klemperer 
(1998) has advocated a hybrid auction:  the “Anglo-Dutch” design. For an auction of 
several identical items, the “Anglo” phase of Klemperer’s design involves raising the 
price of the items gradually until the number of remaining bidders is equal to the number 
of items plus one. After the Anglo phase follows a “Dutch” phase, in which the bidders 
who survive the Anglo phase make sealed bids for the items, subject to the constraint that 
no bid can be less than the current price.  

A formal model of the Anglo-Dutch design follows. Bidders for n items in the Anglo-
Dutch auction place bids in two rounds. After the first round, the seller identifies the n+1 
highest bidders (whom we call survivors) and announces the n+2nd highest bid. That bid 
becomes the minimum allowed bid r in a second auction in which the n+1 survivors 
participate. The survivor who bids highest wins and pays his bid.  

It is evident that if each bidder can acquire only one item, then it is a dominant strategy 
for bidders in this auction to bid their values at the first round. This feature limits the 
inefficiency of the auction, since the n items will be assigned to bidders whose values are 
among the n+1 highest values. Nonetheless, low value bidders need not lose all hope of 
winning. When n = 1, for example, a low value bidder may enter in hopes of winning the 
second round auction.  

The main advantage of the Anglo-Dutch design may be its ability to attract entry. The 
examples above confirm that such an auction design can encourage bidder participation. 
They also illustrate how sensitive auction design must be to details of the environment. 
The same choices that can help a seller in some situations by attracting entry can hurt him 
in others by reducing competition among the bidders who are there.  

6.4 After the Bidding Ends 
For both buyers and sellers, planning for an auction also involves anticipating what will 

happen after the bids are collected. Several important considerations complicate the 
process of completing the transaction. In asset auctions, one common task is to evaluate 
the barriers to closing the sale. Large asset transactions often require approvals by some 
interested parties, including stockholders, bankers, regulators, employees and their 
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unions, and so on. The seller may choose the winning bidder partly on the basis of his 
ability to close the deal.  

Buyers in procurement settings care about more than just the terms of the winning bid. 
A supplier’s other attributes, such as its ability to expand capacity, upgrade its product, 
adapt to changes, and so on may also create value after the auction.  

Bidders, too, may be concerned about what happens after the auction. In Europe, 
incumbent wireless telephone companies may have been particularly eager to keep assets 
out of the hands of new entrants, whose presence in the retail wireless services market 
would intensify retail competition. A seller interested in maximizing revenues in such a 
setting can sometimes take advantage of such a buyer’s preferences, inducing a buyer to 
pay both for its use of the asset and for the opportunity to keep it out of the hands of a 
feared competitor (Jehiel, Moldovanu and Stacchetti (1996)). On the other hand, 
governments interested in fostering retail competition for the benefit of consumers have 
an opposing interest in limiting the ability of incumbents to block entry by hoarding 
spectrum.  

6.4.1 Bankruptcy and Non-performance116 
One critical concern for sellers is whether the winning bidder will be able to perform 

under its contract. While the risk of non-performance may seem most severe in service 
contracts, it can also be important in asset sales when the seller extends credit, allowing 
bidders to pay over time. In such cases, pre-qualifying the bidders to ensure they can 
perform can be critical to the success of the auction.  

U.S. spectrum auctions illustrate the consequences of offering generous credit without 
ensuring bidders’ ability to pay. The FCC offered special terms to encourage small 
businesses to purchase spectrum licenses. The FCC offered reduced down payments and 
financing at very low interest rates over a period of ten years and restricted the sales of 
some licenses so that only small businesses could bid.  

The FCC defined small businesses by asset ownership and sales. So, by their very 
definition, small businesses were not creditworthy for purchasing billions of dollars of 
spectrum licenses, particularly at the high prices that prevailed during the 1990s 
technology boom. It is therefore hardly a surprise that several bidders defaulted. The 
most spectacular default was by Nextwave, which went into bankruptcy holding rights to 
some $10 billion worth of spectrum licenses. A tension between spectrum policy and 
bankruptcy law resulted in a struggle for control of these licenses. While the legal 
disputes dragged on for years, the spectrum lay dormant, wasting a large part of its 
economic value.   

The possibility of default or non-performance can have perverse affects on the bidding 
in the auction itself. To illustrate the possibilities, suppose that, at the time of the auction, 
a bidder believes the item for sale has expected value v, but that payment is deferred and 
certain uncertainties about the value (for example, about technology, demand, or 
competitors’ plans) will be resolved before payment is due. Suppose the bidder enjoys 

                                                 
116 The model in this section is a simplified version of the one introduced by Zheng (2001). See Board 
(2002) for additional development of this sort of model.   
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limited liability and owns assets worth B. If the bidder wins the auction at price p, then, 
after the auction, the bidder will learn the actual value v ε+ � , where ε�  has ex ante mean 
zero. The bidder may then default and forfeit his assets, suffering a loss of B, or he may 
complete the purchase, enjoying a payoff v pε+ −� .  

Theorem 6.11.  Suppose that the support of ε�  is all of \ . Then, the bidder has a 
dominant strategy ˆ ( , )p B v  in the second-price auction. The strategy p̂  is nondecreasing 
in v and nonincreasing in B. For any given distribution of competing bids, the bidder’s 
maximal expected profit is nonincreasing in B.  

Proof. After learning ε� , the winning bidder receives a payoff  of max( , )B v pε− + −� . 
Before learning ε� , the winner expects a payoff of ( , , )p B vπ = [ ]max( , )E B v pε− + −� . If 
the bidder bids b and the highest opposing bid is p with distribution F, then the bidder’s 
expected profit is: 

 
0

( , , ) ( , , ) ( )
b

b v B p v B dF pπ π= ∫  (6.15) 

By inspection, π is decreasing in p, so π  is concave in b. By inspection of (6.15), b = 0 
maximizes π  if (0, , ) 0B vπ ≤ . In that case, we set ˆ ( , ) 0p B v = . If (0, , ) 0B vπ > , then the 
optimal b solves ( , , ) 0b B vπ = . A unique solution exists because ( , , )p B vπ  is decreasing 
and continuous in p and is negative for p sufficiently large. In that case, we set ˆ ( , )p B v  
equal to the unique solution.  

By construction, ˆ ( , )p B v  does not depend on F, so it is an always optimal strategy, and 
the construction itself implies that no other strategy is ever optimal if F has full support. 
Hence, ˆ ( , )p B v  is a dominant strategy.  

Since ( , , )p B vπ  is increasing in v and decreasing in p and B, ˆ ( , )p B v  is nondecreasing 
in v and nonincreasing in B. Since ( , , )p B vπ  is decreasing in B, ( , , )b B vπ  is 
nonincreasing in B. (The monotonicity is strict unless ( ) 0F b = .)  ■  

According to theorem 6.11, a bidder with a smaller budget is both more likely to enter 
the auction and, upon entering, more likely to place the winning bid. In this sense, the 
auction rules amplify the problem of default by tending to choose as a winning bidder 
someone who has an unusually high likelihood of default.  

It is not immediately clear how the auctioneer should respond to this problem. If there 
are many bidders with small budgets but few with large budgets, then qualifying only the 
bidders with high budgets can unduly reduce competition in the auction. Addressing this 
problem more specifically requires addressing larger questions about how to design an 
auction when the seller has more information than just the prices bid.  

6.4.2 Scoring Rules vs. Price-Only Bids 
We now analyze the problem of evaluating multidimensional bids that differ in more 

than price. Sellers often rank each bid with a score; the winning bid is the one with the 
highest score. The process of scoring is itself costly and may involve not only evaluation 
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of the bid and bidder but also some negotiation between the bidder and the seller to tailor 
the bid to create value for both sides.  

Researchers have not extensively studied scoring rules.. Che (1993) and Rezende 
(2002) have shown that in an auction with an exogenous set of bidders, sellers can 
sometimes benefit by biasing the scoring rules to increase competition in the auction. 
This tactic works in much the same way as bidding credits: both can increase the 
competitiveness of weaker bidders, forcing strong bidders to offer more attractive terms. 
The same authors also find that the seller fares best when he reveals to the bidders any 
scoring information that he plans to use. We refer the reader to these papers for more 
about this interesting, but not yet fully explored, topic.  

This section focuses on scoring and entry. For consistency, we continue to focus on 
auctions run by sellers. In the auction, each bidder i submits a bid that involves a price ib  
and also some non-price attributes. The seller assigns a value to the non-price attributes 
and determines the winning bidder as if bidder i had bid i ib ε+ . We assume that the iε ’s 
are non-degenerate, independent, identically distributed random variables with mean 
zero, and independent of the bidder types. 

Suppose there are N potential bidders whose types are independently and uniformly 
distributed on (0,1). Bidder i’s value is ( )iv t , where the function v is increasing and 
differentiable. 

Suppose the seller conducts an English ascending auction using scores, rather than 
prices, to determine the winner. If bidder i wins with a bid score of b� , the price he 
actually pays is ib ε−� , so his profit is ( )i iv t bε+ − � . With this expression in mind, we 
define bidder i’s full value to be ( )i iv t ε+ ; this is the total value accruing to the bidder 
and the seller when bidder i wins the auction.  

Let F be the distribution of ( )i iv t ε+  and suppose it is smooth and strictly increasing, 
with 1w F −= . Notice that the expected maximum value among n bidders is 

( ) 11 1 1

0
max ( ) ,..., ( ) ( )n n nE v t v t n s w s dsε ε − + + =  ∫  with scoring and 

( ) 11 1

0
max ( ),..., ( ) ( )n nE v t v t n s v s ds−  =  ∫  without scoring. 

Theorem 6.12. For all 1n > ,
1 11 1

0 0
( ) ( )n nw s s ds v s s ds− −>∫ ∫ . Thus, the expected maximum 

value among n bidders is higher with scoring than without scoring. 

Proof. The expected maximum values satisfy:  

 
( )

( )

1 1 1 1

0

11 1

0

( ) max ( ) ,..., ( )

max ( ),..., ( ) ( )

n n n

n n

n s w s ds E v t v t

E v t v t n s v s ds

ε ε−

−

 = + + 

 > = 

∫
∫

 

The inequality follows because the max operator is convex and its arguments in the first 
line are a mean-preserving spread of those in the second line.   
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Theorem 6.13. Given n existing bidders, the expected marginal contribution of an 

additional entrant without scoring is 
1

0
(1 ) ( )ns s v s ds′−∫ . With scoring, the corresponding 

expression is 
1

0
(1 ) ( )ns s w s ds′−∫ .   

Proof. Without scoring, the expected value from the auction with n bidders is the 

expected maximum value among the bidders, which is 
1

0
( ) nv s ds∫ . Integrating by parts, 

this is also equal to 
1

0
(1) ( )nv s v s ds′− ∫ . With n+1 bidders, the corresponding value is 

1 1

0
(1) ( )nv s v s ds+ ′− ∫ . The expected marginal contribution is the difference of these two, 

which is 
1

0
(1 ) ( )ns s v s ds′−∫ . One can derive the second expression similarly.   

The use of scoring causes a mean-preserving spread in bidder valuations, so it is 
intuitive that the maximum total value is higher on average with scoring. Theorem 6.12 
confirms this intuition. In addition, if scoring leads to a “fatter right-hand tail” of the 

distribution in the sense that 
1 11 1

0 0
(1 ) ( ) (1 ) ( )n ns s v s ds s s w s ds− −′ ′− < −∫ ∫ , then it increases 

the profitability of entry, encouraging more.  

The idea that scoring can increase bidders’ profits without reducing the auctioneer’s 
value has been one of the main appeals of multidimensional bidding in procurement. 
Bidders (sellers) dislike bidding in “price only” auctions in which their special 
advantages and characteristics receive no weight. By encouraging a more complete 
comparison of the attributes of suppliers and products, scoring may increase bidders’ 
expected profits and encourage participation by more bidders, serving the interests of all 
parties.  

The theory does not give unqualified support to this intuitive argument. The conditions 
under which scoring benefits bidders and auctioneers alike remain an open question.  

6.5 Conclusion 
Comparing this chapter with the preceding ones highlights several key facts. First, 

many of the most important practical issues in auction design concern the interaction of 
the design and entry decisions.  

In the first class of models we studied, with a large number of symmetric potential 
bidders and moderate entry costs, we found that the conflict between efficiency and 
revenues disappears. Unlike traditional studies of “optimal” (revenue-maximizing) 
auctions with a fixed number of bidders in which we found it is optimal to set a high 
reserve that discourages some efficient exchange, that policy is never optimal in the 
symmetric model with moderate entry costs. We found that the seller can profit by 
managing the entry process, sometimes excluding bidders to reduce randomness in the 
entry process, to protect business secrets, or to encourage entry by the potential buyers 
with the highest values. Two-stage designs that select bidders on the basis of initial 
indications of interest have some appeal, but their formal analysis shows that they are 
unlikely to succeed in selecting the most qualified bidders.  
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One way to economize on bidders’ costs of participation is to bargain with a sequence 
of agents, rather than run an auction. We showed that if the seller can set a take-it-or-
leave-it price, then the optimal auction has the same value to the seller as the related 
optimal search problem. Seeing buyers in sequence then has the same advantages as 
sequential search has over searching a batch of items at a time.  

Another device that can economize on entry costs is the “buy price” in an ascending 
auction. When the auctioneer imposes a buy price,” the auction ends if any bidder makes 
an early bid at the specified level. That early ending saves later bidders from incurring 
evaluation costs, and those savings ultimately accrue to the seller. In the benchmark 
model, the seller can always benefit by setting a suitable buy price.  

Models with entry and asymmetric bidders have received much less attention than 
symmetric models, despite the great impact of asymmetries among bidders on entry. A 
variety of tactics can encourage entry into auctions despite bidders’ asymmetries. We 
have shown that setting aside assets or using bidding credits can encourage entry and 
ultimately increase the seller’s revenues. Sellers’ packaging of assets can also affect 
competition in an auction and potential buyers’ decisions to enter the bidding. Variations 
in auction rules can also affect participation. “Premium auctions” and the “Anglo-Dutch” 
auction are two designs that can sometimes increase participation. Premium auctions, 
however, can also generate very low revenues when the set of potential bidders is limited.  

It can be important to select bidders who can perform after the auction, paying or 
delivering as promised. We found that weak firms with limited collateral may be more 
eager than others to make high bids, expecting to default if the asset turns out to have low 
value. We also found that scoring bids based on all the bid’s attributes tends to increase 
the total value of the allocation chosen by the auction.  

The models of this chapter lead to a variety of findings, showing that the same 
practices that attract entry and benefit the seller in some environments can lead to poor 
performance in other environments where the number of bidders is exogenously limited. 
In practice, the design of an effective auction requires a detailed knowledge the particular 
circumstances in which the auction is to be run.  
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Section II:  
Multi-Unit Auctions  

Chapters 3-6 study auctions in just one kind of item is for sale and each bidder can buy 
at most a single item. When items are heterogeneous or bidders demand multiple units, 
new questions arise.  

First, even when each bidder wants to buy only one item, if the items are not identical, 
the mechanism needs to solve the matching problem: who gets which items? One can 
study the matching problem with a fixed set of bidders to learn how efficiently auctions 
assign items to bidders and how much revenue they generate. In principle, one could 
combine these results with analysis of entry to determine who participates in the auction 
and what kinds of pre-auction investments bidders might make. So far, the auction 
literature contains little analysis of these questions.  

Second, when bidders demand multiple units, market power becomes important. 
Bidders in auctions, like participants in other kinds of markets, can often reduce the 
prices they pay by buying fewer units than they would want at the final prices. Reducing 
demand in this manner can be profitable for a single large bidder even if all the other 
bidders want to buy only a single unit. When several large bidders each seek to buy 
multiple units, there it is also possible that the larger bidders will coordinate strategies, 
for example by agreeing to reduce demand in concert. The likelihood of bidder cartels 
and “rings”117 depends largely on the setting—the identities of the bidders and the 
relationships among them—but it can also depend on auction design. When the risk of 
cartels is significant, minimizing opportunities for collusion becomes a primary objective 
of auction design.118  

Third, the conception of auctions as mechanisms for finding competitive prices, 
plausible when each bidder wants just one good, becomes problematic when bidders want 
multiple units. If goods are not substitutes, market clearing prices generally do not 
exist,119 forcing us to conceive of auctions broadly as mechanisms for resource allocation 
rather than narrowly as mechanisms for price discovery.  

This broad view of auctions has led some to recommend wide use of the Vickrey 
auction. However, in chapter 2, we observed that the performance of Vickrey auctions, 
too, could depend on whether goods are substitutes. When goods are substitutes, Vickrey 
auction outcomes are core allocations, shill bidding is unprofitable, losing bidders have 
no profitable joint deviations, and bidders’ profits are decreasing (and the seller’s 

                                                 
117 “Rings” are organizations of bidders that choose a single member to bid on behalf of all. After the public 
auction, the ring holds a private auction to allocate the good and divide the profits among its members. See 
Graham and Marshall (1987). 
118 Several authors have emphasized the roles of both competition in the auction and competition among the 
winners when the auction affects market structure. See Dana and Spier (1994), Milgrom (1997), and 
Klemperer (2002).  
119 If bidder valuations are a subset of all valuations for which all goods are substitutes, then a competitive 
equilibrium price vector exists. However, if the set includes any other valuation, then there are preference 
profiles drawn from the set such that no competitive equilibrium price vector exists. See Milgrom (2000b) 
and Gul and Stacchetti (1999).  
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revenues increasing) in the set of bidders. All of these conclusions fail when the set of 
possible valuations includes valuations for which goods are not substitutes. Designing 
auctions to work well when goods are not substitutes is a subject that has only recently 
attracted serious attention.120 Chapter 8 presents some of the relevant theory.  

Fourth, many auction applications involve complicated constraints on the auctioneer. 
For example, such a firm offers its production capacity to produce a set of products. To 
maximize profits, it would need to account for its possibly complex operating constraints 
in deciding which bids to accept. Similarly, an industrial buyer may evaluate suppliers 
according to multiple criteria, including price, quality, capacity, and delivery schedules. 
Accounting accurately for such details imposes burden that has so far proved too heavy 
for practical auction designs.  

Finally, auctions in settings as complex as the ones above pose serious challenges to 
theories that assume optimal bidding. Planning for such auctions is complicated and 
experience suggests that many real bidders—even ones with substantial resources to 
spend on planning—are daunted by the complexity and adopt simple and often sub-
optimal strategies. In practice, auction designers place a tremendous value on the 
simplicity of an auction’s design. Their priorities always include ensuring that the 
mechanics of bidding easy, that simple strategies are effective for bidders, and that 
outcomes are acceptable when bidders use simple strategies. Simplicity helps attract 
participants into the auction and, in practice, hardly anything matters more.  

The theory of section II, which analyzes the problems of multi-object auctions 
discussed above, is less developed than that of section I. Chapter 7 examines multi-item 
auctions in which bids consist either of prices for individual items or of quantities to be 
supplied or demanded at prices specified by an auctioneer. The chapter emphasizes 
auctions that encourage arbitrage, so that similar items tend to sell for similar prices. 
Several widely used auctions are in this class. Chapter 7 studies simultaneous ascending 
auctions used for spectrum sales, clock auctions used for power sales, and various sealed-
bid auctions used for securities sales.   

Chapter 8 investigates auctions in which participants may place either bids for 
packages of several items or contingent bids. For example, contracts for London bus 
services are determined by package bidding, in which bus companies quote prices to 
serve various individual routes and also specify package discounts that apply if they win 
particular combinations of routes.121 The auctioneer accepts the combination of bids 
yielding the lowest total price. Similar auctions have been used for industrial 
procurement.122 In addition, there have been proposals to use the related device of 
contingent bids in spectrum auctions. For example, a bidder in a spectrum auction might 
bid for licenses to serve the cities of Buffalo and Syracuse in the state of New York with 
the proviso that he withdraws the bids if he does not also win a license to serve New 
York City. The auctioneer would accept the combination of bids that produce the highest 
total price.  

                                                 
120 Recent design contributions include Parkes and Ungar (2000) and Ausubel and Milgrom (2002).  
121 For a detailed description, see Cantillon and Pesendorfer (2002).  
122 Hohner, Rich, Ng, Reid, Davenport, Kalagnanam, Lee and An (2001).  
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Package bidding and contingent bidding are closely related. In the spectrum auction 
example, if package bids were allowed, the bidder could achieve the same outcome as 
with contingent bids. Instead of bidding for New York City and placing contingent bids 
for Buffalo and Syracuse, a bidder could accomplish the same thing by placing four bids: 
one for the NYC license, a second for the package of the NYC and Buffalo licenses, a 
third for the package of the NYC and Syracuse licenses, and a fourth for the package of 
all three licenses.  

Auctions with package bids or contingent bids are sometimes dubbed combinatorial 
auctions, because running the auction can involve solving a combinatorial optimization 
problem. It’s difficult to compute solutions to these problems  – one possible reason why 
such auctions have only recently attracted attention. There are other reasons, too, 
including the complexity of the bidder interface required for a combinatorial auction. We 
return briefly to these issues in chapter 8.  
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Chapter 7:  
Uniform Price Auctions 

The resurgence of interest in auction theory owes much to recent large-scale auctions 
using designs suggested by economic theorists. From the spectrum auctions of 1994 
onward, virtually all of these auctions have been uniform price auctions, in which auction 
rules either mandate equal prices for identical goods or encourage some sort of arbitrage, 
generating approximately uniform prices.  

Many traditional auction designs fail to promote the “law of one price,” according to 
which identical goods have identical prices. One example is the first spectrum auction – 
Sotheby’s 1981 auction of rights to use seven functionally identical transponders on a 
single RCA communications satellite. Sotheby’s sold these rights using a sequence of 
seven auctions that produced seven different prices. The first transponder sold for $14.4 
million and the prices of the second through sixth transponders successively declined. 
The sixth transponder sold for the lowest price, $10.7 million, and the seventh sold for 
$11.2 million. When an auctioneer sells several identical lots, bidders always have to 
guess about the prices of future lots, so some price variation is inevitable.  

A striking aspect of the RCA transponder auction is the way prices declined from one 
item to the next. Ashenfelter (1989) has found that a similar pattern is common in 
auctions of wine and art, and this observation is now known as the “declining price 
anomaly.”123 Many have attempted to explain this anomaly. One possible explanation is 
that this pattern arises from a kind of selection bias akin to a winner’s curse. At the RCA 
auction, bidders for the first transponders had to guess about the prices that the later ones 
would fetch. Even if each individual bidder estimates future prices without bias, the 
winner of the first transponder will tend to be a bidder whose estimate of future prices is 
high and who is surprised to see lower prices in later sales.124 Other explanations run the 
gamut from psychological models of individual behavior to equilibrium models of the 
kind studied in this book, in which fully rational actors act on perfect forecasts of 
competitors’ strategies.  

                                                 
123 Subsequent research reaffirms that this phenomenon is widespread. See Ashenfelter and Graddy (2002) 
and the references therein.  
124 The winner’s curse in auction theory traditionally refers to the selection bias that arises because a bidder 
tends to win more often when his value estimate is too high than when it is too low. If we regard the value 
of the first transponder as a value net of opportunity cost, then the explanation offered here is a variant of 
the winner’s curse. In the equilibrium analyses of the previous chapters, rational bidders account for the 
effect of the selection bias by adjusting their bids downward.  
In practice, learning about the ordinary winner’s curse is probably slow, because the data needed to 
recognize it, which include data about realized values, are difficult to obtain and sometimes unavailable for 
years after the sale has closed. Part of what makes the declining price anomaly so striking is that data about 
declining prices are instantly and publicly available, yet bidders still do not adjust to them.  
There is extensive evidence that even experienced bidders in laboratory experiments do not adjust their bids 
as equilibrium theory suggests to account for the winner’s curse (Kagel and Levin (2002)), despite the 
quick availability of performance data that provided to experimental subjects. To the extent that bidders in 
real art and wine auctions have similar difficulty adapting to declining prices, the evidence would be 
consistent with the explanation of the declining price anomaly offered here.   
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Many bidders dislike price variation of the sort described above in sales of 
homogeneous items. In spectrum auctions like the RCA auction, companies’ officers bid 
on their behalf. The highest bidders are uncomfortable having to explain to their superiors 
or shareholders why others paid less for an identical transponder or license. Even 
individual bidders may care more about “paying too much” than about the chance of 
getting a bargain. An advantage of uniform price auctions is that they insulate bidders 
and their bosses from price risk of this form.  

Uniform price auctions have become more popular because they avoid price risk 
corporate bidders dislike reduce the transactions costs of bidding repeatedly for identical 
goods. Uniform price auctions include uniform price sealed bid auctions and various 
ascending auctions that either enforce uniformity by rule or promote it by encouraging 
arbitrage.  

We begin by analyzing uniform price sealed bid auctions and then turn to simultaneous 
ascending auctions.  

7.1 Uniform Price Sealed Bid Auctions 
The simplest kind of uniform price auction is a sealed bid auction. In this section, we 

show that these auctions inevitably create incentives for bidders to reduce demand to 
avoid driving up prices and that there exist Nash equilibria of these auctions with very 
low prices.  

In a uniform price auction, a bid is an order to purchase quantity q at any price up to p. 
A bidder may make several such price-quantity bids. The auctioneer then organizes the 
bids to create a demand curve, determining for each price p the total quantity demanded 
at that price. The auctioneer sets the price so that the quantity demanded equals the 
available supply.  

In general, there may be a range of prices at which the quantity demanded is equal to 
the available supply. For example, if there are N goods for sale and a distinct price is bid 
for each unit, then supply equals demand at any price between the N th highest bid (the 
lowest accepted bid) and N+1st highest bid (the highest rejected bid). For concreteness, 
we focus on auctions in which the N+1st highest bid (the highest rejected bid) sets the 
price. Our major conclusions extend qualitatively to all auctions with market clearing 
prices in this range.   

In analyzing the uniform price auction with sealed bids, we assume the bidders have 
declining marginal values for the goods they acquire. That is, a bidder’s value is highest 
for the first unit, and the same or lower for each successive unit. (Little is known about 
how this auction performs in general when this value assumption is not satisfied.)  

We begin by observing that any bidder whose value for each item after the first is zero 
has a dominant strategy in the auction. If the value of the first item is v, then the dominant 
strategy is to place just one bid for a quantity of 1 at a price of v. The argument is much 
the same as in the standard analysis of the Vickrey auction: a bid in this situation can 
never affect the price the bidder pays, so the bidder is effectively a price taker and 
maximizes his payoff by specifying a demand function that corresponds to his actual 
demand. If every bidder has demand for just a single item (and each bidder can only bid 
for a single unit), then the highest rejected bid auction would be a Vickrey auction. The 
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equilibrium price would then equal the opportunity cost of the item, which is its value to 
the highest rejected bidder.  

7.1.1 Demand Reduction 
When a bidder wants to buy more than one unit and when the units have declining 

marginal values, a bidder generally has an incentive to reduce his demand, that is, to bid 
less than his value for some units. The example below illustrates how strong this 
incentive can be.125  

Suppose there are two bidders and two units for sale. Bidder 1 demands only a single 
unit and his value, 1 1( )v t t= , is uniformly distributed on (0,1). As we have seen, bidder 
1’s dominant strategy is to bid an amount equal to his value. Bidder 2 has demand for two 
units. The first unit is worth 1v  and the second is worth 2v , where 1 21 0v v> ≥ > . With 
two units for sale, bidder 2 is assured of winning one if he places a positive bid. If he bids 

0x ≥  for the second unit, then he wins two units if 1t x<  and one unit if 1t x> , so his 
expected payoff is: 

 ( ) { } ( ) { }1 1
1

1 2 1 1 2 1
0

1 2

2 1 1 ( 2 ) ( )(1 )

(1 ).

x

t x t x
E v v t v x v v s ds v x x

v x v

< >

 + − + − = + − + − −  

= − −

∫  (7.1) 

This expression is maximized at 0x = , that is, the optimal bid is zero.126 Thus, the 
second bidder always finds it optimal to bid as if he had demand for only one unit, 
regardless of his actual values.  

While the example is extreme, the logic of this incentive is familiar to students of 
economics, because it is almost identical to the textbook logic explaining a 
monopsonist’s withholding of demand. In a classic monopsony, when the buyer demands 
a quantity q, he understands that his total expenditure will be ( ) ( )TE q qP q= . His 
marginal expenditure is the derivative of total expenditure, ( ) ( ) ( )TE q P q qP q′ ′= + . His 
marginal expenditure is the additional expenditure per unit resulting from the last unit 
purchased. If, as we normally expect, P′  is positive, then ( ) ( )TE q P q′ > .Buying a larger 
quantity requires not only paying the price for those units, but also paying a higher price 
for the first q units—the inframarginal units. The increase in the price of inframarginal 
units when the buyer increases his purchases accounts for the second term of the marginal 
expenditure formula.  

The fact that marginal expenditure exceeds price makes it optimal for a buyer to reduce 
his demand below what it would be if prices did not change with the quantity purchased. 

                                                 
125 We borrow this example and the general conclusions about demand reduction from Ausubel and 
Cramton (2002). Engelbrecht-Wiggans and Kahn (1998) analyze the conditions under which prices of zero 
occur. Weber (1997) discusses demand reduction in the FCC spectrum auctions.  
126 A similar effect arises in procurement sales, when bidders offer prices at which they will supply the 
auctioneer. When a bidder becomes confident that he controls the marginal unit, extreme prices are likely. 
Experience in the California electricity markets in 2000 and 2001 confirms the extreme vulnerability of 
uniform price auctions in practice when one supplier can cause a shortage by withholding supply.  
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If ( )V q  denotes the value of acquiring q units, then the buyer’s objective is to maximize 
( ) ( )V q TE q− . If the functions are differentiable, then the derivative is 
( ) ( ) ( ) ( ) ( )V q TE q V q P q qP q′ ′ ′ ′− = − − . At the quantity 0q >  at which price equals 

marginal value, the derivative is ( ) 0qP q′− < , provided P′ is positive.  

Figure 7.1 shows this argument in its familiar graphical form. The profit-maximizing 
quantity q* is the one at which the marginal value of the unit equals the marginal 
expenditure needed to acquire it. As we have argued, the marginal expenditure function 
lies above the supply function, so q* is less than the quantity q at which the marginal 
value of an additional item is equal to its price. The profit-maximizing choice involves 
demand reduction. 

 
Demand reduction is not a problem peculiar to the sealed-bid form: a similar effect 

plagues any market mechanism in which identical goods sell for identical prices. In 
auction models, expected quantity assumes the role played by quantity in classic 
monopsony theory. For simplicity, we describe the bids not as price-quantity pairs but as 
individual price bids for each unit demanded. This description entails no loss of 
generality, because a bid for q units at a price of p is functionally equivalent to q separate 
bids for one unit at price p.  

The incentive to reduce demand arises because the bids for the second and subsequent 
units in the highest rejected bid auction affect both the expected quantity the bidder 
acquires and also the expected price he pays for each unit he buys, if one of these 
subsequent bids does not win. Raising the bid for the second unit from p to p′ increases 
the quantity demanded for prices in that range from one unit to two units. If the 
distribution of opposing bids has a positive derivative on this range (analogous to the 
positive slope of the supply function in classic monopsony), then the marginal expected 
expenditure function lies above the corresponding supply function, just as in the figure 
above.  

Marginal expenditure 
function 

q 

Price 

Figure 7.1 

Supply function 

Marginal value function 

q*
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To restate the argument algebraically, suppose some bidder has potential demand for 
two of the N units offered in an auction. Suppose the first unit is worth 1v  to the bidder 
and the second is worth 2 1v v≤ . Let 1NX −  and NX  denote the th( 1)N −  and thN  order 
statistics from among the opposing bids. Then, the bidder’s expected profit from bidding 

1v  for one unit and 1b v≤  for the second unit is: 

 { } ( ) { }1 1
1

1 2 1( ) ( 2 )1 max( , ) 1N N
N N

b X X b
b E v v X v b Xπ − −

+−

> >

 = + − + −  
 (7.2) 

The two terms inside the expectation reflect the possibilities that the second bid b is a 
winning bid or not. When the bid wins, the buyer acquires two units at a price of 1NX −  
each. When it does not win, then if b is higher than NX , the bidder acquires one unit at 
price b; otherwise, provided 1

Nv X> , he acquires one unit at price NX .  

If the joint distribution of 1( , )N NX X−  has a positive density on the whole set 
1{ }N NX X −< , then the derivative of the profit function simplifies to 2( )vπ ′ =  

{ }1
2Pr 0N NX v X−− > > < . Intuitively, increasing the bid in a neighborhood of 2v  causes 

the price to increase when 1
2

N NX v X− > > , while all other effects of the bid increase are 
of second order.  

As in classic monopsony, the ability to reduce the price paid for inframarginal units by 
reducing marginal bids creates an incentive to reduce demand. In this case, we are 
evaluating the bid for the second unit and the first unit is the inframarginal unit. It follows 
that the optimal bid for the second unit is less than 2v .  

Because bidders have incentives to bid full value for the first unit but reduce demand 
for subsequent units, they use different mark-ups for different items. The equilibrium 
outcome can therefore be inefficient.  

The following proposition summarizes these properties. In the proposition, each bidder 
draws values for two items.  

Theorem 7.1. Consider a sale with N bidders and k items, where 2 k N≤ < . Suppose 
that each bidder may buy two items and that the value of the first item is always at least 
as high as the value for the second item: 1 2

j jv v≥ . In the highest rejected bid auction, any 
strategy for bidder j in which j bids less than 1

jv  for the first unit is weakly dominated by 
a strategy in which j bids 1

jv  for the first unit. Moreover, if the bidders’ values for the two 

items are distributed according to any positive joint density on { }2
1 2[0, ] | ( )N j jv v j v v∈ ∀ ≥ , 

then 

• there is no equilibrium at which bidders all bid full value for both items and  

• there is no equilibrium in undominated strategies in which the outcomes 
always maximize total value.  
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Proof. All claims besides the last one about efficiency follow directly from the 
discussion preceding the theorem. To prove the last claim, consider any equilibrium in 
undominated strategies. Since not all bidders bid full value for both items, there is some 
value profile at which bidder 1 has values 1 1

1 2v v>  for the two items and bids 1
2b v<  for 

the second item. With positive probability, the other bidders have values satisfying 
1
1 1min{ ,..., }kb v v< , 1

2 1max{ | ,..., }jv v j k N> = , and 1
2 2max{ | 2,..., }jv v j N> = .  

Since the bidders are assumed to use undominated strategies, the first inequality 
assures that the bid b is not a winner, so bidder 1 acquires at most one item. The next two 
inequalities assures that the value 1

2v  is among the k highest values, so that total value 
maximization requires that bidder 1 acquire two items. When all these inequalities hold, 
the outcome of the auction fails to maximize total value. By assumption, the probability 
that this set of inequalities holds is positive.  ■ 

One can intuitively understand demand reduction either (A) as reducing the total 
number of units demanded at or above any price or, equivalently, (B) as reducing the 
price bid for each unit after the first. From perspective (A), the preceding analysis looks 
very much like the traditional theory of monopsony: the incentive to reduce the quantity 
demanded depends on the number of units being purchased and the price elasticity of 
expected supply at that price. Perspective (B) suggests that the expected gain to reducing 
a price bid increases with the number of inframarginal units and the probability that the 
price will become the market clearing price.  

With respect to two-sided markets in which buyers bid to purchase and sellers offer to 
sell, theory supports the idea that thick markets eliminate incentives to withhold trade. 
Perspective (A) suggests that when there are many buyers and sellers whose supplies and 
demands are small relative to the market, it is a nearly dominant strategy to report those 
demands and supplies accurately and eschew any attempt to influence prices.127 
Perspective (B) indicates that if all parties’ supplies and demands are small portions of 
the market volume, then all consider it unlikely that their marginal bid will set the price, 
so the incentive to distort supply or demand is small.128 In two-sided markets, at least, 
theory predicts large numbers will eliminate demand reduction and its associated 
inefficiencies.  

7.1.2 Low Price Equilibria 
Theoretical results for one-sided markets are less favorable to the proposition that large 

markets reduce withholding of demand than their counterparts for two-sided markets. 
Simple examples demonstrate that even when all bidders are small relative to the market, 
there can be Nash equilibria of uniform price auctions in which prices remain far below 
the competitive price.  

A variety of examples establish this possibility. The simplest assumes that goods are 
discrete. Suppose there are N bidders each of whom wants k > 1 items and is willing to 
pay up to $1 for each item. Suppose that there are exactly N objects for sale and that the 

                                                 
127 For example, see Postlewaite and Roberts (1976).  
128 See Swinkels (2001).  
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highest rejected bid rule applies. Then there is a symmetric equilibrium in which each 
bidder bids $1 for the first item and $0 for each additional item. (With more than N 
objects for sale, similar equilibria support any allocation in which each bidder gets at 
least one item.) 

Similar results arise in examples with infinitely divisible goods. Such examples might 
model the sale of electrical power or of treasury bills, for which any indivisibilities are 
likely unimportant. Suppose there is one unit of a divisible good for sale and that each 
bidder has a value of 2( )V q q q= −  to acquire 1q ≤  units of the good. The bidder’s 
inverse demand function is then ( ) 1 2P q q= − . With N bidders, if all report their 
demands truthfully, the market-clearing price will be 1 2 /P N= −  and each bidder will 
acquire 1/N units. The market-clearing price converges to 1 as the number of bidders 
grows large.  

The corresponding auction game admits many symmetric equilibria involving severe 
demand reduction. Thus, suppose that each bidder bids according to the demand 
schedule: ( )p q a bq= − . This means that the bidder offers to pay the amount p(q) for the 
qth unit or, equivalently, to buy ( ) ( ) /q p a p b= −  units at any price p < a. Suppose the 

1N −  other bidders play this strategy, and consider the Nth bidder’s choice of bids. If the 
last bidder acquires q units in the auction, then the other bidders will each acquire 
(1 ) /( 1)q N− −  units, so the price will necessarily be (1 ) /( 1)a b q N− − −  and the last 
bidder’s profit will be ( )( ) (1 ) /( 1)V q q a b q N− − − − . In a symmetric equilibrium, 

1/q N=  will maximize the bidder’s profit. Hence, in equilibrium, 1/q N=  necessarily 
satisfies the bidder’s first-order condition:  

 

( )

( )

2

1/

0 (1 ) /( 1)

1 2 / /( 1) 2 / ( 1)
2 21

( 1)

q N

d q q q a b q N
dq

N a b N b N N
Na b

N N N

=

 = − − − − − 
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Solving (7.3) for a yields: 

 2 21
( 1)
Na b

N N N
−

= − +
−

. (7.4) 

The restriction (7.4) allows a continuum of equilibria. In each equilibrium, the price is 
/p a b N= − , so /a p b N= + . Substituting this value into (7.4) yields 

 21 ( 1)b p N N
N

 = − − − 
 

. (7.5) 

Using (7.5) and (7.4), one can construct symmetric equilibria with a wide range of 
prices. For example, to find an equilibrium with price 0p = , we substitute 0p =  into 
(7.5) to find ( 1)( 2)b N N= − −  and / ( 1)( 2) /a b N N N N= = − − . This describes a 
symmetric zero-price equilibrium closely analogous to the zero-price equilibrium in the 
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preceding discrete example. This continuous example demonstrates that the problem of 
low-price equilibrium is not an artifact of the particular numbers of goods and players. 
There are low price equilibria regardless of the number of bidders N.  

The significance of these low price equilibria is uncertain. In the zero-price 
equilibrium, the bidders have many best replies to the other bidders’ equilibrium 
strategies. Perhaps this fact means that the model is not detailed enough to reflect 
bidders’ actual incentives. That suspicion finds further support in the observation that in a 
discrete model of roughly the same setting, an undominated strategy entails never bidding 
more than one’s actual value and bidding full value for the first unit. The equilibrium 
above lacks both properties. However, changing the zero-price equilibrium strategy 

( )p q a bq= −  to ( ) min( ( ), )p q V q a bq= −  generates another zero-price equilibrium 
strategy and has the properties of the undominated strategies in the corresponding 
discrete game.  

Some research explores the robustness of the low price equilibria to uncertainty. 
Wilson (1979) introduced a version of the model with common value uncertainty. In that 
model, bidders have unique best replies to their competitors’ strategies, but there is still a 
multiplicity of equilibria, some of which involve prices only a fraction of the value of the 
goods being sold. Back and Zender (1993) showed that this model has low price 
equilibria that earn approximately the reserve price for any arbitrarily low reserve the 
seller may set.  

Later in this chapter, we present a more effective way to identify a unique equilibrium. 
We model a uniform price ascending auction and employ backward induction arguments 
to ensure that bidders plan to optimize at all possible prices. We will find that, in those 
models, low prices are not only possible; the unique equilibrium consistent with 
backward induction often entails a low price.  

Uniform price sealed bid auctions are important in practice, both for selling relatively 
homogeneous goods (such as Treasury bills) and buying such goods (electrical power). 
The issue of extreme price equilibria is plainly of great practical importance, so the topic 
discussed here is an important one for continuing study.  

7.2 Simultaneous Ascending Auctions  
Besides the sealed bid auctions, other important kinds of “uniform price auction” 

include the simultaneous ascending auction introduced by the Federal Communications 
Commission (FCC) in 1994 and its “clock auction” variants. The main difference 
between these is that, in the FCC design, the bidders call the prices whereas in a clock 
auction, the auctioneer calls the prices (and posts them on a digital or analog “clock”). 
Unlike the sequence of ascending auctions that Sotheby’s used for the RCA transponder 
sale described earlier, the simultaneous ascending auction facilitates arbitrage among 
similar items by allowing bidders to compare prices of different items and to shift their 
bids to those that are relatively cheap.  

Our principal findings are several. First, if goods are substitutes and bidders are non-
strategic, then the outcome of the auction is approximately a competitive equilibrium, 
with the approximation limited only by the size of the bid increment. Despite the 
discreteness of the goods, a competitive equilibrium exists. Next, like the uniform price 
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sealed bid auction, these auctions have equilibria with very low prices.  Finally, using a 
model with elastic supply, we find that the lowest equilibrium prices are the Cournot 
prices. This suggests a reinterpretation of the earlier low price equilibria as Cournot 
equilibria of games with inelastic supply.  

Table I illustrates the uniformity of prices in a simultaneous ascending auction using 
data from the first FCC spectrum auction. Each license in the auction packaged rights to 
use two kinds of spectrum. Notice that, within each group of licenses, prices were 
approximately uniform.  

Moreover, the prices suggest that the auction “priced” the two kinds of spectrum 
consistently across groups of licenses. For engineering reasons, the individual licenses in 
the auction covered two different parts of the spectrum. The FCC reserved one part for 
transmitting relatively powerful signals from high-powered transmitters at fixed locations 
to be received by mobile, handheld devices. The FCC reserved the other part for 
transmitting relatively weak signals from the low-powered mobile devices back to the 
fixed stations. The two numbers characterizing each license in the table indicate the 
bandwidth of the license in the two parts of the radio spectrum. If the bidders valued the 
bandwidth of the first type of spectrum at about $740,000 per kHz and the second type at 
about $860,000 per kHz, these values would produce market prices of $80 million for the 
first type of license, $47.75 million for the second type, and $37 million for the third 
type, which are quite close to the actual prices. The $38 million winning bid for license 
N-11, which occurred when a participant made a jump bid early in the auction, appears to 
be a small jump beyond the market clearing price.  

License  
Name 

License 
Bandwidths 

(kHz) 

        Winning 
           Bid 

N-1 50-50 $80,000,000
N-2 50-50 80,000,000
N-3 50-50 80,000,000
N-4 50-50 80,000,000
N-5 50-50 80,000,000
N-6 50-12.5 47,001,001
N-7 50-12.5 47,505,673
N-8 50-12.5 47,500,000

N-10 50-0 37,000,000
N-11 50-0 38,000,000
Total  $617,006,674

Table 1: Winning bids in FCC Auction #1.  
 

We now discuss the rules of FCC auction #1 that encouraged such effective arbitrage 
and consistent pricing. 

Bids are placed in a series of rounds. Each bid commits the bidder to pay the stated 
price to buy a spectrum license. At the end of each round n, the auctioneer determines a 
standing high bid for each license, which is the larger of the standing high bid from the 
previous round or the highest new bid for that license. Until someone bids for a license, 
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the standing high bidder is the seller; afterwards, it is the bidder who placed the standing 
high bid. (If two or more bidders make the same high bid during a round, the tie may be 
broken in favor of the bidder who bid first or it may be broken at random.)  

At the end of round n, the auctioneer determines a minimum bid for round n+1 by 
adding an increment to the standing high bid. Increments may vary during the auction. 
For example, increments in the early rounds may be about 15% of the standing high bid 
and those in the late rounds may be about 5%. In the early FCC auctions, bidders could 
make any bid exceeding the minimum bid. However, because bidders sometimes used the 
less significant digits of the bids to communicate information,129 the rules were changed 
so that bidders had to choose bids from a menu constructed from the standing high bid by 
adding from 1 to 9 bid increments.  

The auction closing rule is especially important: the auction ends only after a round in 
which there are no new bids on any license. Until then, bidders can bid on any license. 
This ending rule is important for enabling arbitrage among substitutes, because a bidder 
may become interested in bidding on one license only after the price of another, 
substitute license has risen sufficiently.  

The FCC’s activity rule prevents bidders from waiting until late in the auction to begin 
bidding seriously. In its simplest form, the activity rule simply provides that activity can 
never increase from round to round: a bidder who places eligible bids for n units at round 
t cannot place bids for more than n units at any subsequent round t t′ > .130  

Another feature of most of the FCC auctions has been that, at the end of each round, 
the bidders and the public learn the identity and bids made by all bidders during the just-
completed round.   

The FCC’s rules bear important similarities to some older designs. One of these is the 
famous Walrasian tatonnement, which has been used to study price adjustments in multi-
good systems. In that design, an auctioneer calls the prices and adjusts each price up or 
down over time according to whether the net demand at current prices for the item is 
positive (demand exceeds supply) or negative (supply exceeds demand). Prices in the 
tatonnement continue to adjust by some rule until supply and demand exactly balance. No 
actual trades take place at the intermediate prices of this Walrasian auction process; trade 
takes place only at final market clearing prices. The Walrasian design differs from the 
FCC design in several respects. In the Walrasian tatonnement, the auctioneer calls the 
prices, bids can be freely withdrawn whenever any price changes, prices can both rise and 
fall, and the process is not guaranteed to end in any finite amount of time.  

                                                 
129 Table 1 hints at this use of the low digits; note, for example, the winning bid of $47,505,673. In the DEF 
auction, US West made several bids terminating in the digits 378 on licenses where McLeod Wireless had 
been standing high bidder. These bids appear to have been retaliation for McLeod’s bids in license area 
378, covering Rochester, Minnesota. One might therefore understand  US West’s use of trailing digits as an 
attempt to intimidate McLeod . See Cramton and Schwartz (2001).  
130 The FCC has used several versions of the activity rule. In some, bidders have more freedom to delay 
adding bids early in the auction. For example, there may be an initial stage consisting of several rounds at 
the end of which a bidder can increase his activity by 25%. There can also be waivers that allow a bidder to 
be inactive in a particular round in order to take time for planning.  
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Another similar design that influenced the FCC rules is the silent auction, commonly 
used in charity sales. In these auctions, the auctioneer sets out the items for sale (or 
descriptions of them) on a series of tables. Next to each item is a piece of paper on which 
a bidder can write his bid along with his name or identifying number. As bidders wander 
the room, they can raise the bid on any item they wish. The auction typically ends at a 
fixed hour, often just before a meal is served.  

Silent auctions are simultaneous ascending auctions in much the same sense as the 
FCC auctions. Goods are for sale simultaneously and prices can only rise. However, the 
fixed ending time distinguishes the silent auction from the FCC design.  

Careful observers of silent auctions often see the following scene. As the fixed ending 
hour approaches, some bidder approaches a table. He lifts the pencil and slowly writes his 
name and bid as the bell rings announcing the end of the auction. Often, this is the only 
bid the bidder ever makes for this item. He plans to keep the price low and place a bid 
only when nobody has time left to respond.  

The practice of bidding low at the last possible moment – known as sniping in on-line 
auctions – does not do much damage at charity auctions, because most bidders are feeling 
charitable. They are happy to pay high prices to acquire what they want, knowing that the 
higher the prices, the more they have contributed to charity.  

Bidders at FCC auctions have decidedly different motives from donors at a charity 
auction, so the FCC auction rules aim to eliminate some of the strategic bidding possible 
at a silent auction. A pair of distinctive rules eliminates sniping. These are the closing 
rule, which always allows the bidder an opportunity to respond to late bids, and the 
activity rule, which prevents bidders from suddenly raising demands near the end of the 
auction. These rules also help insure bidders receive an orderly flow of information 
during the course of the bidding, so they can plan their bids more effectively.  

7.2.1 The SAA and the Walrasian Tatonnement  
We analyze the simultaneous ascending auction in two parts. In the first part, we 

assume bidders adopt certain simple strategies and identify the resulting outcomes. This 
part of the analysis, like traditional analysis of the Walrasian tatonnement, focuses on the 
convergence of prices and quantities to a competitive equilibrium. We analyze 
convergence to competitive equilibrium both for the FCC’s simultaneous ascending 
auction, in which bidders call their own bids, and for a “clock auction,” in which the 
auctioneer sets prices to which the bidders respond.  

The second part concerns strategic analysis and it builds upon the first part. We return 
to the Nash equilibrium analysis in section 7.2.3.  

We begin by asking when competitive, market clearing prices exist. Traditional 
theories of competitive equilibrium assume that preferences are convex and that the 
goods are divisible, but the model we study here does not satisfy those conditions. Might 
there be other general conditions under which one can guarantee that competitive 
equilibrium prices exist? If such prices do exist, is it possible that they emerge from a 
monotonic process like the simultaneous ascending auction, in which the standing high 
bids can never decrease from round to round? The answers to these questions require a 
careful, formal analysis.  
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Let N denote the set of bidders and L={1,…,L} the set of goods for sale, with typical 
subset S. Equivalently, we may describe any subset S of L by a vector x of 0’s and 1’s, 
with 1lx l S= ⇔ ∈ .  If bidder j acquires the allocation x and pays m for it, his payoff is 

( )jv x m− . The demand correspondence for j is ( ) max { ( ) }j j
xD p Arg v x p x= − i . We 

assume that there is free disposal, that is, x x′≤  implies that ( ) ( )j jv x v x′≤ .  

Generally, as prices change and demands change with them, there will be some prices 
at which bidders are just indifferent between two different sets of goods. To conform our 
definition of substitutes similar to the usual one, we limit attention to price vectors p for 
which the demand set ( )jD p  is single-valued, that is, for which the optimization 
problem max { ( ) }j

x v x p x− i  has a unique solution.  

Definition. Goods are substitutes for bidder j if on the price domain where jD  is 
single-valued, for any good l, increasing the prices of the other goods does not reduce 
demand for good l: ˆ ˆ ˆ[ , ] ( ) ( )j j

l l l l l lp p p p D p D p− −≥ = ⇒ ≥ .131  

We assume that the prices that can emerge during the auction include only ones at 
which demand is single-valued. Since demand is single-valued for almost all price 
vectors, this is not a significant restriction.  

As new bids occur, the standing high bids and the standing high bidders change. We 
slightly simplify actual FCC procedures. Let p be the vector of standing high bids after 
some round. Then, we will suppose that the vector of minimum bids for the next round is 
(1 ) pε+  for some 0ε > , that is, the minimum bid is the standing high bid plus some 
fixed percentage.132 We assume that the auction opens with some positive vector of 
standing high bids p̂ ; we treat the seller as the initial standing high bidder for each good. 
Thus, the vector of initial minimum bids is ˆ (1 )p ε+ . 

During a simultaneous ascending auction, the gap between the standing high bid and 
the minimum bid for the next round implies that different bidders have different 
opportunities. The standing high bidder with a bid of b on some good could, in principle, 
acquire the good for a price of b if no more bids are made, but any other bidder would 
have to pay a minimum price of at least (1 )b ε+  to acquire the same good, regardless of 
how the others bid.  

We will use these minimum prices – which vary by bidder – to organize our analysis, 
so we need to introduce corresponding notation.  

                                                 
131 Recent authors, beginning with Kelso and Crawford (1982), offer an equivalent definition and call the 
corresponding condition “gross substitutes.” In standard economic terminology, “gross substitutes” and 
“gross complements” conditions are conditions based on Marshallian (“uncompensated”) demand, as 
distinguished from the substitutes and complements conditions based on Hicksian (“compensated”) 
demand. In models with quasi-linear utility such as the ones studied in the text, there is no difference 
between Hicksian and Marshallian demand.  
132 The actual rules for setting the bid increment can be more complicated and can vary from round to 
round. The rule adopted here simplifies our notation.  
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Notation and Definitions.  

1. jS  is the set of goods on which j is the current standing high bidder. 

2. ( , (1 ) )j j
j

S L S
p p pε

−
= +  is the vector of personalized prices for bidder j. 

3. j bids “straightforwardly” if for every possible realization of the auction, the 
following conditions hold: (1) ( )j j jS D p⊂ , (2) j makes new bids in each 
round on the set of goods ˆ ( )j j j jS D p S= − , and (3)  j’s new bid for any good 

ˆ jk S∈  is the minimum bid price, j
kp . 

Intuitively, jp  is the vector of minimum prices at which j could acquire the various 
good sunder the rules of the auction. These prices vary among bidders, because the 
standing high bidder on any good could possibly acquire it at a price lower than is 
available to any other bidder.  

In general, under the rules of the simultaneous ascending auction, it may not be 
possible for a bidder to bid straightforwardly, because the condition (1) may not hold. In 
the Walrasian tatonnement, condition (1) poses no problem because a bidder can 
withdraw bids, but in the simultaneous ascending auction the bidder is committed to his 
standing high bids. The next theorem identifies exactly how restrictive condition (1) is.  

Theorem 7.2. Straightforward bidding is a feasible strategy for bidder j for all initial 
prices p̂ , all increments ε , and all feasible price paths if and only if goods are 
substitutes for bidder j.  

Proof. The auction does not restrict the vector x on which bidder j can bid in the first 
round, so straightforward bidding is feasible for that round. Suppose that straightforward 
bidding is possible through n rounds and that j’s personalized prices after that round are 

jp . Straightforward bidding requires that j bid jp  for the items described by vector 
( )j jD p .  In round n+1, j’s personalized prices are j jp p≥� , and j is the standing high 

bidder on those goods l for which j j
l lp p=� .  

If goods are substitutes, ( ) ( )j j j j
l lD p D p≥� , so straightforward bidding calls for j to 

make the required bid on goods for which he is the standing high bidder. Hence, the 
strategy satisfies the bidding constraints imposed by the auction, and is therefore a 
feasible strategy. 

Conversely, if goods are not substitutes for bidder j, then there exist two goods k and l 
and price vectors p and p�  such that k kp p− −=� , / 1 1k kp p ε= + >� , and 
0 ( ) ( ) 1j j j j

l lD p D p= < =� . With an initial vector of minimum bids p̂ p=  and increment 
factor ε , suppose j bids straightforwardly at the first round. Then, ( ) 1j j

lD p = ; j demands 
good l and may become the standing high bidder for it, while another bidder may bid for 
good k and become standing high bidder on that good. In that case, j’s demand in the 
second round has ( ) 0j

lD p =� , so condition (1) of the definition of straightforward bidding 
is violated.  ■ 
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The impossibility of bidding straightforwardly when goods are not substitutes is very 
problematic for an auction design. It means that even a small bidder who expects to be 
unable to exert much influence on prices cannot just respond to prices, because past bids 
may restrict future ones made at different (higher) prices. This difficulty can drastically 
increase the costs of bidding.  

On the other hand, when goods are substitutes for all bidders, straightforward bidding 
is not only feasible, it also produces outcomes similar to competitive equilibrium 
outcomes. The next theorem shows that the simultaneous ascending auction generates 
prices and allocations that are competitive equilibrium allocations for an economy with 
nearly the same bidder values. In particular the auction outcome maximizes the total 
value over all possible allocations to within a single bid increment.  

Theorem 7.3: Assume the goods are substitutes for all bidders and that all bidders bid 
straightforwardly. Then the auction ends with no new bids after a finite number of 
rounds. Let ( , )p x  be the final standing high bids and assignment of goods. Then ( , )p x  
is a competitive equilibrium for an economy with valuation functions 
ˆ ( ) ( ) ( )j j jv x v x p x xε += − ⋅ −  for each bidder j. The final assignment maximizes total 

value to within a single bid increment:  

 max ( ) ( )j j j j
lj j lx

v x v x pε≤ +∑ ∑ ∑ . 

Proof:  Consider bidder j after round n. Since goods are substitutes and j bids 
straightforwardly, if j’s personalized prices at the end of round n are jp  and if j is the 
standing high bidder on goods jz , then j demands jz  when prices for those goods are 
fixed and the prices of the other goods rise to high levels. It follows that j would earn a 
positive profit if the auction ended after any round n. Since that statement holds for all 
bidders, the maximum total value of the goods is an upper bound for the total price of all 
goods after any round of the auction. Since the bid increments have positive lower 
bounds, the auction ends after a finite number of rounds.  

Bidder j’s final personalized price for any good k satisfies (1 (1 ))j j
k k kp p xε= + − . So, 

when we modify bidder j’s valuation as in the statement of the theorem, j’s demand at the 
final price vector p  solves ( ) ( )ˆmax ( ) max ( ) ( )j j j

x xv x p x v x p x x p xε +− ⋅ = − ⋅ − − ⋅ =  

( )max ( )j j
x v x p x− ⋅ . Comparing the first and last expressions, ˆ( ) ( )j j jD p D p= . 

By the closing rule, we infer that j made no new bids in the final round. So, since j bids 
straightforwardly, ( )j j jx D p∈ . By the previous paragraph, this implies ˆ ( )j jx D p∈  for 
all j, so ( , )p x  is a competitive equilibrium with the modified valuations. 

To show the auction maximizes total value to within one bid increment, observe that:  
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The first equality follows from the definition of the modified valuations; the inequality 
from the restriction that all prices are non-negative; and the following inequality from the 
fact any feasible allocation assigns each good at most once. In the fourth step, we use the 
facts (i) that ( , )p x  is a competitive equilibrium for the modified valuations, (ii) that 
competitive equilibria are efficient, and (iii) that when payoffs are quasi-linear, efficient 
allocations maximize total value. Finally, the last equality follows the definition of ˆ ( )jv ⋅ , 
which coincides with ( )jv ⋅  when evaluated at jx .  ■  

In practice, the most relevant bid increment for assessing outcomes in the FCC auctions 
is the increment that applies when bidders are last eligible to make new bids, which is 
normally near the end of the auction. We might therefore expect the auction’s outcomes 
to approximate competitive equilibria very closely when bid increments near the end of 
the auction are very small. The Milgrom-Wilson rules originally adopted in the US by the 
Federal Communications Commission followed this intuition in reducing minimum bid 
increments in the final stages of the auction.133  

The next theorem asserts that if every bidder regards the goods as substitutes, then a 
competitive equilibrium must exist in this model, despite the indivisibility of the goods. 
In addition, the theorem asserts that if the bid increments are small, the auction allocation 
is a competitive equilibrium allocation. Milgrom (2000b) derived these results.134  

Theorem 7.4. Suppose that for every bidder, the goods are substitutes and that all goods 
have strictly positive marginal values. Then the economy with modified valuations as in 
Theorem 7.3 has a competitive equilibrium and, for initial prices p̂  and bid increments 

0ε >  sufficiently small, the final assignment ˆ( , )x pε  is the assignment for some 
competitive equilibrium.  

                                                 
133 The FCC later changed this rule to reduce transaction costs: smaller increments late in the auction 
produced large numbers of costly rounds with relatively little bidding activity.  
134 Kelso and Crawford (1982) introduce a closely related model of labor markets in which firms make a 
sequence of wage offers to workers analogous to the sequence of bids in a simultaneous ascending auction. 
The Kelso-Crawford auction has the same ending rule as the simultaneous ascending auction and similarly 
limits bid withdrawals. The main differences between the models are two. First, the Kelso-Crawford model 
is more general in allowing workers to evaluate offers based on both the identity of the firm and the wage it 
offers. Second, it requires only that a firm’s bid to a worker beat its own best previous bid to the same 
worker, rather than the best bid from any firm to that worker.  
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Proof. We fix p̂  low enough that each good attracts some bids at the first round. The 
auction must therefore allocate every good to some bidder. With p̂  fixed, we may 
suppress the corresponding argument of x .  

Consider a sequence of positive numbers { } 0nε →  and define ( ( ), ( ))n nx pε ε  to be the 
corresponding sequence of auction outcomes and ˆ ˆ( )j

n n j Nv v ∈=  the corresponding 
sequence of modified valuation functions. Since there are only finitely many possible 
assignments of goods, there must exist some assignment x  that occurs infinitely often 
along the sequence.  

Since each equilibrium price is non-negative and bounded above by the maximum 
value of the complete package of all goods, the price vectors all lie in a compact set. 
Hence, there exists a subsequence n(k) along which ( )( )n kx xε =  and ( )( )n kp ε  converges 
to some price vector p . By theorem 7.3, for every k, x = ( )( )n kx ε ∈  ( ) ( )ˆ( ( ) | )n k n kD p vε . 
By construction, since ( ) 0n kε → , ( )ˆn kv v→ . Since the demand correspondence D has a 
closed graph in prices and values, ( )x D p∈ , that is, ( , )x p  is a competitive 
equilibrium.  ■  

Theorems 7.2, 7.3 and 7.4 all assume that goods are substitutes. We have noted that 
spectrum licenses are an important class of assets sold by ascending auction.  In practice, 
whether spectrum licenses are substitutes or complements may often depend on how the 
licenses are defined. When licenses are relatively large, as in many of the US spectrum 
auctions, assembling multiple licenses may not produce significant economies of scale 
and scope and the licenses may be approximate substitutes. However, when licenses are 
so small that a bidder must combine several to achieve economies of scale or scope, the 
licenses are not likely substitutes.  

How serious is failure of the assumption that goods are substitutes? Can we extend 
theorems 7.2, 7.3, and 7.4 to a broader set of valuations, for which goods need not be 
substitutes? Theorem 7.2 demonstrated that it is not generally possible to bid 
straightforwardly when the goods are not substitutes. According to the next theorem, due 
to Milgrom (2000a), we cannot even guarantee the existence of competitive equilibrium 
when the substitutes condition fails.  

Theorem 7.5: Suppose that the set of possible individual valuation functions includes 
all the ones for which goods are substitutes and also includes at least one other valuation 
function. Then, if there are at least three bidders, there is a profile of possible individual 
valuations such that no competitive equilibrium exists.135  

A two-license, two-bidder example, summarized in Table 2, provides intuition for this 
theorem. The table shows the value to each of two bidders of licenses A and B singly and 
of the package AB. If c>0, then the two licenses are not substitutes for bidder 1, for at 
                                                 
135 Gul and Stacchetti (1999) prove a related theorem. They assume that the set of possible valuations 
includes the all those in which bidders demand only a single item and that the number of bidders is at least 
as large as the number of goods plus one. They conclude that if the set of possible valuations includes one 
for which goods are not substitutes, then there is a profile of possible individual valuations such that no 
competitive equilibrium exists.  
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prices up to .5a c+  and .5b c ε+ + , the bidder would want to buy both licenses if 0ε <  
but neither if 0ε > , so demand for license A falls with an increase in the price of license 
B. If there is one bidder for whom licenses are not substitutes, then we can find 
valuations such that licenses will be substitutes for another bidder (here, bidder 2) but no 
competitive equilibrium exists.  

If 0c > , then the second bidder does find the two goods to be substitutes.  

Suppose there is a competitive equilibrium in this example. Then, the equilibrium 
allocation must be efficient, so bidder 1 must acquire both licenses. Since bidder 2 does 
not demand any licenses, the equilibrium prices must satisfy .6Ap a c≥ +  and 

.6Bp b c≥ + . However, these conditions imply that 1.2A Bp p a b c+ ≥ + + , so bidder 1 
does not wish to buy, either. Hence, no competitive equilibrium prices exist.  

Table 2 

 A B AB 

Bidder 1 a b a+b+c 

Bidder 2 a+.6c b+.6c a+b 

 

The third bidder required by the theorem allows us to reduce any auction with multiple 
items to an equivalent auction with just two items.  

Proof of Theorem 7.5. We first outline the proof. We choose a bidder (bidder 1) for 
whom goods 1 and 2 are not substitutes and then introduce two other bidders with 
identical linear valuations for goods. We fix their values to ensure that the equilibrium 
prices of goods other than 1 and 2 are 12p− . With those prices fixed, we define the 
indirect value function of bidder 1 conditional on whether 1 acquires good 1, good 2, 
both, or neither. We then introduce a fourth bidder who values only goods 1 and 2 to 
create a non-existence problem like that of the example preceding this theorem. Finally, 
we observe that removing one of the bidders with identical valuations does not change 
the conclusion.  

Suppose bidder j has a valuation function jv  such that goods are not substitutes. Then 
there exist a price vector ( , )k kp p− � , a number ε +∈\ , and a pair of goods, say goods 1 
and 2, such that 1 1 1 2 1 1( , ) ( , ) 1j jD p p D p p− −= =� �  and 1 1 1 2 1 1( , ) ( , ) 0j jD p p D p pε ε− −+ = + =� � . 
We may take 1j = . 

Introduce bidders 2 and 3, with  identical linear valuations for bundles x: 
12 1 2 12( ) (0,0, ) ( , , )v x p x x x− −= ⋅� . Define 1 2ˆ( , )v x x =  

12

1
1 2 12 12 12max ( , , )x v x x x p x

− − − −− ⋅ . Let 
ˆ ˆ(1,0) (0,0)a v v= − , ˆ ˆ(0,1) (0,0)b v v= −  and ˆ ˆ ˆ ˆ(0,0) (1,1) (1,0) (0,1)c v v v v= + − − . Bidder 

1’s demand pattern implies that 0c > .  

Bidder 4 values only goods 1 and 2. Just as in table 2, he will pay up to .6a c+  for 
license 1, up to .6b c+  for license 2, and up to a b+  for the pair.  
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By construction, in any competitive equilibrium, the prices of goods besides 1 and 2 
must be at least 12p− . If there any competitive equilibrium has higher prices for those 
goods, then reducing those prices to 12p−  preserves a demand of one for each unit, so 
there is also an equilibrium with prices of 12p−  for goods other than 1 and 2. Hence, we 
may limit attention to such equilibria.  

The next part of the proof exactly follows the example. A competitive equilibrium 
allocation must maximize total value, so it must assign goods 1 and 2 to bidder 1. Since 
the fourth bidder acquires no licenses, the prices of goods 1 and 2 must be at least .6a c+  
and .6b c+ , respectively, but such prices are inconsistent with bidder 1’s purchasing 
goods1 and 2. 

Finally, remove bidder 3 and suppose that, contrary to the statement of the theorem, 
this economy has some competitive equilibrium ˆ ˆ( , )p x . For any item 1,2m ≠ , if bidder 1 
acquires item m, then bidder 2 does not, so ˆm mp p≥ . If bidder 1 does not acquire the 
item, then bidder 2 does, so ˆm mp p≤  and there is another equilibrium with ˆm mp p= . 
Hence, ( )1 2 12 12ˆ ˆ ˆ ˆ( , , ),p p p p x− −∨  is a competitive equilibrium with three bidders and, if we 
reintroduce bidder 3, we may take his demands at those prices to be zero. So the 
preceding prices and allocation also form a competitive equilibrium of the economy with 
the four bidders identified above, contrary to our finding that no such equilibrium 
exists.  ■  

The non-existence of competitive equilibrium relates to the “exposure problem” faced 
by participants in a simultaneous ascending auction. A bidder who starts out by bidding 
straightforwardly according to his demand schedule exposes himself to the possibility of 
bidding off his demand schedule in later rounds, winning a collection of goodshe does 
not want at the prices he has bid because complementary goods have become too 
expensive.  

In the example in Table 2, if bidder 2 plays an undominated strategy, then he will not 
quit until the prices of the two items reach their reservation levels. At those prices, bidder 
1 loses money. So, if bidder 1 suspects bidder 2 will bid in this fashion, he will not bid 
aggressively for the two items and the outcome of the auction will be inefficient.  

One puzzle raised by the preceding analysis is that some spectrum auctions involving 
complementary licenses appear to have functioned well. In the US regional narrowband 
auction in 1994, several bidders successfully assembled collections of regional paging 
licenses in single spectrum bands to create the package needed for a nation-wide paging 
service. In Mexico, the 1997 sale of licenses to manage point-to-point microwave 
transmissions in various geographic areas exhibited a similar pattern. What appears to be 
special about these auctions is that licenses that were complementary for bidders planning 
nationwide paging or microwave transmission networks were not substitutes for any 
other bidders.  

The theorems identify a problem in situations in which licenses that are complements 
for one bidder are substitutes for another. The Netherlands DCS-1800 auction, which 
took place in February 1998, illustrates the practical importance of this possibility. In that 
auction, eighteen lots were offered for sale. Two of the lots were designed to be large 
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enough that a new entrant could use them to establish a new wireless telephone business. 
The remaining sixteen lots were too small to be valuable singly to new entrants, but could 
be used to expand the systems of incumbent wireless operators. Alternatively, a new 
entrant who acquired perhaps 4 or 6 small licenses could combine them to support entry 
at an efficient scale.  The smaller licenses would therefore likely be complements for the 
new entrants, but substitutes for the incumbents. The preceding theorems identify exactly 
this pattern as problematic.  

According to theorem 7.2, the new entrants were certain to find bidding for the smaller 
licenses difficult. Bidding straightforwardly in every round is infeasible under the auction 
rules. One might hope to use competitive prices to predict bidding but, according to 
theorem 7.5, competitive, market-clearing prices may not exist. As our numerical 
example demonstrates, even bidders who are certain that they have the highest values 
might wisely refrain from bidding aggressively under these circumstances, because there 
may be no way to win profitably.  

The outcome of the Netherlands auction seems to confirm these concerns. The final 
prices per unit of bandwidth for the two large lots were more than twice as high as for 
any of the sixteen smaller lots. The entrants, willing to pay high prices for large chunks of 
spectrum, appear to have been unwilling to risk losses assembling smaller chunks of 
spectrum.136  

We return in the next chapter to the problem of bidding for complements.  

7.2.2 Clock Auctions 
The FCC’s implementation of the simultaneous ascending auction has worked 

reasonably well for spectrum licenses, in which each item sold is arguably unique. One of 
its main practical disadvantages has been the length of the resulting auctions. In practice, 
allocations for almost all goods change little after the half-way point of the auction; the 
second half merely refines the allocation of a few smaller licenses.  

To see why the auction runs so slowly and how one might speed it up, consider a 
simple example. Suppose n+1 bidders compete to buy n identical objects; a bidder can 
acquire only a single object. Suppose that prices start at zero, that each bidder bids 
straightforwardly, that the minimum new bid for any object is the standing high bid plus 
1, and that each bidder has a value v > 1 for any one object. In the first round of the 
auction and up to n-1 subsequent rounds, all new bids will be at a price of 1 for some 
object that has not yet received a bid. In each round after this initial stage, n of the 
bidders will be standing high bidders on some item and will place no new bid, while the 
remaining bidder will raise the price of some item by 1. Total auction revenue will 
therefore rise by 1 per round. Hence, the auction will take between 1 1n v − +    and 

n v    rounds.137  

                                                 
136 Some of the price difference may also be attributed to other differences in the spectrum offered in the 
different kinds of license.   
137 The notation v    denotes the largest integer less than or equal to v.  
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One reason the standard simultaneous ascending auction is so slow is that it fails to 
take advantage of the homogeneity of the items. For sales of commodities like securities 
or electrical power, this defect is decisive. Two alternatives to the simultaneous auction 
design address this defect. The simplest is a kind of sealed-bid auction such as the highest 
rejected bid auction described earlier. If bidders behave straightforwardly, this auction 
generates a competitive price when there is just one kind of good for sale. Even with 
straightforward bidding, such an auction is not suitable when there are several 
imperfectly substitutable goods to be sold.  

The second alternative is the clock auction, in which the auctioneer posts prices for 
each kind of good on a digital “clock.” Intuitively, the clock auction is simple: in each 
round, the auctioneer increases prices by one increment for goods for which demand 
exceeds supply. Clock auctions embody many of the same principles as the simultaneous 
ascending auction and the design can accommodate both heterogeneous items requiring 
individual prices and homogeneous items requiring a single price.  

Though the clock auction is simple in principle, implementing it poses practical 
challenges.  Since the auctioneer increases bids in discrete increments, prices can 
“overshoot,” requiring subtle adjustments to the auction design. For example, in the 
simple case described above, what should the rules specify if ten units of a good are 
offered but demand drops from eleven to nine in some round when the price increases?  

As discussed below, one theoretical solution to this problem is for the auctioneer to get 
more information from bidders than just point estimates of their demands at prevailing 
prices. The auctioneer can use the additional information to decide to whom to assign 
goods as changing prices change the signs of excess demands. To date, actual clock 
auctions have also asked bidders for additional information beyond their demands at 
current prices.  

The 2002 New Jersey power purchase, in which electrical utilities bought power for 
their customers, illustrates some of the difficulties of implementing a clock auction. 
Suppose bidders demand four kinds of power products, labeled A through D. Suppose 
that, in some round, products A and B are oversubscribed (demand exceeds supply at the 
current prices) and products C and D are undersubscribed (demand is less than supply). 
Suppose the auctioneer increases prices for products A and B and that after the change, 
products A and B become undersubscribed and products C and D become 
oversubscribed. How should the rules respond to this scenario? New Jersey’s auction 
rules asked bidders switching from bidding on A or B to bidding on C or D to attribute 
their new bids on C and D to “switches” from A and B. A complex set of rules sometimes 
disallowed switches to avoid creating an undersubscribed product. The rules also 
provided that if a bidder’s switch from A to B were disallowed and the bidder were 
eventually to win product A, then the bidder’s price for A would be no higher than the 
highest price at which he had voluntarily bid.  

Electricité de France (EDF) used a related but distinct clock auction design for its 
power sales in 2002 and 2003.138 The EDF sales take place every three months. The 

                                                 
138 The EDF products were call “virtual power plants” because the buyers had contractual access to the 
capacity of the plant but EDF continued to operate the physical power plants.  
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products sold are supply contracts of different durations, ranging from 3 months to 36 
months. In principle, these multiple durations could create the same kinds of complexities 
as those caused by multiple products in the New Jersey auction. In practice, those 
complexities were avoided by the way the sale was structured.  

Before each auction, EDF determines the total capacity its wishes to offer, based 
primarily on the capacity it has available over the first three months of the contract 
period. Using the prices in other European markets, it determines the price per megawatt-
hour that it will accept for a contract of n months must be n∆  more (or less) than the 
price of the basic three month contract. The deltas define a scoring rule that allows EDF 
to run the auction as if it were selling a single homogeneous product, namely, capacity in 
the first three month period of the contracts.  

The EDF auction uses electronic bidding agents to speed the bidding while mimicking 
what would happen in a clock auction, with continuously increasing prices. The actual 
auction proceeds in a series of rounds. The rules specify a planned price increase δ for 
each round. Within the round, only the electronic agents bid, specifying quantities 
demanded at each price. Prices on each kind of contract increase continuously during the 
round. The round ends when either (1) prices on contracts of every duration have 
increased by δ , or (2) total demand decreases below total supply. When the second 
condition occurs, the auction ends. EDF chooses a δ large enough that the auction will 
end within about five rounds. 

The electronic rounds are essentially instantaneous. Between rounds, there is a long 
enough pause for bidders instruct their agents how to bid during the next round. The 
auctioneer provides a form for entering these instructions. Each human bidder gives his 
agent an initial vector of quantity demands for the round, which (except in the first round) 
must equal his final demands from the preceding round. In addition, the human bidder 
may specify any finite number of changes in demand during the round. A typical 
instruction to an agent to change the bidder’s demand specifies that 40% of the way 
through the round, when all prices have increased by .4δ , the electronic agent is to 
reduce its demand for product 1 by 100 units and increase its demand for product 2 by 50 
units. In general, an instruction specifies a percentage and a list of demand changes, 
subject to the restriction that the total number of units demanded cannot increase as prices 
rise.  

When the auction ends, EDF is committed to a certain supply capacity for the first 
three months and some lower capacity for each subsequent month. Since EDF’s 
uncommitted capacity is approximately constant, this plan is always technically feasible. 
The outcome typically leaves uncommitted capacity available for the next auction, which 
takes place three months later.  

EDF conducts its sales as if it faces only one constraint, the availability of capacity in 
the first three-month period, and the result is a drastically simplified design. The reality 
of multiple constraints in accommodated by running a series of auctions over time. This 
sort of design was not feasible for the New Jersey situation, in which multiple kinds of 
product constraints all applied over the same period and all needed to be resolved 
together. New Jersey needed is an auction that could solve a multi-product matching 
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problem, not merely the problem of setting total overall demand equal to total overall 
supply.  

Demange, Gale and Sotomayor (1986) devised a theoretically sound way to run clock 
auctions for situations similar to New Jersey’s, but their analysis assumes that each buyer 
wants just a single item. Gul and Stacchetti (2000)  have extended that analysis to the 
general case of demands for goods that are substitutes for each bidder.  

Discrete goods create practical and theoretical problems for clock auctions because at 
critical moments during the auction, prices leave bidders exactly indifferent between 
different bundles of products To raise prices on the products that are overdemanded, one 
needs a definition of excess demand when bidders are indifferent among some 
allocations.  

The theoretically correct way to identify overdemanded goods requires that each bidder 
report the whole set of bundles among which he is indifferent at current prices. To To 
explain the Gul-Stacchetti procedure, we begin by thinking about the simple case in 
which there are no indifferences. In this case, each bidder demands a particular bundle of 
products, so one can identify the collection of products for which demand strictly exceeds 
supply. That set of goods is a maximally overdemanded set, that is, a set that maximizes 
the difference between demand and supply. By construction, it is also the smallest such 
set. In the general case, when indifferences are possible, the auctioneer again must 
identify the smallest maximally overdemanded set. If this set has positive excess demand, 
then the auctioneer must increase the prices of exactly this the set of goods.  

To identify the smallest maximally overdemanded set, we introduce the following 
notation. For each set of products B and price vector p, let # ( , )D B p  denote the number 
of products demanded from set B. If at least one bidder has more than one payoff-
maximizing allocation, then let # ( , )D B p  be the minimum total number of products 
demanded from set B at any profile of optimal choices for the bidders. Let # ( )S A  denote 
the total number of units supplied of all products in set A. A set B is maximally 
overdemanded at price vector p if # ( , ) # ( )D B p S B− =  ( )max # ( , ) # ( )A D A p S A− . A 
smallest maximally overdemanded set is any maximally overdemanded set B such that no 
subset is maximally overdemanded.  

To illustrate the calculation of a maximally overdemanded set, suppose there are two 
products and just one bidder, and that the bidder is indifferent between the bundles (4,3) 
and (3,4). In that case, # ({1}, ) 3D p = , # ({2}, ) 3D p = , and # ({1,2}, ) 7D p = . If the 
seller has three units of each product available for sale, then the individual products are 
not overdemanded, because the minimum number of units demanded of each individual 
product does not exceed the supply. In this example, however, the set {1,2} is 
overdemanded, because the minimum total number of units demanded from that set is 7, 
which exceeds the available supply.  

The clock auction proceeds by raising the prices on both goods in tandem until the 
demand set changes. For example, it may happen that as the prices increase, the buyer 
reaches a point at which, in addition to the bundles (4,3) and (3,4), the bundle (3,3) 
becomes an optimal choice. At that point, the clock auction would end, with demand 
equal to supply for each product.  
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Gul and Stacchetti (2000) study a model of a clock auction assuming that valuations 
are integers and that prices increase by a single unit in each round. They apply matroid 
theory to prove that if goods are substitutes and all bidders report their demands 
truthfully, then there exists an allocation at the final prices that exactly clears the market. 
In other words, if goods are substitutes, prices from the just-described procedure 
converge to a competitive equilibrium price vector.  

From one perspective, this result is intuitive: the clock auction seems to generate prices 
similar to those of the FCC simultaneous ascending auction with straightforward bidding 
and we have already seen how the FCC auction design yields competitive outcomes when 
goods are substitutes. Research to date, however, is merely suggestive and has not yet 
unified the two approaches.  

7.2.3 Strategic Incentives in Uniform Price Auctions 
Next, we return to the issue of incentives for strategic behavior in uniform price 

auctions. Our earlier analysis focused on sealed-bid auctions and revealed equilibria with 
prices well below the goods’ marginal values. Particularly in continuous models, we 
showed that such equilibria are common regardless of the number of bidders. We 
obtained similar results for discrete models with many goods and many bidders. 

In each case, we used a full information model and the equilibrium we identified 
allowed each bidder an infinite set of best replies. Moreover, one of the models produced 
a continuum of Nash equilibria—a conclusion that hardly inspires confidence in the 
model’s predictions. One might wonder whether more detailed modeling of the 
environment, adding uncertainty or dynamics or both, could identify the most plausible 
equilibria. Earlier, we discussed some attempts to add uncertainty to the model and the 
mixed results they produced. In this section, we create a dynamic model of a clock 
auction and demonstrate its strategic equivalence to a certain sealed-bid auction. Then, 
we use weak dominance and a concept based on backward induction to try to rule out 
some of the extreme equilibria found in our previous analyses.  

7.2.3.1 The Basic Clock Auction Model 
We model a clock auction with N bidders in which NS units of a perfectly divisible 

good are offered for sale. A bidder j who acquires q units at price p earns a payoff of 
( )jV q pq− . Suppose that jV  is continuous and strictly concave and let ˆ ( )jq p =  

( )arg max ( )j
x V x px

+∈ −\  be the associated demand function.  

The clock starts at some reserve price r and increases in small increments from round 
to round. Each bidder announces the quantity he demands at the current price, and the 
activity rule prohibits reducing this quantity from round to round. The auction ends as 
soon as the total quantity demanded by all bidders is less than or equal to the quantity 
supplied, which is NS units. To ensure that the game is well defined, assume that the 
auction will terminate for certain if the auction reaches a pre-specified very high price. 
When the auction terminates, the transaction price is set at current price showing on the 
clock and each bidder receives the quantity he demanded at that price.  

To minimize the possibility that bidders might support collusive equilibria by 
retaliating against one another for deviations, assume that the only information the 
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bidders receive during the auction is the current price. With this assumption, the current 
price summarizes all public information at any time during the auction, so (reduced) pure 
strategies specify bids that depend only on the current price.139 If the set of possible 
prices is the set of all non-negative numbers, then a strategy is non-increasing function 

: [0, ]q NS+ →\  mapping possible prices to quantities.  

This model highlights the close connections between the clock auction and the sealed-
bid uniform price auction. When we model the clock auction as above, both have the 
same strategy space and payoff mapping. The only differences are that (1) the clock 
auction allows a dynamic analysis using backward induction and (2) we have so far used 
a discrete price space in the clock auction and a continuous price space in the sealed-bid 
auction. Let us now remove that latter difference, so that prices are continuous in both 
cases. Also, for technical reasons, we restrict attention to continuous strategies.  

First, we identify and eliminate some weakly dominated strategies.  

Theorem 7.6. Suppose there are 2N ≥  bidders. Let ( )q p  be any strategy for the clock 
auction game and let ˆ( ) min( ( ), ( ))q p q p q p= . If q q≠ , then q  weakly dominates q.  

Proof. Suppose q q≠ . Since 2N ≥ , there exist strategies for the other bidder(s) such 
that q and q  lead to different prices at the outcome of the auction. So, it suffices to prove 
that whenever the outcomes corresponding to the two strategies differ, q  always earns 
strictly more than q.  

For any opposing strategy profile, suppose the outcomes ( , ( ))p q p  and ( , ( ))p q p  that 
result from playing q and q  are unequal. Then since q q≤  at every price, p p< . By the 
definition of q̂ , the outcome ˆ( , ( ))p q p  is weakly more profitable for a bidder than 
( , ( ))p q p . Since p  is not a market-clearing price for demand function q, it follows that 

ˆ( , ( )) ( , ( ))p q p p q p= . Also, a bidder prefers ˆ( , ( ))p q p  to ˆ( , ( ))p q p , because both are 
price-taking demands and the latter entails a higher price. So, a bidder prefers ( , ( ))p q p  
to ( , ( ))p q p .  ■  

Next, we illustrate the use of backward induction using a simple symmetric model. In 
this model, each bidder has the same strictly increasing, concave, continuously 
differentiable valuation function ( )V q  with corresponding demand function q̂ .  

                                                 
139 Recall that a reduced strategy is an equivalence class of pure strategies that always induce the same 
outcome. Our analyses of the Dutch auction and the ascending auction in earlier chapters also used reduced 
strategies. 
In the present case, since bidders know the history of their own past bids in addition to the current price, a 
pure strategy is formally a map from the current price and the bidder’s own past quantities into a current 
quantity demand. Notice, however, that given any pure strategy Q and any price p, one can identify a 
unique quantity a bidder will demand if the price reaches p. Thus pure strategy Q implies a map q from 
prices to quantities. Any two strategies that induce the same map q necessarily generate the same outcomes, 
so such strategies are equivalent. The non-increasing function q(p) that maps prices to bid quantities 
characterizes the equivalence class, so we call this the reduced strategy and use it for our analysis. In the 
text, we usually call q a “strategy,” omitting the adjective “reduced.”  
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Theorem 7.7. For any reserve price r and any number of bidders N, the strategy 
ˆ( ) min( , ( ))q p S q p=  is a symmetric Nash equilibrium of the clock auction game.  

Proof.  If each bidder adopts the specified strategy, then no bidder demands more than 
S, so the bidding stops immediately at the reserve price r and each bidder acquires 

ˆmin( , ( ))S q r  units at price r. By inspection, among all deviations that lead the deviator to 
acquire a quantity less than S, none earns a higher payoff than the equilibrium strategy, 
because none produces a lower price than r.  

So, if there is any profitable deviation, it must enable the deviator to acquire q S>�  at 
some price p r>� . Using Theorem 7.6, we may assume without loss of generality that 

ˆ( )q q p≤� � . The two preceding inequalities imply that at price p� , the 1N −  bidders who 
do not deviate each acquire ˆmin( , ( ))S q p S=� . Hence, the total quantity purchased is 

( 1)q N S NS+ − >� , demonstrating the market cannot clear.  ■   

Notice that, if ˆ( )q r S≥ , then the value to a bidder from playing the equilibrium 
strategy is ( )V S rS− , which is decreasing in r. If ˆ( )q r S≤ , then the corresponding value 
is ˆ ˆ( ( )) ( )V q r rq r− , which is again decreasing in r. Since this value is everywhere 
decreasing in r, it follows that it is always in a bidder’s interest to act to stop the auction 
immediately. One can formalize this argument to give an alternative proof of Theorem 
7.7.  

The theorem identifies an equilibrium consistent with backwards induction. After any 
history of bidding, the bidders effectively find themselves in a new game starting at the 
current price. The theorem asserts that the proposed strategy, restricted to the new game, 
is a symmetric Nash equilibrium of that game. This backward induction property is 
similar, but not identical, to the defining property of subgame perfect equilibrium.140  

Notice that the equilibrium strategy identified by the theorem depends on the per capita 
supply S but not on the number of bidders N. In this sense, the theory predicts that 
increasing the number of bidders does not necessarily increase the effective competition 
in the auction. We also discover something about the selection of equilibrium: weak 
dominance and backward induction alone do not eliminate equilibria with very low 
prices.  

7.2.2.2 The Alternating-Move Clock Auction 
Ausubel and Schwartz (1999) explore the idea that backward induction may actually 

select an equilibrium with a low price as the unique equilibrium. To eliminate the 
multiplicity of equilibria found in other models, Ausubel and Schwartz add two novel 
assumptions. First, bidders bid in sequence, so moves are not simultaneous as in other 
models. Second, each bidder observes the previous bids before choosing his own 
quantity. These changes convert the auction into an extensive form game with perfect 
information. It is a standard result of game theory that, generically, finite games with 

                                                 
140 In a game of perfect recall such as this one, a subgame starts only at a node where no bidder has private 
information. Bidders in the model treated here are privately informed about their own past quantity choices, 
so what is called a “new game” in the text is not a subgame according to the standard definition.  
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perfect information have unique equilibria consistent with backward induction.141 
Although we cannot directly apply this result to auctions, we will see below that a certain 
model of a clock auction with alternating moves has a unique equilibrium.142  

In our model, two bidders have increasing, strictly concave and continuously 
differentiable valuation functions 1( )V q  and 2 ( )V q , with 1 2(0) (0) 0V V= = .  There is 
one divisible good for sale. The auction has a reserve price of r.  

The state of the auction is a pair ( , )p q , where p represents the current price on the 
clock and q represents the number of units currently demanded by all bidders except the 
current bidder. The initial state of the auction is p r=  and 1q > .  

At any round 1n ≥ , only one bidder moves.  

If n is odd, bidder 1 observes the state variable ( , )p q  and chooses a quantity 1q . If 

1 1q q+ ≤ , then the auction ends at price p, bidder 1 gets quantity 1q  and bidder 2 gets the 
quantity q. In this case, we say that “1 accepts” the state. If 1 does not accept the state, 
then the round advances. The state variable for the next round becomes 1( 1, )p q+ . 
Intuitively, 1 is the standing high bidder at quantity 1q  and price 1p + .  

If n is even, an analogous process occurs, but it is bidder 2 who moves. Bidder 2 
observes the state variable ( , )p q  and chooses a quantity 2q . If 2 1q q+ ≤  (“2 accepts”), 
the auction ends at price p and bidders 1 and 2 get q and 2q  units, respectively. 
Otherwise, the auction proceeds to the next round with state 2( 1, )p q+ .  

We will see shortly that there is a unique equilibrium of this game consistent with 
backward induction. For now, let us temporarily assume uniqueness and characterize the 
equilibrium strategies. Given the state ( , )p q , j can accept and earn a payoff of  

 ( )
[0,1 ]

( , ) max ( )j j

x q
p q V x pxα

∈ −
= − .  (7.6) 

Alternatively, he can reject and make a bid that is acceptable to bidder i:  

 
( )

[0,1]
( ) max ( ) ( 1)

subject to ( 1, ) ( 1)

j j

x

i i

p V x p x

p x p

β

α β
∈

= − +

+ ≥ +
 (7.7) 

                                                 
141 This means that if there are N players and K terminal nodes in the extensive form and if we regard the 
payoffs as an element in NK\ , then the set of payoffs for which the game has more than one equilibrium 
has Lesbesque measure zero. This fact suggests that failure of uniqueness requires either a rare coincidence 
or some reason why the terminal nodes have special structure. Auction games have the latter property: 
several paths through the auction can lead to identical prices and allocations and hence identical payoffs.  
142 The model developed in the text differs slightly from the original Ausubel-Schwartz model. They 
modeled a simultaneous ascending auction in which prices of different units could vary, whereas the text 
models a clock auction with a uniform price.  
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Calculating 1α  and 2α   is straightforward. To calculate 1β  and 2β , observe that if the 
price p is high enough, then ( )[0,1]0 ( ) max ( ) ( 1)j j

xp V x p xβ ∈≤ ≤ − + =  0. So, one can 
construct the two functions iteratively, starting with high prices.  

Theorem 7.8. The alternating clock auction game described above has a unique 
equilibrium. At equilibrium, given the state ( , )p q , the active bidder j accepts if 

( , ) ( )j jp q pα β≥ . Otherwise, the active bidder j makes a bid leading to a state that the 
other bidder will accept. The bid solves (7.7) and j’s payoff is ( )max ( , ), ( )j jp q pα β .  

Proof. We prove uniqueness by induction. By assumption, there is some price at which 
the optimal demands are zero; for any sufficiently high price, the active bidder always 
accepts and the auction ends. Active bidder j’s payoff is then ( )max ( , ), ( )j jp q pα β . We 
proceed by mathematical induction.  

Let p  be a price for which the theorem predicts a unique equilibrium. At price 1p − , 
active bidder j has three options. His first option is to accept, earning the payoff 

( 1, )j p qα − . His second option is to make an acceptable offer. By the inductive 
hypothesis, the other bidder will accept such an offer in the next round, so j will earn 
payoff ( 1)j pβ −  and, by (7.7), the other bidder will earn ( , ) ( )i ip q pα β= . His third 
option is to make an unacceptable offer. In that case, by the inductive hypothesis, the 
other bidder’s payoff is again ( )i pβ . The total payoff in the continuation game must be 
lower in this case than if j makes an acceptable offer, because the price increases in the 
continuation game. Hence, j’s payoff in this case is less if he makes an unacceptable 
offer.  

Hence, j’s maximal payoff at 1p −  is ( )max ( 1, ), ( 1)j jp q pα β− − . Hence, the 
equilibrium characterization applies to any price.  ■  

Corollary 7.9. The final price in the unique equilibrium of the alternating clock auction 
consistent with backward induction is p r=  or 1p r= + . 

Proof. According to theorem 7.8, in the first round, bidder 1 either accepts or makes a 
bid leading to a state that 2 accepts. In the first case, the price is p r= . In the second, the 
price is 1p r= + .  ■  

Thus, the clock auction with alternating bids does restrict the set of equilibria, but not 
to competitive equilibria. As in bargaining models with alternating offers, a bidder who 
can foresee he will ultimately win just x units has an incentive to end the auction early, 
obtaining those units at a low price. The winning bidders therefore bid just enough to win 
all the items.  
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7.2.3.3 Strategic Incentives with Elastic Supply143 
So far, we have restricted attention to models in which the quantity supplied is fixed 

and tried to rule out low-price equilibria by studying auction designs in detail. Fixed 
supplies are an important feature of some real environments. For example, in the 
California electric power markets of 1999-2000, consumers of power paid a regulated 
price and an auction market determined supply to meet the fixed demand. Would much 
be gained if both sides of the market could bid?  

In this section, we modify the basic model of a clock auction  to accommodate supply 
that varies with price according to an increasing inverse supply function ( )P q . 
Otherwise, the rules of the auction parallel those of the basic clock auction. A (reduced) 
strategy for bidder i in the game starting with reserve r is a continuous, nonincreasing 
function ( | )iq p r . The auction ends as soon as there is excess supply, that is, it ends at 

the lowest price p r≥ for which ( )( | )j
j N

p P q p r
∈

≥ ∑ . When the market clears at price 

p, bidder j’s payoff is ( ( )) ( )j jV q p pq p− . Recall that ˆ( )q p  is the competitive demand of 
a bidder with valuation V.  

For purposes of illustration, we assume a symmetric linear-quadratic model, scaling the 
supply according to the number of bidders N. Thus, let ( )( ) /P q a b q N= +  be the inverse 

supply function and suppose the bidder value functions are 21
2( )V q q qα β= − . Let *

Nq  
denote the symmetric Cournot quantity and let ( )NS p  be the total supply, so that 

1( ) ( ) / ( ) /S p p a b P p N−= − =  is the per-bidder supply function corresponding to P.  

Theorem 7.10. Define ( )*ˆ( , ) min ( ),max( , ( ))Nq p r q p q S r= . Then, the the strategy 
( , )q p r  is a symmetric Nash equilibrium of the symmetric linear-quadratic144 clock 

auction with reserve price r. Moreover, there is no symmetric equilibrium in which the 
price is less than the Cournot price *

Np . 

Proof. One can extend Theorem 7.6 to this model, so we may limit attention to 
deviations satisfying ˆ( , ) ( )q p r q p≤  and such that the price never exceeds the competitive 
price *p . (The outcome in the case where *r p>  is uninteresting and immediate.) On the 
remaining set of possible prices *[ , ]r p , since the non-deviators play the equilibrium 
strategy, their quantities satisfy * ˆ( , ) max( , ( )) ( )Nq p r q S r q r= ≤ .  

                                                 
143 The analysis in this section draws on Klemperer and Meyer (1989) and McAdams (2002). The 
Klemperer-Meyer analysis characterizes equilibrium in a model in which supply is both uncertain and 
elastic. They find no equilibria similar to the zero price equilibria. The McAdams analysis observes that 
very low price equilibria can be eliminated by modifying the rules of the auction in ways that resemble 
increasing the elasticity of supply.  
144 In the proof of the theorem, we use the linearity to ensure that the bidders’ optimization problems are 
concave and that the Cournot best reply function slopes downwards. The conclusion of the theorem 
remains true for any supply and value specifications that share these properties.  
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To show that deviations are unprofitable, we consider two cases. First suppose 
*( ) NS r q≤ . Then, a bidder who deviates to win quantity q earns 

( )*( ) ( ( 1) ) /NV q qP q N q N− + − , his Cournot profit. So, no deviation can lead to more than 
the Cournot profits, which are the equilibrium profits in this case. Hence, there exists no 
profitable deviation.  

Next, suppose *( ) NS r q≥ . Then, a bidder who deviates to win quantity ( )q S r≥  earns 

( )( ) ( ( 1) ( )) /V q qP q N S r N− + − . Since the Cournot best-reply curve slopes downward, if 
q were unconstrained in this bidder’s objective, the bidder would optimally deviate to a 
quantity *

Nq q′ < . By concavity, profits decrease in q′  on the domain *( ) Nq S r q′ ≥ ≥ , so 
there can be no profitable deviation to a higher quantity than specified by the proposed 
strategy. Hence, the best reply is some quantity ˆ( ) ( )q S r q r≤ ≤�  at which the auction ends 
immediately at price r. So, the best reply maximizes ( )V q rq− . Since ˆ( )q r =  

( )arg max ( ) ( )q V q rq S r− ≥ , and since the objective is concave, the constrained optimum 
is at ( )S r . Therefore, the proposed strategy is a best reply to itself, and so a symmetric 
equilibrium strategy.  

Suppose, contrary to the theorem, that there is some equilibrium with prices below the 
Cournot price. Then, there is some reserve price *

Nr p<  and some equilibrium such that 
the market clears immediately, and each bidder acquires his share ( )S r  of the total 
quantity ( )NS r . Since *

Nr p<  and supply increases with price, *( ) NS r q< . Since the 
quantity ( )S r  is not a Cournot quantity and since the Cournot best reply function slopes 
downwards, the best reply in the Cournot game to the quantities ( )S r  is some *

Nq q′ > , 
which results in a price p r′ > .  

Let us verify that a deviator who demands q′  at all prices in the auction increases his 
payoff by doing so. Indeed, if the other bidders continue to demand ( )S r , then the 
deviator earns ( ) ( ( )) ( )V q p q V S r rS r′ ′ ′− > − , just as in the Cournot model. The only 
alternative is that the other bidders reduce their quantity demands, and in that case the 
bidder gets the same quantity q′  at a price p p′′ ′< , so the deviation pays 

( ) ( )V q p q V q p q′ ′′ ′ ′ ′ ′− > − .  ■  

A comparison of Theorems 7.7 and 7.10 highlights several things. First, the 
equilibrium strategies are similar in the two theorems. Each bidder starts by demanding a 
quantity 0q  at the reserve price that is less than his competitive quantity ˆ( )q r  and 
maintains that quantity demand until the price rises so high that 0ˆ( )q p q< . In theorem 
7.7, the quantity is 0q S=  whereas in theorem 7.10 it is *

0 max( , ( ))Nq q S r= . In both 
cases, demand reduction occurs. Second, if the reserve price is less than the Cournot 
price, then the initially demanded quantities in the identified equilibrium are the Cournot 
quantities. Finally, there is no equilibrium with prices below the Cournot price.  
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We conclude that the lowest equilibrium price in the model with upward sloping 
supply is the Cournot price. Using the linear-quadratic specification, the Cournot price 
and quantity are: 

 
1

*
1

( / )
( / ) 1

N
N

N

b ap
b

β α
β

+ +
=

+ +
 and *

1(1 )N
N

aq
b

α
β

−
=

+ +
. (7.8)  

For comparison, the competitive price and quantity are: 

 * ( / )
( / ) 1

b ap
b

β α
β

+
=

+
 and * aq

b
α
β

−
=

+
 . (7.9) 

In both the competitive and Cournot cases, the equilibrium price is a weighted average 
of the supply and demand intercepts, a and α. The relative weight on the higher intercept 
a is / bβ  in a competitive equilibrium and it is / 1/b Nβ +  in the N-bidder Cournot 
model. Thus, in the familiar fashion for Cournot models, the equilibrium price converges 
to competitive prices as the number of bidders grows.  

This analysis clarifies the reasons for the low-price equilibria in the models of the 
preceding sections: the zero-price equilibria are Cournot equilibria. This result underlines 
the importance of making supply elastic to promote competitive auction outcomes. The 
combination of elastic supply and multiple bidders is especially effective for obtaining 
auction prices that are near the competitive market price.  

7.3 Conclusion 
This chapter has focused on auctions that promote uniform pricing. We studied three 

kinds of auctions studied. The first were sealed bid auctions in which the price equates 
supply and demand. Such auctions have been used to sell treasury bills in the US and 
elsewhere, and also for certain power sales. The second were simultaneous ascending 
auctions, such as those used by the FCC. The third were clock auctions, which have been 
used for power sales and for the UK auction of emissions permits.  

The three designs are closely related in theory. When a single divisible good is to be 
sold, the reduced normal form of a certain clock auction is identical to the normal form of 
the sealed-bid auction. We showed that clock auctions are equivalent to accelerated 
versions of the simultaneous ascending auction.  

If goods are indivisible and unique but are nevertheless substitutes for the bidders, then 
a competitive equilibrium exists. That is, there exist prices at which the demand for each 
kind of good is equal to its unit supply. Conversely, if the set of possible bidder 
valuations includes any for which goods are not substitutes, then there is a profile of 
individual valuations such that no competitive equilibrium exists.  

One can analyze two ascending auction designs with multiple kinds of goods as 
tatonnement processes. In this analysis, we set aside considerations of the bidders’ 
incentives and assumed that everyone bids straightforwardly, according to their actual 
demands. We found that goods need to be substitutes for straightforward bidding even to 
be possible. Moreover, if goods are substitutes then, despite the monotonicity restrictions 
imposed by the ascending auction process, straightforward bidding leads to 
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approximately competitive outcomes, with the maximum approximation error 
proportional to the bid increments.  

Practical concerns often dictate the choice of auction design. With a single 
homogeneous good, the sealed-bid form is quick and simple to administer. The 
simultaneous ascending auction and the clock auction better suit sales of multiple kinds 
of goods, because they allow the auction to determine relative prices. When there are a 
few homogeneous classes, each with many goods, the clock auction design can run much 
faster than the standard simultaneous ascending auction design and leads, with 
straightforward bidding, to the same near-competitive outcomes. However, to work 
effectively, clock auctions require more information than just a single bidder demand 
vector at each price vector. As of this writing, practical bidder interfaces to acquire the 
needed information have yet to be devised.  

A key concern with all the auction designs discussed in this chapter is the possibility of 
extreme equilibrium prices. We found very general incentives for bidders (buyers) to 
reduce demand to keep prices low. In all three auction designs, in a variety of simple 
models, there are Nash equilibria in which prices are at or near the seller’s reserve, even 
if that reserve is much lower than the competitive price. In the simplest models, these low 
price equilibria rely on incompletely motivated choices by bidders, but attempts to 
eliminate the low price equilibria by enriching the models in various ways have met 
limited success. Adding uncertainty sometimes (but not always) eliminates the most 
extreme equilibria. Eliminating weakly dominated strategies and attending to the 
dynamic structure of the auction both fail to eliminate the extremely low-price equilibria. 
The alternating bid model of the clock auction generates the surprising conclusion that 
the unique equilibrium consistent with backward induction produces very low prices.  

The most unfavorable results—those with prices far below the corresponding 
competitive prices—apply when the supply of goods for sale is fixed. In a model with 
positive supply elasticity, we found that the worst auction outcomes resemble the results 
of Cournot competition among buyers. With fixed supply, Cournot outcomes can entail 
very low prices. The analysis highlights the combined effectiveness for raising revenue of 
making supply elastic and ensuring that auction participants are numerous. 
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Chapter 8:   
Package Auctions and Combinatorial Bidding 

In chapter 7, we found that multi-object auctions that promote uniform prices raise new 
problems not found in single item auctions. One is that if the bidders do not regard the 
goods as substitutes, then market-clearing prices can fail to exist. When goods are not 
substitutes, the conception of auctions as mechanisms to identify market-clearing prices 
is fundamentally misguided. A second problem is that even when goods are substitutes, if 
the auction identifies uniform prices for each kind of good, there are generally incentives 
for bidders to bid for fewer units than they really want (“demand reduction”). That 
behavior can produce both inefficient outcomes and low revenue. So, even in those cases 
where the search for market clearing prices is not logically doomed to fail, mechanisms 
that might find market-clearing prices when bidders are naïve may still perform poorly 
when bidders are sophisticated and strategic.  

In this chapter, we explore another set of problems. When the auctioneer sells one 
indivisible good of fixed characteristics, she faces no question about how to package the 
goods offered for sale. If the characteristics of the good vary or if multiple buyers can 
divide it, we encounter the complex decision of how to package the items for sale.  

This decision can be complicated even in mundane sales, such as the sale of a farm 
estate after the death of a farmer. Although the whole estate could be sold as a single 
entity, it could also be divided into smaller pieces for sale to individual bidders with 
varying demands. For example, a farm auctioneer might sell the house and barn as one 
package, hoping to attract city dwellers seeking a weekend home. Another package might 
be the main field, which could attract bids from neighbors with nearby farms. Some of 
the farm equipment might be sold separately in a larger auction market and an 
environmentally sensitive habitat near a forest or river might be sold to a nature 
conservancy.  

Similar packaging decisions occur in spectrum auctions as well. Before the first US 
spectrum auctions, after regulators chose the portion of the spectrum to be used for PCS 
telephone service, a debate followed about how to divide that spectrum into licenses. 
Should the licenses cover the entire nation as European national licenses do? Or, should 
licenses be regional? Or should the government sell some of each? Should the spectrum 
bandwidth of the licenses be 10MHz or 20MHz or 30 MHz? The various spectrum users 
advocated a wide range of options, lobbying the FCC for licenses that fit well with their 
own technologies, existing assets, and business plans and poorly with their competitors’ 
plans.  

In Australia, which held its spectrum auctions soon after the US auctions, regulators 
considered whether the packaging decision could be “left to the market” by specifying 
“postage stamp sized” licenses—tiny in both geographical coverage and bandwidth. That 
way, some argued, private spectrum users could put together any collections of licenses 
they liked. This finely divided spectrum could then be sold, it was proposed, using a 
simultaneous ascending auction.  

Chapter 7 provides a foundation for the arguments I raised against the Australian 
proposal. Because of the fixed costs in establishing a wireless service, any small number 
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of postage stamp sized licenses would be useless by themselves, having a zero stand-
alone value. A large collection of such licenses, however, might support a very profitable 
business. Such a pattern of values implies complementarities among the licenses, with all 
the problems complementarities entail: competitive equilibrium prices may not exist and 
the exposure problem may vastly complicate bidding in the simultaneous ascending 
auction.   

In chapters 6 and 7, we saw that when bidders vary in the packages they want to buy, 
the packaging decision involves trade-offs. Selling items individually when some bidders 
find some items complementary creates an exposure problem that can depress bidding.  
Selling items in large packages, however, can make it hard for small bidders to 
participate. Either way, if the chosen packages attract only a few bidders and 
participation in the auction is costly, then few bids may be submitted and the auction may 
produce low prices.  

Solving the packaging problem is not always difficult. Dutch flower auctions solve the 
problem by allowing winning bidders to take as many lots as they wish at the winning 
price. This design allows competition among bidders who seek to buy one lot or many 
and encourages participation by a diverse set of bidders.  

Packaging problems arise in procurement auctions as well as asset sales. A buyer may 
conduct a narrow procurement, buying different items in a series of auctions from, or he 
may buy a comprehensive package in a single auction from a bidder who provides a 
discount for a high value purchase. Either choice may exclude some bidders, leading to 
less competition and, presumably, higher prices for the buyer.  

This chapter focuses on a set of auction designs that let the bidders choose the 
packages for themselves. These package auction or combinatorial auction designs have 
received only limited use in the past, partly because the auctions can quickly become 
complicated as the number of objects sold grows. With many bids for overlapping 
packages, just determining the identity of the winning bidder—the winner determination 
problem—is a hard computational problem that has become a hot topic in computer 
science. The very difficulty of the auctioneer’s problem, however, makes it hard for 
bidders in a large package auction to forecast the consequences of their bids and hard to 
check that the seller ran the auction honestly.  

Smaller package auctions are easier to run and have long been used for bankruptcy 
sales. Cassady (1967) reports examples from the mid-20th century in which some bidders 
bid on individual assets of the bankrupt business while others bid on the “entirety” of the 
assets. An entirety bid would typically take the form of a sealed bid before the individual 
assets were sold, while the individual assets might be sold by ascending auctions. The 
auctioneer would compare the sum of the winning bids for the individual items with the 
best entirety bid and choose the winning bid(s) to maximize the total revenue. Similar 
auctions are still common in bankruptcy sales.  

Recently, several designs have been implemented that allow bidders much greater 
flexibility to name the packages on which they bid. The London Transportation authority 
procures bus services from private operators in a sealed-bid auction that allows bids on 
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all combinations of routes, and 46% of winning bids involve combinations.145  In 2002, 
IBM and Mars, Inc. collaborated on a combinatorial procurement auction to supply Mars’ 
candy factories.146 The IBM-Mars team designed two kinds of auctions. One was 
relatively simple for bidders and allowed them to offer volume discounts in conjunction 
with their bids. A second allowed suppliers to offer packages. In addition, the design 
allowed the buyer to impose constraints, for example to avoid allocating any one supplier 
too large a portion of the total procurement.  

The ascending auction planned for Federal Communications Commission (FCC) 
Auction No. 31, which was supposed to sell spectrum licenses in the 700 MHz band, was 
designed to permit bids for any of the 4095 possible packages of the twelve licenses on 
offer. This is probably the most ambitious package auction designed for actual use. The 
FCC tested an early version of this design using laboratory experiments. The package 
design required a long training session for the bidders and took more rounds to run than 
the traditional FCC design. However, the experimenters report that the package design 
also led to more efficient outcomes, at least with complementarities among licenses.147  

Another package design is one I tailored for the sale of the generating portfolio of 
Portland General Electric (PGE), an Oregon utility with contracts and interests in 
generating facilities in several states. The auction was to take place in two stages. The 
first stage was to be a round of indicative bidding,148 which would (1) identify the most 
interested bidders to invite to the second round and (2) determine which individual power 
contracts the invited bidders wished to bid on. These individual contracts provided power 
at a fixed long-term price. In the second stage, bidders could bid for individual contracts 
or for the whole portfolio. The auction rules would require package bidders to name 
decrements used to construct bids for packages smaller than the whole. For example, the 
seller would construct a bid for the entire portfolio less a particular contract by 
subtracting the appropriate decrement from the overall package bid. The auction was 
designed to promote competition both among package bidders seeking to acquire the 
PGE portfolio and between package bidders and bidders for individual contracts, as well 
as to encourage entry by the smaller bidders.  

The granddaddy of applied package auction designs is the early proposal for a 
combinatorial auction sale of paired airport take-off and landing slots suggested by 
Rassenti, Bulfin and Smith (1982). The authors also tested their proposal in an economic 
laboratory experiment, demonstrating that a package design could perform better than 
individual slot sales.  

The IBM-Mars design confronts an important practical problem: how to incorporate 
policy constraints into an auction design.  In procurement auctions, bidders may want to 
ensure that preferred suppliers or to minority-owned firms receive a certain fraction of 
contracts, or that sources of supply are geographically dispersed to avoid disruptions, or 
                                                 
145 Cantillon and Pesendorfer (2003).  
146 Hohner, Rich, Ng, Reed, Davenport, Kalagnanam, Lee and An (2002).  
147 Cybernomics (2000) summarizes the results. I report this claim with some skepticism because 
Cybernomics has not fulfilled requests by the FCC, the author, and others to see raw data from these 
experiments.  
148 See chapter 6 for an analysis of indicative bidding.  
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that the supplier have sufficient capacity to expand production, and so on.  These 
complex constraints make deciding which set of bids to accept more complicated than 
just finding the highest or lowest prices.  

The most novel aspect of some new auction designs are the ways they handle complex 
constraints. For example, Brewer and Plott (1996) designed an auction to allocate use of a 
single north-south railroad track in northern Sweden. The main constraint for their 
problem was that the trains must be scheduled to avoid crashes. In their auction design, a 
bid expresses a price the bidder will pay for a right to use the track under specific 
conditions, say, the right to a northbound departure at 10:00am using a train traveling at 
50kph. Although such bids are relatively simple in form, selecting the bids that maximize 
the total price requires the use of sophisticated optimization routines.  

Brewer and Plott designed a simple ascending auction mechanism in which the 
auctioneer at each round selects the jointly feasible collection of bids that maximizes the 
seller’s revenue. In their laboratory experiments testing the design, they found the design 
realized over 97% of the potential scheduling efficiencies.   

Since the pioneering package auction experiment by Rassenti, Bulfin and Smith 
(1982), several other experiments have also been influential. Banks, Ledyard and Porter 
(1989) explored two kinds of iterative package auctions, in which bidders submit bids in 
a series of rounds and can raise their bids from round to round. In both versions, the 
winning bidders are those who submit the highest total package bid. In one version, 
prices follow Vickrey pricing rule; in the other, each winning bidder pays his own bid. 
Experimental subjects bid in these ascending package auctions or participated in 
alternative procedures representing administrative processes and markets. The ascending 
package auctions outperformed the alternatives, on average realizing 80% of the available 
efficiencies. 

In the run-up to the FCC’s first spectrum auctions, Charles Plott ran a small set of 
experiments that affirm the superiority of the simultaneous ascending auction to simpler 
sequential designs. Later experiments by Ledyard, Porter and Rangel (1997) confirmed 
the theoretical prediction that the FCC design degrades in the presence of 
complementarities, helping to spur interest in package auction designs at the FCC.  

The three package auctions discussed in this chapter all permit bidders to place a 
different bid on each package without restricting relationships among the bids. As we 
shall see, this flexibility facilitates making a tractable analysis. However, such auctions 
require more bids and are more computationally complex than auctions with more 
restrictive package structures149 and may impose a greater cognitive burden on the 
bidders.150  

                                                 
149 Rothkopf, Pekec and Harstad (1998) study designs that are simplified for ease of computation and for 
transparency. Lehmann, O'Callaghan and Shoham (2002) study how to design auctions that perform well 
when the seller optimizes imperfectly.  
150  Parkes, Ungar and Foster (1999) and  Parkes and Ungar (2000) analyze the burdens of alternative 
package auction designs on the bidders. Nisan (2000) studies bidder interfaces, examining which bidding 
languages allow bidders to express all possible valuations and yet provide compact expressions for 
particular kinds of (presumably) common valuations.  
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8.1 Vickrey Auctions and the Monotonicity Problems151 
In chapter 2, we analyzed the advantages of Vickrey auctions and illustrated their 

disadvantages in simple package bidding environments. In this section, we explore the 
monotonicity problems of the Vickrey auction in greater detail. We show that these 
problems do not appear if goods are substitutes for all bidders, but that they are hard to 
rule out in other cases. If there is any bidder for whom it is not true that all goods are 
substitutes, then there exist additive valuations for the other bidders that create 
problematic examples similar to the ones of chapter 2, with low revenues, shill bidders, 
loser collusion, and so forth.  

Before we can formally characterize the scope of the Vickrey auction’s monotonicity 
problems, we need to state more precisely what we mean by “low revenues.” Our 
example showed that it is possible for the Vickrey auction to yield zero revenues for 
valuable licenses, but we’d like to say revenues can be “too low” even under less extreme 
conditions.  

Here, we will use the theory of the core to assess the adequacy of Vickrey payoffs 
(revenue for the seller, profit for the bidders). Associated with the outcome of any game 
is a payoff vector or imputation. An outcome is a core outcome and the corresponding 
payoff vector is a core imputation if (1) the outcome is feasible and (2) no coalition can 
identify an alternative feasible outcome that its own members can implement that strictly 
increases all coalition members’ payoffs. If some coalition can identify such an 
alternative, then that coalition is said to block the proposed outcome and imputation.  

The outcome of a second-price auction for a single good is always a core outcome. 
Also, it is well known that competitive equilibrium outcomes are always core outcomes, 
so an outcome outside the core can be labeled “uncompetitive.” By definition, core 
outcomes eliminate any incentive for any coalition to renege once the results of the 
auction are announced. This property can be quite important in practice, because 
execution of trades is a common problem in real-world transactions. Finally, since the 
seller is always a part of any blocking coalition in this model, the core implies a 
potentially interesting revenue standard, which we discuss below.  

To characterize core outcomes for the Vickrey auction, we first define the game in 
coalitional form associated with the auction. That game is ( , )N w , where N is the set of 
players in the game and w  is the coalitional value function.  In our setting, for any 
coalition of players ,S N∈  the coalitional value function is:152  

 
max ( )  if 0 S

( )
0                          if 0 .

l l
x X

l S
v x

w S
S

∈
∈

  
∈  =   

 ∉

∑  (8.1) 

                                                 
151 The theorems in this section are all drawn from Ausubel and Milgrom (2002).  
152 We limit attention here to transferable utility games, so the payoff profiles that are feasible for a 
coalition are determined entirely by w(S)—the total value available for sharing among the members of 
coalition S.  
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If the seller is not a member of coalition S, then the value of the coalition is zero, 
because the buyers in the model have nothing to trade among themselves. Otherwise, the 
value is the maximum value the coalition can obtain by trading with the seller.  

Let ( )l l l lv x pπ = −  be the profit of agent l  from any proposed transaction and set of 
transfers. Then, the set of core payoffs is defined as follows:  

 ( , ) | ( ), ) ( ) .l l

l N l S

Core N w w N S N w Sπ π π
∈ ∈

 = =  (∀ ⊂  ≤ 
 

∑ ∑  (8.2) 

If some payoff vector π is not in the core, then there is some coalition S for which the 
total payoff ( )w S  is higher than the members’ total payoffs in π. So, there is some way 
to share the total that makes all members of S strictly better off.   

To see how the core functions as a revenue standard, let us repeat our earlier low-price 
example. In that example, there were two items for sale. Bidders 1 and 2 had values of $1 
billion and $900 million, respectively, for the package of two items, while bidders 3 and 
4 each had values of $1 billion for a single item.  Neither bidder 1 nor bidder 2 valued a 
single license alone and neither bidder 3 nor 4 valued a second license. In this example, 
the allocation is in the core if and only if bidders 3 and 4 acquire the items, neither pays 
more than $1 billion, and the seller’s total revenue is at least $1 billion. The Vickrey 
auction does allocate the items to bidders 3 and 4, but at a price of zero; thus, the Vickrey 
allocation falls outside the core. This example verifies that the core does imply a 
minimum revenue standard and that the Vickrey auction sometimes fails that standard.  

What is the precise relationship between the Vickrey outcome and the core? Are there 
situations in which we can reliably predict that the Vickrey outcome will lie in the core?  
Are there others in which we can predict that the Vickrey outcome will not lie in the core, 
because the seller’s revenues are too low?  Can we characterize the economic conditions 
under which the Vickrey outcome is most likely to fall outside the core?  

A few cases contribute intuition. The Vickrey auction for a single good assigns the 
good to the bidder with the highest value for a price equal to the second highest value. No 
losing bidder has a value greater than that Vickrey price, so none can profitably offer to 
pay the seller more. Hence, the outcome in the one-good case lies in the core.  

The same conclusion holds when each bidder’s value for a package of goods is 
additive, meaning that the bidder’s package value is the sum of the values of the 
individual goods in the package. In this case, a Vickrey auction for many goods operates 
effectively as a collection of second-price auctions.  Each bidder in the Vickrey auction 
acquires an item when his value is the highest, and his total price is the sum of the 
second-highest values of all goods he buys.  

We now extend this intuition with a series of theorems.  

8.1.1 Bidders’ Vickrey Payoffs Bound their Core Payoffs 
Our examples have shown that it is possible for revenues in a Vickrey auction to be 

lower than the seller’s payoff at any core outcome. In the models we are studying, one 
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can say more: each bidder’s Vickrey payoff is equal to his highest payoff at any point in 
the core. To state this formally, let i

Vπ  denote participant i’s payoff in a Vickrey auction.  

Theorem 8.1. For each bidder i, the Vickrey payoff is: 

 ( ) ( ) max{ | ( , )}i i
V w N w N i Core N wπ π π= − − = ∈ . 

In addition, 0
0

( ) l
V Vl N

w Nπ π
∈ −

= − ∑ .  

Proof. Recall from chapter 2 that the pivot mechanism payment formula (suppressing 
the arguments of the functions p̂  and x̂ ) is ˆ ˆ( , ) ( )i j

j N i
p V X N i v x

∈ −
= − − ∑ , where x̂  is 

the decision that maximizes the total payoff. Applying this formula, a bidder’s Vickrey 
profit is  ˆ ˆ ˆ( ) ( ) ( , ) ( , ) ( , )i i j

j N
v x p v x V X N i V X N V X N i

∈
− = − − = − −∑ . By definition, 

( ) ( , )w N V X N=  and ( ) ( , )w N i V X N i− = − , so the first equality is established.  

By definition, for any ( , )Core N wπ ∈ , ( )j
j N i

w N iπ
∈ −

≥ −∑  and ( )j
j N

w Nπ
∈

=∑ . 

So, ( ) ( )i j j i
Vj N j N i

w N w N iπ π π π
∈ ∈ −

= − ≤ − − =∑ ∑ . By inspection, the payoff profile 

π  given by i i
Vπ π= , 0 ( )w N iπ = −  and 0jπ =  for other bidders j is a core payoff 

profile, so max{ | ( , )}i i
VCore N wπ π π∈ ≥ . Combining these proves that i

Vπ =  
max{ | ( , )}i Core N wπ π ∈ . 

Since the Vickrey outcome is efficient, the total payoff to all participants must be 
( )w N , so the seller’s payoff must be 0

0
( ) l

V Vl N
w Nπ π

∈ −
= − ∑ .  ■ 

8.1.2 Vickrey Auctions and the Entry Puzzle 
Next we study the most basic monotonicity problem of the Vickrey auction, which is 

that increased competition among bidders does not generally reduce bidder payoffs and 
increase seller revenues. That is, entry can harm the seller and benefit at least some 
existing bidders. To state this idea formally, let ( )V Sπ  be the Vickrey payoffs when only 
members of coalition S participate in the auction. We also introduce the following two 
definitions.  

Definitions. 

1. A Vickrey auction displays payoff monotonicity if (1) ( ) ( )i i
V VS j Sπ π− ≥  for all 

S, , 0i j S∈ − , and (2) 0 0( ) ( )V VS j Sπ π− ≤ .  

2. The coalitional value function is bidder submodular if for any coalitions S and 
T that include the seller,  

 ( ) ( ) ( ) ( )w S w T w S T w S T+ ≥ ∪ + ∩ .153  (8.3) 

                                                 
153 Generally, submodularity is a property of functions defined on lattices. An introduction to the relevant 
lattice theory is contained in an appendix. In the present application, the relevant lattice is the set of 
coalitions partially ordered by set inclusion. Thus, the definition of submodularity given above is consistent 
with the usual one for lattice theory.  
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According to the first definition, payoff monotonicity means that adding bidders can 
only reduce the other bidders’ payoffs and increase the seller’s payoffs. The second of 
these two conditions is implied by the first,154 so we omit it from the proofs below.  

Theorem 8.2. The Vickrey auction satisfies payoff monotonicity for the coalitional 
game ( , )N w  if and only if w is bidder-submodular.  

Proof: The payoff monotonicity inequalities can be rewritten as: 

 ( ) ( ) ( ) ( )w S j w S i j w S w S i− − − − ≥ − − .  (8.4) 

If the coalitional value function is bidder-submodular, then applying (8.3) to the 
coalitions S i− and coalition S j−  yields (8.4). So, bidder submodularity implies payoff 
monotonicity. To show the converse, let S S′ ′′⊂  be coalitions that include the seller. 
Observe that repeated applications of (8.4) imply that for any j S ′′∉ ,  

 ( { }) ( )w S j w S′ ′∪ − ≥ ( { }) ( )w S j w S′′ ′′∪ − .  (8.5) 

Then, for arbitrary S and T, let 1{ ,..., }mT S i i− = , 

 

( )

( )

1 1 1
1

1 1 1
1

( ) ( ) ( { ,..., }) ( { ,..., })

( { ,..., }) ( { ,..., })

( ) ( ).

m

j j
j

m

j j
j

w S T w S w S i i w S i i

w S T i i w S T i i

w T w S T

−
=

−
=

∪ − = ∪ − ∪

≤ ∩ ∪ − ∩ ∪

= − ∩

∑

∑   

The equalities follow from summing the telescoping sequences and the inequality 
follows by applying (8.5) to compare each term of the sum. We conclude that payoff 
monotonicity implies bidder submodularity.  ■ 

8.1.3 When Are Vickrey Outcomes in the Core?  
Next, let us imagine the possibility that only some of the potential bidders will actually 

participate in the auction. We may then ask: Under what conditions on the coalitional 
value function w is the Vickrey outcome guaranteed to be a core outcome?  

Theorem 8.3. The coalitional value function w is bidder submodular if and only if for 
every coalition S with 0 S N∈ ⊂ , ( ) ( , )V S Core S wπ ∈ . 

Proof. Suppose the coalitional value function w is bidder-submodular and let S S′ ⊂  be 
coalitions that include the seller. Number the bidders so that {0,1,..., }S k′ =  and 

{0,1,..., }S n=  with 1 k n≤ ≤ . By bidder-submodularity, for 1 l n≤ ≤ , 
( ) ( )w S w S l− − ≥ ({0,..., }) ({0,..., 1})w l w l− − , so  

                                                 
154 Formally, given the inequalities (1) in the definition of payoff monotonicity, 0 ( ) ( )V S j w S jπ − = − −  

0 0 0
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )l j l l

V V V Vl S j l S j l S
S j w S j w S w S j S S j w S Sπ π π π

∈ − − ∈ − − ∈ −
 − = − + − − − − − ≤ − = ∑ ∑ ∑  

0 ( )V Sπ . So, the inequality (2) is redundant.  
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1

1

1

( ) ( ) ( )

( ) [ ( ) ( )]

( ) [ ({0,..., }) ({0,..., 1})]

( ) [ ( ) ( )]
( ).

n
l l
V Vl S

l k
n

l k
n

l k

S w S S

w S w S w S l

w S w l w l

w S w S w S
w S

π π
′∈

= +

= +

= +

= −

= − − −

≥ − − −

′= − −
′=

∑ ∑

∑

∑  

Hence, S ′  is not a blocking coalition. Since S ′  was an arbitrary coalition including the 
seller, there is no blocking coalition. Since the Vickrey outcome is efficient, 

( ) ( )l
Vl S

S w Sπ
∈

=∑ . It follows that ( ) ( , )V S Core S wπ ∈ . 

Conversely, suppose w is not bidder-submodular. Then by theorem 8.2, there exists a 
coalition S and bidders ,i j S∈  such that ( ) ( ) ( ) ( )w S j w S i j w S w S i− − − − < − − . But 
then ( )l

Vl S i j
Sπ

∈ − −
=∑ ( ) i j

V Vw S π π− − =  ( ) ( )( ) ( ) ( ) ( ) ( )w S w S w S i w S w S j− − − − − − <  

( )w S i j− − . Since the core requires that ( ) ( )l
Vl S i j

S w S i jπ
∈ − −

≥ − −∑ , 

( ) ( , )V S Core N wπ ∉ .  ■  

8.1.4 Substitute Goods and Core Outcomes 
The previous sections have based the analysis on the coalitional value function w and 

highlighted the role of a condition on w, namely, that w is bidder-submodular. In most 
economic problems, it is goods valuations that are primitive and the coalitional value 
function is derived as in (8.1). In this section, we establish that the desired condition on 
coalitional values is closely related to the condition that the bidders regard the goods as 
substitutes.  

To state the main result precisely, let V  denote the set of possible bidder values of the 
M goods offered for sale in the auction. Let addV  denote the set of all additive value 
functions for goods such that all marginal values are non-negative.  

Theorem 8.4. Suppose that add⊂V V . Then (i) the coalition value function w 
corresponding to every profile of goods valuations drawn from V is bidder-submodular if 
and only if (ii) at every valuation in V, all goods are substitutes.  

Remarks: With just two goods, the substitutes condition is equivalent to the condition 
that the goods valuations are submodular. With more than two goods, however, the 
substitutes condition is more restrictive. It implies that goods valuations are 
submodular,155 but submodularity of goods valuations does not imply that the goods are 
substitutes.156  

                                                 
155 If v is not submodular, then there exists {0,1}Mx ∈ , some α > 0 and some m and m′ such that  

, , , ,(1,1, ) (0,1, ) (1,0, ) (0,0, )m m m m m m m mv x v x v x v xα′ ′ ′ ′− − − −− > > − , where the first and second arguments of v 
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To prove that the coalition value function is bidder-submodular, we need the strong 
condition that goods are substitutes rather than the weaker condition that valuations are 
submodular. In the proof, we show how to use any failure of the condition that goods are 
substitutes (which we sometimes call the “substitutes condition”) to construct an example 
in which w is not bidder-submodular.  

In outline, the proof proceeds as follows. First, we obtain a dual characterization of the 
substitutes condition that applies even though goods are indivisible.  According to this 
characterization, goods are substitutes if and only if the corresponding indirect utility 
function is submodular. Using this characterization, we show that if goods are substitutes 
for every member of a coalition, then they are also substitutes in the coalitional value 
function and that the opportunity cost to coalition S  of giving away any good or package 
of goods z increases as the coalition adds members.  If a new member joins the coalition 
and the coalition gives him package z, the incremental value of the new member, which is 
the new member’s value of package z minus the coalition’s opportunity cost of that 
package, decreases with the coalition’s size. Maximizing the new member’s incremental 
value over z preserves the property that the member’s incremental value decreases with 
the size of the coalition, so the coalitional value function is bidder-submodular.  

Proof:  We may assume without loss of generality that each bidder distinguishes all the 
goods, so for any bidder l and good m, {0,1}l

mx ∈ . Given bidder l’s valuation lv , the 
indirect utility function and its associated demand are defined by: 

 
( )

( )
( ) max ( )

( ) arg max ( )

l l

z

l l

z

u p v z p z

x p v z p z

= − ⋅

∈ − ⋅
 

As the maximum of a finite number of linear functions, lu  is continuous and convex. 
The envelope theorem (see chapter 3) further implies that at every point where demand is 
uniquely defined, the partial derivative ( ) / ( )l l

m mu p p x p∂ ∂ = − , where ( )m
lx p , the mth 

component of ( )lx p , is the quantity bidder l demands of the mth good at price vector p.  
By definition, the substitutes condition is satisfied if and only if ( )l

mx p  is nondecreasing 

                                                                                                                                                 
correspond to mx  and mx ′ , respectively. Set prices as follows: mp α=  and for ,n m m′≠ , 

0n nx p= ⇒ = ∞ , 1 0n nx p= ⇒ = . These prices determine the demands for the goods besides m and m′ to 
be ,m mx ′− . Then, one can verify that if mp ′ = ∞ , then the demand for good m is zero (because the marginal 
value is less than the price: , ,(1,0, ) (0,0, )m m m mv x v x α′ ′− −− < ) and if 0mp ′ = , then the demand for good m is 
1 (because the marginal value is greater than the price: , ,(1,1, ) (0,1, )m m m mv x v x α′ ′− −− > ). This contradicts 
the definition of substitutes.  
156 For example, suppose there are three goods, with 1 2 3 1 2 3 1 2 2 3( , , )v x x x x x x x x x x= + + − − , for 3{0,1}x ∈ . 
This valuation is submodular, as one can check by verifying that 2 / 0i jv x x∂ ∂ ∂ ≤  for all i j≠ . Bidder 

demand is determined by solving ( )3
{0,1} 1 2 3 1

max ( , , )
ix m mm

v x x x p x∈ =
− ∑ . If goods prices satisfy 3(0,1)p ∈ , 

then bidder demand is (1,0,1) if 2 1 3p p p> +  and (0,1,0) if 2 1 3p p p< + . In particular, an increase in the 
price 1p  can lead to reduction in demand for good 3, contrary to the definition of substitutes.  
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in jp for all j m≠ , or, equivalently, ( ) /l
mu p p∂ ∂  is nonincreasing in jp  for all .j m≠   

Therefore, goods are substitutes for l if and only if ( )lu p  is submodular.  

Let S  be a coalition that includes the seller. Coalition S ’s value for a package z  is 

( )
( ) max ( )S l l

l Sx X z
v z v x

∈∈
≡ ∑ , where { }( ) 0 | , ( , ) {0,1}j j

mj N
X z x x z j m x

∈
≡ ≥ ≤ ∀ ∈∑ . The 

corresponding coalition indirect utility function is: 

 { }( ) max ( ) ( ).S S l

z l S
u p v z p z u p

∈

= − ⋅ = ∑  (8.6) 

Since the function ( )Su p  is the sum of continuous, convex, submodular functions, it, too, 
is continuous, convex and submodular. Also, for any z  and ,p   

 ( ) ( )S Su p v z p z≥ − ⋅ .  (8.7) 

Let B  be a large number that exceeds the incremental value of any good to any 
coalition. By inequality (8.7), for all z, { }

[0, ]
( ) min ( )

M

S S

p B
v z u p p z

∈
≤ + ⋅ . Define ( )p p z=  by 

0mp =  if 1mz =  and mp B=  otherwise. Then, ( ( )) ( ) ( ) .S Su p z v z p z z= − ⋅  Therefore, 

{ }
[0, ]

( ) ( ( )) ( ) min ( ) .
M

S S S

p B
v z u p z p z z u p p z

∈
= + ⋅ ≥ + ⋅  Combining the two preceding 

inequalities yields the duality equation:  

 { }
[0, ]

( ) min ( )
M

S S

p B
v z u p p z

∈
= + ⋅ .  (8.8) 

(This equation, which is familiar when goods are divisible, is thus proved to apply even 
though the goods are indivisible.)  

The objective in (8.8) is continuous, convex and submodular in p . Also, since each 
( )lu p  is antitone (“weakly decreasing”), the function ( )Su p  has antitone differences in 

( , ).p S   The prices in (8.8) are constrained to lie in a compact interval, so the constraint 
set is a sublattice of M\ .  Hence, by the Topkis monotonicity theorem,157 the set of 
minimizers has a maximum element ( | ),p S z  which is an isotone (“weakly increasing”) 
function of .S    

If 0mz =  then, by inspection of (8.8), ( | )mp S z B= .   

Since ( ( | ))Su p S z = ( ) ( | )Sv z p S z z− ⋅  and { }( ) max ( ) ,S S

z
u p v z p z= − ⋅  

{ }arg max ( ) ( | ) .S

z
z v z p S z z

′
′ ′∈ − ⋅  Suppose 1mz = . For 0,ε >  set ( | ) 1mp p S zε ε′ = + , 

where 1m  is a vector with a 1 in the mth coordinate and zeroes elsewhere. Since ( | )p S z  
is the maximum element among the set of minimizers, the demand for good m  at price 
vector pε′  is zero.  By construction, demand for good j  for which 0jz =  is zero at price 
vector pε′ , because mp Bε′ = . By the substitutes condition, increasing the price from 

                                                 
157 See Topkis (1978) or Topkis (1998). 
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( | )p S z  to pε′  leaves the demand for the goods besides m undiminished.  Hence, for all 

positive ε, { }
'

1 arg max ( )S
m z

z v z p zε′ ′ ′− ∈ − ⋅ . By Berge’s theorem of the maximum,158 the 

same must hold when 0ε = : ( )1 arg max ( ) ( | )S
m zz v z p S z z′ ′ ′− ∈ − ⋅ . Therefore, 

( 1 ) ( | ) ( 1 ) ( ) ( | ) ,S S
m mv z p S z z v z p S z z− − ⋅ − = − ⋅  so ( | ) ( ) ( 1 )S S

m mp S z v z v z= − − .  

Summarizing the main conclusion of the last two paragraphs: 

 
                         if 0

( | )
( ) ( 1 ) if 1

m
m S S

m m

B z
p S z

v z v z z

=
= 

− − =
 (8.9) 

For any packages of goods z z′ ≤ , let { | 1} {1,..., }mA m z n′= = = . Then, the opportunity 
cost to coalition S of foregoing goods z′  is ( ) ( )S Sv z v z z′− − = 

( )1

1 1 1
( 1 ) ( 1 )n m mS S

j jm j j
v z v z−

= = =
− − −∑ ∑ ∑ = ( )1

1
1

| 1
n

m
m jj

m

p S z −

=
=

−∑ ∑ . Since each summand 

is isotone in S, ( ) ( )S Sv z v z z′− −  is isotone in S.  

Since ( ) ( )Sw S v z= , { }( { }) ( ) max ( ) ( ) ( ) .l S S
zw S l w S v z v z z v z′ ′ ′∪ − = + − −  Since the 

maximand in this expression is nonincreasing in ,S the maximum is nonincreasing in S  
as well.  We conclude that w  is bidder-submodular. 

Next, suppose there is some valuation 1v ∈V for which the substitutes condition fails. 
Then, there exist goods m and n, a price vector ( , )m mp p− , and an 0ε >  such that (i) the 
buyer has unique demands (for all the goods) at price vector ( , )m mp p−  and 

1 ( , ) 1n m mx p p− =  and (ii) the buyer has unique demands (for all the goods) at price vector 
( , )m mp pε −+  and 1 ( , ) 0n m mx p pε −+ = . Since utility is quasi-linear, we infer that 

1 11 ( , ) ( , ) 0m m m m m mx p p x p pε− −= ≠ + = . By continuity, there exists ( , )m m mp p p ε∈ +  such 
that at price vector ( , )m mp p p−=  the buyer’s demand set contains a package including 
both goods, n and m, and one excluding both goods.  

Thus, failure of the substitutes condition implies that there exist two goods, m and ,n  
and a price vector, p , with , 0n mp p > , with these two properties: (1) for all ˆ [0, )m mp p∈ , 
there is a unique maximizer x′  of 1 ˆ( ) ( , )m mv x p p x−− ⋅  and it satisfies 1n mx x′ ′= = ; (2) for 
all ˆ ( , ]m mp p B∈ , there is a unique maximizer x′′  and it satisfies 0n mx x′′ ′′= = .  

We use these prices to create bidder valuations that contradict bidder-submodularity, as 
follows. Let ˆm mp p>  and suppose that bidders 2, 3, and 4 have these valuations: 

2
,

( ) k kk n m
v x p x

≠
= ∑ , 3( ) m m n nv x p x p x= + , and 4 ˆ( ) m mv x p x= . Since x′  is optimal for 

buyer 1 at price vector p  above and since 1n mx x′ ′= = , there exists an optimal allocation 
for coalition {0,1,2,3} that assigns no goods to buyer 3 and which is therefore feasible 
                                                 
158 See Royden (1968).   
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for coalition {0,1,2} , so (0123) (012)w w= . Since x′′  is the unique optimum for buyer 1 
at the price vector ˆ( , )m mp p− , the optimal allocation for coalition {0,1,2,3,4}, which 
gives good n to bidder 3, is different from any optimal allocation for {0,1,2,4} , so 

(01234) (0124).w w>  Therefore, (01234) (012) (0123) (0124)w w w w+ > + . This proves 
that w is not bidder-submodular.  ■  

8.1.5 Substitute Goods and Vickrey Outcomes 
The last result of this section combines and extends the preceding theorems. It shows 

that when the substitutes condition is satisfied, the Vickrey auction is immune to the 
various monotonicity problems identified in the earlier examples. However, when the 
substitutes condition is not satisfied, then one can always construct preference profiles 
that induce monotonicity problems.  

Theorem 8.5. Suppose that the goods are unique and that bidder valuations are drawn 
from a set V  such that add⊂V V . Then the following statements are equivalent:  

1. For every valuation in V , the individual items are substitutes.  

2. For every profile of valuations drawn from V , the Vickrey outcome is in the 
core.  

3. For every profile of valuations drawn from V , the Vickrey outcome exhibits 
payoff monotonicity.  

4. For every profile of valuations drawn from V , losing bidders in the Vickrey 
auction have no profitable joint deviation.  

5. For every profile of valuations drawn from V , no bidder can gain by using 
shill bidders.159 

Proof. Theorems 8.2-8.4 establish the equivalences of conditions (1)-(3).  

To show (1)⇒(4), let ( )Sv z  be as defined in (8.8); it is the value that coalition S gets 
from goods bundle z. As observed in the proof of Theorem 8.4, the dual profit function 

Su  associated with Sv  is a submodular function, so Sv  is a substitutes valuation. In 
particular, Sv  is submodular. Let x  denote the total bundle of goods offered for sale and 

( )X x  the corresponding set of feasible allocations. Suppose a coalition S of losing 
bidders deviates, reporting values ( )l

l Sv ∈�  and l lv v=�  for l N S∈ − . Suppose the Vickrey 
goods allocation after the deviation is ( )l

l Nx ∈� . The Vickrey price paid by bidder l to 
acquire its bundle is then given by: 

 
( )

max ( ) ( ) ( ) ( )l j j j j j j j j

x X x j S l j N S j S l j N S
p v x v x v x v x

∈
∈ − ∈ − ∈ − ∈ −

   
= + − +   

   
∑ ∑ ∑ ∑� � � � . (8.10) 

                                                 
159 Yokoo, Sakurai and Matsubara (2000) show that if the coalition value function is bidder-submodular, 
then there exists no shill bidding strategy that allows a bidder to win its equilibrium allocation at a lower 
price than its Vickrey price. The theorem reported here uses a stronger assumption (namely, that goods are 
substitutes) and reaches a stronger conclusion: participants have no profitable joint deviation of any kind.  
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It follows that: 

  

 

( )

( ) ( )

( )
 for 

max ( ) ( ) ( ) ( )

max ( ) ( )

j j

j
j S l

l j j j j j j j j

x X x j S l j N S j S l j N Sx x j S

j j j j

x X x x j N S j N S

N S j N S j

j S l j S

N S N S l

p v x v x v x v x

v x v x

v x x v x x

v x v x x

∈ −

∈
∈ − ∈ − ∈ − ∈ −

= ∈

∈ − ∈ − ∈ −

− −

∈ − ∈

− −

   
≥ + − +   

   

 
= − 

∑  

   
= − − −   

   

≥ − −

∑ ∑ ∑ ∑

∑ ∑

∑ ∑

�

�

� � � �

�

� �

( ) ( )N l N l lv x v x x− −= − −

 (8.11) 

The inequality in the first line of (8.11) follows from the extra constraints on the 
optimization. The third line follows by the definition of N Sv −  and because ( )l

l Nx ∈�  is the 
Vickrey allocation (in particular, ( )l

l N Sx ∈ −�  maximizes the payoff to coalition N S−  
given the total resources allocated to that coalition). The inequality on the fourth line 
follows because N Sv −  is submodular. The last equation holds because coalition S (which 
includes bidder l) is a coalition of losing bidders in the Vickrey auction using the actual 
valuations v.  

Comparing the first and last terms, (8.11) establishes that the Vickrey price paid by a 
losing bidder l who deviates jointly with coalition S l−  and wins bundle lx  is higher 
than the price bidder l must pay to win the same bundle lx  without the other deviations. 
Since no individual bidder has a profitable deviation from his dominant strategy, no 
coalition of losing bidders has a profitable deviation.  

For (1) (5)⇒ , we denote the coalition of shills by {1,..., }S n= . Then, given the shills’ 
reports 1{ }j n

jv =� , let x�  denote the corresponding Vickrey auction allocation. The total price 
paid by the shills is:  

 

1 1

1

1 1 1

1

( ) .

n n
l N S j N S j

l l j S l j S

n l l
N S j N S j

l j j

n
N S N S j

j

p v x x v x x

v x x v x x

v x v x x

− −

= = ∈ − ∈

−
− −

= = =

− −

=

    
≥ − − −    

     
    

≥ − − −    
     

 
= − − 

 

∑ ∑ ∑ ∑

∑ ∑ ∑

∑

� �

� �

�

  

The first inequality follows from (8.11) and the second from submodularity of N Sv − . 
The sum telescopes to the last term, which is the Vickrey price the bidder would need to 
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pay to acquire the same allocation without shill bidders. Hence, shill bidding is 
unprofitable.  

To prove the converses, suppose that the set V includes values for which goods are not 
substitutes. Say that the goods for which the demand condition fails are goods 1 and 2. 
Then, there is some price vector p at which demand is single-valued and such that 
increasing the price of good 1 from 1p  to 1p ε+  reduces the demand for good 2.  

As in the proof of Theorem 8.4, we utilize with the following indirect value function 
for bidder 1: 1 1

1 2 1,2
( , ) max ( ) m mm

v x x v x p x
≠

= − ∑� . As above, if goods 1 and 2 fail the 

substitutes condition for the original valuation 1v , then they also fail for the indirect 
valuation v, which allows us to focus on just the allocation of the two goods 1 and 2, if 
we can arrange for the prices of the other goods to be as prescribed by p. We accomplish 
that by introducing two bidders with linear valuations 

1,2
( ) k kk

v x p x
≠

= ∑ .  

Using the indirect valuation v, let the value of each good {1,2}i ∈  be iv  and let the 
combined value be v . If the goods are not substitutes, then 1 2( ) 0v v vα = − + > . Call the 
bidder with these values bidder A.  

To analyze joint deviations by losing bidders, we introduce two additional bidders B1 
and B2. Bidder Bi values good i at i i iv vε+ > , where 1 2ε ε α+ < . These bidders both lose 
at equilibrium and earn zero payoffs. However, the joint deviation in which each bidder i 
bids iv α+  makes each bidder i a winner at the respective prices iv , earning a profit of 

iε . So, if the goods are not substitutes, then losing bidders have a profitable joint 
deviation.   

To analyze shill bidding, we introduce a single bidder B that values each good i at 
i i iv vε+ > , where 1 2ε ε α+ < . Bidder B values the pair at 1 2 1 2v v ε ε+ + + . Bidding 

honestly, this bidder earns a profit of zero. By bidding using two shills B1 and B2 and 
adopting the strategies of the previous paragraph, the two shills both win and the total 
price is 1 2v v+ , earning a profit of 1 2 0ε ε+ > . So, if the goods are not substitutes, then 
bidder B has a profitable deviation using shill bidders.  ■  

Auctions in which bidders bid for packages of items are more complicated than simple 
auctions for separate items. Package auctions are most attractive when they can help 
bidders to avoid the problem of winning some assets without acquiring needed 
complementary assets, that is, when the substitutes condition may fail. In exactly these 
conditions, however, the preceding analysis indicates that the Vickrey auction has serious 
and possibly fatal defects as a practical mechanism.  

8.2 Bernheim-Whinston First-Price Package Auctions 
The simplest package auction design is the first-price design, in which bidders submit 

package bids and the seller selects the feasible combination of bids that maximizes the 
total price. Each bidder then pays the amount it has bid for the goods it acquires or, in a 
procurement auction, receives the amount it has bid in return for the promised 
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performance. The IBM-Mars auction and the London bus auctions are procurement 
auctions that used the first-price design.  

When implementing a package auction, it’s important to design simple bidding 
procedures to keep the bidders’ problems (and perhaps also the auctioneer’s problem) 
manageable. For example, in the two auctions cited above, which are both procurement 
auctions, bidders bid individually for each item and, in addition, specified discounts for 
certain packages or quantities. Structuring the bidder interfaces can limit the complexity 
of bidding and the complexity of the winner determination problem.  

Our analysis of first-price package auctions is developed in a series of subsections 
below. The first formulates the auction and illustrates the multiple equilibrium problem; 
the second describes profit-target strategies and the reasons to focus on equilibria using 
those strategies; and the third shows that the equilibrium payoffs of those equilibria 
coincide with the bidder-optimal-frontier of the core of the associated coalitional game.  

8.2.1 Formulation 
The relevant theory for this auction has been worked out only for the full information 

case, so our model dispenses with bidder types. We assume that there is a set X of 
feasible allocations or, more generally, decisions 1( ,..., )Nx x x=  that the seller can make. 
The part of the allocation or decision relating to bidder i is the component ix , and the set 
of possible decisions relating to i is { | }i iX x x X= ∈ .  

The first-price auction proceeds as follows. Each bidder i makes a set of non-negative 
sealed bids { ( )} i i

i i
x X

b x
∈

. The seller then maximizes the objective 0
1

( ) ( )N i i
i

b x v x
=

+∑ , 
which is the sum of the bids plus the seller’s value for the allocation. Each bidder pays 
the amount of his own winning bid. Hence, if the seller chooses x, bidder i’s payoff is 

( ) ( )i i i iv x b x− . Let ( )i bΠ  denote i’s payoff corresponding to bid profile b.  

This model is general enough to encompass a wide variety of applications. For an FCC 
spectrum auction, X is the set of allocations in which each license is assigned to at most 
one buyer. In the train scheduling problem, X is the set of schedules for which the trains 
don’t crash. In a public goods problem, we can specify that for all x X∈ , 1 ... Nx x= = , so 
that everyone must get the same allocation. We are most interested in applying the model 
to auctions with voluntary participation, so we henceforth assume that  for each bidder i, 
there is an outcome in which i does not participate, which we denote by ∅. We normalize 
so that ( ) 0iv ∅ =  for all i. In addition, we assume throughout this chapter that the seller 
has free disposal, as defined below.  

Definition. The seller has free disposal if for all x X∈ , ( , )ix X− ∅ ∈  and  
0 0( ) ( , )iv x v x−≤ ∅ .  

Bernheim and Whinston (1986) developed a theory of first-price package auctions with 
complete information. The assumption of full information is disturbing, but the theory 
nevertheless identifies some important strategic aspects of the auction. 
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Before beginning the analysis, we make an important observation about our modeling 
of “ties,” that is, bid profiles for which the seller’s objective, 0

1
( ) ( )N i i

i
b x v x

=
+∑ , has 

multiple optima. If the auction requires that bids be made in discrete units like dollars, 
then ties can be broken according to any criterion or even at random without creating any 
technical difficulties. However, to obtain exact characterizations of equilibrium, it is 
convenient to model bids as non-negative real numbers. Treating bids as real numbers 
raises problems with the existence of best-replies, because it implies that there is no bid 
that is “just” higher than the highest opposing bid. The problem is the same as in the 
familiar Bertrand model of sellers competing to sell a single item to a buyer. Say the 
sellers’ costs are7 and 10, respectively. If bid units are discrete, say whole numbers, then 
there is a pure strategy equilibrium in which the low cost seller offers to sell at a price of 
10 and the other seller at a price of 11. In equilibrium, the winning bidder bids “just less” 
than the loser. This equilibrium has no exact analog in the continuous model. In that 
model, it is a convenient but imprecise short-cut to say that there is an equilibrium in 
which both sellers offer to sell at a price of 10 and the low cost seller wins the 
competition because he bids infinitesimally less.  

In this chapter, we adopt a similar short-cut based on a similar justification, but in 
auction models where the bidders are buyers and the highest bids win. In the analyses to 
follow, when we say that b is a best reply and a winning bid, we mean that for all 0ε > , 
b ε+  is an ε-best reply and a winning bid and that payments are to be determined as if 
the bid b were winning. With this understanding, each bidder always has a best reply to 
rivals’ bids. To avoid distractions from economic issues, we make no further comment 
about this understanding of best replies in the proofs and discussions below.160  

We begin our analysis of the model of first price package auctions with the observation 
that, generally, first-price package auctions have many Nash equilibria. To illustrate, 
consider an auction with two identical items for sale. Suppose that bidders 1 and 2 each 
want only a single unit of the good, which they value at 10, while bidders 3 and 4 have no 
value for a single unit, but will pay up to 16 for the pair. In one set of Nash equilibria, 
bidders 3 and 4 both bid 16 for the pair while bidders 1 and 2 each make bids less than 10 
that add up to 16. For convenience, we resolve this tie in favor of the bidders with the 
higher total value. Then, in these equilibria, bidders 1 and 2 win at a total price of 16 and 
earn total profits of 4, but some Nash equilibrium supports any division of the total with 
non-negative profits for both bidders. The outcome in each of these equilibria is efficient.  

In addition to the preceding equilibria, there are other equilibria in the same example 
with inefficient outcomes. In these equilibria, bidders 3 and 4 bid 16 but bidders 1 and 2 
bid less than 6. The outcome is that bidder 3 or 4 wins. Bernheim and Whinston judged 
these equilibria to be intuitively less plausible, because bidders 1 and 2 fail to make 
serious bids.  

                                                 
160 Simon and Zame (1990) formally justify equilibrium analysis based on this sort of approach. They study 
a sequence of games with discrete strategy spaces that approximate a game with continuous strategy spaces 
but with discontinuous payoff functions. For auction games, their analysis shows that any equilibrium in 
the continuous model using any tie-breaking rule can be closely approximated by an equilibrium of a 
similar game with discrete bidding units on a very fine grid.  
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8.2.2 Profit Target Strategies 
To isolate the equilibria they considered most plausible, they focused on profit target 

strategies, which are defined as follows.  

Definition.161 The strategy ib  is the iπ -profit target strategy if for all x, ( )i ib x =  
max(0, ( ) )i i iv x π− .  

Profit-target strategies have two kinds of appeal. First, they are simple. Given the 
bidder’s value, the strategy is characterized by one single number, iπ —the profit the 
bidder requires from any winning bid. The bidder fixes his bids on each package by 
subtracting iπ  from his package value. Second, regardless of the strategies played by the 
other bidders, each bidder’s best reply set will always include a profit target strategy.  

Theorem 8.6. In a first-price package auction, for any bidder i and any bids ib−  by the 
other bidders, let max ( , )i

i i i i
b

b bπ −= Π . Then, the iπ -profit target strategy is a best reply 
for bidder i in this auction.  

Proof. Let ib  be a best reply and let the corresponding decision by the auctioneer be x̂ . 
Then, ˆ ˆ( ) ( )i i i i iv x b xπ = − . Let ib  denote the iπ -profit target strategy. Then, 

ˆ ˆ( ) ( )i i i ib x b x= .  

By the seller’s selection rule, for any ˆx x≠ , 0 0
1 1

ˆ ˆ( ) ( ) ( ) ( )N Ni i i i
i i

b x v x b x v x
= =

+ ≤ +∑ ∑ . 

Then, if ( ) 0i ib x = , then ( ) ( )i i i ib x b x≤ , so 0( ) ( ) ( )j j i i
j i

b x b x v x
≠

+ + ≤∑  
0ˆ ˆ ˆ( ) ( ) ( )j j i i

j i
b x b x v x

≠
+ +∑ . Hence, the auctioneer does not choose x when i bids ib . 

The auctioneer’s choice x  when i bids ib therefore satisfies ( ) 0i ib x > , so 
( ) max(0, ( ) )i i i i ib x v x π≡ − =  ( )i i iv x π− . Hence, 
( , ) ( ) ( ) ( , )i i i i i i i i i i ib b v x b x b bπ− −Π = − = = Π .  ■  

The preceding theorem assumes that opposing bidders adopt pure strategies. If the 
opposing bidders adopt mixed strategies or if the bidder is uncertain about what pure 
strategies they may be adopting, then the best reply set does not generally include any 
profit target strategy. 

Theorem 8.6 indicates the difficulty of enforcing collusive behavior in equilibrium in 
the first price package auction. It holds that, unlike in uniform price auctions, no bidder 
ever has any incentive to reduce her demand in the first-price package auction. For 
suppose some that at some agreed strategy profile, bidder i wins the allocation ix , paying 
some positive price. If a bidder uses a profit target strategy, and we increase his 
allocation by i ix x− , he will increase his bid by ( ) ( ) ( ) ( )i i i i i i i ib x b x v x v x− = − . Thus, 
the bidder offers to pay the seller his full marginal value for additional units. Profit-target 
strategies therefore involve no demand reduction at all. The fact that some profit-target 
                                                 
161 Bernheim and Whinston (1986) call these “truthful” strategies and  Ausubel and Milgrom (2002) call the 
corresponding proxy auction strategies “semi-sincere” strategies. The term “profit-target strategies,” 
adopted here, seems more descriptive: the bidder makes the bids that, if they win, achieve the profit target.  
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strategy is always in the best-reply set means that no pure strategy profile can deter a 
bidder from bidding aggressively for additional units. So, there is no way to enforce a 
collusive bidding agreement using strategies in the auction itself.  

8.2.3 Equilibrium and the Core 
This consequence of Theorem 8.6 hints that the outcome of an equilibrium in profit-

target strategies may resemble competitive equilibria; this intuition turns out to be 
correct. To characterize equilibrium in a first price package auction, we compare 
equilibrium payoffs in the auction to points in the core of an associated coalitional form 
game.  

We defined the coalitional value function and the core in (8.1) and (8.2). We may 
rewrite the latter as:  

 ( , ) | ( ) ( ) | ( )N j N j

j S j N
Core N w S w S w Nπ π π π

∈ ∈

   
= ∈ ∀ ≥ ∩ ∈ ≤   

   
∑ ∑\ \ . (8.12) 

A payoff vector Nπ ∈\  is in the core if it is unblocked and feasible. The first set in the 
intersection in (8.12) expresses the restriction that the payoff vector π is unblocked: no 
coalition can earn more on its own than it does from payoff vector π. The second set 
expresses the feasibility condition that the total promised payoff does not exceed what is 
available: ( )j

j N
w Nπ

∈
≤∑ . Since the reverse inequality is contained in the first set of 

inequalities, one may equivalently write the feasibility constraint as ( )j
j N

w Nπ
∈

=∑  to 

recover the form used in (8.2).  

One may regard the core imputations in this context as competitive prices for the 
participants’ services and resources. For imagine that there are several brokers who may 
hire the players. A broker who hires coalition S can create a business of value w(S). 
Suppose brokers bid for individual players in a perfectly competitive market and let iπ  
be the price for the services of player i. For markets to clear, the brokers’ maximum 
profits must be zero. This means that the prices must be such that for every coalition S, 

( ) 0j
j S

w S π
∈

− ≤∑ . Since the efficient outcome entails forming the coalition N, the zero 

profit condition also implies ( )j
j N

w Nπ
∈

=∑ . Thus, the condition that π is a competitive 

equilibrium price vector for the services and resources of the participants is the same as 
the condition ( , )Core N wπ ∈ .  

A particular portion of the core is especially interesting for our analysis.  

Definition. A payoff vector Nπ ∈\  is bidder optimal if ( , )Core N wπ ∈  and there 
exists no ( , )Core N wπ ′∈  with 0 0π π− −′ > . The set of such points is called the bidder 
optimal frontier of the core.  

Recall our notation for vector inequalities, [ , ]α β α β α β> ⇔ ≥ ≠ . Using this 
notation, a payoff vector is in the bidder Pareto frontier if there is no other payoff vector 
in ( , )Core N w  that is Pareto preferred. The emphasis on the Pareto frontier of the core is 
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reminiscent of a similar emphasis in matching theory, but we do not develop that 
connection here.162  

With these definitions, we can state our main theorem characterizing equilibrium in the 
first price package auction.  

Theorem 8.7. Suppose that π is bidder optimal. Then the corresponding iπ -profit target 
strategies constitute a Nash equilibrium of the first-price package auction. Conversely, if 

Nπ ∈\  is an equilibrium payoff vector and the corresponding iπ -profit target strategies 
constitute a Nash equilibrium of the first-price package auction, then π is bidder optimal.  

Proof. To demonstrate the first assertion, suppose that π is bidder optimal. We must 
show that the corresponding profit target strategies constitute an equilibrium.  

We will show that no player i has a profitable deviation to any profit-target strategy. 
Then, by theorem 8.6, no player has a profitable deviation of any kind.  

Suppose some alternative profit-target strategy for i earns a payoff iπ δ+ , for some 
0δ > . Then, the strategy must be the iπ δ+ -profit target strategy.  

Since π is bidder optimal, ( , )Core N wπ ∈  and  0 0( , , ) ( , )i i Core N wπ δ π δ π − −− + ∉ . 
So, there exists some coalition S such that  {0 } { }( ) 1 1j j

S i Sj S j S
w Sπ π δ δ∈ ∈∈ ∈

≥ > − +∑ ∑ . 

It follows that 0 S∈  and i S∉ . The maximum value of the seller’s objective if he 
excludes bids from bidder i is therefore: 

 

( )

0 0

{ | } { | }0 0

0

{ | } 0
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0
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0

0
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≥ − + 
 

= −

> −

 
= + − 

 

≥ +

∑ ∑

∑

∑

∑

∑ .δ
 

− 
 

 (8.13) 

The first line of (8.13) holds because the second optimization is more constrained, the 
second because ( )( ) max 0, ( )j j j j jb x v x π= − , and the third by definition of ( )w S . The 
strict inequality on the fourth line follows by selection of the coalition S and the fifth line 
holds by definition of 0π . Finally, the last inequality follows because the last 
optimization is more constrained than the preceding one.  

                                                 
162 See Ausubel and Milgrom (2002).  
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Comparing the first and last terms in (8.13) indicates that, after the deviation, the seller 
does strictly better by excluding bidder i than by accepting one of i’s bids. Hence, the 
deviation results in the bidder becoming a losing bidder. So, there exists no profitable 
deviation for any bidder i.  

To show the converse, suppose that the iπ -profit-target strategies constitute an 
equilibrium with payoff vector π. First, we show that ( , )Core N wπ ∈ . Since π is the 
payoff vector for these strategies, it is feasible. Hence, if ( , )Core N wπ ∉ , then there 
exists some coalition S such that ( )j

j S
w Sπ

∈
<∑ . Then,  
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0 0

0

0

{ | } 0

0

{ | } 0

0
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x X x j S
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v x b x
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∈ −
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∈ =∅ ∈ −

∈ −

 
= + 

 
 

≥ + 
 
 

≥ + − 
 

= − >

∑

∑

∑

∑

 

which is a contradiction. So, ( , )Core N wπ ∈ . 

Next, suppose that π is an equilibrium payoff vector and ( , )Core N wπ ∈  but π is not 
bidder optimal. Then there is some i and some 0δ >  such that 

0 0ˆ ( 2 , 2 , ) ( , )i i Core N wπ π δ π δ π − −≡ − + ∈ .  

Suppose bidder i deviates to the iπ δ+ -profit-target strategy, which we denote below 
by ib� . If π is an equilibrium payoff vector, then there is a corresponding feasible 
allocation x . So,  
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j j

x X j N i

v x v x

v x v x

b x v x

π

π

∉
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∈
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− + 

 
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= − + 
 
 

= + 
 

∑

∑

∑  

The first line follows from maximization, the second from the definitions of the bid 
functions, and the third from the definition of x . The fourth line holds because 

0 0( 2 , 2 , ) ( , )i i Core N wπ δ π δ π − −− + ∈ . The fifth follows from the definition of ( )w S , and 
the sixth from reversing the order of optimization (and using free disposal). The seventh 
line follows from maximization over S and the last by the definition of the bid functions.  

Since the last term is less than the first term, the seller strictly reduces his profit by 
refusing all of i’s bids after the deviation. So, according to the rules of the auction, the 
seller accepts one of i’s bids and i’s deviation is profitable, contradicting the assumption 
that the original profit target strategies constitute an equilibrium.  ■  

According to our earlier interpretation, outcomes in the core pay the seller a 
competitive price for his resources. However, the core also includes the extreme payoff 
profile at which each bidder i earns 0iπ =  and the seller earns 0 ( )w Nπ = . Intuitively, 
this extreme payoff reflects the fact that all the relevant coalitions include the seller 
(except the singleton coalitions, which ensure each bidder gets at least zero), so the core 
includes as one possibility that the seller is a perfect price discriminator. In an auction, 
however, it is the bidders who get to make the offers. Theorem 8.7 reflects the power the 
ability to make offers conveys: the bidders collectively bid just enough for the outcome to 
lie in the core. In terms of our competitive pricing interpretation, the theorem holds that 
the prices paid for the bidders’ resources are as high as possible, consistent with paying 
the seller a competitive price for his resources.163  

                                                 
163 In their analysis of first price package auctions, Bernheim and Whinston (1986) also 
developed the concept of “coalition-proof Nash equilibrium” and showed that the 
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8.3 Ausubel-Milgrom Ascending Proxy Auctions164 
In this section, we introduce the Ausubel-Milgrom ascending proxy auctions, which 

incorporate many of the advantages of both the Vickrey and first-price package designs 
while avoiding some key disadvantages. We will show that this design essentially 
replicates the performance of the Vickrey design when all goods are substitutes and, like 
the Bernheim-Whinston first-price auction, has full information equilibrium outcomes 
that are bidder-optimal points in the core.  

To develop the connection with the Vickrey auction, suppose that goods are substitutes 
for all bidders. Then, for every value profile, truthful bidding is a Nash equilibrium of the 
ascending package auction, and the allocation and payments coincide exactly with those 
of the Vickrey auction. The equilibrium payoff vector is then the unique bidder optimal 
point in the core of the associated coalitional game. The ascending package auction thus 
matches the performance of the Vickrey auction when goods are substitutes – the 
condition under which the Vickrey auction performs best.  

The ascending package auction performs quite differently from the Vickrey auction 
when goods are not substitutes. Whenever there is full information, the ascending 
package auction has profit-target Nash equilibria with strategies and equilibrium payoffs 
identical to those for the first-price package auction, as described by theorem 8.7. In 
addition, the ascending package auction duplicates the first-price package auction’s 
resistance to collusion (described by theorem 8.6)—a property also shared by the Vickrey 
design.165  

We model the proxy auction as a revelation game in which each bidder reports his 
values to a proxy agent who places bids in a multi-round auction on the bidder’s behalf. 
We will study two versions of the proxy auction. The first assumes unlimited bidder 
budgets. Because tight budget constraints are a serious problem in some spectrum 
auctions, we analyze a proxy auction that respects budget constraints in the succeeding 
section.  

8.3.1 The Proxy Auction with Unlimited Budgets 
In this section we study the ascending proxy auction with unlimited budgets and 

negligibly small bid increments, showing three main results. First, the algorithm selects a 
core allocation with respect to the preferences reported to the proxies. Second, with full 
information, the Nash equilibria in target strategies induce bidder-optimal core 
allocations and every bidder-optimal core allocation corresponds to some profit target 
equilibrium. Third, when goods are substitutes, truthful reporting to the proxy bidders is a 
Nash equilibrium.  

                                                                                                                                                 
equilibria identified in theorem 8.7 coincide exactly with the coalition-proof Nash 
equilibria of this auction. Their analysis, consistent with the discussion following theorem 8.6, further 
indicates the difficulty of creating incentives to sustain collusive outcomes, even when small groups of 
bidders can communicate privately.  
164 This section follows Ausubel and Milgrom (2002).  
165 Recall, though, that with even a small amount of outside enforcement, the Vickrey auction is vulnerable 
to collusive equilibria. The same is true of the ascending proxy auction when goods are substitutes.  
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Except where otherwise specified, we use the model of section 8.2, with quasi-linear 
preferences and valuation functions ( )i

i Nv ∈ .  

The proxies place bids in a multi-round auction. In each round, the auctioneer 
determines the feasible decision x that solves { }0

0
max ( ) ( )j j

x X j N
b x v x∈ ∈ −

+∑ , where 

( )j jb x  is the highest bid j has ever made in any round for the package jx . The bidders 
for whom the maximum specifies ix ≠ ∅  are called the provisionally winning bidders 
and the set of all such bidders is called the provisionally winning coalition.  

In each round, each bidder i faces a minimum bid ( )i im x  for every possible package. 
Initially, for every bidder and package, ( ) 0i im x = . As the auction progresses, if the 
bidder has ever bid upon the package, then the minimum bid is the bidder’s highest 
previous bid on that package plus one increment.  

The proxy operates as follows. In each round, if bidder i is a provisional winner, then 
i’s proxy makes no new bid. Otherwise, for every possible package, the proxy uses the 
reported value function iv�  to determine the package ˆ ix  with the highest potential profit 
ˆ ˆ ˆ( ) ( )i i i i iv x m xπ = −� . If ˆ 0iπ < , then the proxy places no new bid, but if ˆ 0iπ ≥ , then i’s 

proxy bids ˆ( )i im x  for the package ˆ ix . (It may be helpful to think of an exiting proxy’s 
final bid as a bid of zero for the null allocation.) The auction terminates when there are no 
new bids. At that time, the provisional winners and the provisional allocation become the 
winners and the allocation in the auction.  

We study the revelation game in which the bidders report values to their proxies, but to 
study that game, we first need to examine the ascending auction process. Given any 
values the bidders report to their proxies, one can reconstruct all of a bidder’s bids in 
prior rounds from the potential profit ˆ ( )i tπ  associated with his most recent bid at time t. 
In particular (ignoring ties), by time t the proxy has made all legal bids on any package 
with potential profit of at least ˆ ( )i tπ . Let 0ˆ ( )tπ  be the maximal value of seller’s 
objective. Let the full vector of payoffs be ˆ( )tπ , which we sometimes denote simply by 
π̂ .  

8.3.1.1 Proxy Outcomes are Core Outcomes 
We focus here on the limiting case of small bid increments and treat the rounds as 

continuous in time. Then, bidder i’s current minimum bid on any package ix  at time t is 
ˆmax(0, ( ) ( ))i i iv x tπ−� . Let w�  denote the corresponding coalitional value function 

computed according to (8.1). Then, the seller’s maximum payoff at time t is given by:  
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 
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 
 
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 

 
= − 

 

∑

∑

∑

�

�

�

 (8.14)  

The first equality uses the definitions of 0ˆ ( )tπ  and the proxy bids; the second follows 
because the maximum over S chooses exactly the positive summands; and the third 
follows the definition of w�  .  

Remarkably, (8.14) suggests one can characterize the auction as a coalitional 
bargaining process. It is as if at any time t, each bidder demands payoff ˆ ( )i tπ  and a 
manager for coalition S, who plans to hire coalition members at prices ˆ ( )i tπ , bids the 
residual, 

0
ˆ( ) ( )j

j S
w S tπ

∈ −
− ∑� , to buy the seller’s resources. The winning coalition of 

bidders at any time is the coalition making the most generous offer, and losing bidders 
targeting positive payoffs reduce their demands and try again. Formula (8.14) and the 
story behind it arise repeatedly in the analysis below.  

(8.14) indicates that at any time t, no coalition S blocks payoff vector ˆ( )tπ : 
ˆ( ) ( )j

j S
w S tπ

∈
≤ ∑� . When the auction ends, the payoff vector is also feasible, so we have 

the following result: 

Theorem 8.8. When the auction ends at time t , the final decision x�  maximizes the 
total of reported values: ( ) ( )j j

j N
v x w N

∈
=∑ � � �  and the payoff outcome satisfies 

ˆ( ) ( , )t Core N wπ ∈ � . 

Proof. Since ˆ( )tπ  is unblocked, it only remains to show that ˆ( )tπ  is feasible. Let W 
be the winning coalition at time t  and let ( )j jb x�  denote the final bid prices. By the rules 
of the auction,  

 0

( ) ( )           for 
ˆ ( ) ( ) ( ) for 0

0                               for {0}

i i i i

i j j
j W

v x b x i W
t v x b x i

i W

π
∈

 − ∈


= + =


∉ ∪

∑
� � �
� �  (8.15) 

Writing 0 0v v=� , ˆ ( ) ( ) max ( ) ( )j j j j j
x Xj N j N j N

t v x v x w Nπ ∈∈ ∈ ∈
= ≤ =∑ ∑ ∑� � � � . That 

establishes feasibility. Hence, ˆ( ) ( )j
j N

w N tπ
∈

= ∑�  and ˆ( ) ( , )t Core N wπ ∈ � .  ■  
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8.3.1.2 Profit Target Strategies and Equilibrium 
Theorem 8.9. In the ascending proxy auction, for any bidder i and any reports iv−�  by 

the other bidders, let max ( , )i
i i i i

v
v vπ −= Π�
� � . Then, the iπ -profit target strategy is a best 

reply for bidder i in this auction.  

Proof. The conclusion is trivial if 0iπ = , so suppose 0iπ > . Let iu  be any report such 
that ( , )i i i iu v π−Π =�  and x�  be the associated final outcome. Then, the price i pays is 

( )i i iv x π−� . Let ( )( ) ( )i i i i iu x v xδ π= − −� � . By the rules of the auction, the report iu�  

defined for each package by ( ) ( )i i i iu x u x δ= −�  leads to the same path of bids and the 
same auction outcome as the report iu . According to theorem 8.8, the outcome is total 
value maximizing with respect to the reports ( , )i iv u−� � , so there is no outcome x that 
excludes i and satisfies 0 0

0 0
( ) ( ) ( ) ( ) ( )j j j j i i

j N i j N i
v x v x v x v x u x

∈ − − ∈ − −
+ > + +∑ ∑� � � � � � . Hence, 

again using the theorem 8.8, any report by i that specifies the value ( )i iu x� �  for ix�  leads 
either to the outcome x�  or to some other outcome that does not exclude i.  

Let iv  denote the iπ -profit target strategy. By definition, its report for ix�  is ( )i iv x =�  
( ) ( ) ( )i i i i i i iv x u x u xπ δ− = − =� � � � , so the report iv  leads to some outcome at which i is a 

winning bidder. Since, by definition of the profit-target strategy, the lowest profit 
associated with any bid during the course of the auction using the report iv  is iπ , it 
follows that ( , )i i i iv v π−Π ≥� .  ■  

Theorem 8.9 is closely analogous to theorem 8.6 and has a similar interpretation. In the 
ascending package auction with proxy bidders, no bidder has an incentive to withhold 
demand, so no strategy profile a ring of bidders could adopt protects an agreement about 
how to divide the items against aggressive deviations by the ring members.  

The next theorem duplicates the first sentence, but not the second, of theorem 8.7.  

Theorem 8.10. Suppose that π is bidder optimal. Then the corresponding iπ -profit 
target strategies constitute a Nash equilibrium of the ascending package auction.  

Proof. Suppose π is bidder optimal and, for each i, let iv  denote the iπ -profit target 
strategy. Suppose the strategy profile v  is not a Nash equilibrium. In particular, suppose 
there is some player i with a profitable deviation to a ˆ iπ -profit target strategy. If ˆ i iπ π<  
and i is a winner with this deviation, then either the auction outcome is unaffected or i 
earns a profit of less than iπ , so we restrict attention to the case ˆ i iπ π> .  

Let T denote the winning coalition that results after the deviation and let the payoff 
outcome be π̂ . Then, i T∈  and ˆ i iπ π> . Also, the profit-target strategies imply that for 
all j T∈ , ˆ j jπ π≥  (because the bidder j makes no bids that involve a lower profit than 

jπ ).  

Since ( , )Core N wπ ∈ � , for every coalition S, ( ) j
j S

w S π
∈

≤ ∑� . If there exists any 0ε >  

such that for every coalition S, ( ) j
j S

w S ε π
∈

+ ≤ ∑� , then 
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0 0( , , ) ( , )i i Core N wπ ε π ε π − −− + ∈ � , which contradicts bidder optimality. So, there is 
some coalition S with 0 S∈  and i S∉  such that ( ) j

j S
w S π

∈
= ∑� .  

Let ( )Sβ  and ( )Tβ  denote the highest total seller payoff associated with bids by the 
bidders in coalitions S and T during the proxy auction, given the specified deviation by 
bidder i. Then,  
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 (8.16) 

The first step in (8.16) follows from the proxy rules: any losing bidders in S stop 
bidding only when their potential profits reach the specified levels. The strict inequality 
in the second step follows because i T S∈ −  and ˆ i iπ π> . The third step follows by 
selection of S, the fourth because ( , )Core N wπ ∈ � , and the fifth and sixth by the 
definitions of T, π̂  and ( )Tβ . 

We conclude that coalition S offers a strictly higher total payoff to the seller than does 
coalition T, which is impossible because T is the winning coalition. This contradicts the 
hypothesis that bidder i has a profitable deviation.  ■   

To highlight the theorem’s scope and limits, consider a package auction with one unit 
of an indivisible good for sale. Suppose the good is worth 8 to bidder 1 and 4 to bidder 2. 
Then, in equilibrium in a first-price auction, both bidders bid 4 with bidder 1 wins. These 
are profit-target strategies; with bidder 1 bids for a profit of 4, bidder 2 bids for a profit of 
0, and the equilibrium payoff vector  for the two bidders is (4,0). This equilibrium is 
consistent with theorem 8.7.  

In the ascending auction, there exists a Nash equilibrium in which the bidders play the 
same strategies. Bidder 1 tells its proxy to bid up to 4, bidder 2 does the same, and bidder 
1 wins. This equilibrium is one specified by theorem 8.10, but it highlights a problem 
with the equilibria identified by the theorem. In the ascending proxy auction, it is a 
dominant strategy for bidder 1 to report his value of 8 to the proxy. The identified 
equilibrium is inconsistent with bidder 1’s dominant strategy.  

This example indicates that the ascending auction performs better than theorem 8.10 
might suggest. When bidders in the ascending package auction have dominant strategies, 
they have simpler optimization problems and less incentive to waste resources studying 
competitors’ values and strategies than they might otherwise.  
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8.3.1.3 The Proxy Auction when Goods are Substitutes  
The next theorem shows that the simplicity of bidding in the proxy auction when there 

is just one item for sale also applies when there are several goods that are substitutes.  

Theorem 8.11. Suppose that (1)  for all 0i N∈ − , iv ∈ subsV  (all bidders regard the 
goods as substitutes) and (2) for all x X∈ , 0 ( ) 0v x =  (the seller has no value for unsold 
goods). Then, the strategy profile in which every bidder reports i iv v=�  is a Nash 
equilibrium. The corresponding payoff vector satisfies ˆ ( ) ( )i i

V w N w N iπ π= = − − =  
max{ | ( , )}i Core N wπ π ∈ . In particular, the equilibrium payoff vector is the unique 
bidder optimal point in ( , )Core N w .  

Proof. By Theorem 8.8, for any report by bidder i, the payoff outcome satisfies the core 
constraint: ˆ ( )j

j N i
w N iπ

∈ −
≥ −∑ . Moreover, for any report by player i, some feasible 

outcome results, so the total payoff necessarily satisfies ˆ ( )j
j N

w Nπ
∈

≤∑ . Hence, 

regardless of i’s report, his payoff is bounded above by ( ) ( )w N w N i− − .  

To show that truthful reporting is a best reply for i when all others report truthfully, it is 
therefore sufficient to prove that if the goods are substitutes for all the bidders, then i’s 
payoff from truthful reporting is at least ( ) ( )w N w N i− − . We do this by showing that 
during the auction, if there is any round t′  at which ˆ ( ) ( ) ( )i t w N w N iπ ′ ≤ − − , then i is 
part of the provisionally winning coalition at every round t t′≥ .  

By Theorem 8.4, since goods are substitutes, the coalitional value function w is bidder-
submodular. Hence, for any coalition S with i S∈ , ( ) ( )w S w S i− − ≥  ( ) ( )w N w N i− − . 
We use this inequality below.  

Suppose that 0S i− −  is the coalition excluding i that maximizes the seller’s payoff at 
some round t t′≥ , where 0, i S∈ . By (8.14) (and using the fact that all bidders are 
reporting truthfully), the corresponding seller payoff is 

0
ˆ( ) ( )j

j S i
w S i tπ

∈ − −
− − ∑ . If the 

seller were instead to select the coalition 0S − , which includes i, then his payoff would 
be 

0
ˆ( ) ( )j

j S
w S tπ

∈ −
− =∑ 0

ˆ( ) ( ) [ ( ) ( )]j
j S i

w S t w N w N iπ
∈ − −

− − − − ≥∑ ( )w S −  

0
ˆ ( )j

j S i
tπ

∈ − −
−∑ [ ( ) ( )]w S w S i− − =

0
ˆ( ) ( )j

j S i
w S i tπ

∈ − −
− − ∑ . So, i must be part of any 

provisionally winning coalition.  

Hence, by the mechanics of the auction, i’s profit target never falls below 
( ) ( ) i

Vw N w N i π− − = , so i eventually wins and earns ˆ i i
Vπ π≥ . This proves that truthful 

reporting is a best reply for i. By theorem 8.8, truthful reporting leads to ˆ ( , )Core N vπ ∈ . 
By theorem 8.1, ( ) ( )i

V w N w N iπ = − − =  max{ | ( , )}i Core N wπ π ∈ , so ˆ i i
Vπ π≤ . Hence, 

ˆ i i
Vπ π= .  ■  
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8.3.2 The NTU Proxy Auction 
In this last section, we extend the ascending proxy auction to accommodate limited 

budgets and valuations more complicated than the quasi-linear form used up to now. We 
do not identify equilibria, but we show that the auction algorithm still generates a core 
allocation with respect to reported preferences.  

Suppose that each bidder i has a finite set iΩ  of feasible offers. (In the ordinary 
ascending proxy auction, offers are package-price pairs, and this analysis covers that 
special case.) Suppose that each bidder’s feasible set includes a null outcome, i∅ ∈Ω , 
which means that the seller does not select player i. Assume that i has a strict ordering 
over this set represented by a utility function iu .  

The seller can accept only feasible combinations of offers, which belong to the set 
0

0
j

j N∈ −Ω ⊂ × Ω . We assume that 0( ,..., )∅ ∅ ∈Ω : the null or “no-trade” outcome is 

feasible. We also assume that the seller has a strict preference ranking over the set 0Ω  
described by the utility function 0u . A combination 0ω ∈Ω  that is feasible for the seller 
is feasible for any coalition S with 0 S∈  if jω = ∅  for all j S∉ . For other coalitions, the 
only feasible allocation is null.  

The auction proceeds much as in the preceding section. Each bidder  reports his 
preferences once and for all to his proxy. The report is a utility function :i iu Ω →� \  that 
strictly ranks the elements of iΩ . The mechanism processes the reports in a series of 
rounds. The bidders’ past bids and the seller’s most preferred feasible allocation 
summarize the state of the auction after any round.  

We describe the initial state of the auction with the collection of sets (0) { }iΨ = ∅  and 
the allocation 0 (0) ( ,..., )ω = ∅ ∅ .  

The process proceeds iteratively; the state of the process at round t is 
0

0({ ( )} , ( ))i
i Nt tω∈ −Ψ , where 0( )tω  is the seller’s currently most preferred feasible 

allocation and ( )i tΨ  is the set of offers made by bidder i up to and including round t. The 
state evolves according to (8.17).  
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The second line of (8.17) identifies ( )i tω , which is the offer that a proxy may make at 
round t. After the proxy identifies ( )i tω , it makes that offer only if and only if it prefers 
to have that offer accepted instead of the provisional outcome. Equivalently, the bidder 
makes the offer if and only if (i) the bidder is not a provisional winner at round t and 
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(ii) the bidder prefers the offer ( )i tω  to the no-trade outcome.166 Thus, just as in the 
preceding section, the set of offers made by any time t consists of the null offer plus all 
offers that are more profitable than the best new offer:  

 ( ) { } { | ( ) ( ( ))}i i i i i i it u u tω ω ωΨ = ∅ ∪ ∈Ω >� � � � .  (8.18) 

The auction process terminates when there is a round with no new bids. At that time, 
the provisionally winning allocation 0( )tω  becomes the final allocation.  

The coalitional game corresponding to this auction generally involves non-transferable 
utility, so we use the non-transferable utility core (or NTU core) to analyze the outcome. 
Recall that an allocation ω  is blocked if there exists some coalition S and allocation ω  
feasible for coalition S such that all the members of S strictly prefer ω  to ω . An 
allocation ω  is in the NTU core is it is feasible (satisfying i iω ∈Ω  for all i N∈ ) and 
unblocked. The main result of this section establishes that the identified auction process 
selects a core allocation.  

Theorem 8.12. When the ascending proxy auction ends at time t , the outcome 
0 0

0( ) ( ( ))i i Nt tω ω ∈ −=  is an NTU-core allocation with respect to the reported preferences 
0

0( , ( ) )i
i Nu u ∈ −� .  

Proof. The final allocation is clearly feasible, so if it is not a core allocation, then there 
is some blocking coalition S including the seller and some allocation 0ξ ∈Ω  that is 
feasible for S ( Sξ − = ∅ ) such that (i) 0 0 0( ) ( ( ))u u tξ ω>   and (ii) 0( ) ( ( ))i i i

iu u tξ ω>� �  for 
all 0i S∈ − . Using (8.18), 0{ | ( ) ( ( ))} ( )i i i i i i i

iu u t tξ ω ω ω∈ ∈Ω > ⊂ Ψ� � � �  for all 0i N∈ − . 
So, by the first line of  (8.17), 0 0 0( ( )) ( )u t uω ξ> , contradicting (i).  ■  

To illustrate the operation of this auction, suppose that offers are pairs of packages and 
corresponding money bids, as in the preceding section, but that bidder budgets are 
limited. To adapt the ascending proxy auction to this situation, a bidder could report his 
package valuation function and budget to his proxy. The proxy would avoid skip over 
bids that exceed the budget, but otherwise the auction would operate as in the preceding 
section. Theorem 8.12 asserts that the allocation resulting from such an auction is a core 
allocation with respect to the reported preferences and budgets.  

This example establishes another advantage of the proxy auction design. Unlike the 
Vickrey auction, the ascending proxy auction can easily extend to the case of limited 
budgets.  

8.4. Conclusion 
In this chapter, we have discussed three leading designs in the new and burgeoning 

literature on combinatorial auctions. The three mechanisms have different advantages.  

                                                 
166 In some versions of the ascending proxy auction, a bidder can revise the instructions to his proxy at 
certain times during the auction (Ausubel and Milgrom (2001)). In that extended design, the two 
descriptions of the proxy are not equivalent.  
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The Vickrey design is a dominant strategy auction mechanism that produces efficient 
outcomes. As we saw in chapter 3, it is the only such mechanism with the property that 
losing bidders pay nothing. The dominant strategy property is valuable because it makes 
bidding easy and discourages unproductive research into competitors’ values and plans.  

Vickrey auctions suffer from a number of practical problems listed in chapter 2. Some 
of these, including the complexities of package bidding, are shared by all package auction 
designs. However, Vickrey auctions lose their performance advantages when budgets are 
limited and they distort incentives for investment and mergers in ways that other package 
auctions don’t. When goods are not substitutes, the Vickrey auction suffers from an 
important collection of monotonicity problems. As the set of bidders expands (for 
example through entry), it is possible that the existing bidders’ payoffs rise and the 
seller’s revenue falls. Whenever that happens, the outcome of the Vickrey auction ceases 
to be in the core. Losing bidders can sometimes collude profitably, raising their bids to 
become winners while reducing the prices they pay. A single bidder can sometimes 
profitably pretend to be multiple bidders. We showed that one can rule out these 
problems in a model where bidders can have any additive values only when all goods are 
substitutes.167  

One might summarize this discussion by saying that the Vickrey auction performs well 
when goods are substitutes and budgets are unlimited, but can encounter important 
theoretical and practical problems when goods may not be substitutes for some bidders 
and when budget constraints bind. (An additional disadvantage, associated with 
investments and mergers, is discussed in chapter 2.) 

The advantages of the first-price package auction are very different. First, the auction 
itself is relatively simple and transparent: bidders need not perform difficult calculations 
to tell whether the auctioneer has calculated their prices correctly. When the bidders are 
fully informed about all values, the outcomes of profit-target equilibria identified by the 
theory lie in the core. Such equilibria therefore ensure a competitive price for the seller’s 
goods. In addition, outcomes of such equilibria are bidder optimal and thus lie on the 
bidder-Pareto-frontier of the core. Intuitively, this fact means that only competition – and 
not the seller’s monopoly power – limits the bidders’ earnings. These properties hold 
regardless of whether the goods are substitutes. In contrast, Vickrey outcomes are 
guaranteed to enjoy these properties only when goods are substitutes. In that case, the 
outcomes of the first-price auction in profit-target equilibria coincide exactly with the 
Vickrey outcomes.   

A disadvantage of the first-price auction compared to the Vickrey auction is that 
bidders in the first-price package auction need to know a lot for the first-price auction to 
perform well. To choose their optimal bids, bidders need to set their profit targets 
accurately and they need to be able to coordinate on one of the multiple equilibria. These 
observations suggest that the full information equilibrium outcomes are unlikely ever to 
hold exactly, although it remains possible that they may describe a central tendency for 
some kinds of environments.  

                                                 
167 The problems can also be characterized using the coalitional value function; we showed that most of the 
problems arise only when the function is not bidder-submodular. 
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The ascending proxy auction incorporates some of the advantages of each of the two 
preceding designs. When goods are substitutes, the ascending proxy auction has a Nash 
equilibrium in which each bidder reports his values truthfully, without regard to the other 
bidders’ values. The outcome in that case is the unique bidder optimal point, so it 
coincides with the Vickrey outcome. Thus, when the Vickrey design performs best, the 
ascending package auction exactly matches its performance. The two perform quite 
differently, however, when goods are not substitutes.  

In the full information case, the ascending proxy auction has profit-target equilibria 
similar to those of the first-price package auction. The equilibrium payoffs are bidder 
optimal points in the core of the associated coalitional game. The fact that the outcomes 
are in the core implies that the seller receives at least a competitive price for his goods. 
Since the payoff outcomes are bidder optimal, the seller exercises no monopoly power, 
but accepts the prices dictated by competition alone.  

Finally, the ascending proxy auction is adaptable to budget constraints and other 
extensions that frustrate the Vickrey design.  

Besides the three auctions discussed here, several others based on different principles 
have also been proposed. Some of these auctions accept more than one bid from a 
particular bidder. These auctions are hybrids of the designs studied in chapters 7 and 
chapter 8. In the former class of auctions, bidders must bid on items individually; the 
latter auctions accept only one bid from each bidder and thus do not combine bids. These 
hybrid designs simplify some bidding problems and likely mix the advantages and 
disadvantages of the pure forms, but one cannot assess them confidently without more 
analysis. Other combinatorial auctions attracting interest include multi-stage or multi-
round designs in which bidders effectively exchange information about which packages 
might be interesting before making their final bids. The cognitive challenge of bidding in 
a package auction is daunting, so developments of this kind are likely to be critical to 
successful use of these designs.  
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